
RESPONSE TIME DENSITIES AND QUANTILES IN LARGE MARKOV
AND SEMI-MARKOV MODELS

JEREMY T. BRADLEY, NICHOLAS J. DINGLE, ULI HARDER,

PETER G. HARRISON AND WILLIAM J. KNOTTENBELT∗

Abstract. Response time quantiles reflect user-perceived quality of service more accurately than mean
or average response time measures. Consequently, on-line transaction processing benchmarks, telecommu-
nications Service Level Agreements and emergency services legislation all feature stringent 90th percentile
response time targets. This chapter describes a range of techniques for extracting response time densities
and quantiles from large-scale Markov and semi-Markov models of real-life systems. We describe a method
for the computation of response time densities or cumulative distribution functions which centres on the
calculation and subsequent numerical inversion of their Laplace transforms. This can be applied to both
Markov and semi-Markov models. We also review the use of uniformization to calculate such measures more
efficiently in purely Markovian models. We demonstrate these techniques by using them to generate response
time quantiles in a semi-Markov model of a high-availability web-server. We show how these techniques can
be used to analyse models with state spaces of O

�
107
�

states and above.

1. Introduction. A fast response time is an important performance criterion for al-
most all computer-communication and transaction processing systems. Examples of systems
with stringent response time requirements include stock market trading systems, mobile
communication systems, web servers, database servers, manufacturing systems, communica-
tion protocols and communications networks. Typically, response time targets are specified
in terms of quantiles (percentiles). For example, in a mobile messaging system it might
be required that “there should be a 95% probability that a text message will be delivered
within 3 seconds”.

In another context the Transaction Processing Performance Council (TPC) bench-
marks [51] were conceived to compare different implementations of large-scale on-line trans-
action processing (OLTP) systems in a consistent way. A range of benchmarks are available,
each of which is suitable for different applications including transaction processing, decision
support, business reporting and e-Commerce [51].

Response times are also used for Service Level Agreements (SLAs). SLAs exist as con-
tracts between service providers and their customers [20, 25]. For example, an e-commerce
site may have an SLA with the company which hosts its website, or two Internet Service
Providers (ISPs) may have mutual SLAs to regulate the carrying of each other’s traffic.
A typical SLA specifies the level of service to be provided (according to metrics such as
availability, response time, latency, packet loss and so forth) and how much this will cost,
as well describing what financial penalties will be incurred if this level is not met. It should
also describe what level of technical support will be given to the customer in the event of
problems.

Usually, the main metric of interest to customers is the availability of the provider’s
service (e.g. network or server uptime). However, customers (particularly those involved in
web-commerce) often require response time guarantees as well [25].

Response time percentiles are also used by governmental organisations when measuring
the effectiveness of emergency services. Indeed, in Ontario, Canada, it is a legal requirement
to report 90th percentile response times for ambulance services [19, 41, 50]: Similar reporting
takes place in Australia [6] and San Francisco [48]. In the UK, the London Ambulance

∗Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ,
UK. Email: {jb,njd200,uh,pgh,wjk}@doc.ic.ac.uk

1

2 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

Service aims to have an ambulance at the scene of 75% percent of life-threatening incidents
within 8 minutes [38] while the National Health Service aims to see 90% of accident and
emergency patients within 4 hours [18].

As can be seen from the above examples, it is important to ensure that systems will
meet quality of service targets expressed in terms of response time quantiles. Ideally, it
should be possible to determine whether or not this will be the case at design time. This
can be achieved through the modelling and analysis of the system in question. Such analysis
is usually conducted by capturing the behaviour of the system with a formal model; that
is, identifying the possible states the system may be in and the way in which it can move
between these states. The concept of time can be introduced by associating delays with
the state transitions. The result is that a certain amount of time will be spent in a state
before moving to another, and we term this the state sojourn time. When the choice of the
next state depends only on the current state and state sojourn times are random numbers
sampled from the negative exponential distribution, we call such a model a continuous-time
Markov chain.

As specifying every state and transition in the state space of a complex model of a real-
life system is infeasible, high-level formalisms such as stochastic Petri nets [7], stochastic
process algebras [32] and queueing networks [44] can be employed. These permit a succinct
description of the model from which a Markov chain can automatically be extracted and then
solved for performance measures of interest. From the equilibrium (steady-state) probability
distribution of the model’s underlying Markov chain, standard resource-based performance
measures, such as mean buffer occupancy, system availability and throughput, and expected
values of various sojourn times can be obtained. There is a large body of previous work
on the efficient calculation of steady-state probabilities in large Markov chains, including
parallel [8, 15, 34] and disk-based [21, 35, 36] implementations, as well as those which employ
implicit state space representation techniques [16, 22, 31, 37]. Steady-state measures allow
the answering of questions such as: “What is the probability that the system will be in a
failure state in the long run?” and “What is the average utilisation of this resource?”.

The focus of this chapter, however, is on the harder problem of calculating full response
time densities in very large Markov models and semi-Markov models (a generalisation of
Markov models in which state sojourn times can have an arbitrary distribution). As we
have seen, the answers to response time questions provide greater insight into whether or
not a system meets its user requirements than steady-state probabilities. In the context of
high-level models, response times can be specified as passage times in the model’s underlying
Markov or semi-Markov chain – that is, the time taken to enter any one of a set of target
states having started from a specified set of source states.

In the past, numerical computation of analytical passage time densities has proved
prohibitively expensive except in some Markovian systems with restricted structure such as
overtake-free tree-like queueing networks [29]. However, with the advent of high-performance
parallel computing and the widespread availability of PC clusters, direct numerical analysis
of Markov chains has now become a practical proposition. There are two main analytical
methods for computing first passage time (and hence response time) densities in Markov
chains: those based on Laplace transforms and their inversion [30] and those based on
uniformization [39, 40, 42]. The former has wider application to semi-Markov processes
(with generally-distributed state holding-times) but is less efficient than uniformization when
restricted to Markov chains.

In general, the probability density function of the time taken to move from a set of source
states to a set of target states is calculated by convolving the state-holding time functions

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 3

along all possible paths between the two sets of states. To convolve two functions together
directly requires the evaluation of an integral, and the convolution across a path n states long
requires the evaluation of an (n−1) dimensional integral. To perform such a calculation for
large values of n (perhaps in the millions) would therefore be impractical. Instead, we make
use of Laplace transforms, which uniquely map a real-valued function (e.g. a probability
density function) to a function of a complex variable. We do this as we wish to exploit the
convolution property of Laplace transforms, which states that the Laplace transform of the
convolution of two functions is the product of the functions’ individual Laplace transforms.
Once the Laplace transform of the passage time measure has been calculated it is possible
to retrieve the corresponding density function using a process known as Laplace transform
inversion. A number of numerical techniques are available to accomplish this.

Although all state holding-times in Markov models are exponentially distributed, this
does not make the direct calculation of their convolutions significantly easier as the rate
parameters of the state holding-time distributions will usually be different for different
states. An alternative technique known as uniformization can, however, be employed. This
transforms the model’s underlying continuous-time Markov chain with distinct exit rates into
an equivalent one where all delay rate parameters are identical. The passage time density
across any number of these states can therefore be calculated easily because the convolution
of exponential delays with the same rate parameter is simply an Erlang distribution.

As semi-Markov processes do not have identically distributed state holding-time func-
tions, uniformization cannot be applied to calculate passage time measures in such processes.
Until recently, very little work had been done on the problem of calculating passage time
densities and distributions in semi-Markov models, and what had been done was limited
to applying analytical techniques to models with small state spaces (of the order of 101 to
104 states) [27, 33]. In this chapter, we present a synopsis of our recent work in the field of
response time and transient analysis techniques for large Markov [30, 23] and semi-Markov
chains [13, 12].

2. Background.

2.1. Stochastic Processes. At the lowest level, the performance modelling of a sys-
tem can be accomplished by identifying all possible configurations (or states) that the system
can enter and describing the ways in which the system can move between those states. This
is termed the state-transition level behaviour of the model, and the changes in state as
time progresses describe a stochastic process. In this section, we focus on those stochastic
processes which belong to the class known as Markov processes, specifically continuous-time
Markov chains (CTMCs) and the more general semi-Markov processes (SMPs).

Consider a random variable χ which takes on different values at different times t. The
sequence of random variables χ(t) is said to be a stochastic process. The different values
which members of the sequence χ(t) can take (also referred to as states) all belong to the
same set known as the state space of χ(t).

A stochastic process can therefore be classified by the nature of its state space and of
its time parameter. If the values in the state space of χ(t) are finite or countably infinite,
then the stochastic process is said to have a discrete state space (and may also be referred
to as a chain). Otherwise, the state space is said to be continuous. Similarly, if the times at
which χ(t) is observed are also countable, the process is said to be a discrete time process.
Otherwise, the process is said to be a continuous time process. In this chapter, all stochastic
processes considered have discrete and finite state spaces, and we focus mainly on those
which evolve in continuous time (although some consideration is also given to the solution

4 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

of discrete time chains).
Definition 2.1. A Markov process is a stochastic process in which the Markov property

holds. Given that χ(t) = xt indicates that the state of the process χ(t) at time t is xt, this
property stipulates that:

IP
(
χ(t) = x | χ(tn) = xn, χ(tn−1) = xn−1, . . . , χ(t0) = x0

)
= IP

(
χ(t) = x | χ(tn) = xn

)

t > tn > tn−1 > . . . > t0

That is, the future evolution of the system depends only on the current state and not on any
prior states.

Definition 2.2. A Markov process is said to be homogeneous if it is invariant to shifts
in time, that is:

IP
(
χ(t + s) = x | χ(tn + s) = xn

)
= IP

(
χ(t) = x | χ(tn) = xn

)

2.1.1. Continuous-Time Markov Chains. There also exists a family of Markov
processes with discrete state spaces but whose transitions can occur at arbitrary points in
time; we call these continuous-time Markov chains (CTMCs). The definitions above for
homogeneity, aperiodicity and irreducibility in DTMCs also hold for CTMCs. An homo-
geneous N -state {1, 2, . . . , N} CTMC has state at time t denoted χ(t). Its evolution is
described by an N × N generator matrix Q, where qij is the infinitesimal rate of moving
from state i to state j (i 6= j), and qii = −∑

i6=j qij .
The Markov property imposes the restriction on the distribution of the sojourn times

in states in a CTMC that they must be memoryless – the future evolution of the system
therefore does not depend on the evolution of the system up until the current state, nor
does it depend on how long has already been spent in the current state. This means that
the sojourn time ν in any state must satisfy:

IP(ν ≥ s + t | ν ≥ t) = IP(ν ≥ s) (2.1)

A consequence of Equation (2.1) is that all sojourn times in a CTMC must be exponen-
tially distributed. The rate out of state i, and therefore the parameter of the sojourn time
distribution, is µi and is equal to the sum of all rates out of state i, that is µi = −qii. This
means that the density function of the sojourn time in state i is fi(t) = µi e−µit and the
average sojourn time in state i is µ−1

i .
We define the steady-state distribution for a CTMC in a similar manner as for a DTMC.

