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Abstract

It is a goal universally acknowledged that a healthcare system should treat its patients –

and especially those in need of critical care – in a timely manner. However, this is

often not achieved in practice, particularly in state-run public healthcare systems that

suffer from high patient demand and limited resources. In particular, Accident and

Emergency (A&E) departments in England have been placed under increasing pressure,

with attendances rising year on year, and a national government target whereby 98% of

patients should spend 4 hours or less in an A&E department from arrival to admission,

transfer or discharge.

This thesis presents techniques and tools to characterise and forecast patient arrivals,

to model patient flow and to assess the response-time impact of different resource

allocations, patient treatment schemes and workload scenarios.

Having obtained ethical approval to access five years of pseudonymised patient timing

data from a large case study A&E department, we present a number of time series

models that characterise and forecast daily A&E patient arrivals. Patient arrivals are

classified as one of two arrival streams (walk-in and ambulance) by mode of arrival.

Using power spectrum analysis, we find the two arrival streams exhibit different statis-

tical properties and hence require separate time series models. We find that structural

time series models best characterise and forecast walk-in arrivals, but that time series

analysis may not be appropriate for ambulance arrivals; this prompts us to investigate

characterisation by a non-homogeneous Poisson process.

Next we present a hierarchical multiclass queueing network model of patient flow in

our case study A&E department. We investigate via a discrete-event simulation the

impact of class and time-based priority treatment of patients, and compare the resulting

service-time densities and moments with actual data. Then, by performing bottleneck

analysis and investigating various workload and resource scenarios, we pinpoint the

resources that have the greatest impact on mean service times.

Finally we describe an approximate generating function analysis technique which effi-

ciently approximates the first two moments of customer response time in class-dependent

priority queueing networks with population constraints. This technique is applied to

the model of A&E and the results compared with those from simulation. We find good

agreement for mean service times especially when minors patients are given priority.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been much public concern regarding patient waiting times

in the National Health Service (NHS). For example, in a 2004 King’s Fund report,

improved waiting times for patients in Accident and Emergency departments and for

cancer and cardiac patients were identified as two of the public’s top four priorities for

public healthcare in the UK [48]. In response, the NHS has seen unprecedented levels

of government investment, rising from £65.4bn in 2002 to £87.2bn in 2006. By 2008,

predicted spending will total £105.6bn. Despite this increased level of investment, the

state of the NHS is still of great public concern, and the question being increasingly

asked is whether this money has been well spent [49].

Healthcare systems are complex processing systems with stringent response time-based

targets. These targets relate not only to mean response times, but also to variability of

response times. In particular Accident and Emergency (A&E) departments in England

are subject to a national target, whereby 98% of patients should spend 4 hours or less

in the department from arrival to admission, transfer or discharge.

In this context it is important to develop appropriate performance models and other

systematic procedures for identifying the most effective use of resources and locating

non-obvious bottlenecks. In addition these models can give insights into how different

customer processing strategies affect moments and distributions of response time.

1
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Since 2002, A&E attendances have been rising year on year. Together with some

departments being closed or downgraded, existing A&E departments have been placed

under increasing pressure [38]. Despite this increase in workload, the introduction

of the four hour waiting time target means that patients still need to be seen and

treated quickly and safely. Although the vast majority of Acute trusts have managed

to achieve this target at a 95% threshold (assisted by innovations identified by the

Emergency Services Collaborative such as “see and treat” schemes for minor injuries

and near-patient testing [31, 32]), in 2006/2007 11.4% of Acute trusts failed to meet the

98% target [60]. This reflects the difficulty that many departments are experiencing in

making further efficiency improvements [59].

Several studies have been made of healthcare systems in general [33, 36, 104] and A&E

departments in particular [16, 27, 70, 77, 79, 30, 78, 97]. However, these studies have

had limited success and subsequent impact for two main reasons. Firstly, there has been

a lack of sophistication in the models used (mostly simple discrete-event simulations

and very high-level queueing models), and in the analysis techniques applied (mostly

aimed at computing simple resource based measures such as mean utilisations and

mean response times). In this thesis, this shortcoming will be addressed through the

creation of a detailed patient flow model of a case study A&E department. Using this

model, sophisticated performance measures such as the higher moments and densities of

patient service time will be derived. Secondly, existing models often remain unvalidated

against real waiting time data, or are parameterised using small quantities of manually-

collected data. We now have a prime opportunity to take advantage of the detailed

patient waiting time data automatically collected by all A&E departments in England

to monitor compliance with government targets (describing time of arrival, various

treatment times and time of discharge for every patient). We have applied for and

obtained research project status and ethical approval to access pseudonymised patient

timing data (that is non-patient identifiable data which has been tagged by a unique

reference number, in order to track the patient through stages of treatment) at our case

study department for the past five years. The availability of this data enables us to

both parameterise and validate models of patient flow. This data will also be used to

fit models of patient arrivals and then subsequently to ascertain the accuracy of model

forecasts.
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1.2 Objectives

The aims and objectives of this thesis are:

• To characterise and forecast patient arrivals into our case study A&E depart-

ment. This will also provide realistic arrival workloads for subsequent models

and simulations of A&E.

• To characterise and model patient flow within our case study A&E department,

using actual patient timing data to help parameterise our model.

• To use our model of patient flow to investigate the response time impact of:

– the introduction of the four hour government target,

– different patient priority treatment schemes, and

– different workload and resource scenarios.

• To develop efficient analytical techniques that can be used to approximate the

mean and variance of response time in the patient flow model.

1.3 Contributions

This thesis presents techniques and tools to characterise and forecast patient arrivals,

to model patient flow and to assess the response-time impact of different resource

allocations, patient treatment schemes and workload scenarios in hospital departments.

1.3.1 Time Series Models of Patient Arrivals

We show that walk-in and ambulance patient arrivals into an A&E department exhibit

differing statistical properties and so require to be modelled separately. We demonstrate

that walk-in arrivals exhibit a strong seven day seasonality that is best modelled with

a structural time series model. Such a time series model provides one to six day ahead

forecasts with good predictive power. However, we experience less success with our

ambulance arrivals models. The poor performance of the ambulance arrival time series
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model forecasts may be because the ambulance arrivals do not exhibit very strong

periodicities or other regularity; nor do they appear to belong to familiar classes of

stochastic processes. We also demonstrate that arrivals into an A&E department by

hour varies predictably, with weekdays exhibiting similar hourly arrival patterns; as do

weekends. Finally, we find that models of walk-in and ambulance arrivals to our case

study department using weather-related variables (from up to 14 days before the day

of arrival) accounted for only a low proportion of the variance seen in both the walk-in

and ambulance arrivals.

1.3.2 Patient Flow Modelling

We create a hierarchical Markovian multiclass queueing network model of patient flow

and parameterise it using electronic patient record data. We implement a discrete-event

simulation of this model in Java and compare the resulting service time densities with

those observed in the actual A&E. Having investigated the effects of different patient

priority schemes, we find the impact of the introduction of the 4 hour waiting time target

has been similar to a move from a system in which majors (seriously ill/injured) patients

are given priority, to a system in which minors (less seriously ill/injured) patients are

given priority treatment. We also gain some insights into how the system behaves when

the workload levels are varied. We find that for low to medium workloads, mean service

times for ambulance arrivals benefit from a system under majors priority, but under

high workloads both arrival types perform better under a minors priority scheme. The

nature of the model allows us to obtain performance measures at the resource level,

allowing us to pinpoint the main bottlenecks in the system and to quantify the impact

of various resource allocations.

1.3.3 Efficient Approximate Response Time Analysis

Finally, we present an efficient and novel approximate generating function analysis

(AGFA) technique which approximates the first two moments of response time in a

multiclass queueing network with non-pre-emptive priority. We compare the results

from the AGFA method with corresponding results obtained by simulation. We show
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that the technique works well for mean response times although discrepancies are noted

when the system modelled starts to become saturated under high workloads. The

corresponding standard deviations show generally adequate agreement with simulation

results but (not atypically for this kind of technique) are less accurate.

1.4 Thesis Outline

The remainder of this thesis is set out as follows:

Chapter 2 describes the background theory to the work presented in this thesis. An

overview of time series analysis is provided. This is followed by an introduction to

the theory of Markov processes and queueing networks. The properties of the Laplace

transform are discussed before considering a response time analysis method based on

numerical Laplace transform inversion. Next we present the prior work in the area

of healthcare modelling, focusing on the current work on patient arrivals and A&E

modelling. Finally, we provide a description of our case study A&E department.

Chapter 3 presents a number of different time series models used to characterise and

forecast daily arrivals into our case study A&E department. We describe a rolling six

week average model, an auto-regressive model, and a structural time series model. In

each case, forecasts for each of these models are presented and compared with observed

arrivals. We also experiment with the use of non-homogeneous Poisson processes to

further characterise ambulance arrivals. Next we present the hourly breakdown of

patient arrivals into the department. Finally, the impact of weather-related variables

on patient arrivals is investigated.

Chapter 4 describes a multiclass Markovian queueing network model of patient flow

in our case study A&E department. Using patient timing data to help parameterise

the model, we implement a discrete-event simulation, from which we obtain moments

and probability density functions of patient response time and associated utilisations.

We investigate both class-based and time-based patient handling priority schemes and
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compare the resulting response time moments and densities with the actually observed

quantities. Finally, we investigate the impact on patient response time and resource

utilisations of implementing various workload and resource availability scenarios.

Chapter 5 presents an approximate generating function analysis (AGFA) technique,

which approximates the Laplace transform of the probability density function of cus-

tomer response time in networks of infinite queues with class-based priorities. From

the approximated Laplace transform, we derive the first two moments of customer re-

sponse time. This technique is applied to the queueing network model of patient flow

in an A&E department, as introduced in Chapter 4, to obtain the mean and standard

deviation of total patient service time. These AGFA moments are then compared with

the results from the discrete-event simulation.

Chapter 6 concludes the thesis by providing a summary and an evaluation of the

work presented. This chapter also discusses possible applications and opportunities for

future work.

Appendix A presents the R code used to create and fit the time series models

detailed in Chapter 3 and the use of these models to derive forecasts.

Appendix B presents plots of walk-in and ambulance arrivals by hour, for each day

of the week and for each financial year between 2002 and 2007.

Appendix C presents tables of the R2 and significance values of the multiple regres-

sion models of weather factors fitted to walk-in and ambulance arrivals.

Appendix D presents detailed patient flow diagrams for self-referred patient arrivals

(additionally illustrating the patient pathways for minors patients), GP-referred patient

arrivals and ambulance patient arrivals (additionally illustrating the patient pathways

for majors patients).
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Appendix E presents tables of the mean and standard deviation of patient service

time under differing workloads and patient class-based priority schemes, as calculated

via simulation and by the AGFA technique.

Appendix F presents code for the Mathematica implementation of the approxi-

mate generating function analysis (AGFA) technique and its application to the adapted

model of patient flow.

1.5 Publications and Statement of Originality

I declare that this thesis was composed by myself, and that the work that it presents

is my own, except where otherwise stated.

The publications referred to below arose from the work carried out during the course

of this PhD:

• European and Simulation Modelling Conference (ESM 2006) [10] presents

a hierarchical multiclass Markovian queueing network model of patient flow in the

A&E department of a major London hospital. We solve for moments and prob-

ability density functions of patient response time using discrete-event simulation

under different patient priority schemes and compare the resulting response time

moments and densities with real data. The queueing network model of A&E

presented in Chapter 4 is based on this paper.

• International Conference on Performance Evaluation Methodologies

and Tools (VALUETOOLS 2007) [11] presents an approximate generating

function analysis (AGFA) technique that provides an efficient analytical way to

approximate the mean and variance of response time in networks of multiclass

queues with population constraints and class-dependent priorities. This technique

is later applied to a hierarchical queueing network model of an A&E department

as a case study. The AGFA technique presented in Chapter 5 is based on this

paper. This is joint work with Peter Harrison.
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• Emergency Medicine Journal [9] (submitted for publication) describes struc-

tural time series models of daily patient arrivals to a case study A&E department.

Patient arrivals are aggregated by day and then allocated to one of two arrival

streams (walk-in or ambulance) by mode of arrival. Using the first four years of

patient arrivals data as a “training” set, a structural time series model is fitted

to characterise each arrival stream. These models are used to forecast walk-in

and ambulance arrivals for one to seven days ahead and then compared with the

observed arrivals given by the remaining one year of “unseen” data. Material

from this paper appears in Chapter 3. This is joint work with Uli Harder and

Emma McCoy.



Chapter 2

Background and Related Work

2.1 Introduction

This chapter presents the background theory underlying the work in this thesis. We

also discuss related work and existing approaches to healthcare modelling. We begin

with a general overview of time series analysis. This is followed by a discussion of

Markov processes and queueing theory, before we consider a recent response time anal-

ysis method based on numerical Laplace transform inversion. Next we present current

work in healthcare modelling, especially in the area of patient arrivals and A&E mod-

elling. This chapter concludes with a description of our case study A&E department.

2.2 Time Series Analysis

A time series is a sequence x1, . . . , xT of T observations taken sequentially in time.

Examples occur in a wide range of fields such as economics, engineering, meteorology,

geophysics and business. Data sets which appear as time series include a daily series

of share prices, a weekly series of sales figures and a monthly series of rainfall observa-

tions. Due to this widespread occurrence, the theory of times series analysis has been

extensively developed and is discussed in many books including [19, 21, 25, 56, 58].

There are two main objectives in the study of time series: characterisation and mod-

elling. The aim of characterisation is to obtain an insight into the nature of the time

9
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series and to summarise its main properties. The modelling of a time series is impor-

tant as it enables forecasts of future values to be made. In a time series model, the

changes in xt are described only by current and past values, and forecasts can be made

via extrapolation.

2.2.1 Stochastic Processes

In almost all cases, future values of a time series will be influenced by some unknown

factors and will only be partly determined by past observations. For this reason, a time

series can be thought of as the realisation of a stochastic process.

Definition 2.1 (Stochastic Process) A stochastic process X is a family of random

variables {Xt ∈ Ω | t ∈ T}, where each is defined on some sample space Ω for a

parameter space T [55].

Generally, T is discrete time and Ω is the set of values (also known as the state space)

that each Xt may take. The observed value of a time series at time t (xt) is a single

observation of the random variable at time t (Xt). Thus the observed time series is

just one example of an infinite set of time series which might have been observed.

This infinite set is called the ensemble, with every member of the ensemble a possible

realisation of the stochastic process.

The moments of a stochastic process are a useful way of summarising the process, and

are defined with respect to the distribution of the random variables X1, . . . , XT . The

mean (µt) of the process at time t is:

µt = E(Xt), t = 1, . . . , T (2.1)

which can be interpreted as the average value of Xt over all possible realisations.

The variance (σ2
t ) at time t is:

σ2
t = E[(Xt − µt)2], t = 1, . . . , T (2.2)
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Finally, the covariance γ(t, t + τ) between Xt and Xt+τ is given by:

γ(t, t + τ) = E[(Xt − µt)(Xt+τ − µt+τ )], t = 1, . . . , T − τ (2.3)

2.2.2 Autocorrelation Function

An important guide to the properties of a time series is provided by the sample auto-

correlation coefficients. The autocorrelation between observations at distance k apart,

known as the autocorrelation coefficient at lag k, and denoted by rk, is given by:

rk =

T−k∑

t=1

(xt − x̄)(xt+k − x̄)

T∑

t=1

(xt − x̄)2
(2.4)

where x̄ =
∑T

t=1 xt/T is the overall mean of the observed time series [19].
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Figure 2.1: Example autocorrelation function.

A plot of rk against non-negative values of k gives the autocorrelation function (also

known as the correlogram). Fig. 2.1 shows an example of an autocorrelation function

(acf); here this is the acf of the walk-in patient arrivals to our case study department.

The acf indicates that the time series has a seven day seasonality.
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2.2.3 Stationary Processes

Most of the theory of time series is concerned with the analysis of stationary time

series. This is the case when fitting some of the most often used time series models

including moving average (MA), auto-regressive (AR) and auto-regressive integrated

moving average (ARIMA) models. Intuitively a time series is stationary if there is no

systematic change in mean and variance over time and if strictly periodic variations

have been removed.

Definition 2.2 (Stationary Time Series) A time series x1, . . . , xT is (weakly) sta-

tionary [25] if:

• E(xt) = µ(t) is independent of t = 1, . . . , T , and

• Cov(xt, xt+τ ) = γ(t, t + τ) is independent of t for each τ .

In order to determine whether a time series is stationary we will use the Kwaitowski,

Phillips, Schmidt and Shin (KPSS) stationarity test [69]. In the KPSS test, a time

series xt with T observations is decomposed into the sum of a deterministic trend, a

random walk and a stationary error according to the following regression model:

xt = rt + βt + εt

rt is a random walk, i.e.

rt = rt−1 + ut

where the ut are normally distributed random variables with mean zero and variance

σ2
u, βt is the deterministic trend and εt is a stationary error term.

The null hypothesis is that xt is stationary, that is β = 0. To test if this is the case,

we calculate the residuals et from a regression of xt on the intercept only, that is,

et = xt − x̄, where x̄ is the overall mean of the series xt. The partial sums denoted St,

of the et are:

St =
t∑

j=1

ej
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If σ2 is the long-run variance of et, then σ2 can be estimated using the Newey-West

estimator [89]:

σ̂2(p) =
1
T

T∑

t=1

e2
t +

2
T

p∑

j=1

wj(p)
T∑

t=j+1

etet−j

where p is the truncation lag (here we use p = b5
√

T
7 c), and wj(p) is a Bartlett win-

dow [13] given by wj(p) = 1− j
p+1 .

The KPSS test statistic is then given by:

KPSS = T−2
T∑

t=1

S2
t

σ̂2(p)
(2.5)

Critical values for this test statistic are then interpolated from Table 1 of [69].

If a time series is found to be non-stationary, it is often necessary to transform this time

series in order to achieve stationarity. The main ways of transforming a time series are:

• Detrending - a time series may be made stationary by removing any obvious

trend (e.g. a linear trend) from the time series.

• Logarithms or square roots - a time series may be made stationary by taking

logarithms or the square root of the data.

• Differencing - a time series may be made stationary by differencing; that is,

given a time series xt, we create the new series yt = xt+1 − xt. This known as

the first-order difference and is usually sufficient; however, this process may be

repeated n times to obtain the nth-order difference.

2.2.4 Method of Maximum Likelihood

Once the class of time series model to be utilised has been decided on, we next need to

estimate the model parameters that provide the best fit to the data. This is often done

via the method of maximum likelihood [56] which also provides an efficient method

for quantifying uncertainty through confidence bounds. The idea is to determine the

parameters that maximize the probability (likelihood) of the observed (past) data.
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Suppose that we have a data set of n observations x = (x1, . . . , xn), with which we asso-

ciate an n-dimensional random variable, whose known probability distribution IP(x | ψ)

depends on some unknown set of parameters ψ. In our case, this set of parameters

refers to the parameters of our time series model. Before the data set was available

IP(x | ψ) will associate a density with each possible different outcome of x, for fixed

ψ. However, after observing the data, we can instead vary the values of ψ in order to

obtain the probability of observing (the now fixed) x. This is known as the likelihood

function L(ψ | x). Often it is more convenient to work with the log-likelihood function,

log L(ψ) since in this way products can be represented by sums.

The values of the parameters that maximise the likelihood function, or equivalently the

log-likelihood function, are called the maximum likelihood estimates. These are found

by solving the likelihood equations that arise from differentiating the log-likelihood

function with respect to the unknown parameters, and then setting the first derivative

to zero, i.e.
∂logL

∂ψ
= 0 (2.6)

The second derivatives of the log-likelihood function can be used to calculate the ap-

proximate standard errors for the parameter estimates and from these confidence in-

tervals. As a rule, the likelihood equations are non-linear and so the maximum likeli-

hood estimates must be found by an iterative procedure such as the Newton-Raphson

method [93].

2.2.5 Checking the Time Series Model Fit

Once a time series model has been fitted, we need to check how well this model describes

the data. This is done by analysing the residuals (the differences between the observed

and fitted values) of the model, to determine any systematic trends. This is generally

done via graphical methods; as quoted from [19]: “It cannot be too strongly emphasized

that visual inspection of a plot of the residuals themselves is an indispensable first step

in the checking process.” The model residuals are plotted against the following:

• time to check for outliers and any correlation with time,
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• fitted values to check that there is no obvious pattern in the spread of the

residuals, and

• the normal distribution with the same mean and standard deviation as the

residuals, to verify that the residuals are approximately normally distributed.

The autocorrelation function (acf) of the residual values is also calculated to determine

if there is correlation within the residuals, which would indicate that there is some

structure not yet incorporated into the model. We also perform the Ljung-Box test for

independence [19, 57], which instead of analysing each distinct rk (the autocorrelation

coefficient at lag k), considers the first M values of the acf all at once. The test statistic

Q is given by:

Q = (T (T + 2))
M∑

k=1

r2
k

T − k
(2.7)

where T is the number of observations in the fitted time series, rk the autocorrelation

coefficient at lag k and M the number of lags being tested. In this thesis, we use

M = 30 when referring to the Ljung-Box test. The null hypothesis is that the residuals

are random and this is rejected if Q > χ2
M at p ≤ 0.05 where χ2

M is the χ2 distribution

with M degrees of freedom.

2.2.6 Quality of Forecast Measures

To indicate the quality of a set of time series model predictions a number of quality

of forecast metrics may be used. These include mean bias, root mean square error

(RMSE) and the Pearson product-moment correlation coefficient between observed

and predicted values (r). Graphical procedures such as scatterplots are also used to

show visually the quality of the forecast.

Mean Bias The mean bias of a set of predictions [34] is used to give an indication

of whether the time series model forecasts tend to over or under estimate. The bias at

time t is given by bt = x̂t − xt where x̂t is the predicted value for time t and xt the

observed value at time t. Once the set of biases have been calculated for all t, the mean

is taken to obtain the mean bias.
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Root Mean Square Error (RMSE) The RMSE is a commonly-used forecast ac-

curacy metric [73], quantifying the amount by which the forecast differs from the actual

values. The root mean square error (RMSE) is calculated as follows:

RMSE =

(
1
n

n∑

t=1

b2
t

)1/2

(2.8)

where n is the number of predictions and bt the bias at time t.

Pearson Product-Moment Correlation Coefficient The Pearson product-moment

correlation coefficient (r) is a measure of the tendency of two sets of variables X and Y

to increase or decrease together (known as correlation). In the context of forecasting,

X represents observed values and Y predicted values. It is calculated as follows [34]:

r =
∑

ZxZy

n− 1
where Zx =

x− µx

σx
(2.9)

where n is the number of variables (the same in each set) and µx is the mean and σx

is the standard deviation of X.

The coefficient ranges from -1 to 1. A value of 1 shows that a linear equation describes

the relationship exactly, with Y increasing with X. A score of -1 shows an exact inverse

relationship, with Y decreasing as X increases. A value of 0 shows that there is no

linear relationship between the variables.

Scatterplots A scatterplot displays values for two sets of variables as a collection of

points, each having one co-ordinate on the horizontal axis and one on the vertical axis.

The resulting pattern indicates the type and strength of the relationship between two

or more variables [73].

A scatterplot shows various kinds of relationships, including positive and negative cor-

relation and no relationship. Fig. 2.2 shows an example scatterplot comparing a set

of model forecasts (on the y-axis) against actual observations (on the x-axis). We see

that there is a positive correlation between the observed and predicted values.
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Figure 2.2: Example scatterplot.

2.3 Markov Processes

A Markov process is a class of stochastic process (as defined in Section 2.2.1) which

satisfies the Markov property. For a more in depth discussion of Markov processes, see

for example [55, 14, 86, 17].

Consider a stochastic process X defined on state (sample) space Ω and parameter space

time T .

Definition 2.3 (Markov Property) Given the state of the process Xt = xt at time

t, the probability distribution of any future state, Xt+s = xt+s at time t + s, s > 0 is

dependent on s only [86].

Intuitively this means the future states of the process from time t onwards are inde-

pendent of the states before t. This means in order to predict (probabilistically) the

future behaviour of the process, it is sufficient to know only the current state and not

the past states.
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We consider a Markov processes with discrete state space, that is where the values in

the state space (Ω) of Xt are finite or countably infinite. If the time parameter is also

discrete then the process is known as a Markov chain or Discrete-time Markov Chain.

If the time parameter is continuous, then the process is know as a Markov Process or

Continuous-time Markov Chain.

2.3.1 Discrete-time Markov Chains

Let X = {Xn | n = 0, 1, . . .} be an integer valued discrete-time Markov chain (DTMC),

Xi ≥ 0, Xi ∈ ZZ, i ≥ 0. The Markov property states that given the state of X at time

n, its state at time n + 1 is independent of the states at times 0, 1, . . . , n− 1 [86]; that

is:

IP(Xn+1 = j | X0 = x0, X1 = x1, . . . , Xn = xn) = IP(Xn+1 = j | Xn = xn) (2.10)

Hence the evolution of the DTMC is completely described by the one-step transition

probabilities pij(n) that the DTMC will move to state j at time n + 1, given that it is

in state i at time n:

pij(n) = IP(Xn+1 = j | Xn = i) for i, j, n = 0, 1, . . . (2.11)

We assume that the one-step transition probabilities are time homogeneous, that is

independent of time n:

pij(n) = pij for i, j, n = 0, 1, . . . (2.12)

Therefore, a time homogeneous DTMC defines a transition probability matrix P , con-

taining all the one-step transition probabilities:

P =




p00 p01 p02 · · ·
p10 p11 p12 · · ·
...

...
...

pi0 pi1 pi2 · · ·
...

...
...




(2.13)
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where the dimension of P is the number of states in Ω and, since the DTMC must be

in some state at any observation instant, all the rows of P sum to one. Conversely, for

any real matrix P such that pij ≥ 0 and
∑

j pij = 1 (known as a stochastic matrix),

one can construct a DTMC which has P as its transition matrix.

We now consider transitions made in two steps where:

p
(2)
ij = IP(Xn+2 = j | Xn = i) for i, j, n = 0, 1, . . . (2.14)

In order to move from state i to state j the DTMC has to move to some intermediate

state k; hence:

p
(2)
ij =

∑

k∈Ω

IP(Xn+2 = j | Xn = i,Xn+1 = k)IP(Xn+1 = k | Xn = i)

=
∑

k∈Ω

IP(Xn+2 = j | Xn+1 = k)IP(Xn+1 = k | Xn = i)

=
∑

k∈Ω

pikpkj (2.15)

where the second equality uses the Markov property and the third equality is a result

of X being time homogeneous. Note that pikpkj is the ijth element of P 2. Similarly by

induction we obtain the s-step transition probabilities:

p
(s)
ij = IP(Xn+s = j | Xn = i) (s ≥ 1) (2.16)

The matrix of these probabilities, is given by:

(p(s)
ij ) = P (s) = P s (2.17)

This result may in principle be used to compute the probabilistic behaviour of a DTMC

over any finite period of time. However, this can become computationally intractable for

more complex models. Therefore there is a need to determine the long term behaviour

of the DTMC.

