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ABSTRACT
We develop an approximate generating function analysis
(AGFA) technique which approximates the Laplace trans-
form of the probability density function of customer response
time in networks of queues with class-based priorities. From
the approximated Laplace transform, we derive the first two
moments of customer response time. This technique is ap-
plied to a model of a large hospital’s Accident and Emer-
gency department for which we obtain the mean and stan-
dard deviation of total patient service time. We experiment
with different patient-handling priority schemes and com-
pare the AGFA moments with the results from a discrete
event simulation.

1. INTRODUCTION
Many complex processing systems in the real world (in-

cluding telecommunications networks, manufacturing sys-
tems, emergency services and healthcare systems) have strin-
gent response time requirements. Such requirements typ-
ically relate not only to mean response times, but also to
variability of response times. For example, the National
Health Service in the UK aims to have an ambulance at the
scene of 75% of life-threatening incidents within 8 minutes
[15]. In such contexts, it is important to develop effective
performance models that can give insights into how differ-
ent customer processing strategies affect moments and/or
distributions of response time.

Over many decades, extensive use has been made of mul-
ticlass queueing networks as an effective modelling abstrac-
tion. For certain classes of queueing networks, Mean Value
Analysis (MVA) [20, 19] and a plethora of related techniques
(e.g. [1, 16, 21, 17, 22]) provide an efficient and elegant route
to mean values of measures of interest (such mean waiting
time and throughput), but not higher moments. For closed
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queueing networks with underlying (semi-)Markov chains,
recent much more computationally-intensive methods based
on numerical Laplace transform inversion can be applied to
determine exact moments and, where tractable, probability
distributions, of customer service times [10, 3, 6]. How-
ever, in general, this method suffers from the well-known
state space explosion problem and so is limited to models
with of the order of 10 million states at most. Since accu-
rate models of real life systems typically have much larger
state spaces, especially when modelling large numbers of
customers, performance analysts must often resort to simu-
lation. And while simulation can be used to model complex
systems at arbitrary levels of detail, it typically requires a
high cost and effort to construct an accurate model. Further,
long execution times are often required to produce reliable
results bounded by narrow confidence intervals.

The approximate generating function analysis (AGFA)
technique that is the focus of the present paper provides an
efficient analytical way to approximate the mean and vari-
ance of response time in networks of multiclass queues with
blocking and class-dependent priorities. Support for the lat-
ter two phenomena allow the technique to be applied in di-
verse modelling scenarios, as illustrated by the hierarchical
queueing network model of an Accident and Emergency de-
partment presented later as a case study. The remainder of
this paper is organised as follows. Section 2 presents techni-
cal details of the AGFA technique. Section 3 describes our
case study, a queueing network model of a hospital A&E
department. Section 4 presents the numerical results and
graphs from both the AGFA method and a Java simulation.
Section 5 concludes and considers future research directions.

2. APPROXIMATE GENERATING
FUNCTION ANALYSIS

The essence of the technique is that of Cobham’s formula
for calculating mean values of response times in M/G/1
queues. This uses the fact that the mean value of a sum
of random variables is equal to the sum of the correspond-
ing means, whether or not the variables are independent.
Furthermore, given the mean sojourn time of a low priority
customer in a queue, the mean number of higher priority
arrivals in that time can be calculated. This analysis is
adapted to the calculation of the Laplace transform of re-
sponse time probability density, which is the expectation of
the exponential function of a sum of random variables. Sin-
gle nodes are analysed in this way, after which sub-networks
are solved and aggregated according to the hierarchical MVA
approach [20, 7].



2.1 Notation
We consider a network with two customer classes and

M multi-server nodes, with mi constant rate exponential
servers with rates µir at node i for class r (1 ≤ i ≤ M, r =
1, 2). Class 1 has non-pre-emptive priority over class 2. In
particular, we consider the passage of a special ‘tagged’ cus-
tomer through queueing node i and define the following ran-
dom variables at equilibrium:

K = (K1, K2) class population vector, i.e. there are Kr

customers of class r in the network (r = 1, 2);

Bir class r service time of a single server at the node, ex-
ponential with parameter µir;

Lir number of class r customers in the queue waiting to
start service;

Qir time spent by a class r customer waiting to start ser-
vice;

Nir number of class r customers in the queue, including
any in service, at a random instant of time (i.e. the
class r queue length);

Wir response time of a class r customer, i.e. the sum of
queueing time and service time, Qir + Bir;