Once again, we denote the set of steady-state probabilities as {πj}.
Definition 2.3. In a CTMC which has all states recurrent non-null and which is

irreducible and homogeneous, the limiting or steady-state probability distribution {πj} is
given by [7]:

πj = lim
t→∞

IP(χ(t) = j | χ(0) = i)

Theorem 2.4. For an finite, irreducible and homogeneous CTMC, the steady-state
probabilities {πj} always exist and are independent of the initial state distribution. They are
uniquely given by the solution of the equations:

−qjjπj +
∑

k 6=j

qkjπk = 0 subject to
∑

i

πi = 1

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 5

Again, this can be expressed in matrix vector form (in terms of the vector π with elements
{π1, π2, . . . , πN} and the matrix Q defined above) as:

πQ = 0

A CTMC also has an embedded discrete-time Markov chain (EMC) which describes the
behaviour of the chain at state-transition instants, that is to say the probability that the
next state is j given that the current state is i. The EMC of a CTMC has a one-step N ×N
transition matrix P where pij = −qij/qii for i 6= j and pij = 0 for i = j.

2.1.2. Semi-Markov Processes. Semi-Markov Processes (SMPs) are an extension
of Markov processes which allow for generally distributed sojourn times. Although the
memoryless property no longer holds for state sojourn times, at transition instants SMPs
still behave in the same way as Markov processes (that is to say, the choice of the next state
is based only on the current state) and so share some of their analytical tractability.

Consider a Markov renewal process {(χn, Tn) : n ≥ 0} where Tn is the time of the nth
transition (T0 = 0) and χn ∈ S is the state at the nth transition. Let the kernel of this
process be:

R(n, i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i)

for i, j ∈ S. The continuous time semi-Markov process, {Z(t), t ≥ 0}, defined by the kernel
R, is related to the Markov renewal process by:

Z(t) = χ
N(t)

where N(t) = max{n : Tn ≤ t} is the number of state transitions that have taken place
by time t. Thus Z(t) represents the state of the system at time t. We consider only time-
homogeneous SMPs in which R(n, i, j, t) is independent of n:

R(i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) :for any n ≥ 0
= pijHij(t)

where pij = IP(χn+1 = j | χn = i) is the state transition probability between states i and j
and Hij(t) = IP(Tn+1 − Tn ≤ t | χn+1 = j, χn = i), is the sojourn time distribution in state
i when the next state is j. An SMP can therefore be characterised by two matrices P and
H with elements pij and Hij respectively.

Semi-Markov processes can be analysed for steady-state performance metrics in the same
manner as DTMCs and CTMCs. To do this, we need to know the steady-state probabilities
of the SMP’s EMC and the average time spent in each state. The first of these can be
calculated by solving π = πP, as in the case of the DTMC. The average time in state i,
IE(τi), is the weighted sum of the averages of the sojourn time in the state i when going to
state j, IE(τij), for all successor states j of i, that is:

IE(τi) =
∑

j

pijIE(τij)

The steady-state probability of being in state i of the SMP is then [7]:

φi =
πiIE(τi)∑N

r=1 πrIE(τr)
(2.2)

6 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

That is, the probability of finding the SMP in state i is the probability of its EMC being
in state i multiplied by the average amount of time the SMP spends in state i, normalised
over the mean total time spent in all of the states of the SMP.

2.2. Semi-Markov Stochastic Petri Nets. The motivation behind semi-Markov
stochastic Petri Nets (SM-SPNs) [10, 11] is as a specification formalism and higher-level
abstraction for semi-Markov models. It is important to note that SM-SPNs do not try to
tackle the issue of concurrently enabled generally distributed (GEN) transitions in the most
general case. If more that one GEN transition is enabled then a probabilistic choice is used
to determine which will be fired. Pre-empted GEN transition use a prd schedule if they later
become re-enabled. This approach is correctly described in [45] as not being a solution to
the more complex issue of properly concurrently enabled GEN transitions, but is merely a
way of specifying a different type of model – a semi-Markov model where GEN transitions
are essentially forced to be exclusive. Where concurrently enabled GEN transitions do not
occur then proper concurrent and competitive transition behaviour is catered for with full
prs scheduling for pre-empted transitions.

SM-SPNs are extensions of GSPNs [5] which support arbitrary marking-dependent
holding-time distributions and generate an underlying semi-Markov process rather than
a Markov process. An SM-SPN is defined formally as follows:

Definition 2.5.
An SM-SPN is a 4-tuple, (PN,P,W,D), where:
• PN = (P, T, I−, I+,M0) is the underlying Place-Transition net. P is the set of

places, T is the set of transitions, I+/− are the forward and backward incidence
functions describing the connections between places and transitions and M0 is the
initial marking.

• P : T ×M → IN0, denoted pt(m), is a marking-dependent priority function for a
transition.

• W : T ×M → IR+, denoted wt(m), is a marking-dependent weight function for a
transition, to allow implementation of probabilistic choice.

• D : T ×M → (IR+ → [0, 1]), denoted dt(m), is a marking-dependent cumulative
distribution function for the firing-time of a transition.

In the aboveM is the set of all markings for a given net. Further, we define the following
net-enabling functions:

Definition 2.6.

• EN : M → P (T), a function that specifies net-enabled transitions from a given
marking.

• EP : M→ P (T), a function that specifies priority-enabled transitions from a given
marking.

The net-enabling function EN is defined in the usual way for standard Petri nets: if all
preceding places have occupying tokens then a transition is net-enabled. The more stringent
priority-enabling function EP (m) is defined for a given marking m which selects only those
net-enabled transitions that have the highest priority, that is:

EP (m) = {t ∈ EN (m) : pt(m) = max{pt′(m) : t′ ∈ EN (m)}}

For a given priority-enabled transition, t ∈ EP (m), the probability that it will be the one
that actually fires (after a delay sampled from its firing distribution dt(m)) is a probabilistic

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 7

p2

(t2, 1.0, 1, det(0.01,s)) p3

p1

(t1, 1.5, 1, gamma(1.2,2.3,s))

Fig. 2.1. An example Semi-Markov Stochastic Petri Net (SM-SPN) [11].

choice based on the relative weights of all enabled transitions:

IP(t ∈ EP (m) fires) =
wt(m)∑

t′∈EP (m) wt′(m)

Note that the choice of which priority-enabled transition is fired in any given marking is
made by a probabilistic selection based on transition weights, and is not a race condition
based on finding the minimum of samples extracted from firing time distributions. This
mechanism enables the underlying reachability graph of the SM-SPN to be mapped directly
onto a semi-Markov chain.

To illustrate this enabling and firing strategy, Figure 2.1 shows an enabled pair of
GEN transitions in an SM-SPN. Transition t1 has a weight of 1.5, a priority of 1 and
a gamma(1.2, 2.3) firing distribution, while t2 has a weight of 1.0, a priority of 1 and
a det(0.01) firing distribution. Graphically, each transition is annotated with a 4-tuple
specifying the transition name, weight, priority and Laplace transform of its firing time
distribution. The weights are used to select which GEN transition will fire: in this case t1
will be selected to fire with probability 1.5/(1.0 + 1.5) = 0.6 and p2 with probability 0.4.
After a delay sampled from the selected transition’s firing-time distribution, the probabilistic
selection takes place again (for the remaining token on p1); this is followed by another
sampled delay.

3. Laplace Transforms. The Laplace transform is an integral transform which is
widely used in the solution of differential equations arising from physical problems. When
the Laplace transform f∗(s) of a real-valued function f(t) exists, it is uniquely given by:

f∗(s) =
∫ ∞

0

e−stf(t) dt (3.1)

where s is a complex number. For the Laplace transform of a function f(t) to exist, f(t) must
be of exponential order. Examples of functions which meet this restriction are polynomial
or exponential (those of the form ekt) functions and bounded functions. Also included are
those functions with a finite number of finite discontinuities. Examples of functions which
do not fall within this category are those which have singularities (e.g. ln(x)), those whose
growth rates are faster than exponential (e.g. ex2

) or those with an infinite number of finite
discontinuities (e.g. f(x) = 1 if x is rational and 0 otherwise). In the context used here all
functions under consideration are well-behaved, though the transform may not exist in closed
form (e.g. for the Weibull distribution). The Laplace transform is a linear transformation
from the t-space to the s-space of functions.

8 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

Theorem 3.1. Linearity: If f(t) and g(t) are functions whose Laplace transforms exist,
then:

L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)}

for any complex numbers a and b. The other property that immediately indicates that the
Laplace transform is useful to solve linear differential equations, is that integration w.r.t. t
in t-space is equivalent to division by s in s-space. We make use of this fact to compute
cumulative distribution functions.

Theorem 3.2. Integration: If f(t) is a probability density function and F (t) is the
corresponding cumulative distribution function,

∫∞
0

f(t) dt = F (t). The Laplace transform
of F (t) can be calculated from the Laplace transform of f(t) by dividing L{f(t)} by s:

L{F (t)} = L{f(t)}/s

Finally, a convolution in t-space corresponds to multiplication in s-space. The convolution
of two functions f(t) and g(t) denoted f(t) ∗ g(t) is given by:

f(t) ∗ g(t) =
∫ t

0

f(τ) g(t− τ) dτ (3.2)

Theorem 3.3. Convolution: The Laplace transform of the convolution of two functions
f(t) and g(t), denoted L{f(t) ∗ g(t)}, is the product of the Laplace transforms of the two
functions, that is:

L{f(t) ∗ g(t)} = f∗(s) g∗(s)

This is especially useful as the theorem holds for convolutions of n functions. In this case
the integral becomes n-dimensional. The calculation of the probability density function of a
passage time between two states is achieved by convolving the probability density functions
of the sojourn times of the states along all the paths between the source and target states.

3.1. Laplace Transform Inversion. As the Laplace transform of a function is unique
it is possible to recover the function f(t) from its Laplace transform f∗(s). This process is
called Laplace transform inversion. The inverse of the Laplace transform f∗(s) of a function
f(t) (which we denote L−1{f∗(s)}) is the function f(t) itself:

L−1{f∗(s)} = f(t) =
1

2πi

∫ a+i∞

a−i∞
estf∗(s) ds (3.3)

where a is a real number which lies to the right of all the singularities of f∗(s). This is also
known as the Bromwich contour inversion integral.

As with Laplace transforms, inverse Laplace transforms display linearity:

L−1{af∗(s) + bg∗(s)} = aL−1{f∗(s)}+ bL−1{g∗(s)}

The work in this chapter centres around the calculation and numerical inversion of Laplace
transforms. There are a number of numerical Laplace transform inversion algorithms in the
literature, for example the Euler technique [3, 4] and the Laguerre method [1] (also known
as Weeks’ method [52]). We now summarise the key features of these methods.