We define the probability of being in state j at time s after starting in state i at time

0, denoted π
(s)
ij as:

π
(s)
ij = IP(Xs = j | X0 = i) (2.18)
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Under certain conditions, the more steps the DTMC makes, the less it matters what

state it was in when it started. When the observation instant is infinitely removed from

the starting point, the probability πj of finding the DTMC in state j, is independent

of the initial state:

πj = lim
n→∞ IP(Xn = j | X0 = i) = lim

n→∞ p
(n)
ij = lim

n→∞π
(n)
ij (2.19)

Definition 2.4 (Stationary Probability Distribution) The stationary probability

distribution [40] is defined in terms of P , the one-step transition probability matrix of

a DTMC, and the vector z whose elements zi denote the probability of being in state i.

The vector z is a probability distribution:

zi ∈ IR, 0 ≤ zi ≤ 1 and
∑

i

zi = 1

z is said to be a stationary distribution if and only if zP = z.

When the limiting probabilities πj exist, and add up to 1, they are referred to as the

steady-state distribution of the DTMC. The theory of whether a steady-state distribu-

tion exists and of determining it when it does requires the following definitions:

Definition 2.5 (Irreducible DTMC) A DTMC is irreducible if every state is reach-

able from every other state in one or more transitions. If this is not the case, the DTMC

is said to be reducible [14].

The states in a DTMC can be distinguished as being either recurrent or transient. If

f
(m)
j is the probability of leaving state j and then first returning to it in m transitions,

it follows that the probability of ever returning to state j is:

fj =
∞∑

m=1

f
(m)
j

If fj = 1 then it is certain that we will return to state j at some point in the future

and so j is said to be recurrent. Otherwise, states which are not recurrent are called

transient.
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Definition 2.6 (Periodic states) A state j is said to be periodic, with period m

(where m > 1), if the consecutive returns to j occur only at multiples of m steps [86]:

IP(Xn+s = j | Xn = j) = 0 if s 6= km for some k ≥ 1

Note that a periodic state j is also recurrent. If there is no integer m > 1 which satisfies

the above equation, then j is said to be aperiodic. If the DTMC is irreducible, then

either all its states are periodic, with the same period, or all of them are aperiodic.

The DTMC itself is then said to be periodic or aperiodic respectively. If an irreducible

DTMC has at least one state to which it can return in a single step, then it is aperiodic.

From the probability f
(m)
j of returning to state j in m steps, we define the mean

recurrence time of state j, that is the average number of steps needed to return to state

j for the first time after leaving it, denoted by Mj , as:

Mj =
∞∑

m=1

mf
(m)
j (2.20)

Further a state j is said to be recurrent null if Mj = ∞, whereas it is recurrent non-null

if Mj < ∞. An irreducible DTMC can only have recurrent null states if the number of

states are infinite.

We can now state the following result:

Theorem 2.1 If X = {Xn | n = 0, 1, . . .} is an irreducible, aperiodic and recurrent

DTMC, then the steady-state (limiting) probabilities πj, exist and are given by [86]:

πj =
1

Mj
for j = 0, 1, . . . (2.21)

Where Mj is defined in Equation 2.20.

If all states of X are recurrent null then πj = 0 for all j. If all states are recurrent

non-null then πj > 0 for all j. If X is finite, then it is recurrent non-null.

In order to calculate the quantities Mj and hence the probabilities πj we have the

following result, known as the steady-state theorem:
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Theorem 2.2 For a finite, irreducible and aperiodic DTMC, with N states, the values

of the steady-state probabilities πj are uniquely determined by the equations [86] :

πj =
∑

i

πipij (2.22)

subject to
∑

i

πi = 1 (2.23)

Equations 2.22 are referred to as the balance equations of X, while Equation 2.23 is the

normalising equation. Introducing the row vector π = (π1, π2, . . . , πN ), Equations 2.22

can be written in matrix notation as:

π = πP (2.24)

Thus the steady-state analysis of a system modelled by an irreducible and aperiodic

DTMC largely consists of solving the corresponding balance and normalising equations.

The complexity of this task depends on the size and structure of the one-step transition

probability matrix P . Note that the fact that a DTMC has a stationary probability

distribution does not imply that it has a steady state distribution.

2.3.2 Continuous-time Markov Chains

The continuous-time analogue of a DTMC, where transitions can occur at arbitrary

points in time, is known as a continuous-time Markov chain (CTMC). Let X =

{X(t) | t ≥ 0}, with X(t) ∈ Ω, where Ω is a countable set, be a CTMC. By the

Markov property, the path followed by X after given a given moment t, depends only

on the state at that moment X(t), and not on the past behaviour [86]:

IP(X(t) = x | X(t0) = x0, . . . , X(tn) = xn) = IP(X(t) = x | X(tn) = xn) (2.25)

for any sequence t0, t1, . . . , tn such that t0 < t1 < . . . < tn and t > tn.

A CTMC is said to be time homogeneous if the right hand side of Equation 2.25 does

not depend on the moment of observation.
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The transition probability functions qij(s) of a time homogeneous CTMC are analogous

to the s-step transition probabilities p
(s)
ij of a DTMC as defined in Equation 2.16:

qij(s) = IP(X(t + s) = j | X(t) = i) = IP(X(s) = j | X(0) = i) (2.26)

for i, j = 0, 1, . . . and s ≥ 0. The evolution of a time homogeneous CTMC is described

by a matrix Q (known as the generator matrix) of the (qij), where qij is the infinitesimal

rate of moving from state i to state j, i 6= j, and qii = −∑
i6=j qij .

The Markov property implies that, if at time t the process is in state j, the time

remaining in state j is independent of the time already spent in state j. This is known

as the memoryless property. This means that, if S is the time spent in any state (known

as the sojourn time), then:

IP(S ≤ t + s | S > t) = IP(S ≤ s) (2.27)

A consequence of Equation 2.27 is that all sojourn times in a CTMC must be exponen-

tially distributed since this is the only continuous distribution function which satisfies

this condition (see for example [14] for a proof). The rate out of state i, and therefore

the parameter of the sojourn time distribution, is µi and is equal to the sum of all rates

out of state i, that is µi = −qii. This means that the density function of the sojourn

time in state i is fi(t) = µie
−µit and the average sojourn time in state i is µ−1

i .

An important special case of a CTMC is the Poisson process. The Poisson process is

a renewal process with exponentially distributed renewal time. The parameter of the

exponential distribution λ, is known as the rate of the Poisson process. The Poisson

process is often used as an approximation of the arrivals into a number of systems such

as tasks arriving at a processor input buffer or the number of people joining a post

office queue.

Definition 2.7 (The Poisson Process) The Poisson process is a renewal process

with interarrival time having probability distribution function F and density function

(pdf) f , given by:
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F (x) = P (X ≤ x) =





1− eλx for x ≤ 0

0 otherwise

f(x) = F ′(x) =





λe−λx for x ≤ 0

0 otherwise

where λ is the rate of the Poisson process [18].

As the Poisson process has exponentially distributed inter-arrival times, the Poisson

process has the memoryless property as defined above.

The definitions in Section 2.3.1 for recurrence and irreducibility in DTMCs also hold

for CTMCs. The steady-state distribution for a CTMC is defined similarly as for a

DTMC. Once again, we denote the set of steady-state probabilities as πj .

Definition 2.8 In a CTMC which has all states recurrent non-null and which is ir-

reducible and time homogeneous, the limiting or steady-state distribution πj is given

by [14]:

πj = lim
t→∞ IP(X(t) = j | X(0) = i) (2.28)

This leads us to the steady-state theorem for CTMCs:

Theorem 2.3 For a finite, irreducible and time homogeneous CTMC, the steady-state

probabilities πj always exist and are independent of the initial state distribution. They

are uniquely given by the solution of the equations [14]:

−qjjπj +
∑

k 6=j

πkqkj = 0 (2.29)

subject to
∑

i

πi = 1 (2.30)

Writing as a vector π = (π1, π2, . . . , πN ), the above equations can be expressed in

matrix form as:

πQ = 0 (2.31)
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where Q is the generator matrix of the CTMC.

If the times at which a CTMC X moves from one state to another are ignored, and we

number the state transitions, then the resulting sequence of states {Xn | n = 0, 1, . . .},
is a DTMC. This DTMC is known as the embedded Markov chain (EMC) and describes

the behaviour of the CTMC at state-transition instants. The EMC of a CTMC has a

one-step transition matrix P where pij = qij

−qii
for i 6= j and pij = 0 for i = j.

2.4 Queueing Theory

Queueing network modelling is a particular approach to system modelling in which a

system is represented as a network of queues. Queueing network models have become

important tools in the design and analysis of computer and communications systems

and a vast body of related theory, known as queueing theory has been developed, see

for instance [55, 14, 86, 17, 64].

2.4.1 Queueing Networks

Queueing networks model distributed systems, which consist of entities requiring service

from some resource or set of resources. These entities may have to wait to receive service

in some sort of order.

 

Server 1 

Queue 
 

Arrivals 
 

Server 2 

Queue 
 

Departures  
 

Figure 2.3: Example queueing network.

A queueing network (an example of which is illustrated in Fig. 2.3) is made up of four

basic components:
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• Customers are entities requiring service. They move between queues and receive

service at the servers. Customers may be divided into classes, which can affect

how they are routed between queues and how they are served (for instance, classes

maybe assigned different priority-levels and the arrival of a high-priority customer

at a queue may pre-empt the service of a lower priority customer).

• Queues store customers while they wait for service at one or more servers.

Queues may have a fixed capacity or have the ability to store an infinite number

of customers.

• Servers are the resources that provide service to customers, who are served

according to some scheduling strategy. The time taken for a server to serve a cus-

tomer is a random variable, which may be drawn from a number of distributions.

A server may have one or more queues connected to it.

• Arcs interconnect servers and queues, indicating the paths that may be taken by

customers. An arc without origin leading into a queue indicates that customers

arrive from outside the network; conversely for departures.

Additionally, when customers depart from one server and can arrive at one of sev-

eral destination queues it is necessary to specify routing probabilities. These are the

probabilities that a customer leaving that server will be routed to each of the possible

destinations. Different classes of customers can have different routing probabilities.

Queueing networks can be classed as either open or closed. When a network has no

external arrivals or external departures, the network is closed. Otherwise, it is an open

network.

Queues in a queueing network are often described using the Kendall notation [14]:

A/B/m/K/Z/Sched

which is a shorthand way of describing the arrival process/service distribution/number

of servers/queue capacity/customer population (in a closed network)/scheduling strat-

egy of a queue. If not specified, the scheduling strategy is assumed to be First In First

Out (FIFO), also called First Come First Served (FCFS). When describing the arrival
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process or service distributions, the following conventions are used: G for general dis-

tribution, M for memoryless distribution and D for deterministic distribution. The

queue of most interest to us in this thesis is the M/M/m queue in which there is a

memoryless (i.e. Poisson) arrivals process, memoryless (i.e. exponentially distributed)

service times and m identical parallel servers.

For closed queueing networks with exponential arrival and service distributions, it is

possible to generate a CTMC for the network, where a state in the CTMC is described

by the number of customers at each queue. This permits the analysis of models for

quantitative performance measures through the analysis of the CTMC, for steady-state,

transient and passage time quantities.

We now present some queueing theory results which will be used in this thesis.

2.4.2 Little’s Law

A widely applied queueing theory result is Little’s law [74], which relates the mean

queue length with the mean time spent by a customer in a system for an arbitrary

queueing system at equilibrium. Under steady-state behaviour, the arrival rate λ does

not change with time and is equal to the departure rate. The average number of

customers in the system N does not change, and the average time in the system T does

not change. Under these circumstances the following theorem holds:

Theorem 2.4 (Little’s Law) The average number L of customers in a queueing sys-

tem with arbitrary service and arrival distribution, average arrival rate λ and average

time in system (including queueing and service time) W , is given by [74]:

L = λW (2.32)

This result has been extended to deal with the calculation of higher moments [55]. For

a queueing system with Poisson arrivals in a steady-state:

Lf
k = λkWk (2.33)
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where Wk is the kth-moment of a task’s waiting time and Lf
k = E[L(L−1) . . . (L−k+1)]

is the kth factorial moment of the number of customers in the system; both moments

are assumed to be finite.

2.4.3 Steady-state Probability Distribution

In this section we consider closed queueing networks where there are no external arrivals

or departures. These models are often used to model networks where the resources have

limited capacity.

Consider a single class, closed queueing network with K customers and N FIFO

servers with exponential service times. After completing service at node i, where

(i = 1, 2, . . . , N), a customer moves to node j with probability qij for (i, j = 1, 2, . . . , N).

Since no job ever leaves the network, these routing probabilities satisfy:

N∑

j=1

qij = 1 for i = 1, 2, . . . , N

The state of the network at any time is described by the vector n = (n1, n2, . . . , nN ),

where ni is the number of customers at node i. Since the only possible states are such

that:
N∑

i=1

ni = K

the state space is finite, with size given by the binomial coefficient:




K + N − 1

N − 1




We denote the average number of customers arriving into node i where i = (1, 2, . . . , N)

per unit time by λi. These customers can only come from other nodes in the network;

thus we can write a set of traffic equations that the arrival rates must satisfy:

λi =
N∑

j=1

λjqji for i = 1, 2, . . . , N (2.34)

These equations do not have a unique solution; however, if one of the λi is fixed arbi-
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trarily the resulting quantities are proportional to the true arrival rates.

The steady-state distribution of the network can be expressed as the product of factors

describing the state of each node known as a product-form solution [50].

Theorem 2.5 (Gordon-Newell Theorem) Let λ1, λ2, . . . , λN be any solution of Equa-

tions 2.34, bi the average service time at node i and ρi = λibi. Then the steady-state

probability distribution of the network state, denoted π(n1, . . . , nN ), is given by [50]:

π(n1, . . . , nN ) =
1
G

N∏

i=1

β(ni)ρni
i

where

βi(ni) =





1 if node i has a single server

1/ni! if i is an infinite server node

and G is the normalising constant determined from the condition that the sum of all

probabilities is 1:

G =
∑

n∈Ω

N∏

i=1

βi(ni)ρni
i

2.4.4 Arrival Theorem

The arrival theorem states that for a closed queueing network in a steady-state, an

arrival entering a queue observes the steady-state distribution for the network with

one customer removed. This tells us that the arriving customer behaves as a random

observer in a network with population reduced by one. This is intuitively appealing

since we can think of the removed customer as the arriving customer itself.

Theorem 2.6 (Arrival Theorem) For a closed queueing network, suppose π(k,n)

is the steady-state probability that the network is in state n when the population is

k =
∑

i ni. Then, when the network population is K, the probability that an arrival at

node i sees the network in state n denoted by Ai(n), is [55]:

Ai(n) = π(K − 1,n)
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2.4.5 Mean Value Analysis

The mean value analysis (MVA) algorithm provides a method for determining mean

values in an open or closed queueing network, based on simple applications of Little’s

law and the arrival theorem [17, 55, 86]. In this thesis, we use the MVA algorithm for

closed queueing networks. The quantities of interest are the mean queue length at node

i where i = 1, 2, . . . , N denoted by Li and the average time spent at a node i per visit

denoted by Wi. In addition we are also interested in the average number of visits vi

that a customer makes to node i and the throughput T which is the average number of

customers departing the network per unit time. In order to calculate this latter quantity

in the context of a closed network, we convert the closed network into an equivalent

open network that has all the same characteristics of the closed network [55, 86].
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Figure 2.4: Equivalent open network.

In a real system where the number of customers are kept constant, the membership of

the set of customers usually changes, with a customer leaving the network once service

has been completed immediately replaced by a new customer. We will replicate this

behaviour in our model. Assume that we have within a closed network two connected

nodes a and b, connected by arc 1. We introduce a new node labelled 0 outside of the

closed network and replace arc 1 with arc 2, node 0 and arc 3 such that the source

of arc 1 is the source of arc 2 and the destination of arc 1 is the destination of arc 3

as illustrated in Fig. 2.4. Whenever a customer moves along arc 2 and passes through

node 0, it immediately departs the network and is replaced by a stochastically identical
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new customer, which is immediately moved to node b via arc 3. This modification of

the model has no effect other than to transform the customers from permanent entities

into temporary ones. The time a customer spends in the network is now the time

between two consecutive passes of the same customer through node 0. We can now

define the throughput T , as the average rate at which customers pass through node 0

in the steady state, therefore T now corresponds to both the external departure rate

and the external arrival rate.

If the average arrival rate to node i is λi then, if each customer makes on average vi

visits to node i, we have λi = Tvi, which implies that the vi satisfy the traffic equations

(Equation 2.34) giving:

vi =
N∑

j=1

vjqji for i = 1, 2, . . . , N (2.35)

These equations do not have a unique solution; however, if one of the vi is known, then

all others can be obtained. Since all traffic going from node a to node b passes through

node 0, we have v0 = vaqab. By definition every customer passes through node 0 exactly

once (since after passing through node 0, the customer is immediately replaced by a

stochastically identical new customer), so using this we can find va:

va =
1

qab

Applying Little’s law to node i yields:

Li = λiWi = TviWi for i = 1, 2, . . . , N

The sum of the individual queue lengths is exactly K; thus we obtain another relation-

ship between the unknown performance measures T and Wi:

N∑

i=1

Li = K = T
N∑

i=1

viWi or T =
K∑N

i=1 viWi

Suppose we let Yi be the mean number of customers seen by an arrival to node i. The

mean waiting time of this customer is the sum of the service times of those customers
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and its own service time:

Wi =
1
µi

(Yi + 1)

The arrival theorem (given in Section 2.4.4) tells us that the arriving customer observes

a network with population reduced by one. Writing Yi and Li as functions of K, this

property gives Yi(K) = Li(K − 1) for K > 0.

We can now develop a solution based on recurrence relations for i = 1, 2, . . . , N and

K > 0

Wi(K) =
1
µi

[Li(K − 1) + 1] (2.36)

T (K) =
K∑N

i=1 viWi(K)
(2.37)

Li(K) = T (K)viWi(K) (2.38)

with initial conditions Li(0) = 0. We can compute the values of Wi(K), T (K) and

Li(K) by a simple iteration as follows. Starting with the base case Li(0) = 0 we

obtain values of Wi(1), T (1) and Li(1) for 1 ≤ i ≤ N . From this we derive the next

population level and so on until the iteration reaches the desired population level. On

each iteration we compute 2N + 1 quantities; thus for K iterations we need O(NK)

operations to compute the performance measures.

2.4.6 Cobham’s Formula

Often in real-life queueing systems, we require priority service to be given to certain

customers. Typically, this priority system not only reduces waiting times for the high

priority users, but can also improve overall (passive) resource utilisations. We consider

a non-pre-emptive queueing discipline where a high priority customer must wait for

service if there is a customer already in service, even if the arriving customer has a

higher priority than the customer in service. We now present Cobham’s formula [28]

for the mean queueing time for each priority class of customer for non-pre-emptive

priority queues.
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Assume there are R customer classes, numbered 1, 2, . . . , R where each class is assigned

a priority level such that class r customers have priority over class s customers if r < s.

Thus the priority levels are such that class 1 customers have highest priority and class

R customers have lowest priority. We consider a single server queueing system with R

FIFO queues (one for each customer class). Customers of class r arrive according to a

Poisson process with rate λr, with some general service distribution with mean rate µr

for class r customers. After service completion, the next customer chosen for service is

the one with the highest priority. Then Cobham’s formula states that:

W ′
1 =

W0

1− ρ1
for highest priority customers (r = 1) and,

W ′
r =

W0

(1− σr−1)(1− σr)
where σr =

r∑

j=1

ρj for r = 2, . . . , R

where W ′
r is the mean time spent by a class r customer waiting to start service, W0

the mean time spent waiting for the departure of the customer in service at the time

of arrival, ρr = λr/µr is the load for class r and σr is the total load of priority higher

than or equal to class r.

2.5 Laplace Transforms

The Laplace transform is an integral transform that arises in many areas of science and

engineering. It is often applied to change a hard-to-solve problem in the real-valued

time t-domain into an easier problem in the complex-valued s-domain. For example,

they are used to transform differential equations into a simple algebra problem where

a solution can be easily obtained, then transformed back to retrieve the solution of the

original problem. This is the approach taken for the passage time analysis of Markov

chains in the next section.

Definition 2.9 (Laplace Transform) When it exists, the Laplace transform (de-

noted by either L{f(t)}, L(s) or f∗(s)) of a real-valued function f(t) is given by:

L(s) = f∗(s) =
∫ ∞

0
e−stf(t)dt
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where s is a complex number [40].

A sufficient condition for the existence of the Laplace transform of a function f(t), is if

f(t) is of exponential order [40]. This requires |f(t)| not to grow too rapidly as t tends

to infinity. Specifically we say that the function f(t) is of exponential order if there

exists real constants M > 0 and K such that:

|f(t)| ≤ MeKt

holds for all t ≥ 0. All functions in this thesis are assumed to be of exponential order.

2.5.1 Laplace Transform Properties

The reason that Laplace transforms are widely utilised is because they have a number

of useful properties [40]. These include:

Uniqueness If f(t) and g(t) are functions of t and f∗(s) and g∗(s) are their corre-

sponding Laplace transforms then f∗(s) = g∗(s) ⇔ f(t) = g(t).

Linearity If a and b are constants and f(t) and g(t) are functions of t, then:

L{af(t) + bg(t)} = aL{f(t)}+ b{g(t)}

Convolution This Laplace transform property is particularly useful in passage time

analysis. The calculation of the probability density function of a passage time between

two states is achieved by convolving the probability density functions of the sojourn

times of the states along all the paths between the source and target states. The

convolution of two functions f(t) and g(t) denoted f(t) ∗ g(t) is given by:

f(t) ∗ g(t) =
∫ t

0
f(α)g(t− α)dα

The convolution of n functions requires the evaluation of an (n−1) dimensional integral.

To perform such a calculation for large values of n (perhaps in the millions) would be



2.5. Laplace Transforms 35

impractical. Instead, we exploit the convolution property of Laplace transforms, which

states that the Laplace transform of the convolution of two functions is the product of

the functions’ individual Laplace transforms.

Theorem 2.7 (Convolution Theorem) The Laplace transform of the convolution

of two functions f(t) and g(t), denoted by L{f(t) ∗ g(t)}, is the product of the Laplace

transforms of the two functions, that is [40]:

L{f(t) ∗ g(t)} = f∗(s)g∗(s)

Thus the convolution of the functions f(t) and g(t) can be obtained by inverting the

Laplace transform of the convolution. The next section outlines the inversion of Laplace

transforms using numerical methods.

Integration The final property of Laplace transforms which is particularly useful

in the context of passage time analysis is that dividing the Laplace transform of a

function by s corresponds to the integration of f(t) in the t-domain. Thus if f(t) is

a probability density function and F (t) is the corresponding cumulative distribution
∫∞
0 f(t)dt = F (t), then the Laplace transform of F (t) can be calculated from the

Laplace transform of f(t) by dividing L{f(t)} by s:

L{F (t)} =
L{f(t)}

s

2.5.2 Laplace Transform Inversion

The inverse of the Laplace transform f∗(s) of a function f(t) denoted by L−1{f∗(s)} is

the function f(t) itself. This is also known as the Bromwich integral, and is a complex

integral given by:

L−1{f∗s} = f(t) =
1

2πi

∫ α+i∞

α−i∞
estf∗(s)ds

where α is a real number lying to the right of the real part of all the singularities of

f∗(s) [40].
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The methods presented in this thesis utilise the numerical inversion of Laplace trans-

forms, for which there are numerous algorithms available; however, in this thesis, the

methods presented use the Laguerre method [1, 54] (also referred to as Weeks’ method)

as the default method.

The Laguerre Method

The Laguerre method represents a function f(t) in terms of its Laguerre series repre-

sentation [1]:

f(t) =
∞∑

n=0

qnln(t) t ≥ 0

where the ln are the Laguerre polynomials given by:

ln(t) =
(

2n− 1− t

n

)
ln−1(t)−

(
n− 1

n

)
ln−2(t)

starting with l0(t) = e−t/2 and l1(t) = (1− t)l0(t). The qn are the Laguerre coefficients,

given by:

qn =
1

2πrn

∫ 2π

0
Q(reiu)e−inudu

where r = (0.1)4/n and Q(z) = (1− z)−1f∗((1− z)/2(1− z)).

This integral can be approximated using the trapezoidal rule with p trapezoids so that

qn ≈ 1
2nrn


Q(r) + (−1)nQ(−r) + 2

n−1∑

j=1

(−1)jRe(Q(reπji/n))


 (2.39)

As described in [54], the Laguerre method can be modified by noting that the Laguerre

coefficients qn are independent of t. The |ln(t)| ≤ 1 for all n and t, and ln(t) approaches

0 as n → ∞. However, the latter rate of convergence is very slow, so the convergence

of the Laguerre series effectively depends on the decay rate of qn as n → ∞. If f

is continuous and has continuous derivatives, then the convergence of the Laguerre

coefficients is rapid. Slow convergence of the qn coefficients can often be addressed by
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exponential damping and scaling using two real parameters σ and b [103]. The idea is

to apply the Laguerre inversion algorithm to the function:

fσ,b(t) = e−σtf(t/b)

Then f(t) can be recovered as:

f(t) = eσbtfσ,b(bt)

The corresponding Laguerre generating function for fσ,b is:

Qσ,b(z) =
b

1− z
f∗

(
b(1 + z)
2(1− z)

+ bσ

)

Each qn coefficient is computed as in Equation 2.39, using the trapezoidal rule with

2n trapezoids. However, if we apply scaling to ensure that qn has decayed to (almost)

zero by term p0 (say p0 = 200), we can instead make use of a constant number of 2p0

trapezoids when calculating each qn [54]. This allows us to calculate each qn with the

same or higher accuracy as in [1] while simultaneously providing the opportunity to

cache and re-use values of Q(z). Since qn does not depend on t, and each evaluation

of Q(z) involves a single evaluation of f∗(s), we can therefore obtain the f(t) at an

arbitrary number of t-values at the fixed cost of evaluating Q(z) (and hence f∗(s)) just

2p0 times.

2.6 Response Time Analysis

This section describes methods by which response time densities may be extracted from

Markov processes, by analytically inverting the Laplace transform L(s) of the required

response time density f(t). From the Laplace transform we can recover the value of f(t)

at any t by using one of several algorithms for numerical transform inversion. Examples

of well-known numerical inversion algorithms include the Euler, Post-Widder, Gaver

and Laguerre methods [3, 4, 1, 2]. These algorithms compute f(t) at a given t by

evaluating L(s) at several values of s. We have employed the Laguerre method [54]
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which was discussed in detail in the previous section. For an in-depth discussion on

obtaining response time densities from Markov and semi-Markov processes see [40, 54,

20, 41].

2.6.1 Passage Time Distributions in Markov Chains

This subsection describes a technique to numerically evaluate passage time distributions

in continuous-time Markov chains [54].