Let the steady state probability that the (joint) queue
length at node i is n = (n1, n2) be πi(n | k) = PP(Ni1 =
n1, Ni2 = n2 | K = k). We will make use of the probability
that an arriving customer has to queue, qir. In a network
with processor sharing servers and no priorities, this is just
the probability that the equilibrium queue length is less than
mi when the population is reduced by one in the arriving
customer’s class, by the arrival theorem (see [11] for exam-
ple). Thus, 1 − qir = PP(Ni1 + Ni2 < mi | K = k) =Pmi−1

u=0

Pmi−1−u
v=0 πir(u, v | kr−) for appropriate k,kr−(r =

1, 2).
For a continuous random variable X, we denote its prob-

ability distribution function by X(t) = PP(X ≤ t) and the
Laplace-Stieltjes transform of this distribution (the LSTD)
by X∗(θ) = E[e−θX ] 1 We denote the density function by
x(t) = X ′(t), the derivative of the distribution function,
with Laplace transform X∗(θ). We also denote the nth mo-

ment of X by X;n = E[Xn] = (−1)nX∗(n)(0) (where the
parenthesized superscript denotes differentiation n times).
Thus, for example, S2;1 is the mean of S2.

For a discrete random variable Y , we denote its probabil-
ity generating function (pgf) by GY (z) = E[zY ] and the nth
factorial moment of Y by Y;fn = E[Y (Y − 1) . . . (Y − n +

1)] = G
(n)
Y (1).

2.2 An approximate MVA algorithm

2.2.1 Class 1
The high priority class 1 customers are straightforward

to handle since the tagged customer only has to wait for
those class 1 customers already queueing and the customer
in service (of either class), if any. Consider a generic node i
in a closed network of M queues. Dropping the subscripts
ir for brevity, we have for class 1:

Q∗1(θ) = E[ E[e−θ(S1+...+SL+UR) | N1, N2] ]

1E[·] and E[·|·] denote the expectation and conditional ex-
pectation operators.

where the random variable U is defined by:

U =


1 if N1 + N2 ≥ m
0 if 0 ≤ N1 + N2 < m

The random variables Sl are independent and identically
distributed (i.i.d.) as the minimum of the m service time
random variables at the individual servers. Therefore each is
exponential with parameter mµ in a single class node. In the
multiclass case, they are still exponential but have parame-
ter m1µ1+(m−m1)µ2 when there are m1 class 1 and m−m1

class 2 customers in service. We make the approximating as-
sumption that, given the class of the tagged customer, the
network’s population vector k and the state encountered on
arrival n, this rate remains the same throughout the tagged
customer’s sojourn in the queue, Q1, viz. n1µ1 + n2µ2 if
n1 + n2 ≤ m and (n1µ1 + n2µ2)m/(n1 + n2) if not. Of
course, this result is exact if the service rate is the same for
both classes (µ1 = µ2) and in the single class case (n2 = 0).
Note too that we would not have this problem if the priority
discipline were pre-emptive, whereupon no class 2 customer
could be in service if m or more class 1 customers were
present.

The random variable R is the time to the next service
completion from the arrival instant of the tagged customer.
By the memoryless property, R is distributed as S and is
also independent by hypothesis.

We therefore obtain (for class 1):

Q∗1(θ) = E[ S∗(θ)L1 E[e−θUR | N1, N2] ]

= E[ S∗(θ)L1 R∗(θU)]

= GL1(S
∗(θ))R∗(θ)−

(1− q1)R
∗(θ) + 1− q1 (1)

(noting that R∗(θU) = R∗(θ) + (1 − R∗(θ))(1 − U)) where

GL1(z) = 1 − q1 +
Pk1

u=m

Pk2
v=m−u π(u, v)zu−m1 and m1 is

the number of class 1 customers in service when all servers
are busy. This can approximated for non-pre-emptive pri-
ority, as above, but in our calculation of moments it comes
from the application of Little’s result in the extended MVA
algorithm. Note that R∗ = S∗ and, in the calculations of
q and GL1(z), we assume a population vector k in which
the component corresponding to the class of the arriving
customer has been reduced by one (in accordance with the
Arrival Theorem) 2.

The moments of the class 1 queueing time follow by dif-
ferentiation at θ = 0. For the first few moments this is
a straightforward process, but the n-fold differentiation of
the term GL1(S

∗(θ)) for arbitrary n leads to ever-increasing

2Notice that in the case of a single class M/M/m queue with
constant arrival rate λ, we have S∗(θ) = mµ/(mµ + θ) and

GL(z) = 1− q + (1− ρ)q + (1− ρ)q

∞X

l=1

ρlzl

= 1− q +
(1− ρ)q

1− ρz

where ρ = λ/(mµ). Consequently, we obtain the well known
result

Q∗1(θ) = 1− q +
(1− ρ)qmµ

mµ + θ − ρmµ
= 1− q + q

(mµ− λ)

mµ− λ + θ



complexity. It can be obtained simply using a program-
ming language that supports higher-order functions – here
differentiation with respect to θ – and otherwise using an
auxiliary recursive definition [8]. Here we obtain the first
two moments explicitly.