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 9

3.1.1. Summary of Euler Inversion. It is possible to rewrite Equation (3.3) such
that it is possible to obtain f(t) from f∗(s) by integrating a real-valued function of a
real variable rather than requiring contour integration to be performed in complex space.
Substituting s = a + iu allows Equation (3.3) to be rewritten as [2]:

f(t) =
1

2πi

∫ ∞

−∞
e(a+iu)tf∗(a + iu) du

Making use of the fact that:

e(b+iu)t = ebt(cos ut + i sin ut)

yields [2]:

f(t) =
2eat

π

∫ ∞

0

Re(f∗(a + iu)) cos(ut) du

This integral can be evaluated numerically using the trapezoidal rule. This approximates
the integral of a function f(t) over the interval [a, b] as:

∫ b

a

f(t) dt ≈ h

(
f(a) + f(b)

2
+

n−1∑

k=1

f(a + kh)

)

where h = (b − a)/n. Setting the step-size h = π/2t and a = A/2t (where A is a constant
that controls the discretisation error and is set to 19.1 in [4]) results in the alternating
series [4, 26]:

f(t) ≈ eA/2

2t
Re

(
f∗

(
A

2t

))
+

eA/2

2t

∞∑

k=1

(−1)k Re

(
f∗

(
A + 2kπi

2t

))

Euler summation can be employed to accelerate the convergence of this alternating se-
ries [49]. That is, we calculate the sum of the first n terms explicitly and use Euler summa-
tion to calculate the next m. The mth term after the first n is given by [3]:

E(t, m, n) =
m∑

k=0

(
m

k

)
2−m sn+k(t) (3.4)

In Equation (3.4):

sn(t) =
n∑

k=0

(−1)k Re

(
f∗

(
A + 2kπi

2t

))

An estimate of the truncation error incurred in using Euler summation can be calculated
by comparing the magnitudes of the nth and (n + 1)th terms, i.e. [3]:

|E(t,m, n)− E(t, m, n + 1)|

10 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

3.1.2. Summary of Laguerre Inversion. The Laguerre method [1] makes use of the
Laguerre series representation of f(t):

f(t) =
∞∑

n=0

qnln(t) : t ≥ 0

where the Laguerre polynomials ln are given by:

ln(t) =
(

2n− 1− t

n

)
ln−1(t)−

(
n− 1

n

)
ln−2(t)

starting with l0 = et/2 and l1 = (1− t)et/2, and:

qn =
1

2πrn

∫ 2π

0

Q(reiu)e−inu du (3.5)

where r = (0.1)4/n and Q(z) = (1− z)−1f∗
(
(1 + z)/2(1− z)

)
.

The integral in the calculation of Equation (3.5) can be approximated numerically using
the trapezoidal rule, giving:

qn ≈ 1
2nrn

Q(r) + (−1)nQ(−r) + 2

n−1∑

j=1

(−1)jRe
(
Q(reπji/n)

)

 (3.6)

As described in [30], the Laguerre method can be modified by noting that the Laguerre
coefficients qn are independent of t. Since |ln(t)| ≤ 1 for all n, the convergence of the
Laguerre series depends on the decay rate of qn as n → ∞ which is in turn determined by
the smoothness of f(t) and its derivatives [1]. Slow convergence of the qn coefficients can
often be improved by exponential dampening and scaling using two real parameters σ and
b [52]. Here the inversion algorithm is applied to the function

fσ,b(t) = e−σtf(t/b)

with f(t) being recovered as:

f(t) = eσbtfσ,b(bt)

Each qn coefficient is computed as in Equation (3.6), using the trapezoidal rule with 2n
trapezoids. However, if we apply scaling to ensure that qn has decayed to (almost) zero by
term p0 (say p0 = 200), we can instead make use of a constant number of 2p0 trapezoids
when calculating each qn. This allows us to calculate each qn with high accuracy while
simultaneously providing the opportunity to cache and re-use values of Q(z). Since qn does
not depend on t, and each evaluation of Q(z) involves a single evaluation of f∗(s), we obtain
f(t) at an arbitrary number of t-values at the fixed cost of evaluating Q(z) (and hence f∗(s))
2p0 times.

Suitable scaling parameters can be automatically determined using the algorithm in
[30]. This algorithm is based on the heuristic observations in [1] that increasing b (up to
a given limit) can significantly lower the ratio |qn|/|q0|, and the observation in [30] that
excessive values of the damping parameter σ can lead to numerical instability in finite
precision arithmetic.

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 11

Table 4.1. Number of states generated by the Web-server SM-SPN in terms of the number of clients (RR),
authors (WW), parallel web servers (SS) and write-buffers (BB).

System RR WW SS BB States
1 45 22 4 8 107 289
2 52 26 5 10 248 585
3 60 30 6 12 517 453
4 65 30 7 13 763 680
5 70 35 7 14 1 044 540
6 100 50 18 20 15 445 919

This fixed computational cost for any number of t-points is in contrast to the Euler
method, where the number of different s-values at which f∗(s) must be evaluated is a
function of the number of points at which the value of f(t) is required (in fact, it is (n+m+1)
times the number of t-points). It must be noted, however, that the Euler method can be
used to invert Laplace transforms which are not sufficiently smooth to permit the modified
Laguerre method to be used. This situation typically arises when the original function f(t)
has discontinuities (e.g. if f(t) = det(x)).

4. Models. In this section, we present the Markov and semi-Markov models which are
used as running examples throughout the rest of the chapter.

4.1. Web Content Authoring System. Figure 4.1(a) represents an SM-SPN model
of a web server with RR clients (readers), WW web content authors (writers), SS parallel
web servers and a write-buffer of BB in size [13]. As with the Voting model, the size
and complexity of the underlying semi-Markov chain can be varied by altering these four
parameters as shown in Table 4.1.

Clients can make read requests to one of the web servers for content (represented by the
movement of tokens from p8 to p7). Web content authors submit page updates into the write
buffer (represented by the movement of tokens from p1 onto p2 and p4), and whenever there
are no outstanding read requests all outstanding write requests in the buffer (represented
by tokens on p4) are applied to all functioning web servers (represented by tokens on p6).
Web servers can fail (represented by the movement of tokens from p6 to p5) and institute
self-recovery unless all servers fail, in which case a high-priority recovery mode is initiated
to restore all servers to a fully functional state. Complete reads and updates are represented
by tokens on p9 and p2 respectively.

4.2. Flexible Manufacturing System. Figure 4.1(b) shows a 22-place GSPN model
of a flexible manufacturing system [17]. The model describes an assembly line with three
types of machines (M1, M2 and M3) which assemble four types of parts (P1, P2, P3 and
P12). Initially, there are k unprocessed parts of each type P1, P2 and P3 in the system.
There are no parts of type P12 at start-up since these are assembled from processed parts
of type P1 and P2 by the machines of type M3. When parts of any type are finished, they
are stored for shipping on places P1s, P2s, P3s and P12s.

4.3. Courier Communications Protocol. The GSPN shown in Figure 4.1(c) (orig-
inally presented in [53]) models the ISO Application, Session and Transport layers of the
Courier sliding-window communication protocol.

Data flows from a sender (p1 to p26) to a receiver (p27 to p46) via a network. The sender’s

12 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

p1

p2

WW

p4

p3

p5

p6

p7

p8

p9

BB SS
RR

RR

RRWW

WW

(t1, 1.0, 3, immediate(s))

(t2, 0.1, 1, markov(s))

(t3, 1.0, 2, gamma(2.0,1.56+m(p4),s))

(t4, 1.2m(p7), 1, markov(s))

(t8, 1.0, 1, markov(s))

SS

SS

m(p4)

m(p4)

(t5, 0.2m(p6), 1, markov(s)) (t7, 0.1m(p5), 1, markov(s))

(t6, 1.0, 2, uniform(5.0,10.0,s))

serversbuffers

writers readers

k

M1

k

k

M3

tM2

tP3

#(P3s)

#(P12s)

#(P12s)

#(P12s)

#(P1s) #(P1s)

tP1s

P1 P1wM1
tP1 tM1

P1M1
tP1M1

P1d
tP1e

P1s

tP12s
P12s

tP12M3
P12M3

tM3
P12wM3

tP12
P12

tx

P1wP2

P2wP1

P2s

tP2eP2d

P2wM2
tP2

P2M2
tP2M2

P2

tP2s

M2

P3 P3M2

tP3M2

P3s
tP3s

tP2j

tP1j

#(P2s)#(P2s)

#(P3s)

(a) (b)

n

courier1

network
delay

sender
application

task

sender
session

task

sender
transport

task

receiver
application

task

receiver
session

task

receiver
transport

task

m

p2

t2

p4p3

p5

p6

p8

t5

p10 p9

p11

p13p12

p16p15

p14

p17

p20 p18 p19

t14t13

p22p21t15

p23

p24 p25

p26

p27 p28 p29

t23 t24

p31p30

p32

t22

p33 p34

t27

p35

p36 p37

t29

p38 p39

p40

p41

p42

t32

p44p43

p45 p46p1

courier3courier2

courier4

network delay

t1 (r7)

t3 (r1)

t4 (r2)

t6 (r1)

t7 (r8)

t12 (r3)

t8 (q1) t9 (q2)

t11 (r5)t10 (r5)

t18 (r4)

t16 (r6) t17 (r6)

t34 (r10)

t33 (r1)

t31 (r2)

t30 (r1)

t28 (r9)

t25 (r5) t26 (r5)

t19 (r3) t20 (r4) t21 (r4)

p12 p13 p14

q1

q2 q3 q4

q5 q6

(c) (d)

Fig. 4.1. (a) The Web-server Model SM-SPN [13]. (b) The GSPN model of a Flexible Manufacturing
System [17]. (c) The Courier communications protocol GSPN model [53]. (d) The tree-like queueing
network [29, 30].

transport layer fragments outgoing data packets; this is modelled as two paths between p13

and p35. The path via t8 carries all fragments before the last one through the network to
p33. Acknowledgements for these fragments are sent back to the sender (as signalled by
the arrival of a token on p20), but no data is delivered to the higher layers on the receiver
side. The path via t9 carries the last fragment of each message block. Acknowledgements

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 13

for these fragments are generated and a data token is delivered to higher receiver layers via
t27.

The average number of data packets sent is determined by the ratio of the weights on the
immediate transitions t8 and t9. This ratio, known as the fragmentation ratio, is given by
q1 : q2 (where q1 and q2 are the weights associated with transitions t8 and t9 respectively).
This number of data packets is geometrically distributed, with parameter q1/(q1 + q2). In
our case study, we use a fragmentation ratio of one.

The transport layer is further characterised by two important parameters: the sliding
window size n (p14) and the transport space m (p17). For our example, we set m = 1 and
n = 1.The transition rates r1, r2, . . . , r10 used in the original model [53] were obtained by
benchmarking a working implementation of the protocol.

4.4. Tree-like Queueing Network. Figure 4.1(d) shows a tree-like queueing net-
work which has six servers with rates µ1, . . . , µ6 and non-zero routing probabilities as
shown. Thus the visitation rates v1, . . . , v6 for servers 1 to 6 are respectively proportional
to: 1, p12, p13, p14, p12, p14. For this example, we set:

{µ1, µ2, µ3, µ4, µ5, µ6} = {3, 5, 4, 6, 2, 1} and {p12, p13, p14} = {0.2, 0.5, 0.3}

Analytical results for the cycle time density in this type of overtake-free, tree-like queue-
ing network with M servers and population n are known [29, 30]. To compute the cycle time
density in this network in terms of its underlying Markov Chain using the uniformization
technique described in this chapter requires the state vector to be augmented by 4 extra
components so that a “tagged” customer can be followed through the system. The extra
components are: the queue containing the tagged customer m, the position of the tagged
customer in that queue k (with k ≥ 0), the cycle sequence number c (an alternating bit,
flipped whenever the tagged customer joins q1) and a flag p indicating whether or not a
passage has started.

5. Passage Times in Markov Models. This section first describes the calculation
of passage time densities and quantiles in continuous-time Markov chains using the Laplace
transform technique presented in [30]. We also describe a second technique for the calcu-
lation of passage time densities in Markov models known as uniformization. We present a
comparison of the run-time behaviour of the Laplace transform and uniformization tech-
niques and contrast them both with simulation.