First passage time equations

Consider a finite irreducible, continuous-time Markov Chain with n states {1, 2, . . . , n}
and generator matrix Q. If X(t) denotes the state of the CTMC at time t (t ≥ 0),

then the first passage time from a source state i into a non-empty set of target states

~j is:

Ti~j(t) = inf
{

u > 0 : X(t + u) ∈ ~j | X(t) = i
}

(∀t ≥ 0)

For a stationary time-homogeneous CTMC, Ti~j(t) is independent of t, so:

Ti~j = inf
{

u > 0 : X(u) ∈ ~j | X(0) = i
}

Ti~j is a random variable with an associated probability density function fi~j(t) such that

IP(a < Ti~j < b) =
∫ b

a
fi~j(t)dt (0 ≤ a < b)

Our aim is to determine fi~j(t). In effect, this involves convolving state holding times

over all possible paths (including cycles) from state i into any of the states in the

set ~j. By shifting the problem into the Laplace domain we can exploit the basic

transform property that the transform of a convolution of two functions is the product

of the transforms of those functions [2]. Another important advantage of working with

Laplace transforms is that we can derive arbitrary moments of fi~j(t) by evaluating

derivatives of its Laplace transform Li~j(s) at s = 0. In general, the value of Li~j(s) can
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be computed by solving a set of n linear equations that are derived using a first step

analysis:

Li~j(s) =
∫ ∞

0
e−stfi~j(t)dt

= E
[
e−sTi~j

]

=
∑

k/∈~j

−qik

qii
E

[
e−s(Si+Tk~j)

]
+

∑

k∈~j

−qik

qii
E

[
e−s(Si)

]

=
∑

k/∈~j

qik

(s− qii)
Lk~j(s) +

∑

k∈~j

qik

(s− qii)

i.e

(s− qii)Li~j(s) =
∑

k/∈~j

qikLk~j(s) +
∑

k∈~j

qik (2.40)

where Si ∼ Exp(−qii) is the sojourn time in state i (1 ≤ i ≤ n). Expressing this system

of n linear equations in standard matrix-vector form (Ax = b) yields:




s− q11 −q12 · · · −q1n

0 s− q22 · · · −q2n

0 −q32 · · · −q3n

0
...

. . .
...

0 −qn2 · · · s− qnn







L1~j(s)

L2j(s)

L3~j(s)
...

Ln~j(s)




=




0

q21

q31

...

qn1




(2.41)

where ~j = {1} in this case.

The problem can also be readily extended to multiple initial states. In particular, if

the probability distribution of the initial states is known – typically the steady-state

distribution – the problem reduces to that of weighting the first passage time densities

for each initial state.

Moments

The nth moment of the first passage time between a given source state i and set of

target states ~j is:

Mi~j(n) = (−1)n
dnLi~j(s)

dsn

∣∣∣∣∣
s=0
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This can be found by differentiating Equation 2.40 n times at s = 0 and solving a

similar set of equations, for n ≥ 0:

−qiiMi~j(n) =
∑

k/∈~j

qikMk~j(n) + nMi~j(n− 1) (2.42)

for i /∈ ~j and Mi~j(n) = 0 for i ∈ ~j. For n = 0, we have Mi~j(0) = 1 and so each set of

moments can be computed iteratively.

2.6.2 Passage Time Analysis Pipeline

A complete passage time analysis pipeline, implementing the theory discussed has been

implemented as shown in Fig 2.5 [40]. Models are specified in an enhanced form of

the DNAmaca Markov chain analyser interface language [65, 66], which supports the

specification of queueing networks, stochastic Petri nets, stochastic process algebras

and other high-level formalisms that can be mapped onto Markov and semi-Markov

chains.

From the input model, DNAmaca’s state generator produces the generator matrix Q

of the model’s underlying Markov chain, as well as a list of the initial states (with their

corresponding weighting) and the target states. The matrix Q is then put through a hy-

pergraph partitioner [100] to form partitioned matrix files that incur low communication

overhead when performing parallel sparse matrix vector multiplications. Control now

passes to the distributed Laplace transform inverter which implements the master-slave

structure shown. Both the Laguerre and Euler inversion algorithms are supported. Ini-

tially the master runs through the Laplace transform inversion algorithm (the Laguerre

method is used as the default) and notes the distinct values of s at which L(s) needs to

be evaluated. Those values of s for which there is no corresponding L(s) value stored

in a disk cache are added to the global work queue.

At start up, the slave processor groups read in the partitioned matrix files, with each

slave within a group reading in a different file. Each slave group then applies for an

s-value from the global queue. These groups then return computed values of L(s) to

the master, which stores the value in memory and disk caches, before issuing more
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Figure 2.5: Passage time analysis pipeline.

work (if any). When all values of L(s) have been computed, the master runs through

the Laplace inversion algorithm once more, this time performing all calculations and

obtaining the required L(s) values from the memory cache. Resulting points on the

response time density are written to a disk file and displayed using GNUplot.

2.7 Modelling in Healthcare

In this section we discuss existing work in the area of modelling and simulation within

healthcare. In particular we concentrate on patient arrivals modelling and the modelling

and simulation of patient flow in healthcare systems.
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2.7.1 Patient Arrivals Modelling

In the literature, the modelling of patient arrivals to emergency services is undertaken

to achieve two objectives: firstly, to characterise the nature of arrivals and to forecast

future numbers. Secondly, to parameterise patient flow models and simulations of

healthcare systems.

Generally, when arrivals modelling is used to facilitate the objective of parameterising

a patient flow model or simulation, a straightforward approach is taken, whereby either

a Poisson arrivals process is assumed or historical attendance is replicated [30, 22, 27,

79, 97, 84, 43, 29].

When patient arrivals modelling is used to forecast future arrivals in order to plan

ahead for staffing and resource needs two approaches have been taken. Firstly there

are papers which look to link patient arrivals to external factors such as the weather

and calendar events such as the day of the week and bank holidays. Other studies

have utilised various time series models to characterise and forecast future emergency

services arrivals.

The relationship between calendar and weather data and the arrival of patients in an

emergency department is explored in [39, 26, 62]. The studies [39, 62] investigate pat-

terns in the arrival of patients to walk-in clinics in San Antonio, Texas and Lexington,

Kentucky respectively. The main influences on the daily arrival rate of patients are

calendar variables, like the year, month, day of the week, bank holidays and in [62], the

days when pension cheques get delivered. The main weather-related contribution was

the maximum daily temperature; however, [39] concluded that overall weather related

components added little to the accuracy of the predictions of the models.

A paediatric emergency department in Chicago, Illinois is modelled in [26]. This study

is based on three months of data in 1975-6. The distinction is made between different

diagnoses and this study finds that for instance flu and minor injuries are seasonal.

Extremely cold weather conditions are shown to reduce the number of visits. Extreme

heat on the other hand shows no significant change in the number of visits. The paper

concludes that the influence of the weather is small and the perceived large fluctuations

in patient influx during extreme weather is related to the arrivals being more bursty.
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It is known that for some illnesses, in particular chronic obstructive pulmonary disease

(COPD), the severity of symptoms can vary throughout the year because of changes in

the weather or the presence of infections. The Met Office has studied the relationship

between seasonal and weather changes and certain illnesses including COPD and uses

its findings – with other factors such as virus levels and air pollution – to produce

health forecasts for healthcare providers up to 8 days ahead, enabling them to deliver

anticipatory care and reduce the number of hospital admissions [80, 81, 82, 83, 75].

A number of studies [23, 61, 99] have utilised time series models to forecast acute

arrivals to hospitals. In [99] two years of data (from 1989 to 1990) were used to fit

and validate hourly arrivals at an American Emergency Department, using a number

of different time series models including ARIMA and moving average models. They

found that simple (moving average based) models performed better than more complex

(ARIMA) models.

An analysis of emergency admissions and bed occupancy in an UK hospital is presented

in [61]. Data spanning from April 1993 to March 1999 was used to fit SARIMA and

GARCH models. This paper found a linear relationship between the seasonally adjusted

number of occupied beds and the mean day time temperature, but long term seasonality

proved more important than short-term weather effects in general.

Recently in [23] both daily and hourly ambulance arrivals at a Canadian Emergency

Department were modelled using a number of auto-regressive and ARIMA models.

Using four years of data (from 2000 to 2004), the models were fitted to the first three

years of data and validated against the remaining data. This study found that these

models were useful for short term forecasts and that there were significant links with

public holidays and demand.

2.7.2 Healthcare Systems Modelling

The idea of modelling health service departments is, of course, by no means new.

Several studies have been made of patient flow in hospitals in general [33, 36, 104] and

Accident and Emergency unit – also known as Emergency Departments (EDs) – in

particular [16, 27, 70, 77, 79, 30, 78, 97].
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The studies of A&E can be categorized into either analytical or simulation models.

Basic queueing theory was applied in [77, 78], where A&E departments were modelled

as simple queueing networks consisting of at most 2 to 3 stages. In the case of [78] these

models gave good fits to observed patient service times in May to July 2002. Although

such analysis is useful in providing performance measures of the system as a whole,

details and insights at the resource level cannot be obtained.

Discrete-event simulation software packages have been used to create simplified models

of patient flow in Emergency Departments in order to assess the impact of different

staff schedule changes [27, 97], patient treatment pathways [30, 79] and the number of

beds available [70]. All of these studies suffered from a lack of data, with both [27, 70]

only using estimates to parameterise their models and [30, 97, 79] only having access

to five days, a week and three months of observed data on which to base their models

respectively. Consequently, [70] was unvalidated against real data, while [27, 30] did

not result in good agreement with actual patient response times. Similarly, [16] utilised

discrete-event simulation (written in SIMIAN and FORTRAN) to model a paediatric

Emergency Room, based on three days of observed data. This model was then used to

assess the impact of various patient treatment schemes. This study found reasonable fit

to various patient waiting time quantities, but was less accurate with the length-of-stay

predictions.

Although discrete-event simulation software packages give users an easy to use platform

with which to build simulations, the drawback of these packages is the lack of flexibility

when tailoring the simulation to more complex scenarios e.g. when assessing the impact

of patient priority schemes. However, although many of the studies that use such

packages provide poor correlation with the actual results, the main objective of many

of these studies is to obtain insight into the impact of various resource and procedural

scenarios, without having to disrupt the actual running of an A&E department.

As we have seen, a drawback to many existing studies is that they are frequently

parameterised using very little data and either remain unvalidated or are validated

against small quantities of real waiting time data, since collecting this data was until

recently a time-consuming, expensive, manual operation.
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2.8 Case Study Department

Our case study department is a large Accident and Emergency department of a London

hospital which serves a large area of North London.

In recent years, the department has seen an increasing number of attendances. Table 2.1

shows the number of attendances to the department during each hospital financial year

(1 April to 31 March) for the years 2002 to 2007.

year no. of attendances
2002/2003 79 029
2003/2004 89 130
2004/2005 97 759
2005/2006 102 191
2006/2007 102 418

Table 2.1: Number of total attendances into our case study department by year.

Table 2.1 shows that there has been a steep increase in attendance levels with a 29.6%

increase since 2002/2003, with the latest attendance figures equating to an average of

281 patients coming into the department every day.

We have applied for and obtained research project status and ethical approval to access

pseudonymised patient timing data (that is non-patient-identifiable-data which has

been tagged by a unique reference number, in order to track the patient through stages

of treatment) at our case study department for the past five years. This involved a

lengthy approval process which included visits to our case study department, writing

a project proposal, submitting the ethical approval forms and presenting our project

proposal at meetings with the ethical approval committee. Ethical approval for access

to pseudonymised patient records was granted by the Harrow Local Research Ethics

Committee (Ref. 04/Q0405/72).

Having obtained ethical approval to access this data, we created and placed this data

on our own password protected, restricted-access database. This data was then cleaned

(i.e. we removed patient records with obvious data entry errors or inconsistencies such

as arrival dates in the future or discharge times preceding arrival) and reformatted for

our purposes.



Chapter 3

Patient Arrivals Modelling

3.1 Introduction

Accident and Emergency (A&E) departments are for many patients the first point of

contact with an NHS hospital and as a result they tend to have a much larger patient

throughput than other hospital departments. With attendances increasing year on year

and a national government target whereby 98% of patients must spend 4 hours or less

from arrival to admission, transfer or discharge, A&E departments are being placed

under increasing pressure to process a large number of patients safely and quickly. It

is therefore important to understand and characterise the nature of patient arrivals to

plan ahead for staffing and resource needs.

For current and future A&E simulations and models to be effective in providing insights

into departmental improvements, they need to be parameterised with a realistic work-

load. There are many publications describing simulations of A&E departments – also

known as Emergency Rooms (ERs) or Emergency Departments (EDs) in other coun-

tries – in which either a Poisson arrivals process is assumed or historical attendance is

replicated [30, 22, 27, 79, 97, 84, 43, 29]. However, these give a much simplified view

of A&E arrivals since in the former case it is known that demand for emergency care

follows seasonal patterns at many time scales with attendance varying by month of the

year, day of the week and even hour of the day; in the latter case, long term trends are

not accounted for.

46
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Previous work in this area (as described in Section 2.7.1), has attempted to characterise

and forecast acute arrivals to hospitals using a number of different time series models

including auto-regressive (AR), moving average (MA) and auto-regressive integrated

moving average (ARIMA) models. We now present what is, to the best of our knowl-

edge, the first research to utilise power spectral density analysis and structural time

series models in the context of A&E arrivals modelling. This is also the first research

to use separate time series models to characterise and forecast walk-in and ambulance

arrivals as opposed to either modelling total arrivals [99] or only ambulance arrivals [23].

The models and forecasts of daily A&E arrivals presented in this chapter are based

on five years of pseudonymised patient arrivals data supplied by our case study A&E

department. Arrivals to the department are aggregated by day and then allocated to

one of two arrival streams (walk-in or ambulance) by mode of arrival. Using the first

four years of patient arrivals data as a “training” set we analyse the corresponding

power spectrum and fit a number of different time series models to each arrival stream.

We then test the predictive ability of these models against the remaining one year of

“unseen” data.

Next, we present the pattern of patient arrivals by hour throughout the day for each

arrival stream. This indicates the busiest times during the day for each arrival type

and will be of use to hospital managers when determining optimal staff shift patterns

and staff and resources levels. The impact of weather factors such as temperature and

rainfall on patient arrival numbers is also briefly explored and discussed.

The remainder of this chapter is arranged as follows. Section 3.2 describes the pre-

liminary data analysis we use to determine the characteristics of each arrival stream

and hence the appropriate models with which to fit to the data. The subsequent sec-

tions present the different time series models we use to characterise and forecast daily

arrivals: Section 3.3 describes a rolling six week average model, Section 3.4 presents

an auto-regressive model, and Section 3.5 describes a structural time series model. In

each case, forecasts for each of these time series models are presented and compared

with observed arrivals. Section 3.6 describes the use of non-homogeneous Poisson pro-

cesses to further characterise ambulance arrivals. In Section 3.7 we present the hourly

breakdown of each arrival stream into our case study department. In Section 3.8 we de-
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scribe our investigations into the impact of weather-related factors on patient arrivals.

Section 3.9 concludes.

3.2 Preliminary Data Analysis

We study all patient arrivals to our A&E department from 1 April 2002 to 31 March

2007. First we aggregate this data set to obtain a time series of patients arriving per

day. We then classify patients as either ambulance arrivals (where electronic patient

records indicate that the patient arrived via an ambulance) or walk-in arrivals (all other

modes of patient arrival). The two time series of ambulance and walk-in arrivals are

then further split into “training” data consisting of the first four years (1456 days)

of arrivals which is used to fit our time series models, and “unseen” data consisting

of the remaining 370 days of arrivals which is used to determine the accuracy of our

model forecasts. In the period 1 April 2002 to 31 March 2007 there were 471 931

total patient arrivals to our case study A&E department. Of these arrivals 129 241

(27.4%) are classified as ambulance arrivals and 342 690 (72.6%) as walk-in arrivals.

The “unseen” data – with which we will compare the model forecasts – consists of the

27 430 ambulance and 75 315 walk-in arrivals observed during the period 1 April 2006

to 31 March 2007. All the time series models in this thesis were created and fitted using

the R statistical software package [94, 88]; the corresponding R code can be found in

Appendix A.

Plots of the “training” data of daily walk-in and ambulance arrivals are shown in

Fig. 3.1. We apply a power spectral density analysis – which describes how the power

(strength) of a time series is distributed by frequency – to these time series to determine

the strength of any periodicities present. As shown in Fig. 3.2, walk-in arrivals show

distinct peaks in the power spectrum corresponding to weekly (seven day) periodic

behaviour in the data. The initial large peak at low frequency indicates an annual

periodicity and the lower peaks (at frequencies 2.0 and 3.0 weeks−1) correspond to

the harmonics of the main seven day frequency. Ambulance arrivals exhibit a distinct

but much weaker seven day periodicity and also an annual periodicity. To further

understand the nature of the weekly seasonality shown in both arrival streams, Fig. 3.3
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Figure 3.1: Daily walk-in (top) and ambulance (bottom) arrivals for 2002-2006.

shows histograms of the percentage of walk-in and ambulance arrivals by day of week

for the “training” data. From these histograms we can see that there are more arrivals

on a Monday than for any other day of the week which accounts for most of the

weekly seasonality seen in the power spectra. This “Monday effect” is more pronounced

for the walk-in arrivals than the ambulance arrivals; hence the much higher weekly

peak observed in the power spectrum of walk-in arrivals. The different characteristics

exhibited by the power spectra suggest that we need to use separate time series models

for each arrival type.

We fitted three types of time series models: rolling average (RA) models, auto-regressive

(AR) models and structural time series (ST) models. A six week rolling average model

is what is currently used by our case study department to predict the total number of

arrivals and so will make a good starting point for comparison with the other time series

models. We fit AR models since these are traditionally used for modelling time series
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Figure 3.2: Power spectra of the “training” data of walk-in (top) and ambulance (bot-
tom) arrivals.
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Figure 3.3: The percentage of walk-in (left) and ambulance (right) arrivals by day of
week for 2002-2006.

which exhibit regularity. Finally, we use ST models as they – unlike AR models – do not

require pre-processing of the data to satisfy stationarity assumptions (cf. Section 2.2.3)

and allow us to explicitly incorporate seasonal factors and local linear trends.

To assess the initial fit of the models, we calculate the Pearson product-moment cor-

relation coefficient (r) of the initial model fit to the “training” data. We also conduct

an in-depth analysis of the resulting residuals (cf. Section 2.2.5). First we investigate
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the distribution of the residuals; ideally they should be normally distributed with mean

zero. The residuals are also checked for independence using the Ljung-Box test, and by

examination of their autocorrelation function (acf). Where appropriate we also assess

this independence visually using a scatterplot of the residuals against the fitted values.

Using each model fit we then forecast arrivals for the l = 1st, 2nd, . . . , 7th day ahead. In

order to compare the predictions arising from the different types of models, we calculate

a number of quality of forecast metrics (cf. Section 2.2.6) including the mean bias of

the set of predictions, the root mean square error (RMSE), and the Pearson product-

moment correlation coefficient (r) between each set of the l day(s) ahead forecasts and

the corresponding observed “unseen” arrivals. When forecasting ahead, we calculate

the 95% confidence interval for each prediction and at each forecast horizon we compute

the mean width of the 95% confidence intervals for the corresponding set of predictions.

We also calculate the fraction p of observed arrivals which lie outside the 95% confidence

intervals of the model predictions. Finally, we construct scatterplots to show visually

the quality of forecasts from our models.

3.3 Rolling Average Models

3.3.1 Specification

Currently our case study hospital utilises a six week rolling average model to predict the

total number of arrivals to the department for the week ahead. In this type of model

the predicted value for a given day is the average of the number of arrivals on the

corresponding day of the week from the previous n weeks. For instance the predicted

number of arrivals into the department on a Monday will be the average of the number

of arrivals from the previous n Mondays. For a time series of previous patient arrivals

xt of length T , this can be formalised as follows:

x̂t =
xt−7 + xt−14 + . . . + xt−7n

n
t = 7n + 1, . . . , T (3.1)

where x̂t is the predicted number of arrivals at time t and n is the number of weeks
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used to obtain an average (n = 6 in our model).

Notice that predictions made by this model do not depend on the values for the previous

six days. This means that the same six weeks of data will be used to predict one day

ahead as for seven days ahead. For this reason we predict one entire week ahead with

the RA models as opposed to performing separate lth day ahead forecasts.

To make predictions with these models, we first fit the rolling average models to the

“training” data (the first 1456 days in the time series). From this model fit we calculate

the residuals, and assuming that the residuals are normally distributed (which we will

verify later), we take 1.96 times the standard deviation of these residuals to be the 95%

confidence interval width for our predictions. Failing the normality test, confidence

intervals may still be calculated using the residuals via Chebyshev’s inequality which

states that in any data sample drawn from any probability distribution with finite

variance, no more than 1/k2 of the values are more than k standard deviations away

from the mean (so k = 4.47 for a 95% confidence interval). We then forecast arrivals

one week ahead at a time. Using the last six weeks (42 data points) of our “training”

data, we predict the number of arrivals on each successive day for next seven days

ahead; shifting ahead into the “unseen” data by seven days, we use the previous 42

data points to predict the arrivals for the next seven days ahead. This is repeated until

we have shifted through the remaining 364 days of data to get 371 predictions in total.

This set of one week ahead predictions is truncated to get 370 predictions, which are

then compared to the corresponding actual number of walk-in and ambulance arrivals

in the “unseen” data. The R code used to create and fit these RA models and to

subsequently perform forecasts is shown in Appendix A.1.

3.3.2 Rolling Average Model Fit

To assess the initial fit of the RA models we calculate the Pearson product-moment

correlation coefficient (r) of the “training” data with the corresponding model fit. For

the walk-in RA model we get r = 0.7551, which indicates a good fit. For the ambulance

RA model we have r = 0.4124, which indicates a relatively poor initial fit. Fig. 3.4 shows

plots of the RA model fit to the “training” data for both the walk-in and ambulance
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arrivals. We also check the residuals (rt = x̂t − xt) of the initial model fit. The

autocorrelation functions (acfs) of both model residuals are shown in Fig. 3.5; from

this we can see that there are many significant peaks in the acfs of both models,

but especially for the walk-in model residuals (shown on the left). These correlations

within the residuals indicates that there exists remaining structure which has not been

incorporated into the RA models. For the walk-in and ambulance model residuals, the

Ljung-Box test returned p values ¿ 0.0001 for both sets of residuals, meaning that

the residuals from both model fits are not independent – as was already indicated by

the respective acfs. Fig. 3.6 shows the corresponding histogram of the residuals and

also a superimposed normal density with the same mean and standard deviation as

the residuals; the close correspondence indicates that it is reasonable to assume that

the residuals are approximately normally distributed with zero mean and that it is

appropriate to take 1.96 times the standard deviation of these residuals to be the 95%

confidence interval width for our predictions [24].
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Figure 3.5: The acf of the residuals of the RA models of walk-in (left) and ambulance
arrivals (right).
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3.3.3 Rolling Average Model Predictions

Table 3.1 presents the quality of forecast measures for predicting one week ahead at

a time using the RA models of walk-in and ambulance arrivals. Plots of the RA

model predictions (in blue) for both walk-in and ambulance arrivals with the “unseen”

observed patient arrivals (in black) and the corresponding 95% confidence intervals

(in red) are shown in Fig. 3.7. The week ahead prediction scatterplots are shown in

Fig. 3.8.

RA walk-in model
Mean Bias RMSE r 95% CI width p

-0.3851 20.0468 0.4965 ± 36.3052 0.0703
RA ambulance model

0.3342 9.7517 0.1608 ± 19.6811 0.0270

Table 3.1: Quality of forecast measures of the one week ahead RA model predictions
for walk-in and ambulance arrivals.

Table 3.1 shows that the RA model week ahead predictions show a small negative

bias for walk-in arrivals and a small positive bias for the ambulance arrivals. The p

values for both the walk-in (p = 0.0703) and ambulance (p = 0.0270) arrival predictions

indicate that 7% of the “unseen” observed patient arrivals lie outside the 95% confidence

intervals of our walk-in arrival predictions and 2.7% lie outside for the ambulance

arrival predictions. This indicates that the walk-in prediction confidence interval may

be slightly too narrow, with the ambulance predictions confidence intervals slightly too

wide. Table 3.1 and the scatterplot on the left in Fig. 3.8 show that the RA model

of walk-in arrivals performs reasonably well, with our week ahead predictions showing

reasonable correlation with the observed “unseen” data (r = 0.4965). From Table 3.1

we can see that the quality of the RA ambulance model predictions are worse, with our

week ahead predictions showing poor correlation (r = 0.1608) with the “unseen” data.

This is reinforced by the one week ahead scatterplot shown on the right in Fig. 3.8.

The low correlation between the RA models and the observed data, together with the

autocorrelation in the residuals of the model fit and the Ljung-Box test result, suggests

that the RA model predictions currently used in our case study department can be

improved upon.
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Figure 3.8: Scatterplots comparing the one week ahead RA model predictions for the
walk-in (left) and ambulance (right) arrivals with the “unseen” observed patient ar-
rivals.

3.4 Auto-Regressive Models

3.4.1 Specification

In an order q auto-regressive (AR) process [56, 19, 25], the current value of the stochastic

process xt of length T is expressed as a finite, linear aggregate of the q previous values

of the process and a disturbance term εt.

Formally an auto-regressive process of order q is written as:

xt = φ1(xt−1 − µ) + ... + φq(xt−q − µ) + εt, t = 1, ..., T (3.2)

where ψ = {φ1, ..., φq} is the set of adjustable coefficients, µ is the mean of xt and εt is

a sequence of uncorrelated random variables with mean zero and constant variance.

When fitting auto-regressive models, the time series being modelled is assumed to be

stationary (cf. Section 2.2.3). We apply the KPSS stationarity test to both the walk-

in and ambulance “training” data, which returns a p value < 0.01 for both. Hence

we can reject the null hypothesis that the walk-in and ambulance “training data” are

stationary.
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Figure 3.9: The differenced walk-in (top) and ambulance (bottom) arrival “training”
data.

To make the walk-in and ambulance arrival “training” data stationary, we difference

the data once. That is, given the series xt, we create the new series yt = xt+1−xt. The

differenced data will contain one less point than the original data, leaving us with 1455

differenced data points of “training” data with which to fit our models. The differenced

data is presented in Fig. 3.9. When we now apply the KPSS stationary test to the both

the walk-in and ambulance differenced training data, it returns a p value > 0.1 for both.

Hence we have no evidence to suggest the differenced training data is not stationary,

and we can now fit AR models to this data.

In order to determine the most suitable ψ, we use the method of maximum likelihood

(cf. Section 2.2.4). To determine q, the order of the AR model, we must balance the

goodness of fit with the complexity of the model. This is formalised in the Akaike

Information Criterion (AIC).
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The Akaike Information Criterion (AIC) [5], is the decision rule to select the model for

which:

AIC = −2logL(ψ̃) + 2q (3.3)

is a minimum; here q is the number of parameters and L(ψ̃) is the maximised value

of the likelihood function, where ψ̃ are the maximum likelihood parameter estimates.

The first term corresponds to minus 2 times the natural logarithm of the maximised

likelihood, while the second term is a “penalty factor” for the inclusion of additional

parameters in the model.

The AR models are first fitted to the differenced “training” data (the first 1455 differ-

ences), using the AIC to determine the order of the models. We use this initial model

fit to predict the lth day ahead difference; then we shift ahead into the “unseen” data

by l data points and use the previous 1455 differenced data points to fit a new AR

model of the same order and again calculate the lth day ahead difference predictions.

This is repeated until we have shifted through the remaining 370 days of differenced

“unseen” data. The R code used to create and fit these AR models and subsequently

perform forecasts is shown in Appendix A.2.