Mean queueing time for class 1.
Differentiating the class 1 queueing time LSTD given by

equation 1, we find

Q∗′1 (θ) = G′L1(S
∗(θ))S∗′(θ)S∗(θ) +

GL1(S
∗(θ))S∗′(θ)− (1− q1)S

∗′(θ) (2)

At θ = 0, we obtain

Q1;1 = L1;1S1;1 + S1;1 − (1− q1)S1;1 = (L1;1 + q1)S1;1

as could have been obtained by a simple direct argument.

Second moment of queueing time for class 1.
Differentiating equation 2 at θ = 0 we find similarly

Q1;2 = L1;f2S
2
1;1 + L1;1S1;2 + 2L1;1S

2
1;1 + S1;2 − (1− q1)S1;2

which simplifies to

Q1;2 = (L1;2 + L1;1)S
2
1;1 + (L1;1 + q1)S1;2

2.2.2 Class 2
A class 2 customer has to wait, not only for the service

completion of any customer in service at its arrival instant
and all class 1 and 2 customers already waiting, but also for
all class 1 customers that arrive during its queueing time. As
with class 1 customers, we assume that the total service rate
remains constant throughout a class 2 customer’s sojourn
time in the queue, so that service times are the same random
variables S, R that depend only on the state of the queue on
arrival, (n1, n2).

Let C be the number of class 1 arrivals during the tagged
customer’s queueing time Q2. Since these arrivals are as-
sumed to be Poisson with rate λ1 (and so have pgf e−λ1t(1−z)

for a time period t), C has pgf defined by

GC(z) = E[zC ] = E[ E[zC | Q2] ]

= E[e−λ1Q2(1−z)] = Q∗2(λ1(1− z))

Writing H = max(N1 + N2 −m, 0), we therefore have:

Q∗2(θ) = E[ E[e−θ(S1+...+SH+SH+1+...+SH+C+UR) | N1, N2, Q2]]

= E[S∗(θ)HR∗(θU)E[S∗(θ)C | Q2]]

= E[S∗(θ)HR∗(θU)e−λ1Q2(1−S∗(θ))] (3)

Mean queueing time for class 2.
Setting out as for class 1, we first differentiate the class 2

queueing time LSTD given in equation 3 to find

Q∗′2 (θ) = E[HS∗(θ)H−1R∗(θU)e−λ1Q2(1−S∗(θ))S∗′(θ)] +

E[S∗(θ)HR∗′(θU)Ue−λ1Q2(1−S∗(θ))] +

E[S∗(θ)HR∗(θU)λ1Q2e
−λ1Q2(1−S∗(θ))S∗′(θ)]

= E[S∗(θ)H−1e−λ1Q2(1−S∗(θ))`HR∗(θU)S∗′(θ) +

US∗(θ)R∗′(θU) + λ1Q2S
∗(θ)R∗(θ)S∗′(θ)

´
] (4)

At θ = 0, we therefore obtain

Q2;1 = H2;1S2;1 + q2R2;1 + λ1Q2;1S2;1

since E[U ] = q. This gives Cobham’s familiar result for
mean values (see for example [11]):

Q2;1 =
(H2;1 + q2)S2;1

1− λ1S2;1

The mean values S2;1, q2 and H2;1 depend on the state ex-
isting just before an arrival instant, as discussed above, and
can be computed as part of the standard variable rate MVA
algorithm that we use.

Second moment of queueing time for class 2.
Although the analysis of mean values is straightforward,

not actually needing generating functions at all, the situa-
tion is much more complex for higher moments because of
the dependence amongst the random variables concerned –
Qi, Li, U . In particular, this leads to covariance terms in the
second moments.

We therefore define the two-variable generating function
A(z, θ) by

A(z, θ) = E[zHe−θQ2 ] = E[E[zHe−θQ2 | N1, N2]]

= E[zHS∗(θ)HR∗(θU)e−λ1Q2(1−S∗(θ))]

by the same reasoning as in the previous section. Taking
the expectation w.r.t. U ,

A(z, θ) = 1− q2 +

R∗(θ)
n

E
h`

zS∗(θ)
´H

e−λ1Q2(1−S∗(θ))
i
− (1− q2)

o

= (1− q2)
`
1− S∗(θ)

´
+

S∗(θ) A
`
zS∗(θ), λ1(1− S∗(θ))