5.1. The Laplace Transform Method for CTMCs. Consider a finite, irreducible
CTMC with N states {1, 2, . . . , N} and generator matrix Q as defined in Section 2.1.1.
As χ(t) denotes the states of the CTMC at time t ≥ 0 and N(t) denotes the number of
state transitions which have occurred by time t, the first passage time from a single source
marking i into a non-empty set of target markings ~j is:

Pi~j(t) = inf{u > 0 : χ(t + u) ∈ ~j,N(t + u) > N(t), χ(t) = i}

When the CTMC is stationary and time-homogeneous this quantity is independent of t:

Pi~j = inf{u > 0 : χ(u) ∈ ~j,N(u) > 0, χ(0) = i} (5.1)

That is, the first time the system enters a state in the set of target states ~j, given that the
system began in the source state i and at least one state transition has occurred. Pi~j is a

14 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

random variable with probability density function fi~j(t) such that:

IP(a < Pi~j < b) =
∫ b

a

fi~j(t) dt : 0 ≤ a < b

In order to determine fi~j(t) it is necessary to convolve the state holding-time density func-
tions over all possible paths (including cycles) from state i to all of the states in ~j.

As described in Section 3, the calculation of the convolution of two functions in t-space
(cf. Equation (3.2)) can be more easily accomplished by multiplying their Laplace transforms
together in s-space and inverting the result. The calculation of fi~j(t) is therefore achieved
by calculating the Laplace transform of the convolution of the state holding times over all
paths between i and ~j and then numerically inverting this Laplace transform.

In a CTMC all state sojourn times are exponentially distributed, so the density function
of the sojourn time in state i is µie

−µit, where µi = −qii for 1 ≤ i ≤ N as defined in
Section 2.1.1. The Laplace transform of an exponential density function with rate parameter
λ is

L{λe−λt} =
λ

s + λ

Denoting the Laplace transform of the density function fi~j(t) of the passage time random
variable Pi~j as Li~j(s), we proceed by means of a first-step analysis. That is, to calculate
the first passage time from state i into the set of target states ~j, we consider moving from
state i to its set of direct successor states ~k and thence from states in ~k to states in ~j. This
can be expressed as the following system of linear equations:

Li~j(s) =
∑

k/∈~j

pik

(−qii

s− qii

)
Lk~j(s) +

∑

k∈~j

pik

(−qii

s− qii

)
(5.2)

The first term (i.e. the summation over non-target states k /∈ ~j) convolves the sojourn time
density in state i with the density of the time taken for the system to evolve from state k
into a target state in the set ~j, weighted by the probability that the system transits from
state i to state k. The second term (i.e. the summation over target states k ∈ ~j) simply
reflects the sojourn time density in state i weighted by the probability that a transition from
state i into a target state k occurs.

Given that pij = −qij/qii in the context of a CTMC (cf. Section 2.1.1), Equation (5.2)
can be rewritten as:

Li~j(s) =
∑

k/∈~j

qik

s− qii
Lk~j(s) +

∑

k∈~j

qik

s− qii
(5.3)

This set of linear equations can be expressed in matrix–vector form. For example, when
~j = {1} we have:

s− q11 −q12 · · · −q1n

0 s− q22 · · · −q2n

0 −q32 · · · −q3n

0
...

. . .
...

0 −qn2 · · · s− qnn

L1~j(s)
L2~j(s)
L3~j(s)

...
Ln~j(s)

=

0
q21

q31

...
qn1

(5.4)

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 15

Our formulation of the passage time quantity in Equation (5.1) states that we must observe
at least one state-transition during the passage. In the case where i ∈ ~j (as for L1~j(s) in
the above example), we therefore calculate the density of the cycle time to return to state
i rather than requiring Li~j(s) = 1.

Given a particular (complex-valued) s, Equation (5.4) can be solved for Li~j(s) by stan-
dard iterative numerical techniques for the solution of systems of linear equations in Ax = b
form. In the context of the inversion algorithms described in Section 3.1, both Euler and
Laguerre can identify in advance the values of s at which Li~j(s) must be calculated in order
to perform the numerical inversion. Therefore, if the algorithm requires m different values
of Li~j(s) to calculate fi~j(t), Equation (5.4) will need to be solved m times.

The corresponding cumulative distribution function Fi~j(t) of the passage time is ob-
tained by integrating the density function. As described in Section 3, this integration can
be achieved in terms of the Laplace transform of the density function with F ∗

i~j
(s) = Li~j(s)/s.

In practice, if Equation (5.4) is solved as part of the inversion process for calculating fi~j(t),
the m values of Li~j(s) can be cached for future computation of Fi~j(t) as required.

When there are multiple source markings, denoted by the vector~i, the Laplace transform
of the response time density at equilibrium is:

L~i~j(s) =
∑

k∈~i
αkLk~j(s)

where the weight αk is the equilibrium probability that the state is k ∈ ~i at the start-
ing instant of the passage. This instant is the moment of entry into state k; thus αk

is proportional to the equilibrium probability of the state k in the underlying embedded
(discrete-time) Markov chain (EMC) of the CTMC with one-step transition matrix P as
defined in Section 2.1.1. That is:

αk =
{

πk/
∑

j∈~i πj : if k ∈~i

0 : otherwise
(5.5)

where the vector π is any non-zero solution to π = πP. The row vector with components
αk is denoted by α.

5.2. Extension to GSPNs. The analysis described above for Markov chains can
be extended to the analysis of the underlying state spaces of GSPNs [23]. The situation
is complicated, however, by the existence of two types of state (tangible and vanishing).
As we are dealing with Petri nets, the analysis is described in terms of markings rather
than states (although the two terms are equivalent – the state of a GSPN is defined by its
marking). The underlying stochastic process for a GSPN is {(χn, Tn) : n ≥ 0} where χn is
the marking of the GSPN after the nth transition and Tn is the time of the nth transition.
As with SMPs, N(t) = max{n : Tn ≤ t} is the number of transitions that have taken place
by time t.

In a GSPN, the first passage time from a single source marking i into a non-empty set
of target markings ~j has to take into account the fact that vanishing states may exist in the
set of target markings:

Pi~j = inf{u > 0 : N(u) ≥ Mi~j} (5.6)

where Mi~j = min{m > 0 : χm ∈ ~j, χ0 = i} is the transition defining the terminating
marking of the passage.

16 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

We proceed by means of a first-step analysis as described above for the purely Markovian
case. The Laplace transform of the (exponential) sojourn time density function of tangible
marking i is µi/(s + µi), but for a vanishing marking the sojourn time is 0 with probability
1, giving a corresponding Laplace transform of 1 for all values of s. We must therefore
distinguish between passage times which start in a tangible state and those which begin in
a vanishing state:

Li~j(s) =

∑
k/∈~j

qik

s−qii
Lk~j(s) +

∑
k∈~j

qik

s−qii
: if i ∈ T

∑
k/∈~j pikLk~j(s) +

∑
k∈~j pik : if i ∈ V

(5.7)

Again, this system of linear equations can be expressed in matrix–vector form. For example,
when ~j = {1}, V = {2} and T = {1, 3, . . . , n} the above equations can be written as:

s− q11 −q12 · · · −q1n

0 1 · · · −p2n

0 −q32 · · · −q3n

0
...

. . .
...

0 −qn2 · · · s− qnn

L1~j(s)
L2~j(s)
L3~j(s)

...
Ln~j(s)

=

0
p21

q31

...
qn1

This system of linear equations can then be solved by the same techniques as for the Markov
case above.

As described above in Section 5.1, this formulation can easily be generalised to the case
where multiple source states are required. This is accomplished by weighting the Lk~j(s)
values with the renormalised steady-state probabilities for state k ∈ ~i from the embedded
Markov chain (EMC) defined by the marking of the GSPN at firing instants. Therefore:

αk =
{

πk/
∑

j∈~i πj : if k ∈~i

0 : otherwise

where the vector π is any non-zero solution to π = πP.
Note also that if vanishing states are eliminated from the underlying state space during

its generation, the result is a continuous-time Markov chain which can then be analysed for
passage times as per Section 5.1. Doing so reduces the size of the state space to be analysed
but removes the ability to reason about source or target states which are vanishing.

5.3. Uniformization. As well as the Laplace transform approach described above,
passage time densities and quantiles in CTMCs may also be computed through the use of
uniformization (also known as randomization). This transforms a CTMC into one in which
all states have the same mean holding time 1/q, by allowing invisible transitions from a state
to itself. This is equivalent to a discrete-time Markov chain, after normalisation of the rows,
together with an associated Poisson process of rate q. The one-step transition probability
matrix P which characterises the one-step behaviour of the uniformized DTMC is derived
from the generator matrix Q of the CTMC as:

P = Q/q + I (5.8)

where the rate q > maxi |qii| ensures that the DTMC is aperiodic by guaranteeing that
there is at least one single-step transition from a state to itself.

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 17

5.3.1. Uniformization for Transient Analysis of CTMCs. Uniformization has
classically been used to conduct transient analysis of finite-state CTMCs [28, 47]. The
transient state distribution of a CTMC is the probability that the process is in a state in ~j
at time t, given that it was in state i at time 0:

πi~j(t) = IP(χ(t) ∈ j | χ(0) = i)

where χ(t) denotes the state of the CTMC at time t.
In a uniformized CTMC [47], the probability that the process is in state j at time t is

calculated by conditioning on N(t), the number of transitions in the DTMC that occur in
a given time interval [0,t]:

πi~j(t) =
∞∑

m=0

IP
(
χ(t) ∈ ~j | N(t) = m

)
IP

(
N(t) = m

)

where N(t) is given by a Poisson process with rate q and the state of the uniformized process
at time t is denoted χ(t). Therefore:

πi~j(t) =
∞∑

n=1

(qt)ne−qt

n!

∑

k∈~j

π
(n)
k

where:

π(n+1) = π(n)P : for n ≥ 0

and π(0) is the initial probability distribution from which the transient measure will be
measured (typically, for a single initial state i, πk = 1 if k = i, 0 otherwise).

5.3.2. Uniformization for Passage Time Analysis of CTMCs. Uniformization
can also be employed for the calculation of passage time densities in Markov chains as
described in [9, 39, 40, 42]. We ensure that only the first passage time density is calculated
and that we do not consider the case of successive visits to a target state by making the
target states absorbing. We denote by P′ the one-step transition probability matrix of the
modified, uniformized chain.

The calculation of the first passage time density between two states has two main
components. The first considers the time to complete n hops (n = 1, 2, 3, . . .). Recall that
in the uniformized chain all transitions occur with rate q. The density of the time taken
to move between two states is found by convolving the state holding-time densities along
all possible paths between the states. In a standard CTMC, convolving holding times in
this manner is non-trivial as, although they are all exponentially distributed, their rate
parameters are different. In a CTMC which has undergone uniformization, however, all
states have exponentially-distributed state holding-times with the same parameter q. This
means that the convolution of n of these holding-time densities is the convolution of n
exponentials all with rate q, which is an n-stage Erlang density with rate parameter q.

Secondly, it is necessary to calculate the probability that the transition between a source
and target state occurs in exactly n hops of the uniformized chain, for every value of n
between 1 and a maximum value m. The value of m is determined when the value of
the nth Erlang density function (the left-hand term in Equation (5.9)) drops below some
threshold value. After this point, further terms are deemed to add nothing significant to
the passage time density and so are disregarded.