3.4.2 Auto-Regressive Model Fit

Using the AIC (Equation 3.3) we find that the differenced walk-in arrivals are best

fitted with a model of order 27 and differenced ambulance arrivals with a model of

order 29. To assess the fit of the AR models, we calculate the correlation coefficient (r)

of the model fit with the differenced “training” data. We then analyse the residuals (εt

in Equation 3.2) by verifying that they are approximately normally distributed with

mean zero, by performing the Ljung-Box test for independence, and by plotting the

residuals both against time t and the fitted values to check for any obvious patterns.

The correlation for both the differenced walk-in and ambulance initial fit is reason-

able with r = 0.6984 for the differenced walk-in arrival model and r = 0.6693 for the

differenced ambulance arrival model. To determine any remaining structure in the

residuals we examine the autocorrelation function (acf) of both sets of residuals, shown
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Figure 3.10: The acf of the residuals of the AR models of differenced walk-in (left) and
ambulance (right) arrivals.
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Figure 3.11: The distribution of the residuals of the AR models of differenced walk-in
(left) and ambulance (right) arrivals and the corresponding normal distributions.

in Fig. 3.10. We see that there are no significant peaks for up to lag 30 for the differ-

enced ambulance model and only one significant peak for the differenced walk-in model.

Fig. 3.11 shows the corresponding histogram of the residuals and also a superimposed

normal density with the same mean and standard deviation as the residuals; the close

correspondence indicates that it is reasonable to assume the residuals are normally

distributed random variables with zero mean. Figs. 3.12 and 3.13 show the residual

plots against time and fitted values respectively. These do not show any clear pattern

in mean or variance; however, the walk-in model residual plots indicate a number of

outliers. The Ljung-Box test returned p value = 0.9954 for the walk-in model residuals

and p value = 1 for the ambulance model residuals, indicating that there is no evi-

dence whatsoever to reject the hypothesis that the residuals from both model fits are

independently distributed. Plots of the AR difference model fits are shown in Fig. 3.14.
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Figure 3.12: The plot of the residuals of the AR models of differenced walk-in (top)
and ambulance (bottom) arrivals against time.
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Figure 3.13: Scatterplots of the residuals of the AR models of differenced walk-in (left)
and ambulance (right) arrivals against the fitted values.



62 Chapter 3. Patient Arrivals Modelling

d
iffe

re
n

c
e

d
 w

a
lk

−
in

 a
u

to
−

re
g

re
s
s
iv

e
 m

o
d

e
l fit

w
e

e
k
s

no. of patients

0
5

0
1

0
0

1
5

0
2

0
0

−50 0 50 100

d
iffe

re
n

c
e

d
 "

tra
in

in
g

"
 d

a
ta

 
A

R
 m

o
d

e
l fit

d
iffe

re
n

c
e

d
 a

m
b

u
la

n
c
e

 a
u

to
−

re
g

re
s
s
iv

e
 m

o
d

e
l fit

w
e

e
k
s

no. of patients

0
5

0
1

0
0

1
5

0
2

0
0

−40 −20 0 20 40

d
iffe

re
n

c
e

d
 "

tra
in

in
g

"
 d

a
ta

 
A

R
 m

o
d

e
l fit

F
igure

3.14:
T

he
differenced

w
alk-in

(top)
and

am
bulance

(bottom
)

A
R

m
odel

fits
(in

blue)
to

the
“training”

data
(in

black).



3.4. Auto-Regressive Models 63

3.4.3 Auto-Regressive Model Predictions

In this section we first compare the forecasts made by AR models of differenced arrivals

with the “unseen” observed differences. These predicted differences are then summed –

if predicting more than one day ahead – and added to the actual number of arrivals

on the last known day (i.e. the last data point used to fit the AR model) to get an

“undifferenced” prediction for number of arrivals for the lth day ahead. This set of

lth day ahead predictions are compared to the observed arrivals for the corresponding

days in the “unseen” data. We also compute and compare the entire one week ahead

predictions (where all seven predictions when l = 7 are taken into account and not just

the single lth day ahead prediction) with the “unseen” observed arrivals in order to

make a direct quality of forecast comparison with the rolling average model predictions.

Difference Predictions

Table 3.2 presents the quality of forecast measures for the one day ahead AR model

difference prediction. We only present the one day ahead difference as difference values

are only useful if the number of arrivals for the previous day is known. The one day

ahead difference prediction plots and scatterplots are shown in Figs. 3.15 and 3.16

respectively.

AR differenced walk-in model
l Mean Bias RMSE r 95% CI width p

1 0.1243 18.3640 0.6691 ± 34.7199 0.0649
AR differenced ambulance model

1 0.2752 9.3754 0.6632 ± 18.4156 0.0486

Table 3.2: Quality of forecast measures of the one day ahead AR model difference
predictions for differenced walk-in and ambulance arrivals.

Table 3.2 shows that the one day ahead difference predictions by the AR models for

both the differenced walk-in and ambulance arrivals show a very slight positive bias.

From both Table 3.2 and Fig. 3.16 we can see that both the AR model difference

forecasts are good with the correlation with the observed differences being r = 0.6691

and r = 0.6632 for predicted walk-in and ambulance differences respectively.
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Figure 3.16: Scatterplots comparing the one day ahead difference AR model predictions
for walk-in (left) and ambulance (right) differenced arrivals with the “unseen” observed
patient arrival differences.

Arrival Predictions

Tables 3.3 and 3.4 present the calculated quality of forecast measures of the one to

seven day ahead “undifferenced” AR model predictions. The one day ahead arrival

prediction scatter plots and plots are shown in Fig. 3.17 and 3.18. The one week ahead

prediction comparison with the “unseen” observed arrivals is presented in Table 3.5

and the corresponding scatterplots are shown in Fig. 3.19.

AR walk-in model
l Mean Bias RMSE r 95% CI width p

1 0.1243 18.3640 0.5921 ± 34.7199 0.0649
2 0.3012 18.4518 0.5632 ± 43.2713 0.0216
3 0.6619 21.4887 0.4994 ± 49.5012 0.0163
4 0.7555 19.1508 0.5206 ± 53.9496 0
5 1.7516 21.4693 0.5722 ± 56.9190 0.0135
6 1.6249 21.2451 0.5364 ± 59.5005 0.0164
7 -2.1202 18.5099 0.2704 ± 61.3974 0

Table 3.3: Quality of forecast measures of the AR model predictions for walk-in arrivals.

From Tables 3.3 and 3.4 we can see that the AR model forecasts for the walk-in ar-

rivals show mostly a small positive mean bias, while the forecasts for the ambulance

arrivals show no trend in the bias. Except for the one day ahead walk-in arrival pre-

dictions (where p = 0.0649), the p values for both the walk-in and ambulance arrival
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AR ambulance model
l Mean Bias RMSE r 95% CI width p

1 0.2752 9.3754 0.1863 ± 18.4156 0.0486
2 -0.4186 9.2524 0.0836 ± 24.4845 0.0108
3 0.0578 9.3764 0.1221 ± 28.6854 0.0244
4 -0.6424 9.2733 0.0406 ± 31.8526 0
5 0.3283 9.2457 0.2269 ± 34.2822 0
6 -0.5308 10.1090 -0.1211 ± 36.4353 0
7 0.2966 10.5806 -0.1225 ± 37.9654 0

Table 3.4: Quality of forecast measures of the AR model predictions for ambulance
arrivals.
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Figure 3.17: Scatterplots comparing the one day ahead AR model predictions for the
walk-in (left) and ambulance (right) arrivals with the “unseen” observed patient ar-
rivals.

models are less than 0.05 which indicates that, except for the one day ahead walk-in

predictions, at least 95% of the “unseen” observed arrivals are within the calculated

95% confidence intervals for the model predictions. For the one day ahead walk-in ar-

rival predictions 93.51% of the “unseen” observed arrivals are still within the predicted

confidence intervals.

Table 3.3 and the scatterplot on the left in Fig. 3.17 show that the AR model of walk-

in arrivals perform well, with our one day ahead predictions showing good correlation

with the “unseen” data (r = 0.5921). As expected, when predicting further ahead the

quality of forecast deteriorates for both our walk-in and ambulance arrivals model, with

the mean 95% confidence interval widths increasing and r value exhibiting a decreasing
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trend for the ambulance model. For the walk-in model this decrease in r value is slow

up until forecast horizon l = 6 (where r = 0.5364), and dips sharply at l = 7 (where it

decreases to r = 0.2704). In contrast with differenced ambulance model (cf. Table 3.2

and Fig. 3.16), the quality of the AR model ambulance arrivals predictions are poor.

As shown in Table 3.4, the one day ahead predictions show poor correlation with the

“unseen” observed arrivals (r = 0.1863); however the correlation is slightly improved for

the fifth day ahead prediction (r = 0.2269). This reasonable performance for the walk-

in arrival model and poor performance by the ambulance arrival model is reinforced by

the one day ahead scatterplots shown in Fig. 3.17.
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Figure 3.19: Scatterplots comparing the one week ahead AR model predictions for walk-
in (left) and ambulance (right) arrivals with the “unseen” observed patient arrivals.

AR walk-in model
Mean Bias RMSE r 95% CI width p

0.5690 19.8089 0.5049 ± 51.2613 0.0243
AR ambulance model

0.2697 9.5323 0.1360 ± 30.2432 0.0108

Table 3.5: Quality of forecast measures of the one week ahead AR model predictions
for walk-in and ambulance arrivals.

The quality of forecast measures of the week ahead “undifferenced” AR model predic-

tions for both arrival streams are shown in Table 3.5 and the scatterplots in Fig. 3.19.

Again we can see that we have a reasonable fit for the walk-in arrivals but a poor

fit for the ambulance arrivals. Both the AR model predictions show a slight positive
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mean bias and the RMSE for both the walk-in and ambulance predictions are lower

than that for the corresponding RA models. The one week ahead walk-in predictions

show a slightly better correlation with the “unseen” data than for the corresponding

RA model (r = 0.5049 compared with r = 0.4965); however, this correlation is worse

for the ambulance arrival model (r = 0.1360 compared with r = 0.1608). The 95%

confidence interval widths get much wider as we predict further ahead, and are nearly

two times wider for both sets of one week ahead AR model predictions than for the

corresponding RA model predictions. This explains the very low p values observed for

the one week ahead AR models.

3.5 Structural Times Series Models

3.5.1 Specification

Intuitively a structural time series model [58] can be thought of as a regression model

in which the explanatory variables are functions of time and the parameters are time

varying. For our models we have used the classical decomposition in which the series

is seen as the sum of trend, seasonal and irregular components. Thus:

xt = µt + γt + εt, t = 1, ..., T (3.4)

where µt is the trend, γt is the seasonal component and εt is the irregular component.

All three components are stochastic and the disturbances driving them are mutually

uncorrelated. The irregular component is white noise, that is a sequence of uncorrelated

random variables with constant mean and variance.

A deterministic linear trend is given by µt = α + βt. Since µt may be obtained recur-

sively from µt = µt−1 + β with µ0 = α, continuity may be preserved by introducing

stochastic terms as follows:

µt = µt−1 + βt−1 + ηt, βt = βt−1 + ξt (3.5)
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where ηt and ξt are mutually uncorrelated white noise disturbances with zero means

and with variances σ2
η and σ2

ξ respectively. The effect of ηt is to allow the level of

the trend to shift up and down, while ξt allows the slope to change. The larger the

variances, the greater the stochastic movements in the trend. If σ2
η = σ2

ξ = 0 then the

stochastic trend collapses to the deterministic trend. The forecasts from such a model

put more weight on the most recent observations; the faster the level and slope change

the more past observations are discounted.

Other components can be added to the model such as a seasonal component. A model

of deterministic seasonality has the seasonal effects summing to zero over a year. The

seasonal effects can be allowed to change over time by letting their sum over the previous

year be equal to a random disturbance term ωt, with mean zero and variance σ2
ω. Thus,

if s is the number of seasons in the year:

γt = −
s−1∑

j=1

γt−j + ωt (3.6)

Fitting of structural time series models is a complex (but readily automated) proce-

dure involving determination of a likelihood function using a Kalman filter (an efficient

recursive filter that estimates the state of a dynamical system from previous measure-

ments) and numerical optimisation. Full details of this procedure can be found in

Harvey’s book [58]. Predictions are made by extrapolating estimated components into

the future. For these ST models we incorporated only a weekly periodicity and not the

annual periodicity indicated by the power spectra (cf. Fig. 3.2) as short term forecasts

will be dominated by the weekly periodicity.

We use the “training” data to fit a structural time series model with a seven day

(weekly) periodicity. We then use this model to predict the number of arrivals for the

lth day ahead (l = 1, 2. . . . , 7); we then shift ahead into the remaining data by l data

points and use the next 1456 data points of observed arrivals to fit a new ST model

and again calculate the lth day ahead prediction. This is repeated until we have shifted

through the remaining 370 days of data. This set of lth day ahead predictions is then

compared to the actual arrivals for the corresponding days in the “unseen” data. We

also compute and then compare the entire week ahead predictions with the “unseen”
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data in order to make a direct quality of forecast comparison with the rolling average

model predictions. The R code used to create and fit these ST models and subsequently

to perform forecasts, is shown in Appendix A.3.

3.5.2 Structural Times Series Model Fit

The Pearson product-moment correlation coefficient (r) of the “training” data with the

corresponding model fit is good for the walk-in model with r = 0.9535, which indicates

a very good fit. For the ambulance model we have r = 0.6157, which indicates a

reasonable initial fit.
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Figure 3.20: The acf of the residuals of the ST models of walk-in (left) and ambulance
(right) arrivals.

As for the previous models we check the residuals to see if there is any unexplained

structure not captured by the models. The acfs of the residuals are shown in Fig. 3.20.

For the walk-in arrivals (shown on the left) there are some peaks crossing the 95%

confidence interval – indicating that there may be some further dependencies within

the data not yet incorporated into our model; for the ambulance model we see only

one significant peak, so it is reasonable to assume that the residuals are uncorrelated.

Fig. 3.21 show plots of the initial ST model fit to the “training” data for both the

walk-in and ambulance arrivals. Fig. 3.22 shows the corresponding histogram of the

residuals and also a superimposed normal density with the same mean and standard

deviation as the residuals. The close correspondence for both arrival types indicate that

it is reasonable to assume that the residuals are normally distributed around mean zero.

Figs. 3.24 and 3.23 and show the corresponding residual plots against time and fitted

values respectively. These do not show any clear pattern in mean or variance; however,
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Figure 3.22: The distribution of the residuals of the ST models of walk-in (left) and
ambulance (right) arrivals and the corresponding normal distributions.
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Figure 3.23: The plot of the residuals of the ST models of walk-in (top) and ambulance
(bottom) arrivals against time.

the walk-in model residual plots indicate a number of outliers. The Ljung-Box test

returned p value ¿ 0.0001 for the walk-in model residuals and p value = 0.5316 for

the ambulance model residuals. This means we can reject the null hypothesis that the

walk-in model residuals are independent (as was indicated by the corresponding acf),

but for the ambulance model residuals we cannot reject the null hypothesis.
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Figure 3.24: Scatterplots of the residuals of the ST models of walk-in (left) and ambu-
lance (right) arrivals against fitted value.

3.5.3 Structural Time Series Model Predictions

Tables 3.6 and 3.7 show the quality of forecast measures of the one to seven day ahead

ST model predictions. The one day ahead arrival prediction scatterplots and plots are

shown in Figs. 3.25 and 3.26 respectively. The one week ahead prediction comparison

with the “unseen” observed arrivals is presented in Table 3.8 and the corresponding

scatterplots are shown in Fig. 3.27.

ST walk-in model
l Mean Bias RMSE r 95% CI width p
1 0.6257 18.0185 0.6205 ± 34.3215 0.0676
2 0.5042 17.7694 0.6095 ± 35.2163 0.0541
3 0.9841 20.8653 0.5426 ± 36.0673 0.0622
4 1.4213 19.2425 0.5264 ± 36.9521 0.0568
5 1.6864 20.6583 0.6114 ± 37.9560 0.0595
6 1.4356 21.0688 0.5534 ± 38.4447 0.0514
7 -1.1342 19.5209 0.2608 ± 55.3970 0.0297

Table 3.6: Quality of forecast measures of the ST model predictions for walk-in arrivals.

From Tables 3.6 and 3.7 it is apparent that the ST model forecasts for the walk-in

arrivals show mostly a small positive mean bias, while the forecasts for the ambulance

arrivals show no trend in the bias. The p values for the walk-in arrivals tend to be

very slightly over 0.05 which indicates that the 95% confidence intervals of the model

predictions are slightly too narrow; the largest p value is p = 0.0676 (for the one day
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ST ambulance model
l Mean Bias RMSE r 95% CI width p
1 0.2944 9.0364 0.2951 ± 18.3133 0.0324
2 -0.5935 9.0146 0.2030 ± 18.3456 0.0297
3 -0.0380 9.2714 0.1873 ± 18.4050 0.0270
4 -0.8125 8.7768 0.2318 ± 18.4465 0.0297
5 0.2909 8.8092 0.3478 ± 18.4977 0.0297
6 -0.0374 10.1434 -0.0374 ± 18.5300 0.0351
7 1.0104 10.1481 -0.0443 ± 18.6486 0.0405

Table 3.7: Quality of forecast measures of the ST model predictions for ambulance
arrival models.

ahead predictions) which indicates that 93.24% of the “unseen” observed arrivals are

inside the 95% confidence intervals for that set of predictions. For the ambulance

arrivals the p values are less than 0.05 for all forecasts.
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Figure 3.25: Scatterplots comparing the one day ahead ST model predictions for walk-in
(left) and ambulance (right) arrivals with the “unseen” observed patient arrivals.

Table 3.6 and the scatterplot on the left in Fig. 3.25 show that the ST model of walk-in

arrivals performs well when forecasting, with one day ahead predictions showing good

correlation with the “unseen” data (r = 0.6205). As expected, when predicting fur-

ther ahead the quality of forecast deteriorates; however, for up to six days ahead this

deterioration is slow, with a trend towards the mean 95% confidence interval widths in-

creasing slightly and r value slowly decreasing. For a seven day forecast horizon, we can

see that the r value decreases sharply and the mean confidence interval width increases

steeply. This may be related to the strong seven day seasonality in the walk-in ST
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model. From Table 3.7 we see that the quality of the ST ambulance model predictions

are not as good, with our one day ahead predictions showing poor correlation with

the “unseen” data (r = 0.2951) while the sixth and seventh day ahead forecasts show

no correlation to the actual arrivals (where r = -0.0374 and r = -0.0443 respectively).

This is reinforced by the one day ahead scatterplot shown on the right in Fig. 3.25.

The quality of forecast measures of the week ahead ST model predictions for both

arrival streams are shown in Table 3.8 and the scatterplots in Fig. 3.27.

ST walk-in model
Mean Bias RMSE r 95% CI width p

4.8328 21.0724 0.5017 ± 46.0742 0.0297
ST ambulance model

0.1350 9.2118 0.2503 ± 18.4920 0.0405

Table 3.8: Quality of forecast measures of the one week ahead ST model predictions
for walk-in and ambulance arrival models.
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Figure 3.27: Scatterplots comparing the one week ahead ST model predictions for walk-
in (left) and ambulance (right) arrivals with the “unseen” observed patient arrivals.

Again we can see that we have a reasonable fit for the walk-in arrivals but a poor fit for

the ambulance arrivals. Both sets of the one week ahead ST model predictions show a

positive mean bias with the bias of the walk-in predictions much larger. The RMSE for

the walk-in predictions is slightly higher than that of the walk-in RA model predictions

and slightly lower than that of the ambulance RA model predictions. The one week

ahead predictions for both arrival streams show a slightly better correlation with the
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“unseen” observed data than for the corresponding RA model (r = 0.5017 compared

with r = 0.4965 for the walk-in predictions and r = 0.2503 compared with r = 0.1608

for the ambulance predictions). The p values are slightly lower than 0.05 for both sets

of arrival model predictions, as would be expected.

3.6 Non-homogeneous Poisson Process Model

Since the time series models in the previous section failed to characterise ambulance

arrivals adequately we investigate the possibility that daily ambulance arrivals may be

characterised by certain classes of stochastic process.

3.6.1 Poisson Processes

We first explore the possibility that the ambulance arrivals may be characterised by

the well known Poisson process. As defined in Section 2.3.2, the Poisson process is

a counting process for the number of randomly occurring events observed in a given

interval of time and was famously used by Ladislaus von Bortkewitsch in 1898 to

describe deaths due to horse kicks in the Prussian cavalry [18].

The Poisson process has a constant arrival rate λ. From Fig 3.28 we can see that the

daily ambulance arrivals exhibit an increasing linear trend (shown in red); this means

that daily ambulance arrivals have an increasing daily arrival rate. In addition to this

the mean and variance of the Poisson process are identical and each equal to λt. The

mean and variance of daily ambulance arrivals for the time period 1 April 2002 to

31 March 2007 are 70.7782 and 115.353 respectively, indicating that daily ambulance

arrivals are unlikely to be characterised by a Poisson process with constant rate λ.

Furthermore when we applied a χ2 goodness of fit test to test the hypothesis that the

ambulance data comes from a Poisson distribution with λ = 70.7782, we obtain a test

statistic of 2974.35. The critical value for this test (a χ2 distribution with 1825 degrees

of freedom) at p ≤ 0.05 is 1926, further confirming that it is not reasonable to assume

that ambulance arrivals are taken from a Poisson distribution.
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Figure 3.28: Daily ambulance arrivals (in black) and linear trend (in red) for 2002-2007.

3.6.2 Non-homogeneous Poisson Processes

In the previous section we found that ambulance arrivals are not characterised by a

Poisson process with constant rate λ. We now consider the non-homogeneous Poisson

process (NHPP), which is a generalisation of the Poisson process where the rate λ(t)

is a deterministic function of time. For daily ambulance arrivals we fit a NHPP with a

linear rate [76]. In particular we assume that we have a NHPP over the interval [0, T ]

with arrival rate function:

λ(t) = a + bt 0 ≤ t ≤ T (3.7)

The overall time interval (0, T ] is divided into N measurement subintervals ( (k−1)T
N , kT

N ],

where 1 ≤ k ≤ N and we observe the number of patient arrivals in each. To test the

goodness of fit we calculate:

U ≡
N∑

k=1

σ−2
k

(
Yk − σ2

k

T

N

)2
, where σ2

k = (a + bxk)
T

N
(3.8)

where Yk is the number of observations in the kth subinterval and xk = (k− 1
2) T

N . If the

Yk is a linear non-homogeneous Poisson process, U should be approximately χ2 with

N − 2 degrees of freedom.

For ambulance arrivals we have five years of daily observations giving us N = T = 1826.

We fit a linear trend to the ambulance arrivals using linear least squares regression to

find the values of a and b giving us: λ(t) = 62.813 + 0.0087t. From Equation 3.8 we
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have U = 2439.761 and N − 2 = 1824 degrees of freedom. The χ2 distribution with

1824 degrees of freedom has at p ≤ 0.05 a critical value of 1924. Our U value is much

higher than this, showing that the daily ambulance arrivals has significant departures

from the linear non-homogeneous Poisson model.

There are papers which describe the fitting and simulation of non-homogeneous Poisson

processes with cyclic or periodic behaviour [67, 68]. This may prove to be a promising

future line of enquiry in this context. However, there is no goodness of fit test available

as yet and what little software has been developed cannot accommodate the large

number of observations in our ambulance arrivals data.

3.7 Hourly Arrivals

We now investigate daily patient arrivals into our case study A&E department by hour.

Instead of forecasting hourly arrivals into our department, we will look at the percentage

of arrivals that arrive by hour during the day for each arrival stream. Hourly patient

arrivals into an American Emergency Department have been previously forecasted [99]

but this did not take to account different patient arrival types.

First we plot the percentage of patient arrivals arriving by hour separately for the each

day of the week, broken down by year of arrival for the time period 1 April 2002 to 31

March 2007. This is to determine if the hourly arrival patterns alter by year for each

arrivals stream. Appendix B.1 shows the plots for walk-in arrivals and Appendix B.2

shows the corresponding plots for the ambulance arrivals. From these plots we can see

that the hourly arrival patterns remain relatively unchanged for each of the years of

data for both arrival streams. Hence we aggregate the percentage arrivals by hour for

each day of the week for all five years of arrivals data; this is shown in Fig. 3.29.

From Fig. 3.29 and the plots in Appendices B.1 and B.2 we can see that the hourly

arrival patterns for weekdays differ from weekends for the walk-in and ambulance ar-

rivals. Walk-in arrivals show an evening increase on weekdays but not weekends and

both walk-in and ambulance arrivals show a higher percentage of arrivals in the early

hours during the weekends relative to the weekdays. For this reason we group weekday
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Figure 3.29: Plots of the percentage of walk-in (left) and ambulance (right) arrivals by
hour for each day of the week during 2002-2007.
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Figure 3.30: Plots of the percentage of walk-in (left) and ambulance (right) arrivals by
hour over weekdays and weekends for 2002-2007.

hourly arrivals and weekend hourly arrivals as shown in Fig. 3.30.

Fig. 3.30 clearly shows that there are more arrivals during the early hours for both

walk-in (between 00 and 07 hours) and ambulance (between 00 and 05 hours) arrivals

during weekends than on weekdays. We can also see that walk-in arrivals are at a peak

between 09 and 14 hours on both weekdays and weekends, followed by a smaller peak

between 18 and 20 hours on weekdays but not weekends. Ambulance arrivals are at a

peak and fairly constant between 11 and 23 hours on weekdays, and 11 to 01 hours on

weekends.

3.8 The Impact of Weather Factors on Patient Arrivals

As described in Section 2.7.1, previous studies of emergency patient arrivals have found

a link between weather-related factors such as temperature and rainfall, and the number
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of emergency service arrivals [39, 26, 62]. For our case study department we similarly

investigated if there was any relationship between a number of weather factors and the

number of patient arrivals.

We first obtained five years of daily weather data (from January 2000 to March 2005)

from the Met office for the closest weather station to our case study hospital. To fit our

models we used weather data for the period 18 March 2002 to 21 March 2005 and the

arrivals data for the period 1 April 2002 to 21 March 2005, allowing us to investigate

the impact of weather conditions up to 14 days before the day of arrival. We then

proceeded to fit a number of multiple regression models of the maximum, minimum

and average daily temperatures, daily rainfall, wind speed, hours of sunlight and wind

chill to the number of daily walk-in and ambulance arrivals for 0 to 14 day lag. The

corresponding R2 values (which indicates the proportion of variability in the arrivals

that is accounted for by the multiple regression model) and significance (p) of each of

the weather factors for the model fits to the walk-in and ambulance arrivals are shown

in Tables C.1 and C.2 of Appendix C respectively.

From Table C.1 we can see that R2 values for the walk-in arrival models are very low,

especially as the lag horizon increases with the highest value (R2 = 0.0396) at lag

0. We can also see that the weather factors of greatest significance are the minimum

temperature and rainfall. This indicates that the amount of rainfall and the minimum

temperature on the day of arrival have most impact on the number walk-in arrivals.

From Table C.2 we can see that the R2 values for the ambulance arrival models are

higher than for the walk-in arrivals, with values between 0.051 and 0.065 at and above

a 6 lag, peaking at lag 9 (where R2 = 0.0645). This shows that there is a link between

lagged weather-related parameters and ambulance arrivals; however, it is not clear from

our data which of the weather factors are of the greatest significance.