´

Now let y = zS∗(θ)andφ = λ1(1 − S∗(θ)) so that y = 1
and φ = 0 when z = 1 and θ = 0. Using primes to denote
differentiation of a function of a single variable and the facts
that ∂y

∂z
= S∗(θ), ∂y

∂θ
= zS∗′(θ), ∂φ

∂z
= 0, ∂φ

∂θ
= −λ1S

∗′(θ), so
that ∂/∂θ = zS∗′(θ)∂/∂y − λ1S

∗′(θ)∂/∂φ, we obtain:

∂A

∂θ
=

`
A(y, φ) + q2 − 1

´
S∗′(θ) +

S∗(θ)S∗′(θ)
„

z
∂A

∂y
− λ1

∂A

∂φ

«
(5)

Thus, at z = 1, θ = 0, we obtain −Q2;1 = −q2S2;1 −
S2;1(H2;1 + λ1Q2;1) so that

Q2;1(1− λ1S2;1) = H2;1S2;1 + q2S2;1

as obtained already. Differentiating again at z = 1 and θ =
0, omitting the arguments of functions for brevity, where the
meaning is clear, and noting that ∂z

∂y
= 1/S∗, ∂z

∂φ
= z/(λ1S

∗)

so that z ∂z
∂y

= λ1
∂z
∂φ

, we now find

∂2A

∂θ2

˛̨
˛̨
1,0

=q2S2;2 + 2S2
2;1[H2;1 + λ1Q2;1] + S2;2[H2;1 + λ1Q2;1]−

S2
2;1

»
z

„
z
∂2A

∂y2
− λ1

∂2A

∂y∂φ

«
− λ1

„
z

∂2A

∂φ∂y
− λ1

∂2A

∂φ2

«–

1,0

= q2S2;2 + (H2;1 + λ1Q2;1)(S2;2 + 2S2
2;1) +

S2;1

»
H2;f2S2;1 − 2λ1S2;1

∂2A

∂y∂φ
+ λ2

1S2;1Q2;2

–
(6)



We compute the covariance term ∂2A
∂y∂φ

at z = 1, θ = 0 as
follows. First,

∂A

∂z
= S∗

∂A

∂y

since ∂φ
∂z

= 0. Differentiating w.r.t. θ now gives

∂2A

∂z∂θ
= S∗′

∂A

∂y
+ S∗

»
∂2A

∂y2
zS∗′ +

∂2A

∂y∂φ
(−λ1S

∗′)
–

At z = y = 1, θ = φ = 0, this yields

∂2A

∂z∂θ

˛̨
˛̨
1,0

= − (H2;1 + H2;f2)S2;1

1− λ1S2;1

Finally, substituting into equation 6 at z = 1, θ = 0, we
obtain

Q2;2 =
q2S2;2 + (H2;1 + λ1Q2;1)(S2;2 + 2S2

2;1) + H2;f2S
2
2;1

1− λ2
1S

2
2;1

+
2λ1S

3
2;1H2;2

(1− λ1S2;1)(1− λ2
1S

2
2;1)

(7)

Q2;1 was computed in the previous subsection and, again,
the expected value H2;2 is computed in the MVA-based al-
gorithm, considering the superposition of the two classes.
The second moment S2;2 is approximated as the average of
the square of the service time of a single server, estimated at
equilibrium when all servers are busy. This double approx-
imation is a potentially major source of error in our model;
however, it is exact when the two classes have identical ser-
vice time random variables.

2.2.3 The MVA-based hierarchical model
Apart from the aforementioned moments of the time to

the next service completion after the arrival instant of the
tagged customer, the only state-dependent parameters that
are needed for constant-rate, multi-server queues are the
queueing probabilities q1, q2. In the case of a single server
at equilibrium, this is just the utilisation, which is known
to be the product of the arrival rate and the mean service
time, by the usual steady-state argument or Little’s result.
However, multiple servers or state-dependent service times
require that every (significant) queue length probability be
computed in order to find q1, q2 and the first two moments
of S1, S2 – at each queue and for each network population
vector in a closed network. This is the main expense of the
algorithm. It also goes some way to explaining why the prob-
lem has for long been solved for M/G/1 queues but remains
open for M/G/m for m > 1. 3

Network decomposition and aggregate servers.
In our hierarchical modelling methodology, we successively

decompose a queueing network of multi-servers, where each
individual server has constant rate, into a collection of sub-
networks. This is a common approach to modelling large
systems, pioneered to a considerable extent by Woodside and
others in their analysis of layered queueing networks; see for
example [7]. The sub-networks we identify as most appro-
priate are each solved, using the AGFA approach described
in the previous subsections, for the first two moments of

3Notice too the subtle dependence that arises when consider-
ing non-exponential servers that precludes simply setting the
moments of S1, S2 to those of the residual service time [9].