18 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

The density of the time to pass between a source state i and a target state j in a uni-
formized Markov chain can therefore be expressed as the sum of m n-stage Erlang densities,
weighted with the probability that the chain moves from state i to state j in exactly n hops
(1 ≤ n ≤ m). This can be generalised to allow for multiple target states in a straightforward
manner; when there are multiple source states it is necessary to provide a probability distri-
bution across this set of states (such as the renormalised steady-state distribution calculated
below in Equation (5.11)).

The response time between the non-empty set of source states ~i and the non-empty set
of target states ~j in the uniformized chain therefore has probability density function:

f~i~j(t) =
∞∑

n=1

qntn−1e−qt

(n− 1)!

∑

k∈~j

π
(n)
k

'
m∑

n=1

qntn−1e−qt

(n− 1)!

∑

k∈~j

π
(n)
k (5.9)

where:

π(n+1) = π(n)P′ : for n ≥ 0 (5.10)

with:

π
(0)
k =

{
0 : if k /∈~i

πk/
∑

j∈~i πj : if k ∈~i
(5.11)

The πk values are the steady-state probabilities of the corresponding state k from the
CTMC’s embedded Markov chain. When the convergence criterion:

‖π(n) − π(n−1)‖∞
‖π(n)‖∞

< ε (5.12)

is met, for given tolerance ε, the vector π(n) is considered to have converged and no further
multiplications with P′ are performed. Here, ‖x‖∞ is the infinity-norm given by ‖x‖∞ =
maxi |xi|.

The corresponding cumulative distribution function for the passage time, F~i~j(t), can be
calculated by substituting the cumulative distribution function for the Erlang distribution
into Equation (5.9) in place of the Erlang density function term, that is:

F~i~j(t) =
∞∑

n=1

(
1− e−qt

n−1∑

k=0

(qt)k

k!

)∑

k∈~j

π
(n)
k

'
m∑

n=1

(
1− e−qt

n−1∑

k=0

(qt)k

k!

)∑

k∈~j

π
(n)
k

where π(n) is defined as in Equations (5.10) and (5.11).

5.4. Comparison of Methods. As both the Laplace transform method and uni-
formization can be used to calculate passage time densities in Markov models, it is in-
structive to compare the run-time performance of the two methods along with simulation.

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 19

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

de
ns

ity

Time

Result from 10 simulation runs of 1 billion transitions each
Uniformization result

Laplace result

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20

P
ro

ba
bi

lit
y

de
ns

ity

Time

Result from 10 simulation runs of 1 billion transitions each
Uniformization result

Laplace result

(a) (b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20

P
ro

ba
bi

lit
y

de
ns

ity

Time

Result from 10 simulation runs of 1 billion transitions each
Uniformization result

Laplace result

(c)

Fig. 5.1. Numerical and simulated (with 95% confidence intervals) passage time densities for the Courier (a),
FMS model (b) and tree-like queueing models (c).

Table 5.1 shows the run-times in seconds taken to compute the passage time densities shown
in Figure 5.1 using uniformization, Laplace transform inversion and simulation. The run-
times were produced on a network of PC workstations linked together by 100Mbps switched
Ethernet, each PC having an Intel Pentium 4 2.0GHz processor and 512MB RAM.

Table 5.1. Comparison of run-time in seconds for uniformization, Laplace transform inversion and simula-
tion passage time analysis.

Model No. of Uniform. Laplace Run-times Sim. Run-
Name States Run-time 1 PC 2 PCs 4 PCs 8 PCs 16 PCs 32 PCs time (1 run)

Courier 11 700 1.9 42.1 30.0 22.4 19.6 18.0 23.1 3 656.0
FMS 537 768 64.8 5 096.0 2 582.6 1 298.4 675.8 398.4 182.1 2 729.6
Tree 542 638 126.2 7 555.3 4 719.3 1 921.9 993.0 550.9 398.6 1 976.8

5.4.1. Models Studied. Results are presented for three models: a GSPN model of
a flexible manufacturing system, a GSPN model of a communication protocol and a tree-
like queueing network. These models are described in detail in Sections 4.2, 4.3 and 4.4
respectively. In order for uniformization to be used and compared fairly with the Laplace
transform method, it was necessary in the case of the two GSPN models to generate the
state spaces with the vanishing states eliminated. Therefore, the number of states given in

20 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

DTMC
Steady
State

Solver

Distributed
Laplace

Transform
Inverter

Hypergraph

Partitioner

master
processor

LT inverter
with no

L(s)
evaluation

master
disk

cache
filter

disk cache
master

partitioned
matrix
files

Enhanced
DNAmaca
high−level

specification Generator
Space
State

s
1

s
2

LT inverter

L(s)
evaluation

with

L(s)
1

L(s)
n

memory cache
master

L(s)
2

L(s)
2

L(s)
1 L(s)

1

L(s)
n

memory cache
master

L(s)
2

s−value work queue
s−values

groups
slave processor

Fig. 5.2. SMP passage time density calculation pipeline [23].

Table 5.2. Run-time in seconds for the Laplace transform inversion method on GSPN state spaces without
vanishing state elimination.

Model No. of Laplace Run-times
Name States 1 PC 2 PCs 4 PCs 8 PCs 16 PCs 32 PCs

Courier 29 010 542.7 293.6 170.6 145.6 166.6 232.8
FMS 2 519 580 27 593.8 13 790.2 6 961.3 3 548.9 1 933.4 1 079.7

the second column of Table 5.1 is the size of each model’s underlying CTMC.
For the Courier protocol model, the passage of interest is from markings for which

M(p11) > 0 to those markings for which M(p20) > 0, where M(p) is the number of tokens in
place p. This corresponds to the end-to-end response time from the initiation of a transport
layer transmission to the arrival of the corresponding acknowledgement packet; as the sliding
window size n is set to 1, there can be only one outstanding unacknowledged packet at any
time. In the Flexible Manufacturing System (FMS) model we calculate the density of the
time taken to produce a finished part of type P12 starting from any state in which there
are 6 unprocessed parts of type P1 and 6 unprocessed parts of type P2. That is, the source
markings are those where M(P1) = M(P2) = 6 and the target markings are those where
M(P12s) = 1. Finally, for the tree-like queueing network, results are presented for a model

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 21

with 15 customers and show the density of the cycle time of a customer from when it arrives
at the back of the queue for server q1 to when it reaches that point again.

For uniformization and simulation, the results were produced using a single PC, but for
the Laplace transform method a parallel solver illustrated in Figure 5.2 was used. This has
a distributed master–slave architecture, where the master processor calculates in advance
at which values of s Equation (5.3) or Equation (5.7) will need to be solved in order to
perform the numerical inversion. These values of s are placed in a queue to which slave
processors make requests. They are allocated the next s value available and then construct
and solve the set of linear equations for that value of s, returning the result to the master
to be cached. When all the results have been returned, the master processor then uses the
cached values to perform the inversion and returns the value of the passage time density or
distribution at the required values of t.

The simulation results presented in the graphs are the combined results from 10 runs,
each run consisting of 1 billion (109) transition firings. The timing information for simula-
tion in Table 5.1 is the average time taken to perform one of these runs: as the runs are
independent of each other they can be executed in parallel and so 10 runs on 10 machines
should take no longer than 1 run on 1 machine.

5.4.2. Discussion. From Table 5.1 it can be seen that uniformization (running on
a single processor) is much faster than the Laplace transform method (for all number of
processors up to 32) except in the case of the smallest model considered (Courier with
11 700 states). Using the Laguerre method required the solution of 402 sets of equations
of the form of Equation (5.4) for the tree-like queueing network and FMS models, and 804
sets for Courier. The reason that Courier required more equations to be solved was the
use of the scaling technique referred to in Section 3.1.2. We also note that for the Courier
model the solution took longer on 32 machines than it did on 16. This can be attributed to
increased contention for the global work queue.

In contrast, the uniformization implementation needed only to perform a single set of
sparse matrix–vector multiplications of the form shown in Equation (5.10). It must be
noted, however, that the Laplace transform method is easier to extend to systems with
generally-distributed state holding-time distributions (see Section 6 below) and preserves
the ability to reason about source and target states which are vanishing. This ability is lost
in the uniformization method as vanishing states must be eliminated when generating the
state space for the method to function.

Table 5.1 also shows that a single simulation run took much longer than either uni-
formization or the Laplace transform method for all three models and 10 runs only produced
inexact results bounded by confidence intervals (although the intervals are fairly tight in two
of the three cases). This run-time could, however, have been reduced by performing fewer
transition firings but this may have resulted in wider confidence intervals. Simulation may
not be suitable for passage time calculation in all models, particularly those which are very
large but have very few initial states. In such cases, many more transition firings may have
to be performed in order to achieve meaningful results as the number of observed passages
would otherwise be too low. By way of example, the CTMC underlying the FMS model has
537 638 states, of which only 28 are source states (0.005% of the total states) and 136 584 are
target states. The CTMC of the Courier model with 11 700 states has 3 150 source states
(26.9% of the total states) and 900 target states. We observe that the confidence intervals
on the Courier passage time density of Figure 5.1 are much tighter than those on the FMS
density in Figure 5.1(a).

22 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

When the method of Section 5.2 is used for the analysis of GSPN models, the underlying
state spaces are larger as vanishing states are not eliminated. Table 5.2 shows the sizes of
the state spaces for the two GSPN models and the time taken to analyse them for the
same passage time quantities as Table 5.1 using the Laplace transform method for GSPNs.
Note the large increase in the size of the underlying process when vanishing states are not
eliminated (it has more than doubled in the case of Courier and increased by a factor of 5
for the FMS model) and the consequent increase in time taken to compute the results. This
illustrates that, although the Laplace transform method for GSPNs offers the opportunity
to reason about vanishing source and target states, the modeller must be aware that it does
so at increased computational cost.

We note that we have developed a parallel tool called HYDRA [24] which implements
the uniformization method. This was not used here, however, as the size of the state spaces
under consideration made it unnecessary. Its use could reduce the time taken to perform
the uniformization calculations even further.

6. Passage Times in Semi-Markov Models. In this section, we present a central
contribution of this chapter: an iterative algorithm for the calculation of passage time
densities for very large semi-Markov processes (SMPs) [13]. Previous attempts to analyse
SMPs for passage time measures have not been applicable to very large models due to the
complexity of maintaining the Laplace transforms of state holding time distributions in
closed form. In previous work [27, 33], the time complexity of the numerical calculation
of passage time densities and quantiles for a semi-Markov system with N states is O(N4).
Consequently, it has not been possible to analyse semi-Markov systems with more than a
few thousand states.

This limitation is overcome here by the application of an efficient representation for the
Laplace transforms of the state holding time density functions, which was developed with
the demands of the numerical inversion algorithms described in Section 3.1 in mind. The
resulting technique is amenable to a parallel implementation (thus allowing for the analysis
of even larger semi-Markov models) and has a time complexity of O(N2r) for r iterations
(typically r ¿ N).

We also present an iterative algorithm for computing transient state probabilities in
SMPs which requires less computational effort than existing techniques. The algorithm
builds on the iterative passage time algorithm and shows a similar time complexity. We
present example passage time and transient results from models with up to 1.1 million
states. The section concludes by considering the extraction of moments of passage times in
semi-Markov systems.