However, since the R2 values are low, explaining a maximum of 3.96% of the variation

shown in the number of walk-in arrivals and 6.45% of the variation shown in the number

of ambulance arrivals, the impact of weather-related parameters to our case study A&E

department do not seem as significant as in previous studies. This may be due in part

to the lack of extreme weather conditions here in the UK – unlike the countries of the
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case studies mentioned – which can result in a rise in the number of people requiring

emergency medical care.

3.9 Conclusion

We have shown that both walk-in and ambulance arrivals exhibit – to different degrees –

a linear trend, a weekly periodicity and an annual seasonality. Using time series models

we have shown that we can characterise walk-in arrivals effectively and that our one

to six day ahead forecasts have good predictive power. However, we had less success

with our ambulance arrivals models. For one up to six days ahead predictions the

structural time series (ST) model forecasts – for both walk-in and ambulance arrivals –

perform better than the corresponding auto-regressive (AR) model predictions in terms

of higher correlation with the observed data, generally lower root mean square error

(RMSE) and narrower 95% confidence intervals. We have also shown that the one week

ahead predictions from the auto-regressive and structural time series models perform

better for walk-in arrivals than the rolling average (RA) predictions – currently used in

our case study department – in terms of higher correlation with the “unseen” data. For

ambulance arrival forecasts the ST model one week ahead predictions have a greater

correlation with the observed arrivals than the RA model predictions which in turn

have a higher r value than the corresponding AR model one week ahead forecasts.

The poor performance of the ambulance arrival time series model forecasts may be

because the ambulance arrivals do not exhibit very strong periodicities or other regu-

larity (cf. Fig 3.2). Thus the ambulance arrival stream might not be appropriate for

this method of time series analysis. We investigated characterising ambulance arrivals

by a random process, fitting both a Poisson process and a linear non-homogeneous

Poisson process to the ambulance arrivals, but we found that our “training” data fails

the corresponding goodness of fit tests. Despite being only able to characterise and

forecast walk-in arrivals effectively, these model forecasts will still be of value to hospi-

tal managers as walk-in arrivals will account for the majority of arrivals into an A&E

department. However, to be of greatest use within healthcare planning, longer forecast

horizons will be required. These methods may also be useful in characterising and fore-
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casting daily arrivals into other A&E departments as well as other forms of hospital

arrivals e.g. emergency hospital admissions [61] and non-emergency hospital depart-

ment arrivals. This applicability will require further study as we have only applied

these methods to data from a single site.

In Section 3.7 we showed that the hourly arrival patterns differ for ambulance and walk-

in arrivals, but remain constant for each day of the week during each year of our data

within each arrival stream. The hourly arrival patterns are similar during weekdays and

during weekends for both arrival streams and may be combined together. This hourly

breakdown of daily arrivals will be useful to hospital managers when deciding the

staffing and resource levels required throughout the day as well as designing workshift

and handover patterns that coincide with less busy periods of the day. For instance we

have shown that there is an increase in walk-in arrivals in the evening during weekdays

after the peak in the morning, which should be taken into account when drawing up

staff workshift and handover timetables.

Finally, a study of the impact of weather-related variables on patient arrivals to our case

study department found that weather-related variables only described a low proportion

of the variance seen in the actual arrivals. This may be because of a lack of extreme

weather conditions in this country. However, since this thesis only looked at the impact

of weather factors on patient arrivals to one case study A&E department, further

research into the weather impact on arrivals to other A&E departments is needed. In

addition since we have shown that lagged weather factors affect ambulance arrivals –

allowing for a prediction horizon of up to 14 days ahead – future stochastic models of

ambulance arrivals may benefit from the inclusion of lagged weather factors.



Chapter 4

Patient Flow Model

4.1 Introduction

In many complex processing systems with limited resources, fast response times are

demanded, but are seldom delivered. Such requirements typically relate not only to

mean response times, but also to variability of response times. This is an especially

serious problem in healthcare systems providing critical patient care. In particular A&E

departments in England are subject to a government set response time target, whereby

98% of patients should spend 4 hours or less in an A&E department from arrival to

admission, transfer or discharge. There is therefore a need to develop appropriate

performance models of A&E departments in order to assess their ability to meet these

response time targets under various resource allocations and patient treatment schemes

without having to disrupt the actual system.

As discussed in Section 2.7.2 there have been many models and simulations of A&E

departments. There are three main drawbacks of these existing efforts. Firstly, they

tend to be very high-level models, so they give a general overview of the system as a

whole but are unable to provide any insights at the individual resource level. Secondly,

performance measures are often limited to mean values of response times and utilisa-

tions; however, more sophisticated measures such as the higher moments and densities

of response times can help to understand the variability in a system, and how it should

be structured in order to meet response time quantile targets. Finally, these models

85
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and simulations are often parameterised using small quantities of data and frequently

either remain unvalidated or are validated against very little actual patient data.

This chapter describes our work on a hierarchical multiclass Markovian queueing net-

work model of patient flow in our case study A&E department. Using patient timing

data to help parameterise the model, we solve for moments and probability density

functions of patient response time and associated resource utilisations using a discrete-

event simulation. We experiment with different patient handling priority schemes and

compare the resulting response time moments and densities with real data. We also

implement various workload and resource availability scenarios and investigate the sub-

sequent impact on system performance.

The remainder of this chapter is arranged as follows. Section 4.2 describes the patient

flow diagrams upon which our queueing network model is based. In Section 4.3 we

present the derived multiclass queueing network of patient flow. Section 4.4 describes

methods by which we can extract performance measures from our queueing network

model. Section 4.5 gives details on the implemented discrete-event simulation. Sec-

tion 4.6 presents the mean, standard deviation and service time densities of actual

patient service times. Section 4.7 presents the simulation results and comparison with

actual data for class-based patient priority schemes, with Section 4.8 presenting the

corresponding results for time-based priority schemes. Section 4.9 investigates model

extensions to take into account impact of the four hour waiting time target. Section 4.10

presents a number of workload and resource/staffing scenarios and the corresponding

simulation results. Section 4.11 concludes.

4.2 Preliminaries

Working closely with an A&E consultant at our case study department, we created

detailed patient flow diagrams for the following three types of patient arrivals:

• Self-referred arrivals - patients that come of their own accord and not using

hospital transport (see Appendix D.1),
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• GP-referred arrivals - patients that come into A&E after being referred by a

General Practitioner (see Appendix D.2), and

• Ambulance arrivals - patients that arrive via ambulance (see Appendix D.3).

Appendix D.1 additionally illustrates the patient pathways for minors patients – that is,

patients with minor illnesses or injuries, the majority of which are self-referred arrivals,

while Appendix D.3 additionally shows the patient pathways for majors patients – that

is, patients with major illnesses or injuries, the majority of which arrive by ambulance.

4.3 Queueing Network Model

Figs. 4.2 and 4.3 show the simplified multiclass queueing network model of patient flow

we have developed from the flow diagrams described in the previous section. Patient

timing data from the financial year 2004 to 2005 (1 April 2004 to 31 March 2005) was

used to calculate the average arrival rates and routing probabilities. Other parameters

not obtainable from the data e.g. estimates of the average service rates, are given by

an A&E consultant.

The model takes the form of a hierarchical network of M/M/m queues. Fig. 4.2 shows

top-level patient routing with various aggregated servers; their corresponding lower-

level expansions are presented in Fig. 4.3. The top-level model has three patient arrival

types: walk-in arrivals (whereby patients arrive under their own transport; this includes

self-referred and GP-referred arrivals) and two types of ambulance arrivals (whereby

the patient arrives by ambulance). Once in the department each patient is categorized

as one of four customer classes: patients with minor illnesses or injuries (minors – class

1 in our model), patients with major illnesses or injuries (majors – class 2), patients

requiring resuscitation (class 3) and patients that have yet to be classified (assessment –

class 4). Customers can change class as they proceed through the system.

4.3.1 Notation

The five different types of nodes used in our model are shown in Fig. 4.1, with the role

of each node described in more detail below:
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Figure 4.1: Queueing network model notation.

• Server Node - service node with n servers, each with mean service rate µ patients

per hour (pt/hr). If all n servers are busy, patients queue for service.

• Aggregated Server Node - a single node representing the aggregation of a

submodel in the top-level model. These are indicated in Fig. 4.2 and are shown

in more detail in the lower-level expansion (Fig. 4.3).

• Obtain Passive Resource - node at which a patient obtains one of m passive

resources (a resource required by a patient before they can progress along a treat-

ment path). Once obtained, the patient retains the resource until released. If all

m resources are taken, patients will queue for the resource to become available.

There is a configurable added deterministic delay (1 minute in our models) in

acquiring a passive resource to account for the time it takes for a patient to move

to the resource.

• Release Passive Resource - node at which a passive resource is (instanta-

neously) released, at which point it becomes available to other patients.

• Leave Submodel - node at which a patient leaves the aggregated server, moving

from the lower-level submodel to the top-level model.

4.3.2 Passive Resources

In many cases a patient needs to obtain a (passive) resource before they can progress

along a treatment path. An example is the nurse assessment rooms (of which there

are 5 in our A&E department). A patient must wait for one to become free before
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entering the room for assessment by a nurse. Once the assessment has been completed,

the patient leaves the room, freeing it up for the next patient. Other passive resources

include minors cubicles (of which there are 9), majors bays (of which there are 25) and

resuscitation beds (of which there are 4).

4.3.3 Walk-in Patients

As shown in the top-level model, the majority of patient arrivals are walk-in patients

who enter via the A&E waiting room where they are registered at reception. The

receptionists then route each patient into one of three queues: patients with a clear

case of minor injury are placed in the minors queue (see AEU Submodel); patients with

a clear case of a serious illness or serious injury are sent to the majors queue (see AEU

Submodel); all others (including all suspected cases of minor illness) are sent for nurse

assessment (see Assess Submodel).

Minors Queue

Patients in the minors queue must first wait for a minors cubicle to become free; the

patient then waits there for a minors practitioner (either a minors doctor or a nurse

practitioner) to see them. The minors practitioner can decide to:

• Perform investigative tests and/or scans such as blood tests and x-rays, or

• Ask for a specialist opinion, or

• Treat (if necessary) and discharge the patient (to home, their GP or to the phar-

macy to pick up medication), or

• Send the patient to be admitted to a (surgical) ward, or to the Medical Assessment

Unit (MAU) which assesses the need for medical admissions.

Majors Queue

Patients in the majors queue wait for a bed in a majors bay to become free; once

there, a nurse may arrange for a number of tests (e.g. vitals, blood tests, x-ray) so that
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4.3. Queueing Network Model 91

 
 
 

Assess Submodel 

AEU Submodel 

Resusc Submodel 

Nurse 
Assess 

(x 3) 
(µ = 4.0 pt/hr) 

 

4 1, 2, 4 
Get Assess 

Room 
(x 5) Release 

 

 Assess Room 

Leave 
Assess 

Submodel 
 

3 3 
Release 

 

 Resusc Bed 

Get Resusc 
Bed 
(x 4) 

 

Resusc 
Team 
(x 2) 

(µ = 0.5 pt/hr) 
 

Leave 
Resusc 

Submodel 
 

Remain class 1 (p = 0.4236),  
Switch to class 2 (p = 0.1336) Minors 

Practitioner 
(x 4) 

(µ = 3.5pt/hr)  
 

 
Radiology 

(x 2) 
(µ = 3.0pt/hr)  

 
 

Test 
Nurse 
(x 3) 

(µ = 4.0 pt/hr) 

1 

2 

1 

2 

p = 0.09 

 
 Lab Tests 

(x 8) 
(µ = 2.0 pt/hr)  

 
 

1 

2 

2 

2 

 p = 0.122 

p = 0.06 

p = 0.127 

p = 0.7745 

2 
p = 0.2255 

2 

p = 0.3528 

p = 0.45 

p = 0.55 

1 (p = 0.1636) 
 

2 (p = 0.3871) 

p = 0.8364 

p = 0.6129 
p = 0.93 

p = 0.07 2 

2 

1 

1 
1 

2 

2 

Get Minors 
Cubicle 

(x 9) 

Get Majors 
Bay 

(x 25) 

Doctor 
(x 4) 

(µ = 2.4 pt/hr) 

2 

2 

p = 0.1665 

Remain class 2  
( p = 0.5204) 
  

Switch to class 3 
(p = 0.0041) 

2 

2 

2, 3 

2 

2 

Minors 
Cubicle 
Release 

 

2 

1 

Surgical 
Specialist 

(x 2) 
(µ = 0.5 pt/hr) 

2 

 
Other 

Specialist 
(x 2)  

Medical 
Specialist 

(x 2) 
(µ = 1.0 pt/hr) 
 

2, 3 

(class 1 µ = 1.2 pt/hr) 
(class 2 µ = 1.0 pt/hr) 
 

2 

2 

Majors 
Bay 

Release 
 

Leave 
AEU 

Submodel 
 

1 

1, 2, 3 

2, 3 

2, 3 

2 1 

2 

1, 2 MINORS 
QUEUE 

MAJORS 
QUEUE 

RESUSCITATION 
QUEUE 

NURSE 
ASSESSMENT 
QUEUE 

Figure 4.3: Lower-levels of queueing network model of patient flow.



92 Chapter 4. Patient Flow Model

essential information is ready for when a doctor assesses the patient. Tests for both

majors and the minors are processed in the same laboratory and radiology facilities.

When the doctor has assessed the patient, (s)he may require a specialist opinion, request

more tests, or send the patient out of A&E (possibly after treatment) via the routes

mentioned above for the minors queue, or, if the patient has a cardiac complaint, send

them to the Coronary Care Unit (CCU). Very rarely a patient may suffer a sudden

rapid deterioration, in which case the patient is transferred to a resuscitation bay and

is attended to by the resuscitation team.

Nurse Assessment

Patients in the nurse assessment queue wait for an assessment room to become available;

they then wait there for a nurse to assess the severity of their illness or injury. The

nurse can send the patient either to the minors queue, the majors queue or discharge

them out of A&E to a specialist clinic, ward, GP etc.

Specialists

A specialist’s opinion may be required by a minors practitioner or majors doctor. Mi-

nors patients are only referred to “other” specialists which encompass Obstetrics and

Gynaecology, ENT (ear, nose and throat) and Orthopaedics. Majors patients may

be seen by medical, surgical and other specialists. After assessment, patients are dis-

charged from A&E, either by being sent home, to a clinic for a more thorough investi-

gation, to a ward for admission or to the MAU.

4.3.4 Ambulance Arrivals

As shown in the top-level model, there are two forms of ambulance arrivals: standard

ambulance arrivals, which make up the majority of the cases and blue call ambulance

arrivals, who require immediate medical attention.
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Standard Ambulance Arrivals

These patients (whom we shall refer to from now on as simply ambulance arrivals) are

handed over to a nurse from the ambulance. The nurse assesses the patient, and sends

them either to reception to be registered (where the patient is routed as for walk-in

patients) or straight to a majors bay (where the patient joins the majors queue).

Blue Call Ambulance Arrivals

Blue call ambulance arrivals (whom we shall refer to from now on as blue call arrivals)

are very seriously ill or injured patients that require urgent medical attention. Such

patients are assigned a resuscitation bay and are attended to by a resuscitation team.

Once stable, the patient leaves A&E, being sent either to an operating theatre, to the

Intensive Treatment Unit (ITU), to the CCU or to a ward. Patients who cannot be

resuscitated are sent to the mortuary.

4.3.5 Complexities not Modelled

There are many complexities not incorporated into our model that would be present in

a real life A&E department. These include:

Transient System Parameters In an actual A&E department there are different

arrival rates throughout the day (as demonstrated in Chapter 3); staffing and resource

levels also vary through the day. However, for simplicity, we use fixed-rate Poisson

arrivals and average staffing and resource numbers in our model.

Distributional Assumptions We assume Poisson arrivals and exponential service

times. These distributional assumptions are based on mean arrival rates for each arrival

type and estimates of mean service times, and so might not reflect the true variability

of patient arrivals and staff and resource service time distributions.

Bed Blocking Once it has been decided that a patient should be admitted to a ward

or sent to the MAU, if there is no bed/room available for them then the patient stays
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in A&E, waiting until a bed becomes available. This a major cause of four hour waiting

time breaches.

Hospital Transport Blocking When a patient is discharged, if they require an

ambulance to send them home, they stay in A&E until there is one available. Until the

patient leaves A&E (s)he is still subject to the four hour waiting time target.

Porters Porters are required to transport patients to various scans and x-rays if the

patient is not able to walk. They also transport patients to the different wards or to

the MAU for admission.

Parallel Tests and Scans Patients that require both laboratory tests and radiology

scans in our model have the tests completed first before going to radiology. In an

actual A&E unit, blood and urine etc. samples are first taken and while they are being

processed at the laboratory, the patient is sometimes taken to radiology – so the two

can potentially occur with some overlapping and not sequentially as modelled.

Treatment We have incorporated the treatment time of a patient into the time spent

being seen by either the doctor or minors practitioner. Depending on the treatment

this may or may not be the case in an actual A&E unit. Often a doctor treats a patient,

leaves them to see to another patient before returning later to see if the treatment has

had any effect.

Staff Resources For simplicity in our model we have limited the tasks performed

by some members of the staff; for instance we have assigned nurses to only perform

the specific task of patient assessment. In an actual A&E unit nurses are trained to

perform all required A&E nursing tasks and so act as a pool of resources with the

nurses performing whichever tasks are more urgent first. Similarly, doctors working in

the minors area (minors practitioners) may help to treat patients in the majors area

when it is busy and vice versa.
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GP Referrals Some patients arrive in A&E after being referred by a GP for specialist

treatment. In some cases, the patients are sent straight to the specialists; for others the

patient is first assessed in A&E with perhaps tests being run before being transferred

to a specialist.

Specialists Obviously there are many different types of other specialists available in a

hospital and not just the Obstetrics and Gynaecology, ENT and Orthopaedic specialists

represented in our model.

4.4 Model Solution

There are two main approaches to obtaining performance measures from a model:

simulation and analytical methods. Simulation is used to model systems at arbitrary

levels of detail, producing inexact results bounded by confidence intervals. However,

there is a high cost and effort involved in constructing accurate models and the length of

execution time required to produce reliable results can be very long. Analytical models,

on the other hand, make use of formal, abstract models from which exact results can

be obtained by generating and solving a set of equations derived from the model.

Using our queueing network model we explored the possibility of solving a closed system

analytically using the numerical Laplace transform inversion based method described

in Section 2.6, to determine moments and densities of patient service times. However,

a major difficulty associated with this kind of modelling is the well known state space

explosion problem [14, 101], whereby the state space that emerges from complex models

becomes intractably large, making it impossible to explore the entire state space within

reasonable time using realistic computing memory and power. It is this problem that

we encountered when trying to solve our system analytically – our model has over 16

million states in a closed system with only 8 patients.

We therefore implemented a discrete-event simulation of the queueing network model1.

Discrete-event simulation involves the modelling of a system as it evolves at a dis-

1In the next chapter, we return to seek an efficient analytical approximation that avoids the state-
space explosion problem.
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crete set of points in time. These points in time are the ones at which an event (an

instantaneous occurrence that changes the state of the system) occurs. Two integral

components of any discrete-event simulation are the simulation clock and the future

event list. The simulation clock is a variable which gives the current value of time

and the future event list is a list of the times of occurrences of (pre-determined) future

events. This means that the instant an activity begins, its duration is computed (usu-

ally this involves drawing a sample from a statistical distribution) and the end event

activity (the event that occurs once the current event ends), together with its event

time, is placed on the future event list.

When the simulation begins a run, the simulation clock (which is initialised to zero)

advances to the time of the first of the events on the future event list and updates the

state of the system accordingly (including scheduling new events in the future event

list); the clock then advances to the time of the next event. This process is repeated

until the system reaches some pre-determined stopping condition. For more details, a

thorough discussion of discrete-event simulation can be found in numerous works, for

example [12, 71, 85].

4.5 A&E Simulation

We implement the queueing network model via a discrete-event simulation written in

Java, using and building on the JINQS Java queuing network simulation library [45].

Using this simulation we obtain various performance measures including moments of

patient service time, resource utilisations and patient service time densities for each

of the three patient arrival streams (walk-in, ambulance and blue call arrivals). We

investigate the performance of the system under different class-based and time-based

patient priorities schemes as well as various workload and resource scenarios.

The simulation results presented in the following sections are the average of ten runs.

Each run includes a transient period during which 2 000 000 patients move through the

system (and during which passage time statistics are not collected), followed by a mea-

surement period which lasts long enough to observe 10 000 passages of blue call arrivals

through the system; in this period approximately 485 000 passages of walk-in arrivals
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and 180 000 passages of ambulance arrivals are also observed. Each simulation run

takes between 20 and 60 minutes wall clock time, depending on the workload/resource

parameters, priority scheme implemented and PC cluster workstation used.

4.6 Actual Patient Service Times

Before we present results from our simulation, we first present in Table 4.1 the mean

and standard deviation of patient service time and in Fig. 4.4 the service time densities

for the three types of patient arrival (i.e. walk-in, ambulance and blue call arrivals) as

actually observed in our case study A&E department. Figures are reported over three

annual reporting periods (2002/2003, 2003/2004 and 2004/2005), where each reporting

period begins on 1 April and ends on 31 March the following year (coinciding with the

hospital’s financial year). One can readily observe the effect of the introduction and

subsequent tightening of patient service time targets – note the peaks corresponding to

the four hour target, most evident in the 2004/2005 densities when the four hour target

increased from 90% of patients (from March 2003) to 98% of patients (from January

2005) seen within four hours. We note that the presence of these peaks may point to

the existence of inherent systems problems in this A&E department.

walk-in arrivals ambulance arrivals blue call arrivals
year mean std dev mean std dev mean std dev

2002/2003 3.22 3.61 5.69 4.84 4.18 5.19
2003/2004 2.46 2.23 4.22 3.12 2.43 2.20
2004/2005 2.04 1.59 3.14 2.12 2.09 1.84

Table 4.1: Observed mean and standard deviation (std dev) of service times (in hours)
for different classes of arriving patient.

Our simulation results will be compared with these observed results as we investigate

which of the priority schemes described in the upcoming sections returns results that

are most consistent with each of the above annual reporting periods.
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4.7 Patient Class-based Priority Schemes

We first investigated the performance of the system under various patient class-based

priority schemes. The three different patient class-based priority schemes analysed are:

• Majors Priority in which majors patients are given priority at the shared re-

sources (lab tests, radiology and other specialist),

• Minors Priority in which minors patients are given priority at the shared re-

sources, and

• No Priority in which First In First Out (FIFO) queues are implemented at each

node.

We incorporated these three class-based priority schemes as we hypothesise that a

majors priority scheme most closely represents the priority scheme in place before

the introduction of the 4 hour patient response time target, whereby more seriously

ill/injured patients are seen/treated first. After the introduction of the target, we

believe the system shifted to a scheme more like that of a minors priority system where

the emphasis is on processing patients as quickly as possible – since the majority of

patients in an A&E system are minors patients who are generally easier and quicker

to treat, we assume these are given priority. Finally, we also investigate a no priority

system whereby patients are processed on a First In First Out basis at each node.

4.7.1 Numerical Results

Tables 4.2, 4.3 and 4.4 show the mean and standard deviation of patient service time for

various types of patient arrival (walk-in, ambulance and blue call arrivals) under differ-

ent class-based priority schemes and the corresponding 95% confidence interval widths,

as calculated using our discrete-event simulation. Table 4.6 shows the utilisations for

a selection of staff and resources under the different priority schemes.

From Table 4.2 it can be seen how giving priority to the majors class seriously degrades

the waiting time of the walk-in patients (in terms of both mean and standard deviation),
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which are predominantly minors. By contrast it might appear from Table 4.3 that

seriously injured or ill patients arriving by ambulance actually benefit from a minors

priority scheme. In fact both ambulance and walk in arrivals under minors priority are

seemingly treated quicker than even a no priority system (see Table 4.4).

majors priority walk-in arrivals ambulance arrivals blue call arrivals
mean 4.4391 (± 0.0492) 3.1934 (± 0.0176) 2.0929 (± 0.0051)

std dev 4.6034 (± 0.1116) 3.2386 (± 0.0632) 2.0430 (± 0.0080)

Table 4.2: Mean and standard deviation (std dev) of service times (in hours) and the
corresponding 95% confidence interval widths (in brackets) for walk-in, ambulance and
blue call arrivals under the majors priority scheme as calculated via simulation.

minors priority walk-in arrivals ambulance arrivals blue call arrivals
mean 2.3926 (± 0.0029) 2.7096 (± 0.0028) 2.0868 (± 0.0059)

std dev 2.0271 (± 0.0032) 2.2101 (± 0.0046) 2.0356 (± 0.0061)

Table 4.3: Mean and standard deviation (std dev) of service times (in hours) and the
corresponding 95% confidence interval widths (in brackets) for walk-in, ambulance and
blue call arrivals under the minors priority scheme as calculated via simulation.

no priority walk-in arrivals ambulance arrivals blue call arrivals
mean 3.0441 (± 0.0171) 2.7952 (± 0.0069) 2.0871 (± 0.0037)

std dev 2.7149 (± 0.0391) 2.2145 (± 0.0197) 2.0425 (± 0.0053)

Table 4.4: Mean and standard deviation (std dev) of service times (in hours) and the
corresponding 95% confidence intervals widths (in brackets) for walk-in, ambulance and
blue call arrivals under the no priority scheme as calculated via simulation.

We compare these simulations results to the actual observed means (shown previously

in Table 4.1). This is achieved by first writing the simulated majors priority scheme

walk-in and ambulance arrival means as a vector x1 of two components. The 2002/2003

actual walk-in and ambulance arrivals mean service times are also written as a vector y1.

Similarly the corresponding simulated minors priority and no priority scheme results

are written as vectors x2 and x3 respectively, while the 2003/2004 and 2004/2005

actual results are written as vectors y2 and y3 respectively. We then compare each

of the xi vectors (i = 1, 2, 3) representing the simulated means against each of the yi

vectors representing each year of actual means, by calculating the Euclidean distance

(or two-norm) between each2. These results are shown in Table 4.5.

2where the Euclidean distance between two vectors x and y each of length n denoted by ||x− y||2
is defined as: ||x− y||2 =

p
((x1 − y1)2 + . . . + (xn + yn)2)
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euclidean distance
priority scheme 2002/2003 2003/2004 2004/2005
majors priority 2.7818 2.2319 2.4005
minors priority 3.0934 1.5116 0.5544

no priority 2.8956 1.5339 1.0562

Table 4.5: Euclidean distance between simulated and actual mean service times under
the majors, minors and no priority schemes.