their response time, given each (multi-server) node’s service
time moments, the network’s routing probabilities and the
constant populations of its customer-classes. No class tran-
sitions are allowed within a sub-network (which constrains
the choice of sub-networks, of course). Each node in a sub-
network is analysed using the results of the previous section
and Little’s result (for both the first and second moments
of queue length and waiting time) at class populations in-
creasing from 0 to the maximum required. This is done in
a straightforward modification of the standard MVA algo-
rithm with state-dependent parameters to yield the required
first two moments [11]. At the next level up, these moments
are assigned to those of the individual service times at the
corresponding multi-server nodes. The number of parallel
servers at each node is set to the maximum population spec-
ified for each class in the sub-network at the lower level –
recall that no class transitions occur. Hence the class pop-
ulation maxima are preserved all the way up the hierarchy.
The higher-level network is then fully parameterised by its
routing probabilities, easily obtainable from the initial, flat
network’s specification.

At the top level, we analyse an open network of aggregated
nodes, at any of which there may be interaction between the
classes. In particular, the service rate of each class may de-
pend on the joint population of both classes currently at the
node. Such a node is solved by a direct Markov model with
state space truncation. This is not excessively expensive for
a single node with just two classes, and in fact no more than
about 2000 states are needed in practice. Nevertheless, the
calculation requires the major share of the computation time
of the whole algorithm.

The only remaining quantities needed for the hierarchical
algorithm are the mean and second moments of the numbers
of visits a task makes to each node. These are derived in the
next section. This whole decomposition was implemented on
a Macintosh G5 computer running Mathematica 5.1 under
OS X version 10.4. Clearly a lower level implementation in
a language such as C would be orders of magnitude more
efficient numerically, and benefit especially the single node,
direct Markov models discussed above.

2.2.4 Moments of visit counts
The MVA algorithms, open or closed, require the same

moments of the nodes’ visit counts as those required for
response time. To this end, let the random variable Vir

denote the number (or rate) of visits a task of class r makes
to node i and let Xir be the visit count (or rate) of external
arrivals, 1 ≤ i ≤ M, 1 ≤ r ≤ R. Then we have

E[zVir ] = E[zXir+
P

j,s Njs;ir ]

where Njs;ir is the number of class s service completions at
node j that go to node i as class r. Thus

E[zVir ] = E[E[zXir+
P

j,s Njs;ir | Vjs]]

= E[zXir ]
Y
j,s

E
h`

1− pjs;ir(1− z)
´Vjs

i

since the random variables Njs;ir are independent and bino-
mially distributed with parameters (Vjs, pjs;ir). Hence we
have

GVir = GXir

MY
j=1

RY
s=1

GVjs

`
1− pjs;ir(1− z)

´



Differentiating once, then twice at z = 1 then yields:

Vir;1 = Xir;1 +

MX
j=1

RX
s=1

pjs;irVjs;1 (8)

Vir;f2 = V 2
ir;1 + Xir;f2 −X2

ir;1 +

MX
j=1

RX
s=1

p2
js;ir

`
Vjs;f2 − V 2

js;1

´
(9)

3. ACCIDENT AND EMERGENCY MODEL

3.1 Description
To illustrate the use of the combined AGFA-MVA tech-

nique, which we abbreviate to just AGFA, we apply it to
a model of an Accident and Emergency (A&E) department
[2]. The AGFA technique is especially suited to the analysis
of healthcare systems as these often have limited resources,
contain blocking phenomena and have class-based priorities.

The idea of using queueing theory and networks to model
health service departments is, of course, by no means new.
Several studies have been made of patient flow in hospitals in
general [18, 4, 12] and Emergency departments in particular
[5, 13, 14]. However, these studies have had limited success
and subsequent impact for two main reasons. Firstly, there
has been a lack of sophistication in the models with very sim-
ple high-level queueing models being used which typically do
not tie system performance to the underlying resources (so
we cannot, for example, assess the response time impact of
employing an extra nurse or purchasing an extra x-ray ma-
chine). Secondly, many of these models do not take into
account phenomena that occur in the corresponding real life
systems such as blocking and class-based priority queueing.

Figs. 1 and 2 show the simplified hierarchical queueing
network model of patient flow we have developed in conjuc-
tion with an A&E consultant. The model takes the form
of a network of M/M/m queues with two forms of patient
arrivals: walk-in patients who come into A&E via their own
transport and patients that arrive by ambulance.

3.1.1 Walk-in Patients
These patients enter via the A&E waiting room where

they are registered at reception. The receptionists route
each patient into one of three queues: patients with a clear
case of minor trauma or illness are placed in the minors
queue; patients with a clear case of a serious trauma or
illness are sent to the majors queue; all others are sent for
nurse assessment.