6.1. Efficient Representation of General Distributions. The key to practical
analysis of semi-Markov processes lies in the efficient representation of their general dis-
tributions. Without care the structural complexity of the SMP can be recreated within
the representation of the distribution functions. This is especially true with the convolu-
tions performed in the calculation of passage time densities. Many techniques have been
used for representing arbitrary distributions – two of the most popular being phase-type
distributions [43] and vector-of-moments methods. These methods suffer from, respectively,
exploding representation size under composition, and containing insufficient information
to produce accurate answers after large amounts of composition. Attempts to maintain a
wholly symbolic representation are similarly hamstrung by space constraints. To get round
these issues, we use a similar s-value lookahead technique as was used in Section 5.1 for
Markovian analysis using Laplace functions.

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 23

As all the distribution manipulations in the algorithm take place in s-space, the distri-
bution representation is linked to the Laplace inversion technique used. The two Laplace
transform inversion algorithms which are applied in this chapter are described in Section 3.1.
Both work on the same general principle of sampling the transform function L(s) at n points,
s1, s2, . . . , sn and generating values of f(t) at m user-specified t-points t1, t2, . . . , tm. In the
Euler inversion case n = (k + m + 1), where k can vary between 15 and 50, depending
on the accuracy of the inversion required. In the modified Laguerre case, n = 400 and is
independent of m (cf. Section 3.1.2).

Whichever Laplace transform inversion technique is employed, it is important to note
that calculating si, 1 ≤ i ≤ n and storing all the state holding time distribution transform
functions, sampled at these points, will be sufficient to provide a complete inversion. Key to
this is the fact that convolution and weighted sum operations do not require any adjustment
to the array of domain s-points required. In the case of a convolution, for instance, if L1(s)
and L2(s) are stored in the form {(si, Lj(si)) : 1 ≤ i ≤ n}, for j = 1, 2, then the convolution,
L1(s)L2(s), can be stored using the same size array and using the same list of domain s-
values, {(si, L1(si)L2(si)) : 1 ≤ i ≤ n}.

Storing the distribution functions in this way has three main advantages. Firstly, the
function has constant storage space, independent of the distribution type. Secondly, each
distribution has, therefore, the same constant storage requirement even after composition
with other distributions. Finally, the function has sufficient information about a distribution
to determine the required passage time, and no more.

6.2. The Laplace Transform Method for SMPs. The Laplace transform-based
method described in Section 5 for the extraction of passage times from Markov models can
be extended to the analysis of semi-Markov models. From Section 2.1.2, consider a finite,
irreducible, continuous-time semi-Markov process with N states {1, 2, . . . , N}. Recalling
that Z(t) denotes the state of the SMP at time t ≥ 0, N(t) denotes the number of transitions
which have occurred by time t and {(χn, Tn) : n ≥ 0} describe the state and time after the
nth transition. The first passage time from a source state i at time t into a non-empty set
of target states ~j is defined as:

Pi~j(t) = inf{u > 0 : Z(t + u) ∈ ~j,N(t + u) > N(t), Z(t) = i}

For a stationary time-homogeneous SMP, Pi~j(t) is independent of t:

Pi~j = inf{u > 0 : Z(u) ∈ ~j,N(u) > 0, Z(0) = i} (6.1)

This formulation of the random variable Pi~j applies to an SMP with no immediate (that is,
zero-time) transitions. If zero-time transitions are permitted in the model then the passage
time can be stated as:

Pi~j = inf{u > 0 : N(u) ≥ Mi~j} (6.2)

where Mi~j = min{m > 0 : χm ∈ ~j, χ0 = i} is the transition marking the terminating state
of the passage.

Pi~j has an associated probability density function fi~j(t). In a similar way to Section 5.1,
the Laplace transform of fi~j(t), Li~j(s), can be computed by means of a first-step analysis.
That is, we consider moving from the source state i into the set of its immediate successors

24 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

~k and must distinguish between those members of ~k which are target states and those which
are not. This calculation can be achieved by solving a set of N linear equations of the form:

Li~j(s) =
∑

k/∈~j

r∗ik(s)Lk~j(s) +
∑

k∈~j

r∗ik(s) : for 1 ≤ i ≤ N (6.3)

where r∗ik(s) is the Laplace-Stieltjes transform (LST) of R(i, k, t) from Section 2.1.2 and is
defined by:

r∗ik(s) =
∫ ∞

0

e−st dR(i, k, t) (6.4)

Equation (6.3) has a matrix–vector form Ax = b, where the elements of A are general
functions of the complex variable s. For example, when ~j = {1}, Equation (6.3) yields:

1 −r∗12(s) · · · −r∗1N (s)
0 1− r∗22(s) · · · −r∗2N (s)
0 −r∗32(s) · · · −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) · · · 1− r∗NN (s)

L1~j(s)
L2~j(s)
L3~j(s)

...
LN~j(s)

=

r∗11(s)
r∗21(s)
r∗31(s)

...
r∗N1(s)

(6.5)

When there are multiple source states, denoted by the vector ~i, the Laplace transform of
the passage time density at steady-state is:

L~i~j(s) =
∑

k∈~i
αkLk~j(s) (6.6)

where the weight αk is the probability of being in state k ∈ ~i at the starting instant of
the passage. If measuring the system from equilibrium then α is a normalised steady-state
vector. That is, if π denotes the steady-state vector of the embedded discrete-time Markov
chain (DTMC) with one-step transition probability matrix P with elements pij , 1 ≤ i, j ≤ N ,
then αk is given by:

αk =
{

πk/
∑

j∈~i πj : if k ∈~i

0 : otherwise
(6.7)

The row vector with components αk is denoted by α.

6.3. Iterative Passage Time Analysis. In this section, we present an iterative algo-
rithm for generating passage time densities that creates successively better approximations
to the SMP passage time quantity Pi~j of Equation (6.1). We approximate Pi~j as P

(r)

i~j
, for a

sufficiently large value of r, which is the time for r consecutive transitions to occur starting
from state i and ending in any of the states in ~j. We calculate P

(r)

i~j
by constructing and

then inverting its Laplace transform L
(r)

i~j
(s).

This iterative method bears a loose resemblance to the uniformization technique de-
scribed in Section 5.3 which can be used to generate transient state distributions and passage
time densities for Markov chains. However, as we are working with semi-Markov systems,
there can be no uniformizing of the general distributions in the SMP. The general distri-
bution information has to be maintained as precisely as possible throughout the process,
which we achieve using the representation technique described in Section 6.1.

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 25

6.3.1. Technical Overview. Modifying Equation (6.1), we define the rth transition
first passage time to be:

P
(r)

i~j
= inf{u > 0 : Z(u) ∈ ~j, 0 < N(u) ≤ r, Z(0) = i} (6.8)

which is the time taken to enter a state in ~j for the first time having started in state i at
time 0 and having undergone up to r state transitions. If we have immediate transitions in
our SMP model (as in Equation (6.2)) then the rth transition first passage time is:

P
(r)

i~j
= inf{u > 0 : Mi~j ≤ N(u) ≤ r}

P
(r)

i~j
is a random variable with associated Laplace transform L

(r)

i~j
(s). L

(r)

i~j
(s) is, in turn,

the ith component of the vector:

L(r)
~j

(s) =
(
L

(r)

1~j
(s), L(r)

2~j
(s), . . . , L(r)

N~j
(s)

)

representing the passage time for terminating in ~j for each possible start state. This vector
may be computed as:

L(r)
~j

(s) = U
(
I + U′ + U′2 + · · ·+ U′(r−1)

)
e~j (6.9)

where U is a matrix with elements upq = r∗pq(s) and U′ is a modified version of U with
elements u′pq = δp 6∈~j upq, where states in ~j have been made absorbing. Here, δp6∈~j = 1 if
p 6∈ ~j and 0 otherwise. The initial multiplication with U in Equation (6.9) is included so as
to generate cycle times for cases such as L

(r)
ii (s) which would otherwise register as 0 if U′

were used instead. The column vector e~j has entries ek~j = δk∈~j , where δk∈~j = 1 if k is a
target state (k ∈ ~j) and 0 otherwise.

From Equation (6.1) and Equation (6.8):

Pi~j = P
(∞)

i~j
and thus Li~j(s) = L

(∞)

i~j
(s)

This can be generalised to multiple source states~i using, for example, the normalised steady-
state vector α of Equation (6.7):

L
(r)
~i~j

(s) = αL(r)
~j

(s)

= (αU + αUU′ + αUU′2 + · · ·+ αUU′(r−1)) e~j

=
r−1∑

k=0

αUU′k e~j (6.10)

The sum of Equation (6.10) can be computed efficiently using sparse matrix–vector mul-
tiplications with a vector accumulator, µr =

∑r
k=0 αU′k. At each step, the accumulator

(initialised as µ0 = αU) is updated as µr+1 = αU+µrU
′. The worst-case time complexity

for this sum is O(N2r) versus the O(N3) of typical matrix inversion techniques. In practice,
we typically observe r ¿ N for large N (see Section 6.3.3 below).

26 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 100 200 300 400 500 600 700 800 900

P
ro

ba
bi

lit
y

de
ns

ity

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density: 107289 state Web-server model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time

Cumulative passage-time distribution: 107289 Web-server model

Fig. 6.1. Numerical and simulated (with 95% confidence intervals) density (left) and cumulative distribution
function and quantile (right) for the time taken to process 45 reads and 22 writes in the Web-server model
system 1 (107 289 states).

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 400 500 600 700 800 900

P
ro

ba
bi

lit
y

de
ns

ity

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density: 15.4 million state Web-server model

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 500 600 700 800 900

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time

Cumulative passage time distribution: 15.4 million state web server model

Fig. 6.2. Numerical and simulated (with 95% confidence intervals) density for the time taken to process
100 reads and 50 page updates in the Web-server model system 6 (15.4 million states).

6.3.2. Example Passage Time Results. In this section, we display passage time
densities produced by our iterative passage time algorithm and validate these results by
simulation. Readers are referred to Section 4.1 for full details of the Web-server model in
which these passage times are measured.

Figure 6.1 (left) shows the density of the time taken to process 45 reads and 22 writes
in system 1 of the Web-server model (107 289 states). This corresponds to the movement
of 45 tokens from p1 to p8 and 22 tokens from p2 to p9. The graph shows results computed
by both the iterative technique and the combined results from 10 simulations of 1 billion
transition firings each. The close agreement provides mutual validation of the analytical
method, with its numerical approximation, and the simulation.

Figure 6.1 (right) shows the cumulative distribution for the same passage as Figure 6.1
(left). An example response time quantile for this measure would be:

IP(all reads and all writes are processed in under 470 seconds) = 0.954

Figure 6.2 (left) shows the density of the time taken to perform 100 reads and 50

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 27

page updates in the Web-server model 6 (15 445 919 states). Calculation of the 35 t-points
plotted required 2 days, 17 hours and 30 minutes using 64 slave processors (in 8 groups of
8). Our algorithm evaluated L~i~j(s) at 1 155 s-points, each of which involved manipulating
sparse matrices of rank 15 445 919. Again, the numerical result is validated against the
combined results from 10 simulations, each of which consisted of 1 billion transition firings.
We observe excellent agreement. Figure 6.2 (right) shows the corresponding cumulative
distribution function with a reliability quantile superimposed, in this case showing:

IP(system 6 can process 100 reads and 50 page updates in less than 700 seconds) = 0.9613

6.3.3. Practical Convergence of the Iterative Passage Time Algorithm. In
practice, convergence of the sum L

(r)
~i~j

(s) =
∑r−1

k=0 αUU′k can be said to have occurred if,
for a particular r and s-point:

|Re(L(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε and |Im(L(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε (6.11)

where ε is chosen to be a suitably small value, say ε = 10−16. Empirical observations on
the convergence behaviour of this technique (i.e. the order of r) are presented below.