We see from Table 4.5 that for the 2002 to 2003 actual data our majors priority scheme

gives the smallest euclidean distance and hence is the overall best match. For the 2004

to 2005 actual data (after the introduction of the four hour waiting time target) we find

that the minors priority scheme gives the overall best match. For blue call arrivals –

which form an almost independent subsystem – we have the same mean and standard

deviation for all priority schemes and we find that our simulation mean is very close to

the actual observed mean for the year 2004 to 2005.

utilisation
resource majors priority minors priority no priority

minors cubicle 0.8972 (± 0.0006) 0.7751 (± 0.0004) 0.8448 (± 0.0005)
majors bay 0.3932 (± 0.0002) 0.4581 (± 0.0006) 0.4188 (± 0.0002)

minors practitioner 0.7507 (± 0.0003) 0.7512 (± 0.0003) 0.7511 (± 0.0003)
doctor 0.5951 (± 0.0002) 0.5956 (± 0.0003) 0.5952 (± 0.0003)

other specialist 0.7563 (± 0.0003) 0.7571 (± 0.0004) 0.7571 (± 0.0005)
radiology 0.6660 (± 0.0003) 0.6667 (± 0.0004) 0.6664 (± 0.0004)

labs 0.3971 (± 0.0002) 0.3974 (± 0.0003) 0.3970 (± 0.0002)

Table 4.6: Utilisations of a selection of staff and resources and the corresponding 95%
confidence intervals widths (in brackets) under the different patient class-based priority
schemes.

Table 4.6 shows the utilisations for the minors cubicles, majors bays, minors practi-

tioners, doctor and the shared resources (other specialists, radiology and labs) under

the three different patient class priorities. The minors cubicles, minors practitioners

and other specialists are the most highly utilised resources in the system. We can see

that the different priority schemes only affect the utilisations of the passive resources

(minors cubicles and majors bays) while the utilisations for staff (i.e. minors practition-

ers, doctors, other specialist, radiology and labs) are insensitive to the priority scheme

used. As expected, majors bays are less highly utilised under majors priority, while mi-

nors cubicles are less highly utilised under minors priority, with the no priority system
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Figure 4.5: Actual and simulated service time density for walk-in arrivals using
2002/2003 data (left) and 2004/2005 data (right).
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having intermediate utilisations for both resources. The reason that priority schemes

do not impact the utilisations of the staff (in particular the minors practitioners and

doctors) is due to the workload for staff remaining the same regardless of the priority

scheme used. However, the priority scheme will have an impact on the patient’s length

of stay, depending on his/her class, and hence will affect the length of time for which

a passive resource is occupied and so affect the utilisation of that resource.

4.7.2 Densities of Patient Service Time

Figs. 4.5, 4.6 and 4.7 show the simulated vs. actual patient service time densities for

walk-in, ambulance and blue call arrivals respectively; again note the peaks in the

2004/2005 actual service time densities corresponding to the four hour target.

For the walk-in arrivals we can see that the simulation density under no priority is a

good fit to the 2002/2003 actual service time density, while the minors priority sys-

tem provides a good fit (except for the area immediately before and after the peak

corresponding to four hours) to the 2004/2005 actual patient service time density. For

ambulance arrivals, we can see that the simulation under the three priority schemes

give similar service time densities, with none of them adequately fitting the 2002/2003

actual service time density. The fit to the 2004/2005 density is better, but it is difficult

to say which priority scheme provides a better fit as the three densities are so similar.

For the blue call arrivals the priority schemes have little impact and the simulated

densities are the same for each.

4.8 Time-based Priorities

We next investigate the performance of the system under various time-based priority

schemes. The two priority schemes are based on the colour coding system used in our

case study department, which helps to indicate to staff which patients need to be seen

most urgently. Under this system patient details are shown on computer screens in:

• Red - if waiting 3 hours and over

• Yellow - if waiting 2 to 3 hours
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• Green - if waiting 1 to 2 hours

• Blue - if waiting under 1 hour

The two different patient time-based priority schemes implemented are as follows:

• Arrival First Priority in which patients who have been in the department

the longest (i.e. have the earliest arrival time) are given priority at the shared

resources (lab tests, radiology and other specialist), and

• Traffic Light Priority in which patients are allocated higher and higher priority

levels at the shared resources as they approach the 4 hour time limit, but are given

less priority once the 4 hour mark has been breached. The priority levels are as

follows (highest priority first):

? Level 0 - patient has spent between 3 and 4 hours in the department

? Level 1 - patient has spent over 4 hours in the department

? Level 2 - patient has spent between 2 and 3 hours in the department

? Level 3 - patient has spent between 1 and 2 hours in the department

? Level 4 - patient has spent under 1 hour in the department

We experimented with the arrival first priority scheme as we wish to see if treating

patients who have been waiting the longest overall first will lead to an overall reduction

in waiting time for both patient arrival types. We investigate the traffic light priority

system because it mirrors the “rising panic” phenomenon that occurs in real A&E units

whereby patients are subject to higher and higher priority treatment as they approach

the four hour waiting time target. In this way, we hope to see similar peaks at 4 hours

as seen in the observed patient service time densities. In the following sections we

only show the results for the walk-in and ambulance arrivals since the blue call results

remain the same as before.

4.8.1 Numerical Results

Tables 4.7 and 4.8 show the mean and standard deviation of patient service time for the

various types of patient arrival (walk-in, ambulance and blue call arrivals) under the two
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time-based priority schemes and the corresponding 95% confidence interval widths, as

calculated using our discrete-event simulation. Table 4.10 shows the utilisations under

the different priority schemes of the minors cubicles, majors bays, minors practitioners,

doctors and the shared resources.

arrival first priority walk-in arrivals ambulance arrivals
mean 2.8116 (± 0.0070) 2.7716 (± 0.0035)

std dev 2.2728 (± 0.0114) 2.0512 (± 0.0066)

Table 4.7: Mean and standard deviation (std dev) of service times (in hours) and the
corresponding 95% confidence interval widths (in brackets) for walk-in, ambulance and
blue call arrivals under the arrival first priority scheme as calculated via simulation.

traffic light priority walk-in arrivals ambulance arrivals
mean 2.9884 (± 0.0156) 2.8027 (± 0.0062)

std dev 2.6476 (± 0.0298) 2.2089 (± 0.0153)

Table 4.8: Mean and standard deviation (std dev) of service times (in hours) and the
corresponding 95% confidence interval widths (in brackets) for walk-in, ambulance and
blue call arrivals under the traffic light priority scheme as calculated via simulation.

From Tables 4.7 and 4.8 we can see that for both walk-in and ambulance arrivals the

mean response time is lower under the arrival first priority scheme than under the

traffic light priority scheme. This is to be expected as under traffic light priority those

who have waited for over 4 hours have lower priority that those waiting between 3 to

4 hours and so will give higher overall response times than for the arrival first priority

scheme. However, both timed priority schemes give higher mean response times for

both walk-in and ambulance arrivals than for the system under minors priority. When

we compare these two priority scheme results to the actual observed means in terms

of Euclidean distance, as shown in Table 4.9, we find that the arrivals first and traffic

light priority schemes return similar values. These two time-based priority schemes are

not as good a match as the majors priority scheme with the 2002 to 2003 actual data

nor is it as good a match as the minors priority scheme with 2004 to 2005 actual data.

However, for the 2003/2004 data, the arrivals first priority scheme provides the best

match.

Examining the utilisations shown in Table 4.10 we can see that minors cubicles are

more highly utilised under both time-based priorities than under the minors priority

scheme (cf. Table 4.6). However the majors bay is less utilised for both than under
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euclidean distance
priority scheme 2002/2003 2003/2004 2004/2005

arrival first priority 2.9486 1.4916 0.8543
traffic light priority 2.8991 1.5157 1.0090

Table 4.9: Euclidean distance between simulated and actual mean service times under
the arrival first and traffic light priority schemes.

utilisation
resource arrival first priority traffic light priority

minors cubicle 0.8396 (± 0.0007) 0.8437 (± 0.0007)
majors bay 0.4232 (± 0.0003) 0.4209 (±0.0004)

minors practitioner 0.7509 (± 0.0004) 0.7511 (± 0.0002)
doctor 0.5952 (± 0.0003) 0.5951 (± 0.0003)

other specialist 0.7568 (± 0.0005) 0.7571 (± 0.0008)
radiology 0.6663 (± 0.0004) 0.6664 (± 0.0002)

labs 0.3972 (± 0.0002) 0.3973 (± 0.0002)

Table 4.10: Utilisation of a selection of staff and resources and the corresponding 95%
confidence interval widths (in brackets) under the different time-based priority schemes.

minors priority, but still more highly utilised than when under both no priority and

majors priority schemes. The relatively poor performance of the traffic light priority

may be because even if patients are given priority at the shared resources, by the time

most patients are processed and leave the A&E unit, they have breached the 4 hour

time limit (for instance, even if a patient is given priority by the other specialist, service

would still take on average 60 minutes for a majors patient); this then has a knock on

effect on those patients who are in the department for between 2 to 3 hours and are

assigned two levels lower priority. Similarly for the arrival first priority scheme, by

prioritising patients who are in the department the longest, those patients who could

be processed faster are penalised while they wait for the higher priority patients to

be processed, which has a detrimental effect on the overall mean service times. A

priority system similar to the traffic light system whereby patients waiting between 2

and 3 hours in total are given higher priority may give better results in terms of mean

response times.
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4.8.2 Densities of Patient Service Time

Figs. 4.8 and 4.9 show the simulated vs. actual patient service time densities for walk-in

and ambulance arrivals respectively under the arrival first priority and traffic light pri-

ority schemes. Fig. 4.10 shows the densities under the two time-based priority schemes

together with the actual service time densities for both arrival types.

From Fig. 4.8 we can see that the both the arrival first and traffic light priorities are not

as good a match with the 2004/2005 actual walk-in service time density as under the

minors priority system (cf. Fig. 4.5). Notice the slight “bump” between 3 and 5 hours

on the traffic light priority densities (on the right of Figs. 4.8 and 4.9) corresponding

to the impact of giving patients approaching four hours total service time the highest

priority level. This relatively small impact on the resulting density around four hours

under the traffic light priority scheme indicates that starting to give highest priority

to patients one hour before the four hour mark does not give as dramatic an impact

in our simulations as seen in the actual system. This together with the plots of the

actual 2004/2005 densities (cf. Fig. 4.4) suggests that patients are given highest priority

status just before the four hour mark and are then subsequently dealt with much more

rapidly than modelled (possible through the deployment of extra resources or routing

of patients out of A&E). Fig 4.10 compares both time-based priority systems with the

actual service densities, and shows that the arrival first and traffic light priorities give

very similar looking densities.

4.9 Replicating the Impact of the Four Hour Target

We have seen that of all the priority schemes investigated, the minors priority scheme

gives the overall closest match to the actual 2004/2005 system. The biggest discrepancy

between the simulated system under minors priority and the actual system is the lack

of a spike corresponding to four hours and the height of the simulated density tail

immediately after this peak. We now look at ways of adapting the minors priority

scheme to include the impact of this target. Having shown that using ten simulation

runs for each system scenario provides narrow 95% confidence interval widths, we omit

these results in the following sections.
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Figure 4.8: Actual and simulated service time density for walk-in arrivals under arrival
first priority (left) and traffic light priority (right).
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Figure 4.9: Actual and simulated service time density for ambulance arrivals under
arrival first priority (left) and traffic light priority (right).
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Figure 4.10: Actual and simulated service time density comparing the two time-based
priority schemes for walk-in (left) and ambulance (right) arrivals.
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4.9.1 Inserting a CDU Node

First we experiment with the insertion of a Clinical Decision Unit (CDU) which is used

by A&E as a holding ward for patients if they are waiting for the return of test/scan

results or a specialist opinion and are in danger of breaching the four hour service time

target. In our case study department the CDU has 12 beds and an estimated mean

holding time of 24 hours.
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Figure 4.11: Position of the CDU node.

In Fig. 4.11 we show the placement of the CDU node. The node is placed after the

laboratory tests and radiology nodes (shown aggregated together as one node) and

after the minors practitioner and the doctor servers. This path is only taken if the

patient has waited between 3.75 and 4 hours and there is a bed available in the CDU.

On taking this path, the patient releases the passive resource currently held (either a

minors cubicle or majors bay) and obtains a CDU bed (notice there is no queueing).

Once they have a bed the patient is taken to have left the A&E department and the

patient timing stops. The patient then holds the CDU bed for a time drawn from the

exponential distribution with mean 24 hours before releasing it.

Table 4.11 compares the mean and standard deviation of patient service time in A&E
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of walk-in and arrivals under minors priority with and without the CDU node. The

corresponding service time densities are shown in Fig 4.12.

walk-in arrivals ambulance arrivals
priority scheme mean std dev mean std dev
with CDU node 2.2267 1.8068 2.5626 1.9848
without CDU node 2.3926 2.0271 2.7096 2.2101

Table 4.11: Mean and standard deviation (std dev) of service times (in hours) for
walk-in and ambulance arrivals under minors priority with and without a CDU node.
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Figure 4.12: Actual and simulated service time density comparing the minors priority
with CDU node for walk-in (left) and ambulance (right) arrivals with actual data.

As expected we can see from Table 4.11 that the mean waiting times in A&E for

both arrival types are less pronounced under the minors priority with the CDU node.

If we now look at the service time densities in Fig. 4.12 we can see that we have

a corresponding spike around the four hour mark for both walk-in and ambulance

arrivals; however, both spikes are much lower than for the actual densities, especially

for the ambulance arrivals case. We can also see in the actual densities that there is a

dip after the four hour spike which is not replicated by the addition of the CDU node.

4.9.2 Probabilistic Adjustment of Patient Service Times

We next experiment with manually altering the response time density under minors

priority via a mathematical formula. In particular we reallocate a percentage of patients

whose response times lie in the 40 minutes after 4 hours to the 20 minutes before.

The percentage reallocated R(t) is dependent on the amount of time that has elapsed
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Figure 4.13: Illustration of the percentage of patient service times reallocated from the
40 minutes after 4 hours.

after the 4 hour mark, as illustrated in Fig. 4.13 and is given by:

R(t) =





100(1− 3
2(t− 4)) if 4 ≤ t ≤ 4.6667

0 otherwise
(4.1)

When we compute the service time densities, we use five minute “buckets” which means

all patient service times that fall into the same 5 minute range are counted together.

We then take the mid-point of the range when plotting the densities. When using

Equation 4.1 we will take the mid-point to represent the range and reallocate the same

percentage for the whole bucket. Thus for instance in the time period 4hrs 30 mins to

4hrs 35 mins, we take the midpoint t = 4.54167, which from Equation 4.1 means that

66.67% of the patients falling into this time period will be reallocated.

Once we have calculated the amount of patients to be reallocated from each bucket (8

in the time between 4 and 4.6667 hours), we sum to obtain the total number of patients

to be reallocated. A percentage of this total sum is then added to each of the 4 buckets

that make up the 20 minutes before 4 hours (i.e. the time from 3.6667 to 4 hours).

Similar to the reallocation, the percentage of the total to be added A(t) is dependent

on the amount of time that has elapsed after the 3.6667 hour mark; this subsequent
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allocation is illustrated in Fig. 4.14 and is given by:

A(t) =





100(3
2(t− 3.6667)) if 3.6667 ≤ t ≤ 4

0 otherwise
(4.2)

As for when using Equation 4.1, when applying Equation 4.2 we will take the mid-point

of a bucket to represent the entire range and allocate the same percentage of the total

sum to the whole bucket. The allocation is as follows:

• For the time period 3hrs 55mins to 4hrs (shown in red in Fig. 4.14), the midpoint

is t = 3.9583, which using Equation 4.2 gives the percentage to be allocated to

be 43.75%

• For the time period 3hrs 50mins to 3hrs 55mins (shown in yellow in Fig. 4.14),

the midpoint is t = 3.8750, which using Equation 4.2 gives the percentage to be

allocated to be 31.25%

• For the time period 3hrs 45mins to 3hrs 50mins (shown in green in Fig. 4.14),

the midpoint is t = 3.7917, which using Equation 4.2 gives the percentage to be

allocated to be 18.75%

• For the time period 3hrs 40mins to 3hrs 45mins (shown in blue in Fig. 4.14),

the midpoint is t = 3.7083, which using Equation 4.2 gives the percentage to be

allocated to be 6.25%

Notice that the total percentage to be allocated sums up to 100% as would be required.

The resulting response time densities are shown in Fig 4.15. We can see that for the

walk-in arrival service time density, the height of the spike is closer to the actual one

seen in the data but the area after four hours still exhibits a higher tail than seen in

the actual data. For the ambulance arrival service time density we can see that though

the spike is higher than before (and in the right position) it is still much smaller than

actually observed; however, the tail now matches almost exactly.
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Figure 4.14: Illustration of the percentage of the total patient service times to be added
to the service time densities of 20 minutes before 4 hours.
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Figure 4.15: Actual and simulated service time density comparing the minors priority
(adjusted using the mathematical formula) for walk-in (left) and ambulance (right)
arrivals with actual data.

4.10 Workload and Resource Scenarios

In this section we experiment with differing workloads and resource/staffing scenarios.

We run the resource/staffing scenarios using our simulation model under minors priority

as we have found this priority scheme to be the closest match to the current real system.

From the scenario results we hope to gain insights into how the real life system would

behave under increasing workloads, as well as identifying the resources that have the

most impact on patient service times.
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4.10.1 Workload Scenarios

We first investigate the workload levels at which each class-based priority scheme is

most effective in terms of lower mean walk-in and ambulance arrival patient service

times in our A&E model. We vary the workload of the system by altering together

the rate of both walk-in and ambulance arrivals by between 25% to 100% of actual

arrival rate and compare the resulting service time means under the three class-based

priority schemes. Since it is effectively a standalone subsystem, we do not alter the blue

call arrival rate, or present any blue call results. Figs. 4.16 and 4.17 show the results

for walk-in and ambulance arrivals respectively. The corresponding tables of results

for walk-in and ambulance arrivals are shown in Tables E.1 and E.2 respectively in

Appendix E.

From Figs. 4.16 and 4.17 we can see that under low loading (between 25% and 50% of

workload) the priority scheme has little impact on mean service time for either of the

arrival types. For ambulance arrivals, when we have medium loading (50% to 85%)

we can see that they perform better under majors priority (as expected) than both no

priority and minors priority. However, when we get to slightly higher workloads (85% to

95%) the no priority scheme gives lower mean response times than both majors priority

and minors priority schemes. As the system reaches full loading (95% to 100%) the

lowest mean response times come under minors priority. From Fig. 4.16 we can see that

for the walk-in arrivals, minors priority performs the best once the loading is above 60%

with the mean response times much lower under minors priority for higher loads (90%

to 100%) with the mean service time for full loading under minors priority being 2.39

hours compared to 4.44 and 3.04 hours for majors priority and no priority schemes

respectively.

Next we look at the effect of increasing workload over and above the current level under

minors priority. We found that if we increased the workload by more than 15% the

system reaches saturation (i.e. the system is not able to move patients out of the system

quickly enough, creating very large queues at the critical resources that only grow larger

with time). The results are also shown in the Tables E.1 and E.2 in Appendix E and

in Fig. 4.18.
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Figure 4.16: Walk-in arrival service time means for varying workloads under the differ-
ent class-based priority schemes.
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Figure 4.17: Ambulance arrival service time means for varying workloads under the
different class-based priority schemes.
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Fig. 4.18 shows that once workload goes above 110% without corresponding resource

and staff increases, the mean service times for both arrival types increases steeply; in

addition to this the mean service time for walk-in arrivals starts to go above that for

ambulance arrivals indicating that queues mostly build up in the minors area. These

results suggest that our case study A&E department is operating close to saturation

and that even a small increase in the workload (5%) would lead to a big jump in

mean response times for both walk-in (up by 20.5 minutes) and ambulance (up by 14.6

minutes) arrivals.
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Figure 4.18: Walk-in and ambulance arrival service time means for varying workloads
under minors priority.

4.10.2 Resource and Staff Scenarios

In the system under minors priority, the most highly utilised resources in the main A&E

unit are the minors cubicles, minors practitioners, other specialists and radiology (see

Table 4.6). Servers in the system with the highest utilisations indicate the bottlenecks

in the system. We now look at various resource scenarios where we increase the number

of the most highly utilised resources in the system to see the subsequent impact on the

mean service times.
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First we increase the number of minors cubicles in the system by 1 (from 9 to 10)

whilst keeping all other parameters the same and run the simulation. We then restore

the number of minors cubicles and increase the number of minors practitioners (from

4 to 5) and then run the simulation again. This is repeated for the other specialist

(increasing from 2 to 3) and then for radiology scanners (increasing from 2 to 3).

Table 4.12 compares the mean and standard deviations of the service times for walk-in

and ambulance arrivals, with the extra resources and without. Table 4.13 shows the

corresponding impact on the utilisations.

walk-in arrivals ambulance arrivals
extra resource mean std dev mean std dev
minors cubicle 2.3008 1.9932 2.6826 2.2148

minors practitioner 2.2063 1.9522 2.6490 2.2018
other specialist 2.1834 1.7191 2.4553 1.7476

radiology scanner 2.2722 1.9146 2.5668 2.1036
none 2.3926 2.0271 2.7096 2.2101

Table 4.12: Impact of extra resources on the mean and standard deviation (std dev) of
service times (in hours) for walk-in and ambulance arrivals.

extra resource
min cubicle min prac other spec radiology none

resource utilisation
minors cubicle 0.7147 0.7170 0.7400 0.7546 0.7751

majors bay 0.4596 0.4588 0.4078 0.4293 0.4581
minors practitioner 0.7512 0.6010 0.7510 0.7512 0.7512

other specialist 0.7564 0.7569 0.5041 0.7571 0.7571
radiology scanner 0.6667 0.6670 0.6662 0.4442 0.6667

Table 4.13: Utilisation of a selection of staff and resources under a system with extra
resources.

We can see from Table 4.12 that the introduction of an extra other specialist has the

most impact on the mean service times for both walk-in and ambulance arrivals; this is

followed by an extra minors practitioner for walk-in arrivals, but by an extra scanner

at radiology for ambulance arrivals. From Table 4.13 we can see that increasing the

number of other specialists and servers in radiology decreases the utilisations of both

the minors cubicles and majors bays, with the extra other specialist giving the lowest

utilisations for both. This indicates that the other specialist is the major bottleneck

for both arrival types; this may be because of the longer service times at this node
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than for either the minors practitioner or radiology. This is an interesting finding in

the light of the current drive towards A&E reorganisation partly led by the shortages

in specialists [44, 35, 15].

Next we investigate which resource has the biggest impact when the workload level is

increased. We increase the workload to 115% of current workload and at the same time

we increase each of the three greatest resource bottlenecks in turn. Tables 4.14, 4.15 and

4.16 show the results for increasing the number of minors practitioners, other specialists

and radiology scanners respectively. Figs. 4.19 and 4.20 show the corresponding plots

of mean service time for walk-in and ambulance arrivals.

extra minors practitioner
walk-in arrivals ambulance arrivals

workload mean std dev mean std dev
1.05 2.4219 2.1747 2.8573 2.5097
1.1 2.7680 2.5441 3.2029 3.0099
1.15 3.4226 3.4103 3.9386 4.2236

Table 4.14: Mean and standard deviation (std dev) of service times (in hours) for walk-
in and ambulance arrivals under increasing workload and an extra minors practitioner
in the system.

extra other specialist
walk-in arrivals ambulance arrivals

workload mean std dev mean std dev
1.05 2.4073 1.8386 2.5853 1.8323
1.1 2.7653 2.0466 2.7739 1.9670
1.15 3.4915 2.5529 3.1076 2.2693

Table 4.15: Mean and standard deviation (std dev) of service times (in hours) for walk-
in and ambulance arrivals under increasing workload and an extra other specialist in
the system.

extra radiology server
walk-in arrivals ambulance arrivals

workload mean std dev mean std dev
1.05 2.5469 2.1431 2.7621 2.3746
1.1 3.0422 2.5791 3.0965 2.8439
1.15 4.2140 3.6948 3.8309 3.8904

Table 4.16: Mean and standard deviation (std dev) of service times (in hours) for walk-
in and ambulance arrivals under increasing workload and an extra server at radiology
in the system.

From Tables 4.14, 4.15 and 4.16 and Figs 4.19 and 4.20, we can see that for workloads
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Figure 4.19: Walk-in arrival service time means for increasing workloads with an extra
minors practitioner, extra other specialist or extra scanner in radiology.
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Figure 4.20: Ambulance arrival service time means for increasing workloads with an
extra minors practitioner, extra other specialist or extra scanner in radiology.
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up to 110%, increasing the number of other specialists has the greatest impact on

lowering the mean service times for both the walk-in and ambulance arrivals. However,

as we go over a 10% increase in workload we can see that having an extra minors

practitioner has a greater impact for walk-in arrivals. This indicates that as the system

workload increases, the minors area will reach saturation first. As before, increasing

the number of scanners in radiology has a greater impact than increasing the number

of minors practitioners for ambulance arrivals, but less so for walk-in arrivals. It is

also of interest to note that the standard deviation of service time with the extra other

specialist is much lower for both walk-in and ambulance arrivals than when increasing

the minors practitioner or radiology scanners – this indicates that the other specialist

is the major bottleneck for those patients with higher service times.

4.11 Conclusion

In this chapter we have presented a multiclass queueing network model and compared

our subsequent discrete-event simulation results and service time densities of A&E

patient flow with those observed in an actual A&E department. We have provided

some insights into the effects of different patient priority schemes and the impact of

the introduction of the 4 hour waiting time target. The practical effect of this appears

to have been to move from a system in which majors patients are given priority, to a

system in which minors patients are given priority.

A key conclusion from Table 4.3 is that it appears ambulance arrivals actually benefit

from a system under minors priority. In fact under minors priority both ambulance

and walk-in arrivals are treated quicker than in a no priority system. However, this

interpretation may be misleading: a significant proportion of ambulance arrivals end

up as minors (about 35%) and their benefit outweighs the penalty suffered by the

majors that arrive by any means. Conversely, the walk-in majors patients are highly

penalised because relatively few walk-in minors patients switch to majors (about 16%).

A separate comparison of ambulance arrivals that are treated as majors throughout

their stay against walk-ins that are treated as minors throughout, i.e. neglecting any

patients that change class, would reveal the true effects of changing between majors and
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minors priority. However, it must be remembered that the most important statistics to

the individual patient concern their own time spent in hospital, regardless of the class

to which they may be assigned.

When comparing mean patient service times from our minors priority simulation model

with the observed 2004/2005 figures (shown in Table 4.1), we observe differences of

17.3%, 13.7% and 0.3% for walk-in, ambulance and blue call patients respectively. The

disagreement between the simulation and walk-in arrival actual service time may be

because the measures taken to process patients in under four hours have not been incor-

porated into the minors priority scheme, resulting in disparity with the actual service

time density around the 4 hour peak (cf. Fig 4.5). The disparity with the ambulance

arrival service time mean may be due to the lack of bed/transport blocking phenomena

in our model, which will mostly delay ambulance arrivals. However, considering the

many simplifying assumptions we have made the agreement between the simulation

and actual arrivals is promising.

In Section 4.8 we investigated two time-based priority schemes and found that these

lead to higher mean service times for both walk-in and ambulance arrivals than a

straightforward minors priority scheme. We tried implementing a traffic light priority

scheme to replicate the effect of the four hour patient waiting time target, but found this

priority scheme does not result in the spike seen at four hours in the actual service time

density (see Figs. 4.8 and 4.9). In order to try and replicate the impact of the four hour

target, we inserted an extra clinical decision unit (CDU) node into the model which

patients are sent to if they are close to the four hour waiting time limit. While this

method does produce a spike at four hours, this spike is not pronounced enough. We

found that by adjusting patient service times via a probabilistic reallocation mechanism

we got a much closer fit to the actual service time density, especially for walk-in arrivals.