Minors Queue.
Patients in the minors queue must first wait for a minors

cubicle to become free; the patient then waits there for a
minors practitioner (either a minors doctor or a nurse prac-
titioner) to see them. The minors practitioner can decide
to:

• perform investigative tests such as blood tests and x-
rays, or

• ask for a specialist opinion, or

• treat (if necessary) and discharge the patient (to home,
their GP or to the pharmacy to pick up medication),
or

• send the patient to be admitted to a (surgical) ward,
or the MAU (Medical Assessment Unit) which assesses
the need for medical admissions.

Majors Queue.
Patients in the majors queue wait for a bed in a majors bay

to become free; once there, a nurse performs tests (vitals,
bloods, x-ray etc.) so that essential information is ready for
a doctor. Tests for both majors and minors are processed
in the same laboratory facility. When (s)he has assessed the
patient, the doctor may require a specialist opinion, require
more tests, or send the patient out of A&E (possibly after
treatment) via the routes mentioned above in the minors
queue. Occasionally a patient may suffer a sudden and rapid
deterioration; in such a case the patient is transferred to a
resuscitation bay and is attended to by a resuscitation team.

Nurse Assessment.
Patients in the nurse assessment queue wait for an assess-

ment room to become available; they then wait there for a
nurse who assesses the severity of their illness or injury. The
nurse can send the patient either to the minors queue, the
majors queue or discharge them out of A&E to a specialist
clinic, ward, GP etc.

Specialists.
Specialists may be called in by a minors practitioner or

majors doctor. Minors patients are only referred to “other”
specialists which encompass ENT (ear, nose and throat),
Gynaecology and Orthopaedics. Majors patients may be
seen by medical, surgical and “other” specialists. After as-
sessment, patients are discharged from A&E, either being
sent to a clinic for a more thorough investigation, being ad-
mitted to a ward or being sent to the MAU.

3.1.2 Ambulance Arrivals
Ambulance arrivals are split into two types: Standard ar-

rivals who are patients that do not require immediate med-
ical treatment and Blue Call arrivals who are very seriously
ill or injured patients that require urgent medical attention.

Standard Arrivals.
These patients are handed over to a nurse from the ambu-

lance. The nurse assesses the patient, decides which queue
to assign them to, and either sends them to reception to be
registered or straight to a majors bay (as appropriate).

Blue Call Arrivals.
These patients are assigned a resuscitation bed and are

attended to by a resuscitation team. Once stable, the patient
leaves A&E, being sent either to an operating theatre, to the
ITU (Intensive Treatment Unit), or to a ward. Patients who
cannot be resuscitated are sent to the mortuary.

3.1.3 Passive resources
In many cases a patient needs to obtain a (passive) re-

source before they can progress along a treatment path,
holding the resource until the patient no longer needs it.
It is this resource possession that can lead to blocking phe-
nomena occuring in the system. An example is the nurse
assessment rooms (of which there are 5 in our A&E depart-
ment). A patient must wait for one to become free before
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Figure 1: Top level of queueing network model of patient flow
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entering the room for assessment by a nurse. Once the as-
sessment has been completed, the patient leaves the room,
freeing it up for the next patient. Other passive resources in-
clude minors cubicles (of which there are 9), majors bays (of
which there are 25) and resuscitation beds (of which there
are 4). There is an added deterministic delay of 1 minute
in acquiring a passive resource to account for the time it
takes for a patient to move to the resource when it becomes
available.

In the AGFA-MVA model, we aggregate each passive re-
source and all its associated active resources, i.e. those pro-
viding a service that actually progresses a patient through
treatment, into a single node in the higher level model.
Where these active resources include one shared with an-
other class that is also associated with another passive re-
source, the union of the two sets of resources, associated
with each passive resource, is aggregated – essentially giv-
ing a transitive closure. In our model, this leads to the AEU
aggregate node, which includes majors bays, minors cubi-
cles and all their associated resources described above. This
is solved using a closed, two-class queueing network model,
incorporating AGFA.

4. NUMERICAL RESULTS

4.1 Mean and variance of patient response
time

Tables 1, 2, 3, 4, 5, 6, 7 and 8 compare the mean and stan-
dard deviation of patient response time as calculated using
our discrete-event simulation and the AGFA technique for
various types of patient arrival (Walk-in, Ambulance and
Blue call arrivals) – under 25%, 50%, 75%, 80%, 85%, 90%,
95% and 100% arrival rates for both ambulance and walk-in
arrivals; the blue call arrival rate is held constant. Figures 3,
4 and 5 compare the simulation and AGFA results shown in
these tables, illustrating clearly the loading levels at which
patient response times start to increase rapidly as the de-
partment approaches saturation.