Figure 6.3(a) shows the average number of iterations the algorithm takes to converge per
s-point for the Web-server model (see Appendix 4.1 for full details) for two different values
of ε (10−8 and 10−16). It is noted that the number of iterations required for convergence as
the model size grows is sub-linear; that is, as the model size doubles the number of iterations
less than doubles. This suggests the algorithm has good scalability properties.

Figure 6.3(b) shows the average amount of time to convergence per s-point, while Fig-
ure 6.3(c) shows how the number of iterations per unit time decreases as model size increases.
The curves are almost identical for both values of ε, suggesting that the time spent per it-
eration remains constant, irrespective of the number of iterations performed. The rate of
computation (iterations per unit time) is O

(
1/(N log(N))

)
for system size N . This gives a

time per iteration of O
(
N log(N)

)
, suggesting an overall practical complexity of better than

O
(
N2 log(N)

)
(given the better than O(N) result for the number of iterations required).

6.4. Iterative Transient Analysis. This section presents a numerical advance for
SMPs first published in [12]. It is reproduced here as it is similar to the iterative passage
time method in construction. Another important modelling result is the transient state
distribution πij(t) of a stochastic process:

πij(t) = IP(Z(t) = j | Z(0) = i)

From Pyke’s seminal paper on SMPs [46], we have the following relationship between passage
time densities and transient state distributions, in Laplace form:

π∗ij(s) =
1
s

1− h∗i (s)
1− Lii(s)

: if i = j, π∗ij(s) = Lij(s)π∗jj(s) : if i 6= j

where π∗ij(s) is the Laplace transform of πij(t) and h∗i (s) =
∑

k r∗ik(s) is the LST of the
sojourn time distribution in state i. For multiple target states, this becomes:

π∗
i~j

(s) =
∑

k∈~j

π∗ik(s)

28 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1 1.2

N
um

be
r

of
 it

er
at

io
ns

 to
 c

on
ve

rg
e

Size of model (millions of states)

epsilon=1e-16: average no of iterations per s point (Web-server model)
epsilon=1e-8: average no of iterations per s point (Web-server model)

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1 1.2

T
im

e
ta

ke
n

to
 c

on
ve

rg
e

(s
)

Size of model (millions of states)

epsilon=1e-16: average time per s point (Web-server model)
epsilon=1e-8: average time per s point (Web-server model)

(a) (b)

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1 1.2

Ite
ra

tio
ns

 p
er

 s
ec

on
d

Size of model (millions of states)

epsilon=1e-16: iterations per unit time (Web-server model)
epsilon=1e-8: iterations per unit time (Web-server model)

Best fit curve (Web-server model): k/xlog(x)

(c)

Fig. 6.3. (a) Average number of iterations to converge per s point for two different values of ε over a range
of model sizes for the iterative passage time algorithm. (b) Average time to convergence per s point for
two different values of ε over a range of model sizes for the iterative passage time algorithm. (c) Average
number of iterations per unit time over a range of model sizes for the iterative passage time algorithm.

However, to construct π∗
i~j

(s) directly using this translation is computationally expensive:

for a vector of target states ~j, we need 2|~j| − 1 passage time quantities, Lik(s), which in
turn require the solution of |~j| linear systems of the form of Equation (6.5). This motivates
our development of a new transient state distribution formula for multiple target states in
semi-Markov processes which requires the solution of only one system of linear equations
per s-value.

From Pyke’s formula for the transient state distribution between two states [46, Eq.
(3.2)], we can derive:

πij(t) = δijF i(t) +
N∑

k=1

∫ t

0

R(i, k, t− τ)πkj(τ) dτ

where δij = 1 if i = j and 0 otherwise, and F i(t) is the reliability function of the sojourn
time distribution in state i, i.e. the probability that the system has not left state i after t
time units. R(i, k, t−τ) is the probability that a transition from state i to an adjacent state
k occurs in time t − τ and πkj(τ) is the probability of being in state j having left state k
after a further time τ .

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 29

Transforming this convolution into the Laplace domain and generalising to multiple
target states, ~j, we obtain:

π∗
i~j

(s) = δi∈~jF
∗
i (s) +

N∑

k=1

r∗ik(s)π∗
k~j

(s) (6.12)

Here, δi∈~j = 1 if i ∈ ~j and 0 otherwise. The Laplace transform of the reliability function
F
∗
i (s) is generated from h∗i (s) as:

F
∗
i (s) =

1− h∗i (s)
s

Equation (6.12) can be written in matrix–vector form; for example, when ~j = {1, 3},
we have:

1− r∗11(s) −r∗12(s) · · · −r∗1N (s)
−r∗21(s) 1− r∗22(s) · · · −r∗2N (s)
−r∗31(s) −r∗32(s) · · · −r∗3N (s)

...
...

. . .
...

−r∗N2(s) −r∗N2(s) · · · 1− r∗NN (s)

π∗
1~j

(s)
π∗

2~j
(s)

π∗
3~j

(s)
...

π∗
N~j

(s)

=

F
∗
1(s)
0

F
∗
3(s)
...
0

(6.13)

Again for multiple source states with initial distribution α, the Laplace transform of
the transient function is:

π∗~i~j(s) =
∑

k∈~i
αkπ∗

k~j
(s)

6.4.1. Technical Overview. Our iterative transient state distribution generation
technique builds on the passage time computation technique of Section 6.3. We aim to
calculate πi~j(t), that is the probability of being in any of the states of ~j at time t having
started in state i at time t = 0. We approximate this transient state distribution by con-
structing and then inverting π

(r)

i~j
(s), which is the rth iterative approximation to the Laplace

transform of the transient state distribution function, for a sufficiently large value of r.
We note that Equation (6.13) can be written as:

(I−U)π~j(s) = v (6.14)

where matrix U has elements upq = r∗pq(s) and column vector v has elements vi = δi∈~jF
∗
i (s).

The vector π~j(s) has elements πi~j(s):

π~j(s) =
(
π1~j(s), π2~j(s), . . . , πN~j(s)

)

Equation (6.14) can be rewritten (see [14] for the proof that (I−U) is invertible) as:

π~j(s) = (I−U)−1 v

=
(
I + U + U2 + U3 + · · ·

)
v

30 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

This infinite summation may be approximated as:

π~j(s) ' π
(r)
~j

(s) =
(
I + U + U2 + · · ·+ Ur

)
v

for a suitable value of r such that the approximation is good. See Section 6.4.3 below for
observations regarding typical values of r.

Note that instead of using an absorbing transition matrix as in the passage time scheme,
the transient method makes use of the unmodified transition matrix U. This reflects the
fact that the transient state distribution accumulates probability from all passages through
the system and not just the first one.

Finally, as before, the technique can be generalised to multiple start states by employing
an initial row vector α, where αi is the probability of being in state i at time 0:

π
(r)
~i~j

(s) = α
(
I + U + U2 + · · ·+ Ur

)
v

Having calculated π
(r)
~i~j

(s) in this manner, the same numerical inversion techniques which
are used in passage time analysis can be employed to compute π~i~j(t).

6.4.2. Example Transient Results. We demonstrate our iterative transient tech-
nique on the small two-state example with two sates, 0 and 1. The distribution of transitions
from 0 to 1 is X, the one for transitions from 1 to 0 is Y . Figure 6.4(a) shows a transient
state distribution π00(t), that is the probability of being in state 0, having started in state
0, at time t. The distributions of the transitions are X ∼ exp(2) and Y ∼ det(2). The
discontinuities in the derivative from the deterministic transition can clearly be made out
at points t = 2, 4 and in fact also exist at t = 6, 8, 10, Also shown on the graph are
up to 8 iterations of the algorithm which exhibit increasing accuracy in approximating the
transient curve.

Figure 6.4(b) shows the transient state distribution π00(t) for the two state system with
X ∼ det(3) and Y ∼ exp(0.5). The graph clearly shows the system remaining in state
0 for the initial 3 time units, as dictated by the out-going deterministic transition. The
perturbations in the graph observed around t = 3 are generated by numerical instabilities
(Gibb’s Phenomena) in the Laplace inversion algorithm [3]. Also shown on the graph are 4
iterations of the algorithm which exhibit increasing accuracy in approximating the transient
curve, as before.

We also use the two state system to highlight when numerical Laplace transform in-
version does not perform well and how such problems can be avoided. Figure 6.4(c) shows
the transient probability of being in state 0 having started in state 0 when both X and Y
are det(2) transitions. We would expect to see the probability equalling 1 for 0 < t < 2,
4 < t < 6 and so forth, and 0 at 2 < t < 4, 6 < t < 8 and so on, but the numerically
computed result becomes increasingly unstable as t increases. This is because discontinu-
ities in f(t) and its derivatives result in instabilities in the numerical inversion. Even the
Euler algorithm (which was used to produce these results) performs badly when inverting
entirely deterministic probability distributions. This example, with two such transitions
and no source of randomness, is the worst case we could expect to deal with.

The presence of a small amount of randomness is, however, enough to remove this
instability. We modify the two state system by adding a new state with a single exp(0.5)
transition into state 0 and calculate the transient probability of being in state 0 having
started in the newly added predecessor state. There is no transition from state 0 back

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

Time, t

Analytic solution, pi_00(t)
1 iteration

2 iterations
4 iterations
6 iterations
8 iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14

P
ro

ba
bi

lit
y

Time, t

Analytic solution, pi_00(t)
1 iteration

2 iterations
3 iterations
4 iterations

(a) (b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

Time

Numerical transient solution

(c)

Fig. 6.4. (a) Example iterations towards a transient state distribution in a system with successive exponen-
tial and deterministic transitions. (b) Example iterations towards a transient state distribution in a system
with successive deterministic and exponential transitions. (c) Where numerical inversion performs badly:
transient state distribution in a system with two deterministic transitions.

to the new state, so the exp(0.5) transition fires only once. The resulting transient state
distribution is shown in Figure 6.4(c). Note that the numerical instability has disappeared.
This demonstrates that only a small amount of randomness in the model can be sufficient
for numerical inversion to be applied successfully.

6.4.3. Practical Convergence of the Iterative Transient Algorithm. As in the
iterative passage time algorithm, convergence of the sum π

(r)
~i~j

(s) is said to have occurred if,
for a particular r and s-point:

|Re(π(r+1)
~i~j

(s)− π
(r)
~i~j

(s))| < ε and |Im(π(r+1)
~i~j

(s)− π
(r)
~i~j

(s))| < ε (6.15)

where ε is chosen to be a suitably small value such as 10−16.