We note that key factor in seeing and treating patients within the four hour time target

is the time to first assessment [37]. However, we did not have sufficient data from our

case study department to allow us to compare simulated against actual time to first

assessment.

Finally, in Section 4.10 we provided some insights into how the system behaves when the
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workload and resource levels are varied. We found that for low to medium workloads,

mean service times for ambulance arrivals benefit from a system under majors priority,

but under high workloads both arrival types perform better under a minors priority

scheme. We have also shown that the main bottleneck in the system for both arrival

types is the other specialist followed by the minors practitioner for the walk-in arrivals

and radiology for the ambulance arrivals.



Chapter 5

Approximate Generating

Function Analysis (AGFA)

Technique

5.1 Introduction

In this chapter we present an approximate analytical technique which provides an

efficient way to approximate the mean and standard deviation of response time in net-

works of multiclass queues with population constraints and class-dependent priorities.

Support for the latter two phenomena allow the technique to be applied in diverse mod-

elling scenarios and makes this technique especially suited to the analysis of systems in

healthcare.

Over many decades, extensive use has been made of queueing networks as an effective

modelling abstraction. For certain classes of queueing networks including multiclass

queueing networks and queues with blocking [91], Mean Value Analysis (MVA) [96, 95]

and a plethora of related techniques (e.g. [6, 90, 102, 92, 105]) provide an efficient

and elegant route to mean values of measures of interest (such mean waiting time and

throughput), but not higher moments. For closed queueing networks with underlying

(semi-)Markov chains, recent much more computationally-intensive methods based on

numerical Laplace transform inversion can be applied to determine exact moments and,

123
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where tractable, probability distributions, of customer service times (cf. Section 2.6).

However, when applied to our multiclass queueing network model of A&E patient flow,

this method suffers from the well-known state space explosion problem and so is limited

to models with of the order of around 20 million states. Since accurate models of

real life systems typically have much larger state spaces, especially when modelling

large numbers of customers, performance analysts must often resort to simulation. As

illustrated in Chapter 4, while simulation can be used to model complex systems at

arbitrary levels of detail, it typically requires a high cost and effort to construct an

accurate model and long execution times are often required to produce reliable results

that are bounded by narrow confidence intervals.

The search for efficient analytical solutions in diverse modelling scenarios has prompted

the development of approximate methods including the approximate generating func-

tion analysis (AGFA) technique that is the focus of this chapter. We present and then

apply the AGFA technique to our hierarchical multiclass queueing network model of

A&E under class-based patient priorities and compare results with our simulation.

The remainder of this chapter is arranged as follows. Section 5.2 presents technical

details of the AGFA technique. Section 5.3 describes the alterations made to the

queueing network model of A&E before applying the AGFA technique. Section 5.4

presents numerical results and graphs from both the AGFA method and the discrete-

event simulation. Section 5.5 concludes.

5.2 Approximate Generating Function Analysis

The AGFA technique comprises of a decomposition method whereby the queueing net-

work is broken up into sub-systems and each sub-system is analysed in isolation. These

results are then combined together using a mean value analysis (MVA) extension to

higher moments that utilises the general distributional Little’s law (cf. Section 2.4).

The essence of the technique is that of Cobham’s formula (cf. Section 2.4.6) for cal-

culating mean values of response times in M/G/1 queues. This uses the fact that the

mean value of a sum of random variables is equal to the sum of the corresponding
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means, whether or not the variables are independent. Furthermore, given the mean

sojourn time of a low priority customer in a queue, the mean number of higher priority

arrivals in that time can be calculated. This analysis is adapted to the calculation of

the Laplace transform of response time probability density, which is the expectation of

the exponential function of a sum of random variables. Single nodes are analysed in this

way, after which sub-networks are solved and aggregated according to the hierarchical

MVA approach [96, 46].

5.2.1 Notation

We consider a network with population constraints, two customer classes and M multi-

server nodes, with mi constant rate exponential servers with rates µir at node i for

class r (1 ≤ i ≤ M, r = 1, 2). Class 1 has non-pre-emptive priority over class 2. In

particular, to enable our response time analysis, we consider the passage of a special

“tagged” customer through queueing node i and define the following random variables

at equilibrium:

K = (K1,K2) class population vector, i.e. there are Kr customers of class r in the

network (r = 1, 2);

Bir class r service time of a single server at node i, exponential with parameter µir;

Lir number of class r customers in the queue waiting to start service;

Qir time spent by a class r customer waiting to start service;

Nir number of class r customers in the queue, including any in service, at a random

instant of time (i.e. the class r queue length);

Wir response time of a class r customer, i.e. the sum of queueing time and service

time, Qir + Bir;

Let the steady state probability that the (joint) queue length at node i is n = (n1, n2)

be πi(n | k) = IP(Ni1 = n1, Ni2 = n2 | K = k). We will make use of the probability that

an arriving customer has to queue, qir. In a network with processor sharing servers and

no priorities, this is just the probability that the equilibrium queue length is less than
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mi when the population is reduced by one in the arriving customer’s class (denoted by

k− 1r), by the arrival theorem (cf. Section 2.4.4). Thus:

1− qir = IP(Ni1 + Ni2 < mi | K = k) =
mi−1∑

u=0

mi−1−u∑

v=0

πir(u, v | k− 1r)

for appropriate k,k− 1r(r = 1, 2).

Letting E[·] and E[·|·] denote the expectation and conditional expectation operators

respectively, for a continuous random variable X, we denote its probability distribution

function by X(t) = IP(X ≤ t) and the Laplace-Stieltjes transform of this distribution

(the LSTD) by X∗(θ) = E[e−θX ]. We denote the density function by x(t) = X ′(t), the

derivative of the distribution function, with the Laplace transform of the density the

same as the LSTD X∗(θ). We also denote the nth moment of X by X;n = E[Xn] =

(−1)nX∗(n)(0) (where the parenthesized superscript denotes differentiation n times).

Thus, for example, S2;1 is the mean of S2.

For a discrete random variable Y , we denote its probability generating function (pgf)

by GY (z) = E[zY ] and the nth factorial moment of Y by:

Y;fn = E[Y (Y − 1) . . . (Y − n + 1)] = G
(n)
Y (1).

5.2.2 An Approximate MVA Algorithm

Class 1

The high priority class 1 customers are straightforward to handle since the tagged

customer only has to wait for those class 1 customers already queueing and the customer

in service (of either class), if any. Consider a generic node i in a closed network of M

queues. Dropping the subscripts ir for brevity, we have for class 1:

Q∗
1(θ) = E[ E[e−θ(S1+...+SL+UR) | N1, N2] ]

where the random variable U is defined by:

U =





1 if N1 + N2 ≥ m

0 if 0 ≤ N1 + N2 < m
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The random variables Sl where l = 1, 2, . . . , L are independent and identically dis-

tributed (i.i.d.) as the minimum of the m service time random variables at the individ-

ual servers. The random variable R is the time to the next service completion from the

arrival instant of the tagged customer. By the memoryless property, R is distributed

as the Sl and is also independent by hypothesis. Therefore each is exponential with

parameter mµ in a single class node. In the multiclass case, they are still exponential

but have parameter m1µ1 + (m−m1)µ2 when there are m1 class 1 and m−m1 class

2 customers in service. We make the approximating assumption that, given the class

of the tagged customer, the network’s population vector k and the state encountered

on arrival n, this rate remains the same throughout the tagged customer’s sojourn in

the queue, Q1, viz. n1µ1 + n2µ2 if n1 + n2 ≤ m and (n1µ1 + n2µ2)m/(n1 + n2) if not.

Of course, this result is exact if the service rate is the same for both classes (µ1 = µ2)

and in the single class case (n2 = 0). Note too that we would not have this problem

if the priority discipline were pre-emptive, whereupon no class 2 customer could be in

service if m or more class 1 customers were present.

Noting that R∗(θU) = R∗(θ) + (1−R∗(θ))(1− U) we therefore obtain (for class 1):

Q∗
1(θ) = E[S∗(θ)L1 E[e−θUR | N1, N2] ]

= E[S∗(θ)L1 R∗(θU)]

= GL1(S
∗(θ))R∗(θ)− (1− q1)R∗(θ) + 1− q1 (5.1)

where GL1(z) = 1 − q1 +
∑k1

u=m

∑k2
v=m−u π(u, v)zu−m1 and m1 is the number of class

1 customers in service when all servers are busy (recall q1 is the probability that an

arriving class 1 customer has to queue). This can be approximated for non-pre-emptive

priority, as above, but in our calculation of moments it comes from the application of

Little’s law in the extended MVA algorithm. Note that R∗ = S∗ and, in the calculations

of Q1 and GL1(z), we assume a population vector k in which the component correspond-

ing to the class of the arriving customer has been reduced by one in accordance with

the arrival theorem.

Notice that in the case of a single class M/M/m queue with constant arrival rate λ,
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we have S∗(θ) = mµ/(mµ + θ) and:

GL(z) = 1− q + (1− ρ)q + (1− ρ)q
∞∑

l=1

ρlzl

= 1− q +
(1− ρ)q
1− ρz

where ρ = λ/(mµ). Consequently, we obtain the single class result:

Q∗
1(θ) = 1− q +

(1− ρ)qmµ

mµ + θ − ρmµ
= 1− q + q

(mµ− λ)
mµ− λ + θ

The moments of the class 1 queueing time follow by differentiation at θ = 0. For

the first few moments this is a straightforward process, but the n-fold differentiation

of the term GL1(S
∗(θ)) for arbitrary n leads to ever-increasing complexity. It can be

obtained simply using a programming language that supports an appropriate higher-

order function – here differentiation with respect to θ – and otherwise using an auxiliary

recursive definition [52]. Here we obtain the first two moments explicitly.

Mean queueing time for class 1 Differentiating the class 1 queueing time LSTD

given by Equation 5.1, we find:

Q∗′
1 (θ) = G′

L1
(S∗(θ))S∗′(θ)S∗(θ) + GL1(S

∗(θ))S∗′(θ)− (1− q1)S∗′(θ) (5.2)

At θ = 0, we obtain:

Q1;1 = L1;1S1;1 + S1;1 − (1− q1)S1;1 = (L1;1 + q1)S1;1

where S1 denotes the random variable S, on arrival of a class 1 tagged customer.

This equation could have been obtained by a simple direct argument, whereby the mean

queueing time for a class 1 customer is the mean time taken to serve the (on average)

L1;1 class 1 customers already in the queue plus the mean time taken to wait for a

server if all the servers are busy. Now the probability that there is no server free is q1

and the mean service time for each server (on arrival of a class 1 tagged customer) is

S1;1. Hence the mean queueing time for class 1 customers will simply be the mean class
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1 customer queue length plus the probability that the servers are all busy, all multiplied

by the mean service time i.e. Q1;1 = (L1;1 + q1)S1;1 as above.

Second moment of queueing time for class 1 Differentiating Equation 5.2 at

θ = 0 we find similarly:

Q1;2 = L1;f2S
2
1;1 + L1;1S1;2 + 2L1;1S

2
1;1 + S1;2 − (1− q1)S1;2

which simplifies to:

Q1;2 = (L1;2 + L1;1)S2
1;1 + (L1;1 + q1)S1;2

Class 2

Recall that class 1 customers have non-pre-emptive priority over class 2 customers.

Consequently, a class 2 customer has to wait, not only for the service completion of

any customer in service at its arrival instant and all class 1 and 2 customers already

waiting, but also for all class 1 customers that arrive during its queueing time. As with

class 1 customers, we assume that the total service rate remains constant throughout a

class 2 customer’s sojourn time in the queue, so that service times are the same random

variables (S, R) that depend only on the state of the queue on arrival, (n1, n2).

Let C be the number of class 1 arrivals during the tagged customer’s queueing time Q2.

Since these arrivals are assumed to be Poisson with rate λ1 (and so have pgf e−λ1t(1−z)

for a time period t), C has pgf defined by:

GC(z) = E[zC ] = E[E[zC | Q2] ]

= E[e−λ1Q2(1−z)]

= Q∗
2(λ1(1− z))
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Writing H = max(N1 + N2 −m, 0), we therefore have:

Q∗
2(θ) = E[ E[e−θ(S1+...+SH+SH+1+...+SH+C+UR) | N1, N2, Q2]]

= E[S∗(θ)HR∗(θU)E[S∗(θ)C | Q2]]

= E[S∗(θ)HR∗(θU)e−λ1Q2(1−S∗(θ))] (5.3)

Mean queueing time for class 2 As previously, we now denote the random variable

S, on arrival of a class 2 tagged customer by S2. Setting out as for class 1, first we

differentiate the class 2 queueing time LSTD given in Equation 5.3 to find:

Q∗′
2 (θ) = E[HS∗(θ)H−1R∗(θU)e−λ1Q2(1−S∗(θ))S∗′(θ)] +

E[S∗(θ)HR∗′(θU)Ue−λ1Q2(1−S∗(θ))] +

E[S∗(θ)HR∗(θU)λ1Q2e
−λ1Q2(1−S∗(θ))S∗′(θ)]

= E[S∗(θ)H−1e−λ1Q2(1−S∗(θ))(HR∗(θU)S∗′(θ) +

US∗(θ)R∗′(θU) + λ1Q2S
∗(θ)R∗(θ)S∗′(θ)

)
] (5.4)

At θ = 0, we therefore obtain:

Q2;1 = H2;1S2;1 + q2R2;1 + λ1Q2;1S2;1

since E[U ] = q, where H2 denotes the random variable H on arrival of a class 2 tagged

customer. This gives Cobham’s familiar result for mean values (see for example [55]):

Q2;1 =
(H2;1 + q2)S2;1

1− λ1S2;1

The mean values S2;1, q2 and H2;1 depend on the state existing just before an arrival

instant, as discussed above, and can be computed as part of the standard variable rate

MVA algorithm that we use.

Second moment of queueing time for class 2 Although the analysis of mean

values is straightforward, not actually needing generating functions at all, the situation
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is much more complex for higher moments because of the dependence amongst the

random variables concerned (Qi, Li, U). In particular, this leads to covariance terms in

the second moments.

We therefore define the two-variable generating function A(z, θ) by:

A(z, θ) = E[zHe−θQ2 ] = E[E[zHe−θQ2 | N1, N2]]

= E[zHS∗(θ)HR∗(θU)e−λ1Q2(1−S∗(θ))]

by the same reasoning as in the previous section.

Taking the expectation w.r.t. U , we obtain:

A(z, θ) = 1− q2 + R∗(θ)
{

E
[(

zS∗(θ)
)H

e−λ1Q2(1−S∗(θ))
]
− (1− q2)

}

= (1− q2)
(
1− S∗(θ)

)
+ S∗(θ)A

(
zS∗(θ), λ1(1− S∗(θ))

)

Now let y = zS∗(θ), and φ = λ1(1 − S∗(θ)) so that y = 1 and φ = 0 when z = 1

and θ = 0. Using primes to denote differentiation of a function of a single vari-

able and the facts that ∂y
∂z = S∗(θ), ∂y

∂θ = zS∗′(θ), ∂φ
∂z = 0, ∂φ

∂θ = −λ1S
∗′(θ), so that

∂/∂θ = zS∗′(θ)∂/∂y − λ1S
∗′(θ)∂/∂φ, we obtain:

∂A

∂θ
=

(
A(y, φ) + q2 − 1

)
S∗′(θ) + S∗(θ)S∗′(θ)

(
z
∂A

∂y
− λ1

∂A

∂φ

)
(5.5)

Thus, at z = 1, θ = 0, we obtain −Q2;1 = −q2S2;1 − S2;1(H2;1 + λ1Q2;1) so that:

Q2;1(1− λ1S2;1) = H2;1S2;1 + q2S2;1

as obtained already.

Differentiating again at z = 1 and θ = 0, omitting the arguments of functions for

brevity, where the meaning is clear, and noting that ∂z
∂y = 1/S∗,

∂z
∂φ = z/(λ1S

∗) so that z ∂z
∂y = λ1

∂z
∂φ , and recalling that H2;f2 denotes the second factorial
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moment of H2, we now find:

∂2A

∂θ2

∣∣∣∣
1,0

= q2S2;2 + 2S2
2;1[H2;1 + λ1Q2;1] + S2;2[H2;1 + λ1Q2;1]−

S2
2;1

[
z

(
z
∂2A

∂y2
− λ1

∂2A

∂y∂φ

)
− λ1

(
z

∂2A

∂φ∂y
− λ1

∂2A

∂φ2

)]

1,0

= q2S2;2 + (H2;1 + λ1Q2;1)(S2;2 + 2S2
2;1) +

S2;1

[
H2;f2S2;1 − 2λ1S2;1

∂2A

∂y∂φ
+ λ2

1S2;1Q2;2

]
(5.6)

We compute the covariance term ∂2A
∂y∂φ at z = 1, θ = 0 as follows. First,

∂A

∂z
= S∗

∂A

∂y

since ∂φ
∂z = 0. Differentiating w.r.t. θ now gives:

∂2A

∂z∂θ
= S∗′

∂A

∂y
+ S∗

[
∂2A

∂y2
zS∗′ +

∂2A

∂y∂φ
(−λ1S

∗′)
]

At z = y = 1, θ = φ = 0, and noting that H2;2 = H2;f2 + H2;1, this yields:

∂2A

∂z∂θ

∣∣∣∣
1,0

= −(H2;1 + H2;f2)S2;1

1− λ1S2;1

Finally, substituting into Equation 5.6 at z = 1, θ = 0, we obtain:

Q2;2 =
q2S2;2 + (H2;1 + λ1Q2;1)(S2;2 + 2S2

2;1) + H2;f2S
2
2;1

1− λ2
1S

2
2;1

+
2λ1S

3
2;1H2;2

(1− λ1S2;1)(1− λ2
1S

2
2;1)

(5.7)

Q2;1 was computed in the previous subsection and, again, the expected value H2;2

is computed in the MVA-based algorithm, considering the superposition of the two

classes. The second moment S2;2 is approximated as the average of the square of the

service time of a single server, estimated at equilibrium when all servers are busy. This

double approximation is a potentially major source of error in our model; however, it

is exact when the two classes have identical service time random variables.
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5.2.3 The MVA-based hierarchical model

Apart from the aforementioned moments of the time to the next service completion

after the arrival instant of the tagged customer, the only state-dependent parameters

that are needed for constant-rate, multi-server queues are the queueing probabilities

q1, q2. In the case of a single server at equilibrium, this is just the utilisation, which is

known to be the product of the arrival rate and the mean service time, by the usual

steady-state argument or Little’s law. However, multiple servers or state-dependent

service times require that every (significant) queue length probability be computed

in order to find q1, q2 and the first two moments of S1, S2 – at each queue and for

each network population vector in a closed network. This is the main expense of the

algorithm. It also goes some way to explaining why the problem has for long been

solved for M/G/1 queues but remains open for M/G/m for m > 1. Notice too the

subtle dependence between the random variables involved that arises when considering

non-exponential servers that precludes simply setting the moments of S1, S2 to those

of the residual service time [53].

Network decomposition and aggregate servers In our hierarchical modelling

methodology, we successively decompose a queueing network of multi-servers, where

each individual server has constant rate, into a collection of sub-networks. This is

a common approach to modelling large systems, pioneered to a considerable extent

by Woodside and others in their analysis of layered queueing networks; see for exam-

ple [46]. The sub-networks we identify as most appropriate are each solved, using the

AGFA approach described in the previous subsections, for the first two moments of

their response time, given each (multi-server) node’s service time moments, the net-

work’s routing probabilities and the constant populations of its customer-classes. No

class transitions are allowed within a sub-network (which constrains the choice of sub-

networks, of course). Each node in a sub-network is analysed using the results of

the previous section and Little’s law (for both the first and second moments of queue

length and waiting time) at class populations increasing from 0 to the maximum re-

quired. This is done in a straightforward modification of the standard MVA algorithm

with state-dependent parameters to yield the required first two moments [55]. At the
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next level up, these moments are assigned to those of the individual service times at the

corresponding multi-server nodes. The number of parallel servers at each node is set to

the maximum population specified for each class in the sub-network at the lower-level –

recall that no class transitions occur. Hence the class population maxima are preserved

all the way up the hierarchy. The higher-level network is then fully parameterised by

its routing probabilities, easily obtainable from the initial, flat network’s specification.

At the top-level, we analyse an open network of aggregated nodes, at any of which there

may be interaction between the classes. In particular, the service rate of each class may

depend on the joint population of both classes currently at the node. Such a node is

solved by a direct Markov model with state space truncation. This is not excessively

expensive for a single node with just two classes, and in fact no more than about 2000

states are needed in practice. Nevertheless, this complicates the already expensive

calculation of queue length probabilities which, as already mentioned, constitutes the

major share of the computation time of the whole algorithm.

The only remaining quantities needed for the hierarchical algorithm are the mean and

second moments of the numbers of visits a task makes to each node. These are derived

in the next section. This whole decomposition is implemented in Mathematica 5.1 [106],

the code for which is shown in Appendix F. Clearly a lower-level implementation in

a language such as C would be orders of magnitude more efficient numerically, and

benefit especially the single node, direct Markov models discussed above.

Moments of visit counts

The MVA algorithms, open or closed, require the same moments of the nodes’ visit

counts as those required for response time. To this end, let the random variable Vir

denote the number (or rate) of visits a task of class r makes to node i and let Xir be

the visit count (or rate) of external arrivals, 1 ≤ i ≤ M, 1 ≤ r ≤ R. Then we have:

E[zVir ] = E[zXir+
P

j,s Njs;ir ]
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where Njs;ir is the number of class s service completions at node j that go to node i

as class r. Thus conditioning on Vjs we have:

E[zVir ] = E[E[zXir+
P

j,s Njs;ir | Vjs]]

= E[zXir ]
∏

j,s

E
[(

1− pjs;ir(1− z)
)Vjs

]

note that the probability generating function for a binomial random variable is given by

(1− p(1− z))n where there are n trials with probability p of success in each. Since the

random variables Njs;ir are independent and binomially distributed with parameters

(Vjs, pjs;ir), each has probability generating function (1− pjs;ir(1− z))Vjs as above.

Hence we have:

GVir = GXir

M∏

j=1

R∏

s=1

GVjs

(
1− pjs;ir(1− z)

)

Differentiating once, then twice at z = 1 then yields:

Vir;1 = Xir;1 +
M∑

j=1

R∑

s=1

pjs;irVjs;1 (5.8)

Vir;f2 = V 2
ir;1 + Xir;f2 −X2

ir;1 +
M∑

j=1

R∑

s=1

p2
js;ir

(
Vjs;f2 − V 2

js;1

)
(5.9)

5.3 Accident and Emergency Model

To illustrate the use of the combined AGFA-MVA technique, which we abbreviate to

just AGFA, we apply it to the hierarchical queueing network model of our case study

A&E department (as described in Section 4.3). However, before we can apply the

AGFA technique, this model needs to be adapted so that the lower-levels form closed

sub-networks as described in the next section.

5.3.1 Closed Queueing Network Model

In this model, passive resources and all their associated active resources (i.e. those

providing a service that actually progresses a patient through the treatment) are ag-
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gregated into a single node in the top-level model (see Fig. 5.1). Where these active

resources include one shared with another class associated with a different passive re-

source, the union of the two sets of resources, associated with each passive resource, is

aggregated – essentially giving a transitive closure. This leads to the AEU aggregate

node (expanded in Fig. 5.2), which includes the minors cubicles, majors bays and all

their associated resources.

Altered Top-Level Model   
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Figure 5.1: Altered top-level of queueing network model of patient flow.

The lower-levels of the model (see Fig. 5.2), consisting of the submodels (AEU, Assess

and Resusc) are now closed sub-networks. Notice that the obtaining and releasing

of passive resources are no longer indicated, since we evaluate each sub-network for

class populations increasing from zero to the maximum possible (generally this will be

dictated by the number of passive resources in the sub-network). Therefore the passive

resources are not actually obtained or released, but taken to be always occupied or

unoccupied as determined by the class population. Within this new altered model,

class changes can only occur in the top-level of the model. When a patient switches
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Figure 5.2: Lower-levels of closed queueing network model of patient flow.
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from class 1 (minors) to class 2 (majors), this no longer happens within the AEU

submodel; instead the patient has to first leave the AEU submodel as a class 1 patient

and then re-enter the AEU aggregated node as a class 2 patient. Similarly for the class

2 (majors) patients switching to class 3 (resuscitation), the patient must leave the AEU

submodel before they can switch to class 3 and then enter the resuscitation area.

5.3.2 Class-based Priority Schemes

We investigate various patient class-based priority schemes, utilising the AGFA support

for class dependent priorities. The three different patient class-based priority schemes

analysed are:

• No Priority in which First In First Out (FIFO) queues are implemented at each

node,

• Majors Priority in which majors patients are given priority at the shared re-

sources (lab tests, radiology and “other” specialist), and

• Minors Priority in which minors patients are given priority at the shared re-

sources.

5.4 Numerical Results

We compare the mean and standard deviation of patient service time under the three

class-based priority schemes and workloads as calculated by our discrete-event simula-

tion and the AGFA technique.

5.4.1 Mean and Standard Deviation of Patient Response Time

First we compare the AGFA and simulation mean and standard deviation of patient

service time of the A&E model under full workload. Tables 5.1, 5.2 and 5.3 compare

the results for no priority, majors priority and minors priority schemes respectively.
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walk-in arrivals ambulance arrivals blue call arrivals
no priority mean std dev mean std dev mean std dev
simulation 3.0441 2.7149 2.7952 2.2145 2.0871 2.0425

AGFA 3.5183 3.2703 3.5589 2.9775 2.0917 2.0475

Table 5.1: Mean and standard deviation (std dev) of response times for walk-in, am-
bulance and blue call arrivals under no priority system, as calculated by the AGFA
technique and simulation.

walk-in arrivals ambulance arrivals blue call arrivals
majors priority mean std dev mean std dev mean std dev

simulation 4.4391 4.6034 3.1934 3.2386 2.0929 2.0430
AGFA 4.2218 4.2426 4.0598 3.4293 2.0915 2.0474

Table 5.2: Mean and standard deviation (std dev) of response times for walk-in, ambu-
lance and blue call arrivals under majors priority system, as calculated by the AGFA
technique and simulation.

From Tables 5.1, 5.2 and 5.3 we can see that the AGFA and simulation results for the

blue call arrivals under all priority schemes are very close (within 0.6%) for both the

mean and standard deviation, as would be expected since the resusc system is essentially

an M/M/1 queue with no class-based priorities. Under a no priority scheme (see

Table 5.1) we see that for the walk-in and ambulance arrivals the agreement between

the simulation and AGFA is relatively poor with the means disagreeing by 15.6% for

walk-in and 27.3% for ambulance arrivals. As expected the standard deviations are

even further out, by 30.5% for walk-in and 34.5% for ambulance arrivals. When we

look at the performance under majors priority (shown in Table 5.2) we can see that

the agreement for walk-in arrival mean and standard deviation are good (within 4.9%

and 7.8% respectively), while the ambulance arrival mean is fairly poor disagreeing by

27.1%; however, the standard deviation shows good agreement (within 5.9%). Finally,

Table 5.3 shows that under a minors priority scheme we get good agreement for mean

service times for all arrival types with the simulation and AGFA means within 2.1% for

walk-in arrivals ambulance arrivals blue call arrivals
minors priority mean std dev mean std dev mean std dev

simulation 2.3926 2.0271 2.7096 2.2101 2.0868 2.0356
AGFA 2.4418 3.4517 2.7880 4.7862 2.0917 2.0475

Table 5.3: Mean and standard deviation (std dev) of response times for walk-in, ambu-
lance and blue call arrivals under minors priority system, as calculated by the AGFA
technique and simulation.
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the walk-in arrivals and 2.9% for ambulance arrivals. However, the standard deviation

agreement is very poor with the AGFA standard deviations much higher than that

obtained by simulation (disagreeing by over 100% for the ambulance arrivals).