The simulation results presented are the average of ten
runs. Each run includes a transient period, during which
2 000 000 patients move through the system (and during
which passage time statistics are not collected), followed by
a measurement period which lasts long enough to observe
10 000 passages of Blue Call arrivals through the system; in
this period around 485 000 passages of Walk-in arrivals and
180 000 passages of Ambulance arrivals are also observed.

Three different patient priority schemes are analysed:

• No Priority in which First In First Out (FIFO) queues
are implemented,

• Majors Priority in which majors patients are given pri-
ority at the shared resources (i.e. lab tests, radiology
and “other” specialist), and

• Minors Priority in which minors patients are given pri-
ority at the shared resources.

>From our results, we see that the mean values obtained
via the AGFA technique show very good agreement with our
simulation results, especially under minors priority and for
workloads up to 80% under the other priority systems. It
seems that the mean values diverge as the system becomes
more highly utilised, as is illustrated by the results under the

majors priority system in particular; here patients remain in
the department for longer, resulting in greater saturation. It
is well known that both approximate analytical methods and
simulation tend to suffer from loss of accuracy in saturated
systems.

As expected, the AGFA results for the standard deviations
are generally not as good a match against the simulation, but
they are still within 25% for workloads up to 80% for minors
priority and within 90% under the other priorities. This is
partly because, although aggregation can be shown to pre-
serve many expected values of random variables associated
with the queueing processes concerned, the same cannot be
said for higher moments. Furthermore, the approximations
pointed out in the AGFA analysis of Section 2 become more
significant at higher moments.

In terms of run times, each simulation run required ap-
proximately 30–40 minutes wall clock time (depending on
the priority scheme and the PC cluster workstation used),
with results for each priority scheme and workload combi-
nation being averaged over 10 runs to obtain confidence in-
tervals on the means. By contrast, AGFA required between
30 seconds and 5 minutes (in the saturated Majors priority
case) wall clock time for each (single-run) priority scheme
and workload combination.

Finally we consider some interesting insights into how dif-
fering workloads and priority systems affect the walk-in and
ambulance arrival patient service times in our A&E model.
We can see that under low loading (25%) the priority scheme
makes no difference to the results for either of the arrival
types. Under medium loading (50% to 75%) we can see that
the ambulance arrivals perform better under majors priority
(as expected). The walk-in arrivals are not much affected
by the priority scheme used, with the no priority scheme
giving the same results as for minors priority (i.e. a mean
response time of 1.42 hrs) and the majors priority scheme
giving only slightly higher results (i.e. mean response time
of 1.46 hrs). When we get to the higher workloads (80%)
we start to see the walk-in arrivals having the best mean re-
sponse time under minors priority; however, majors priority
still provides the lowest mean response times for ambulance
arrivals. As the system reaches saturation (90% to 100%) we
can see that the minors priority scheme gives the best mean
response times for all the arrival types. This is particularly
interesting in light of the stringent treatment-time targets
introduced by the UK Government for A&E patients. These
require 98% of all A&E patients to be seen, treated and dis-
charged in under 4 hours, the practical effect of which is to
encourage A&E departments to prioritise the treatment of
minors patients.

5. CONCLUSION AND FUTURE WORK
We have introduced an efficient and novel approximate

generating function analysis (AGFA) technique and have
compared its results against those from a discrete-event sim-
ulation. We have shown that the technique works well for
mean response times under a number of different priority
schemes although discrepancies were noted when the system
modelled starts to become saturated under high workloads.
The corresponding standard deviations – equivalent to sec-
ond moments – show generally adequate agreement but (not
atypically) are less accurate. This is because higher mo-
ments lack the linearity properties of first moments (means)
and so greater care and precision is required in their analy-
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Figure 3: Simulated and AGFA mean (left) and standard deviation (right) of the service time for walk-in and
ambulance arrivals for differing workloads under the no priority system
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Figure 4: Simulated and AGFA mean (left) and standard deviation (right) of the service time for walk-in and
ambulance arrivals for differing workloads under the majors priority system.
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Walk-In arrivals Ambulance arrivals Blue call arrivals
Sim. AGFA Sim. AGFA Sim. AGFA

Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D.
No Priority 1.37 1.34 1.37 1.53 1.77 1.41 1.76 1.73 2.08 2.04 2.08 2.04
Majors Priority 1.38 1.34 1.37 1.53 1.77 1.41 1.76 1.73 2.08 2.04 2.08 2.04
Minors Priority 1.37 1.34 1.37 1.53 1.77 1.41 1.77 1.74 2.08 2.03 2.08 2.04

Table 1: Mean and standard deviation (S. D.) of response times for different classes of arriving patient under
two different priority schemes, with 25% ambulance and walk-in arrival rates, calculated by simulation and
our AGFA technique.