7. Conclusion. This chapter has explored the numerical computation of passage time
densities, quantiles and transient distributions in large Markov and semi-Markov models.
Prior work in this area has focused mainly on the analysis of Markov systems using the two
techniques described in Section 5: the Laplace transform method and uniformization. We
have expanded on this by presenting techniques which enable the computation of passage

32 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

time densities and quantiles in Markov and semi-Markov models with state spaces of 107

states and above.
Key to this is the iterative passage time analysis algorithm described in Section 6. This

calculates the Laplace transform of the passage time quantity by convolving the Laplace
transforms of the state holding-times across all possible paths between source and target
states. This Laplace transform is then inverted using numerical inversion techniques to yield
the value of the density or quantile function at a range of user-specified time points. This
iterative algorithm has also been extended to permit the efficient calculation of transient
state distributions.

In order to describe large semi-Markov models succinctly, we have devised a high-level
modelling formalism called Semi-Markov Stochastic Petri Nets (SM-SPNs) [11]. This is an
extension of stochastic Petri nets which includes transitions with generally-distributed fir-
ing delays. In the event that two or more general transitions are concurrently enabled, the
selection of the next to fire is done by probabilistic choice and the delay is then sampled
from that transition’s firing distribution. This means that the underlying stochastic process
is isomorphic to a semi-Markov chain. While SM-SPNs do not attempt to model true Gen-
eralised Semi-Markov Process-style concurrency, they do support Markovian concurrency
provided that generally-distributed (non-exponential) transitions are exclusively enabled.

Using these techniques, passage time density and quantile results have been calculated
for Markov and semi-Markov models with up to 15.4 million states.

REFERENCES

[1] J Abate, G L Choudhury, and W Whitt, On the Laguerre method for numerically inverting Laplace
transforms, INFORMS Journal on Computing, 8 (1996), pp. 413–427.

[2] , An introduction to numerical transform inversion and its application to probability models, in
Computational Probability, W Grassman, ed., Kluwer, Boston, 2000, pp. 257–323.

[3] J Abate and W Whitt, The Fourier-series method for inverting transforms of probability distribu-
tions, Queueing Systems, 10 (1992), pp. 5–88.

[4] , Numerical inversion of Laplace transforms of probability distributions, ORSA Journal on
Computing, 7 (1995), pp. 36–43.

[5] M Ajmone-Marsan, G Conte, and G Balbo, A class of Generalised Stochastic Petri Nets for the
performance evaluation of multiprocessor systems, ACM Transactions on Computer Systems, 2
(1984), pp. 93–122.

[6] Australian Capital Territory Commissioner for the Environment, Indicator: Emergency ser-
vices, February 2004.

[7] F Bause and P S Kritzinger, Stochastic Petri Nets – An Introduction to the Theory, Verlag Vieweg,
Wiesbaden, Germany, 1995.

[8] M Benzi and M Tuma, A parallel solver for large-scale Markov chains, Applied Numerical Mathe-
matics, 41 (2002), pp. 135–153.

[9] G Bolch, S Greiner, H de Meer, and K S Trivedi, Queueing Networks and Markov Chains, Wiley,
August 1998.

[10] J T Bradley, N J Dingle, P G Harrison, and W J Knottenbelt, Distributed computation of
passage time quantiles and transient state distributions in large semi-Markov models, in Proceed-
ings of the International Workshop on Performance Modeling, Evaluation and Optimization of
Parallel and Distributed Systems (PMEO-PDS’03), Nice, April 26th 2003.

[11] , Performance queries on semi-Markov stochastic Petri nets with an extended Continuous Sto-
chastic Logic, in Proceedings of 10th International Workshop on Petri Nets and Performance
Models (PNPM’03), Urbana-Champaign IL, USA, September 2nd–5th 2003, pp. 62–71.

[12] , Distributed computation of transient state distributions and passage time quantiles in large
semi-Markov models, Future Generation Computer Systems, (2005). (to appear).

[13] J T Bradley, N J Dingle, W J Knottenbelt, and H J Wilson, Hypergraph-based parallel computa-
tion of passage time densities in large semi-Markov models, Linear Algebra and Its Applications,
386 (2004), pp. 311–334.

Response Time Densities and Quantiles in Large Markov and Semi-Markov Models 33

[14] J T Bradley and H J Wilson, Iterative convergence of passage-time densities in semi-Markov
performance models, Performance Evaluation, 60 (2004), pp. 237–254.

[15] P Buchholz, M Fischer, and P Kemper, Distributed steady state analysis using Kronecker algebra,
in Proceedings of the 3rd International Conference on the Numerical Solution of Markov Chains
(NSMC’99), Zaragoza, Spain, September 1999, pp. 76–95.

[16] G Ciardo and A S Miner, A data structure for the efficient Kronecker solution of GSPNs, in Pro-
ceedings of the 8th International Conference on Petri Nets and Performance Models (PNPM’99),
Zaragoza, Spain, September 1999, IEEE Computer Society Press, pp. 22–31.

[17] G Ciardo and K S Trivedi, A decomposition approach for stochastic reward net models, Performance
Evaluation, 18 (1993), pp. 37–59.

[18] Commission for Health Improvement, Final key targets and performance indicators for primary
care trusts (PCTs), December 2003.

[19] County of Oxford Board of Health, 2001 annual report, October 2002.
[20] Cross-Industry Working Team, Customer view of Internet service performance: Measurement

methodology and metrics, October 1998.
[21] D D Deavours and W H Sanders, An efficient disk-based tool for solving large Markov models,

Performance Evaluation, 33 (1998), pp. 67–84.
[22] , “On-the-fly” solution techniques for stochastic Petri nets and extensions, IEEE Transactions

on Software Engineering, 24 (1998), pp. 889–902.
[23] N J Dingle, P G Harrison, and W J Knottenbelt, Response time densities in Generalised Sto-

chastic Petri Net models, in Proceedings of the 3rd International Workshop on Software and
Performance (WOSP’02), Rome, July 24th–26th 2002, pp. 46–54.

[24] , HYDRA: HYpergraph-based Distributed Response-time Analyser, in Proceedings of the In-
ternational Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’03), Las Vegas NV, USA, June 23rd–26th 2003, pp. 215–219.

[25] DLT Solutions Inc., Capacity planning for e-commerce systems with Benchmark FactoryTM, Febru-
ary 2004.

[26] H Dubner and J Abate, Numerical inversion of Laplace transforms by relating them to the finite
Fourier cosine transform, Journal of the ACM, 15 (1968), pp. 115–123.

[27] R German, D Logothetis, and K S Trivedi, Transient analysis of Markov regenerative stochastic
Petri nets: A comparison of approaches, in Proceedings of the 6th International Workshop on
Petri Nets and Performance Models (PNPM’95), Durham, North Carolina, 1995, pp. 103–112.

[28] W K Grassman, Means and variances of time averages in Markovian environments, European Journal
of Operational Research, 31 (1987), pp. 132–139.

[29] P G Harrison, Laplace transform inversion and passage-time distributions in Markov processes,
Journal of Applied Probability, 27 (1990), pp. 74–87.

[30] P G Harrison and W J Knottenbelt, Passage time distributions in large Markov chains, in Pro-
ceedings of ACM SIGMETRICS 2002, Marina Del Rey, California, June 2002, pp. 77–85.

[31] H Hermanns, J Meyer-Kayser, and M Siegle, Multi-terminal binary decision diagrams to represent
and analyse continuous time Markov chains, in Proceedings of the 3rd International Conference
on the Numerical Solution of Markov Chains (NSMC’99), Zaragoza, Spain, September 1999,
pp. 188–207.

[32] J Hillston, A Compositional Approach to Performance Modelling, PhD thesis, University of Edin-
burgh, 1994.

[33] G G Infante López, H Hermanns, and J-P Katoen, Beyond memoryless distributions: Model
checking semi-Markov chains, in Lecture Notes in Computer Science 2165: Proceedings of Process
Algebra and Probabilistic Methods (PAPM’01), Aachen, September 2001, Springer-Verlag, pp. 57–
70.

[34] W J Knottenbelt, Parallel Performance Analysis of Large Markov Models, PhD thesis, Imperial
College, London, United Kingdom, February 2000.

[35] W J Knottenbelt and P G Harrison, Distributed disk-based solution techniques for large Markov
models, in Proceedings of the 3rd International Conference on the Numerical Solution of Markov
Chains (NSMC’99), Zaragoza, Spain, September 1999, pp. 58–75.

[36] M Kwiatkowska and R Mehmood, Out-of-core solutions of large linear systems of equations aris-
ing from stochastic modelling, in Proceedings of Process Algebra and Performance Modelling
(PAPM’02), Copenhagen, July 25th–26th 2002, pp. 135–151.

[37] M Kwiatkowska, G Norman, and D Parker, PRISM: Probabilistic symbolic model checker, in
Lecture Notes in Computer Science 2324: Proceedings of the 12th International Conference on
Modelling, Techniques and Tools (TOOLS’02), London, April 14th–17th 2002, Springer Verlag,
pp. 200–204.

34 Jeremy T. Bradley, Nicholas J. Dingle, Uli Harder et al.

[38] London Ambulance Service, Category A response times, February 2004.
[39] B Melamed and M Yadin, Randomization procedures in the computation of cumulative-time distri-

butions over discrete state Markov processes, Operations Research, 32 (1984), pp. 926–944.
[40] A S Miner, Computing response time distributions using stochastic Petri nets and matrix dia-

grams, in Proceedings of the 10th International Workshop on Petri Nets and Performance Models
(PNPM’03), Urbana-Champaign, IL, September 2nd–5th 2003, pp. 10–19.

[41] Municipal Corporation of the County of Renfrew, Health committee minutes, May 2003.
[42] J K Muppala and K S Trivedi, Numerical transient analysis of finite Markovian queueing systems,

in Queueing and Related Models, U N Bhat and I V Basawa, eds., Oxford University Press, 1992,
pp. 262–284.

[43] M F Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, Johns
Hopkins University Press, Baltimore, MD, 1981.

[44] C H Ng, Queueing Modelling Fundamentals, John Wiley and Sons, 1996.
[45] A Puliafito, M Scarpa, and K S Trivedi, Petri nets with k simultaneously enabled generally

distributed timed transitions, Performance Evaluation, 32 (1998), pp. 1–34.
[46] R Pyke, Markov renewal processes with finitely many states, Annals of Mathematical Statistics, 32

(1961), pp. 1243–1259.
[47] A Reibman and K S Trivedi, Numerical transient analysis of Markov models, Computers and Op-

erations Research, 15 (1988), pp. 19–36.
[48] San Francisco EMS Section Department of Public Health, San Francisco EMS system activity

summary, December 1999.
[49] R M Simon, M T Stroot, and G H Weiss, Numerical inversion of Laplace transforms with appli-

cation to percentage labeled mitoses experiments, Computers and Biomedical Research, 5 (1972),
pp. 596–607.

[50] Township of Rideau Lakes, Leeds Grenville emergency medical services frequently asked questions,
February 2004.

[51] Transaction Processing Performance Council, TPC benchmark C: Standard specification revi-
sion 5.2, December 2003.

[52] W T Weeks, Numerical inversion of Laplace transforms using Laguerre functions, Journal of the
ACM, 13 (1966), pp. 419–429.

[53] C M Woodside and Y Li, Performance Petri net analysis of communication protocol software by
delay-equivalent aggregation, in Proceedings of the 4th International Workshop on Petri nets and
Performance Models (PNPM’91), Melbourne, Australia, 2–5 December 1991, IEEE Computer
Society Press, pp. 64–73.