Walk-In arrivals Ambulance arrivals Blue call arrivals
Sim. AGFA Sim. AGFA Sim. AGFA

Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D.
No Priority 1.42 1.39 1.42 1.58 1.81 1.44 1.81 1.79 2.08 2.04 2.08 2.04
Majors Priority 1.46 1.39 1.42 1.58 1.80 1.44 1.81 1.78 2.08 2.04 2.08 2.04
Minors Priority 1.42 1.39 1.42 1.58 1.82 1.46 1.82 1.79 2.08 2.04 2.08 2.04

Table 2: Mean and standard deviation (S. D.) of response times for different classes of arriving patient under
two different priority schemes, with 50% ambulance and walk-in arrival rates, calculated by simulation and
our AGFA technique.

sis. Although the AGFA method provides this well in open
queues, its approximation becomes worse when it is applied
in closed systems with constrained class populations at in-
dividual nodes.

As future work we intend to further refine the AGFA
method in order to get better agreement at greater loads and
higher moments and also to adapt the technique to incorpo-
rate more complex queueing disciplines such as time-based
queueing priorities (i.e. queues with ageing). There is also
great potential in using the AGFA technique in optimising
more complex queueing network models where the mean and
standard deviations of customer response time is optimised
by finding the optimal resource allocations; a prime example
would be to find the optimal staff and resource mix in or-
der to minimise the mean and standard deviation of patient
treatment times in the case study A&E model.
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Walk-In arrivals Ambulance arrivals Blue call arrivals
Sim. AGFA Sim. AGFA Sim. AGFA

Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D.
No Priority 1.74 1.66 1.71 2.03 1.63 2.02 2.03 2.09 2.04 2.09 2.05 2.05
Majors Priority 1.86 1.84 1.76 1.93 2.03 2.0 1.98 2.09 2.04 2.09 2.05 2.05
Minors Priority 1.66 1.62 1.66 1.90 2.06 1.73 2.06 2.02 2.09 2.04 2.09 2.05

Table 5: Mean and standard deviation (S. D.) of response times for different classes of arriving patient under
two different priority schemes, with 85% ambulance and walk-in arrival rates, calculated by simulation and
our AGFA technique.

Walk-In arrivals Ambulance arrivals Blue call arrivals
Sim. AGFA Sim. AGFA Sim. AGFA

Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D.
No Priority 1.91 1.82 1.75 2.06 2.11 1.71 2.14 2.44 2.09 2.05 2.09 2.04
Majors Priority 2.16 2.18 1.96 2.14 2.15 1.80 2.11 2.08 2.09 2.05 2.09 2.04
Minors Priority 1.75 1.70 1.75 2.06 2.13 1.82 2.14 2.44 2.09 2.04 2.09 2.04

Table 6: Mean and standard deviation (S. D.) of response times for different classes of arriving patient under
two different priority schemes, with 90% ambulance and walk-in arrival rates, calculated by simulation and
our AGFA technique.

Walk-In arrivals Ambulance arrivals Blue call arrivals
Sim. AGFA Sim. AGFA Sim. AGFA

Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D.
No Priority 2.23 2.18 2.13 2.31 2.26 1.88 2.31 2.31 2.09 2.04 2.09 2.05
Majors Priority 2.82 2.96 2.46 2.63 2.39 2.20 2.47 2.33 2.09 2.05 2.09 2.05
Minors Priority 1.89 1.82 1.88 2.41 2.23 1.96 2.25 3.01 2.09 2.04 2.09 2.05

Table 7: Mean and standard deviation (S. D.) of response times for different classes of arriving patient under
two different priority schemes, with 95% ambulance and walk-in arrival rates, calculated by simulation and
our AGFA technique.

Walk-In arrivals Ambulance arrivals Blue call arrivals
Sim. AGFA Sim. AGFA Sim. AGFA

Mean S.D. Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D.
No Priority 2.99 3.04 2.82 2.94 2.56 2.32 2.92 2.72 2.09 2.05 2.09 2.05
Majors Priority 5.32 6.20 4.22 4.24 3.29 4.21 4.06 3.43 2.09 2.04 2.09 2.05
Minors Priority 2.10 2.02 2.10 3.53 2.38 2.14 2.44 4.93 2.09 2.04 2.09 2.05

Table 8: Mean and standard deviation (S. D.) of response times for different classes of arriving patient under
two different priority schemes, with 100% ambulance and walk-in arrival rates, calculated by simulation and
our AGFA technique.