5.4.2 Workload Variations

In order to try and understand the circumstances under which the AGFA technique

gives good agreement with our simulation, we vary the workload to the system to

investigate how the level of system load affects our results. We vary both the walk-in

and ambulance arrival rates together by between 25% to 95% of the full rate whilst

keeping the blue call arrivals constant. Since they effectively make up a separate system,

further results for blue call arrivals are not presented.

Tables 5.4, 5.5, and 5.6 show the mean and standard deviation of patient response

time for a selection of workloads as calculated using the AGFA technique and the

corresponding simulation results for walk-in and ambulance arrivals. The full AGFA

tables showing all the results for workloads (ranging from 25% to 100% of full workload)

are shown in Section E.2 of Appendix E. Figs. 5.3, 5.4 and 5.5 display graphically the

AGFA and simulation results shown in these tables.

Figs. 5.3, 5.4 and 5.5 illustrate clearly the loading levels at which simulation and AGFA

patient response times start to disagree as the workload increases and the department

approaches saturation. We can see from Figs. 5.3 and 5.4 that under no priority and

majors priority schemes the agreement between the simulation and AGFA means are

good up to 90% load whereupon they start to diverge. Under minors priority shown

in Fig. 5.5, there is good agreement for mean service times up to full workload, which

may be due to the system being less saturated under a minors priority system. For the

standard deviations we can see that the AGFA and simulation agreement is good for

all system loads under the majors priority scheme. Under the no priority and minor

priority schemes we see closer agreement under lower loads (up to 95% and 90% of load

for no priority and minors priority schemes respectively) but a big divergence in the

standard deviations as the system reaches full load.
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no priority
walk-in arrivals ambulance arrivals

AGFA sim AGFA sim
load mean std dev mean std dev mean std dev mean std dev
0.25 1.5148 1.5517 1.5369 1.3862 1.9238 1.7725 1.9721 1.4616
0.5 1.5878 1.6130 1.6053 1.4312 1.9881 1.8300 2.0331 1.5000
0.75 1.7910 1.7855 1.8030 1.5632 2.1456 1.9822 2.1848 1.6001
0.85 1.9818 1.9438 1.9967 1.7024 2.2720 2.1077 2.3093 1.6892
0.95 2.5461 2.4498 2.4569 2.1020 2.6717 2.4424 2.5433 1.8979

Table 5.4: Mean and standard deviation (std dev) of service times (in hours) for walk-in
and ambulance arrivals under no priority for varying workloads as calculated using the
AGFA technique and simulation.

majors priority
walk-in arrivals ambulance arrivals

AGFA sim AGFA sim
load mean std dev mean std dev mean std dev mean std dev
0.25 1.5151 1.5517 1.5367 1.3876 1.9231 1.7716 1.9712 1.4617
0.5 1.5905 1.6136 1.6080 1.4355 1.9815 1.8202 2.0278 1.4948
0.75 1.8116 1.7992 1.8349 1.6082 2.1178 1.9373 2.1704 1.5845
0.85 2.0518 2.0048 2.1005 1.8453 2.2405 2.0459 2.3003 1.6926
0.95 3.1581 3.0696 2.9197 2.7274 3.0824 2.5904 2.6338 2.1283

Table 5.5: Mean and standard deviation (std dev) of service times (in hours) for walk-in
and ambulance arrivals under majors priority for varying workloads as calculated using
the AGFA technique and simulation.

minors priority
walk-in arrivals ambulance arrivals

AGFA sim AGFA sim
load mean std dev mean std dev mean std dev mean std dev
0.25 1.5145 1.5517 1.5367 1.3876 1.9244 1.7734 1.9712 1.4617
0.5 1.5850 1.6125 1.6031 1.4322 1.9951 1.8412 2.0382 1.5088
0.75 1.7718 1.7910 1.7798 1.5590 2.1787 2.0648 2.2074 1.6557
0.85 1.9259 1.9701 1.9247 1.6667 2.3243 2.3185 2.3370 1.7860
0.95 2.2004 2.4935 2.1788 1.8628 2.5723 3.1652 2.5466 2.0223

Table 5.6: Mean and standard deviation (std dev) of service times (in hours) for walk-in
and ambulance arrivals under minors priority for varying workloads as calculated using
the AGFA technique and simulation.
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Figure 5.3: AGFA and simulation mean (left) and standard deviation (right) of the
service time for walk-in and ambulance arrivals for differing workloads under the no
priority system.
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Figure 5.4: AGFA and simulation mean (left) and standard deviation (right) of the
service time for walk-in and ambulance arrivals for differing workloads under the majors
priority system.
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Figure 5.5: AGFA and simulation mean (left) and standard deviation (right) of the
service time for walk-in and ambulance arrivals for differing workloads under the minors
priority system.
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5.5 Conclusion

From our results, we see that the mean values obtained via the AGFA technique show

good agreement with our simulation results, especially under minors priority and for

workloads up to 90% under the other priority systems. It seems that the mean values

diverge as the system becomes more highly utilised, as is illustrated by the results under

high workloads where patients remain in the department for longer, resulting in greater

saturation. It is well known that both approximate analytical methods and simulations

tend to suffer from loss of accuracy in saturated systems.

As expected, the AGFA results for the standard deviations are generally not as good

a match against the simulation. This is partly because, although aggregation can be

shown to preserve many expected values of random variables associated with the queue-

ing processes concerned, the same cannot be said for higher moments. Furthermore,

the approximations pointed out in the AGFA analysis of Section 5.2 become more

significant at higher moments.

In terms of run times, each simulation run required approximately 20–60 minutes wall

clock time (depending on the workload parameters, priority scheme and the PC cluster

workstation used), with results for each priority scheme and workload combination

being averaged over 10 runs to obtain confidence intervals on the means. By contrast,

AGFA required between 30 seconds and 20 minutes (in the saturated majors priority

case) wall clock time for each (single-run) priority scheme and workload combination.

Although still needing improvement in terms of the standard deviation approximation,

the good agreement with simulation for the mean values is encouraging. Another

advantage of the AGFA technique is that once the approximate Laplace transform has

been calculated, all higher moments may be subsequently derived.



Chapter 6

Conclusion

6.1 Summary of Thesis Achievements

This thesis has presented techniques and tools to characterise and forecast patient

arrivals, to model patient flow, and to assess the response-time impact of different

resource allocations, patient treatment schemes and workload scenarios. We have also

presented an efficient approximate generating function analysis (AGFA) technique for

determining moments of customer response time in networks of multiclass queues with

population constraints and class-dependent priorities.

6.1.1 Time Series Models of Patient Arrivals

Being able to predict future arrivals into an A&E department is an important tool

for hospital managers. In Chapter 3 we applied time series analysis to model and

forecast A&E patient arrivals. We found that walk-in and ambulance patient arrivals

have very different characteristics; this may be because walk-in arrivals (the majority

of which will have minor illnesses/injuries) have more of a choice when deciding the

most convenient time to go into A&E, while ambulance arrivals will tend to call an

ambulance as and when needed (due to the more serious nature of their illness/injury).

Other factors may include the staffing and resource levels of the ambulance service and

whether ambulance arrivals are being diverted to/from other A&E departments. This

144
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observation is consistent with other studies [97, 29]. Thus these two arrival streams

require to be modelled separately.

We demonstrated that the walk-in arrivals exhibit a strong seven day seasonality that

is best modelled with a structural time series model. A structural time series model

provides one to six day ahead forecasts with good predictive power. However, we had

less success with our ambulance arrivals models. This may be because the ambulance

arrivals do not exhibit any strong periodicies or other regularity. Thus the ambulance

arrival stream might not be appropriate for this method of time series analysis. We

have also investigated characterising ambulance arrivals by a linear non-homogeneous

Poisson process [68, 76] but we found that our “training” data fails the corresponding

goodness of fit tests. Despite being only able to characterise and forecast walk-in

arrivals effectively, these forecasts will still be of value to hospital managers as walk-in

arrivals typically account for the majority of arrivals into an A&E department.

We have also demonstrated that arrivals into an A&E department by hour varies pre-

dictably, with weekdays exhibiting similar hourly arrival patterns as do weekends. This

hourly breakdown of daily arrivals will be useful to hospital managers when deciding the

staffing and resource levels required throughout the day as well as designing workshift

and handover patterns that coincide with less busy periods of the day. Finally, mul-

tiple regression models using weather-related factors (including daily temperature and

rainfall), for 0 to 14 days before the day of arrival, were fitted to the number of walk-in

and ambulance arrivals to our case study department. We found that these models had

low descriptive power, possibly because of a lack of extreme weather conditions in this

country.

6.1.2 Patient Flow Modelling

A key contribution of this thesis is the development of a detailed model of patient

flow in an A&E department, parameterised using actual patient data, as presented in

Chapter 4. This model facilitates the calculation of sophisticated performance measures

including the higher moments and the densities of patient service time in addition to

performance measures at the individual resource level.
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The multiclass queueing network model of patient flow was implemented in a discrete-

event simulation written in Java. The simulation results and service time densities were

compared with those observed in the actual A&E. Having investigated the effects of

different patient priority schemes, we found the impact of the introduction of the 4 hour

waiting time target has been similar to a move from a system in which majors patients

are given priority, to a system in which minors patients are given priority treatment.

This (seemingly socially unacceptable) prioritisation of treatment for minors patients

over majors patients leads to the counter-intuitive outcome that mean service times for

ambulance arrivals are not adversely affected (in fact they are slightly improved), while

mean service times (and corresponding variances) for walk-in arrivals are dramatically

lower. This is a particularly interesting result in light of UK government waiting time

targets, which has led to the prioritisation of minors patients.

We also gained some insights into how the system behaves when the workload and

resource levels are varied. We found that for low to medium workloads, mean service

times for ambulance arrivals benefit from a system under majors priority, but under

high workloads both arrival types perform better under a minors priority scheme. The

main bottleneck in the system for both arrival types was found to be the other spe-

cialist followed by the minors practitioner for the walk-in arrivals and radiology for the

ambulance arrivals.

6.1.3 Efficient Approximate Response Time Analysis

Whilst seeking an efficient analytical method – that avoids the state-space explosion

problem – to solve our model of patient flow we developed the approximate generating

function analysis (AGFA) technique presented in Chapter 5. In this technique single

nodes of networks of multiclass M/M/m queues with population constraints and class-

dependent priorities are analysed individually, adapting Cobham’s formula to approx-

imate the Laplace transform of response time probability density. The single nodes

are aggregated together to form sub-networks, which are solved using a hierarchical

MVA-like approach [96, 46].

This technique was applied to a closed network adaptation of the model of patient
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flow and the results compared against those obtained via the discrete-event simulation.

We showed that the technique works well for mean response times under a number of

different priority schemes although discrepancies were noted when the system starts

to become saturated under high workloads. The corresponding standard deviations –

equivalent to second moments – show generally adequate agreement but were (not atyp-

ically) less accurate. This is because higher moments lack the linearity properties of

first moments (means) and so greater care and precision is required in their analysis.

Although the AGFA method provides this well in open queues, its approximation be-

comes worse when it is applied in closed systems with constrained class populations at

individual nodes.

Although still needing improvement in terms of the standard deviation approximation,

the good agreement with simulation for the mean values is encouraging. Another

advantage of the AGFA technique is that once the approximate Laplace transform has

been calculated, all higher moments may be subsequently derived.

6.2 Applications

The techniques and methods used in this thesis to model and forecast patient arrivals

modelling may be easily applied to not only other A&E departments, but also to a

range of other healthcare systems, including ambulance services, hospital admissions

and out-patient clinics. However, to be of greatest benefit to hospital managers, the

forecasting range of our models need to be increased. Similarly the model and discrete-

event simulation of our case study department patient flow can be easily adapted to

other A&E departments and other healthcare systems where response time targets

are in place. Another interesting application of the patient flow model could be to

adapt it to model disease progression. With appropriate quantities of data, probability

distributions of the time to the next stage of disease can be fitted and combined to

form a complete model of disease pathways. In this way useful disease progression time

quantiles such as: 95% of patients over 60 with n-stage diabetes on a certain medication

will need cataract surgery in x number of years, can be obtained.

As mentioned in the previous section, the AGFA technique can be applied to any multi-
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class M/M/m queueing system with priorities and population constraints to obtain the

higher moments of response time. Another application of this technique is to optimise

complex queueing network models where the mean and standard deviations of customer

response time is optimised by finding the optimal resource allocation. Any optimisation

would in general involve applying an optimisation algorithm in which various resource

allocations are investigated. The AGFA technique would be employed at this point to

find the impact of these resource allocations; depending on the results obtained, a new

set resource allocations are returned by the optimisation algorithm and the subsequent

impact again investigated via the AGFA method. This process is repeated until an

optimal set of resource allocations is found. A prime example would be to find the

optimal staff and resource mix in order to minimise the mean and standard deviation

of patient treatment times in the case study A&E model (which we will discuss further

in the next section).

6.3 Future Work

Future work may involve identifying improvements and possible extensions to both

the patient arrival and patient flow models. Much of this work will be dependent

upon obtaining both more and more complete data. The AGFA technique can also

be refined and the accuracy at the higher moments improved. Another future area of

research could be the use of the patient flow model and the AGFA technique to perform

optimisation.

The patient arrivals models can be improved by further characterising ambulance ar-

rivals using other methods, possibly including non-homogeneous Poisson processes with

cyclic or periodic behaviour [67, 68] and incorporating lagged weather-related param-

eters. Better models for walk-in arrivals can be fitted as we gather more data; this

may involve incorporating both a weekly and an annual seasonality by fitting a multi-

seasonal structural time series model [51] and including calendar events such bank

holidays into our models.

As mentioned in Section 4.3.5 there are a number of complexities not incorporated into

our patient flow model. As future work the main additions/changes we believe would
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make the biggest improvements to the model accuracy are:

Staff and Resource Service Time Distributions Given sufficient staff and re-

source timing data, we can calculate the first four moments of service time. It has

been shown that by fitting a Generalised Lamda Distribution [47, 63] to the first four

moments of a probability distribution, a good approximation to the actual probability

distribution can be obtained [7, 8]. In this way we hope to obtain much more accurate

service time distributions with which to parameterise our patient flow model.

Bed Blocking As mentioned in Section 4.11, the disparity between the actual and

simulated ambulance arrival service time means may be due to the lack of bed/transport

blocking phenomena in our model, which will mostly delay ambulance arrivals. This

will require incorporating the various different wards in the hospital plus the numbers of

beds available in each. The rate of admission (both from A&E and other departments)

and discharge to and from each ward will also have to be approximated.

Parallel Tests and Scans It is important to model the laboratory and radiology

area accurately because a large number of patients are routed through these nodes;

consequently, as we have shown, they are highly utilised with radiology being one of

the bottlenecks in the system. Overlapping testing and scanning can be incorporated

into the model by using a fork-join queue [17, 72].

Patient Arrivals As shown in Chapter 3, the arrivals process at an A&E department

is non-stationary and is inadequately modelled by a Poisson arrivals stream. Although

we have shown that our patient arrival models can be used to effectively characterise

patient arrivals by hour and by day, we decided not to incorporate the patient arrival

models into our model of patient flow for two reasons. Firstly this was done for ease

of implementation and secondly to facilitate the application of the AGFA technique

to our model of patient flow. However, if we are only looking to simply improve the

results of our discrete-event simulation, incorporating realistic patient arrivals would

be a first step.
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Future work should also involve refining the AGFA technique in order to get better

agreement at greater loads and higher moments. Other improvement to this technique

involve adapting it to incorporate more complex queueing disciplines such as time-based

queueing priorities (i.e. queues with ageing).

Finally, as mentioned in the previous section, another promising line of future research

could be to utilise both the AGFA technique and our detailed patient flow model to

optimise our case study A&E department, whereby the optimal staff and resource

mix is found in order to minimise the mean and standard deviation of patient ser-

vice times. Optimisation has been widely used in the healthcare sector, generally to

find the optimum allocation of resources and to optimise staff scheduling in terms of

cost [87, 42, 22, 98]. Currently the AGFA technique when applied to the full patient

flow model is too slow to facilitate any optimisation in reasonable time. This is due

to optimisation methods potentially requiring the application of the AGFA technique

hundreds if not thousands of times. A first step in any optimisation would therefore be

to first further simplify the model of patient flow to make any optimisation tractable.

Once this has been achieved, the optimisation to be made can be cast into a non-

linear integer programming problem; a number of optimisation techniques may then

be applied to obtain optimal values. These optimal values can then be verified using

the discrete-event simulation of the full model and the corresponding response time

densities obtained.



Glossary of Medical Terms and

Abbreviations

Notation Description

A&E Accident and Emergency.

Ambulance arrivals Patients that come into A&E via ambulance.

Blue call arrivals Very seriously ill/injured patients that require

resuscitation.

CCU Coronary Care Unit – a specialist unit that

specialises in cardiac conditions.

CDU Clinical Decision Unit – short stay ward for

patients that require observation.

COPD Chronic Obstructive Pulmonary Disease.

CT scan Computerised Tomography scan – medical

imaging method.

DOA Dead On Arrival.

ENT Ear, Nose and Throat.

GP General Practitioner.

GP-referred arrivals Patients that come into A&E after first con-

sulting a GP.

ITU Intensive Treatment Unit.

Majors patients Patients with major illness or injury.

MAU Medical Assessment Unit – assesses if a pa-

tient requires admission to a medical ward.

Minors patients Patients with minor illness or injury.
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Notation Description

Minors Practitioner Doctor or nurse trained to assess and treat

minor illnesses or injuries.

Radiology Department where all scans such as x-rays are

performed.

Resusc Resuscitation.

Resuscitation patients Patients that require urgent medical atten-

tion.

Review clinic Consultant run follow-up clinic for patients

who were not admitted.

Self-referred arrivals Patients who come into A&E of their own ac-

cord and transport.

Suspended patient Resuscitation patient that shows no vital

signs.

Theatre Operating theatre where surgery is per-

formed.

Walk-in arrivals Patients that come into A&E via their own

transport.

Ward Hospital room or block with beds for patients

that require similar care.



Appendix A

R Code for Fitting Time Series

Models
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A.1 Rolling Average Models

#When using R, any sentence preceded by  # indicates a comment. 
 
#read in all the data in this case we use the daily ambulance arrivals data 
ambulance_data <- scan("amb_02-07.txt", list("","")) 
 
#set data as a time series with 7 day frequency 
series<- ts(as.numeric(ambulance_data[[2]]),frequency =7) 
 
#take first 1456 values use last 370 to evaluate predictions 
npred <- 1456 
 
#truncate the data to get just the training data 
training_data <- ts(series[1:npred],frequency=7) 
 
#keep the rest of the data as the unseen data 
unseen_data<-ts(series[(npred+1):length(series)], frequency =7) 
 
#fit a rolling average model to the training data 
series_RA_fit <- data.frame() 
series_RA_current<- data.frame() 
 
#6 week rolling average fit 
fit_index <- (6*7+1): length(training_data) 
 
for (i in fit_index) 
 
{ 
 
 #find the current rolling average (RA) value  
 series_RA_current<- (training_data[(i-7)]/6 + training_data[(i-14)]/6 + training_data[(i-21)]/6  

+ training_data[(i-28)]/6 + training_data[(i-36)]/6 +training_data[(i-42)]/6) 
 
 #save RA value 
 series_RA_fit <- c(series_RA_fit,as.numeric(series_RA_current)) 
 
} 
 
#create a time series of the RA fits 
series_RA_fit<- ts(as.numeric(series_RA_fit), frequency =7 ) 
 
#work out the residuals 
series_RA_resid <- ts(training_data[43:length(training_data)]-series_RA_fit, frequency=7) 
 
#find the 95% confidence intervals from the residuals 
ci<-1.96*sd(series_RA_resid) 
 
#find the correlation between the model fit and the actual data 
cor.test(training_data[43:1456],series_RA_fit) 
 
#plot the autocorrelation function for the residuals 
acf(series_RA_resid, main="Residual acf for ambulance rolling average model") 
 
#fit a normal distribution to the residuals 
x_series<- -60:60 
sd_series <- sd(series_RA_resid) 
mean_series <- mean(series_RA_resid) 
y_series <- dnorm(x_series,mean_series,sd_series) 
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#histogram of residuals with associated normal distribution 
hist(series_RA_resid,xlab="residuals", main="Residual histogram for ambulance rolling average model", prob=T, 
ylim=c(0,0.04), xlim=c(-40,40)) 
lines(x_series,y_series) 
 
#Ljung-Box test for independence of the residuals. testing over 30 lags 
Box.test(series_RA_resid, lag=30, type= "Ljung") 
 
#take off the inital 42 values of the data series that was used to fit the initial model 
zero<-rep(NA, times=42) 
RA_fit_plot<-ts(c(zero,series_RA_fit), frequency =7) 
 
#plot the model fit with the actual data 
plot(training_data, type ='b',ylab="no. of patients",xlab="weeks", main=("ambulance rolling average model fit")) 
lines(RA_fit_plot,col="blue") 
legend("topleft",c("\"training\" data ","RA model fit"), col= c("black","blue"),bty="n",lty = 1) 
 
#now use this model to predict the unseen data 
series_RA_pred <- data.frame() 
series_RA_current<- data.frame() 
 
#index of how far along the data we are 
pred_index <- (npred+1): length(series) 
 
for (i in pred_index) 
 
{  
 
 #predict ahead by one day 
 series_RA_current<- (series[(i-7)]/6 + series[(i-14)]/6 + series[(i-21)]/6 + series[(i-28)]/6 

+ series[(i-36)]/6 +series[(i-42)]/6) 
  
 #save RA prediction 
 series_RA_pred <- c(series_RA_pred,as.numeric(series_RA_current)) 
 
}  
 
#create a time series of the RA forecasts 
series_RA_pred<- ts(as.numeric(series_RA_pred), frequency =7 ) 
 
#find the percentage of predictions inside the 95% confidence interval  
conf <- series_RA_pred[abs(unseen_data - series_RA_pred) > (ci)  ] 
length(conf)/length(series_RA_pred) *  100  
 
#find the correlation between the model forecast and the unseen data 
cor.test(unseen_data,series_RA_pred) 
 
#calculate the mean bias  
bias<- ts(series_RA_pred-unseen_data, frequency = 7) 
mean(bias) 
 
#calculate the sum of squares 
sum_squares<-0 
count <- 1: (length(series_RA_pred)) 
for (i in count) 
 
{  
 sum_squares<- (sum_squares + (series_RA_pred[i] - unseen_data[i])* (series_RA_pred[i] - unseen_data[i])) 
}  
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#calculate the root mean square error 
rmse<- sqrt(sum_squares/length(series_RA_pred)) 
 
#plot model forecast 
plot(unseen_data, type ='b',ylab="no. of patients",xlab="weeks", main=("ambulance rolling average model prediction")) 
lines(series_RA_pred,col="blue") 
lines(series_RA_pred - (ci),col='red') 
lines(series_RA_pred + (ci),col='red') 
legend("topleft",c("\"unseen\" data","RA model predictions","95% confidence interval"),  
col= c("black","blue","red"),bty="n",lty = 1) 
 
#create scatterplot 
plot(unseen_data, series_RA_pred,ylab="predicted arrivals",xlab="observed arrivals", main="ambulance arrivals", 
xlim=c(40,100),ylim=c(40,100)) 
abline(0,1,lty=2) 
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A.2 Auto-regressive Models

#read in all the data here we use the daily walk-in arrivals data 
series_data <- scan("walk_in_02-07.txt", list("","")) 
 
#set data as a time series  
series_ts<- ts(as.numeric(series_data[[2]]),frequency =1) 
 
#keep the last 370 data points as the unseen data 
actual_unseen_data <- ts( series_ts[1457:(length(series_ts))],frequency = 7) 
 
#test time series for stationarity 
kpss.test(series_ts[1:1456]) 
 
#not stationary, take the first difference to create a differenced series 
diff_series <- diff(series_ts) 
 
series<- ts(diff_series, frequency = 1) 
 
#test differenced time series for stationarity 
kpss.test(series) 
 
#take first 1455 differences use last 370 to evaluate predictions 
npred <- 1455 
 
#truncate the data to get just the training data 
training_data <- ts(series[1:npred],frequency=7) 
 
#keep the rest of the differences as the unseen difference data 
unseen_data <- ts(series[(npred+1):(length(series))], frequency = 7) 
 
#fit a auto-regressive (AR) model to the training data 
series_ar <- ar(training_data,aic=T,method="yw",var.method=2) 
 
#remember the order of the model fit 
order<-series_ar$order 
 
#AR model fit 
series_fitted<-ts(training_data[-c(1:series_ar$order)]-series_ar$resid[-c(1:series_ar$order)],frequency=1) 
 
#take off the values of the data series that was used to fit the initial model 
training_data_fit<-ts(training_data[-c(1:series_ar$order)],frequency = 1) 
 
#plot the AR model fit 
plot(ts(training_data[-c(1:series_ar$order)],frequency = 7), main="differenced walk-in auto-regressive model fit", 
ylab="no. of patients", xlab="weeks") 
lines(ts(training_data[-c(1:series_ar$order)]-series_ar$resid[-c(1:series_ar$order)], frequency=7),col="blue") 
legend("topleft",c("differenced \"training\" data ","AR model fit"), col= c("black","blue"),bty="n",lty = 1) 
 
#find the correlation between the model fit and the differenced data 
cor.test(training_data, fit,series_fitted) 
 
#plot the autocorrelation function for the residuals  
acf(training_data, main="acf for differenced walk-in arrivals") 
 
#fit a normal distribution to the residuals 
x_series<- -60:60 
sd_series <- sd(series_ar$resid,na.rm=T) 
mean_series <- mean(series_ar$resid,na.rm=T) 
y_series <- dnorm(x_series,mean_series,sd_series) 
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#histogram of residuals with associated normal distribution 
hist(series_ar$resid,xlab="residuals", main="Residual histogram for walk-ins", prob=T, ylim=c(0,0.03), xlim=c(-60,60)) 
lines(x_series,y_series) 
 
#plot the residuals against time 
t<-(order+1):npred 
plot(t, series_ar$resid[(order+1):npred], type="b", main="Residual plot for walk-in difference model fit against time", 
xlab="time", ylab="residuals") 
 
#plot the residuals against fitted values 
plot(series_fitted,series,ar$resid[(order+1):npred], main="Residual plot for walk-in difference model fit", xlab="fitted 
value", ylab="residuals") 
 
 
#Ljung-Box test for independence of the residuals. testing over 30 lags 
Box.test(series_ar$resid[-c(1:series_ar$order)], lag=30, type= "Ljung") 
 
#calculate one day ahead differenced predictions 
series.pred <- data.frame() 
series.se <- data.frame() 
 
#index of how far along the data we are 
index <- 1: (length(series)-npred) 
for (i in index) 
{ 
 #work out data to fit model with 
 current_time<-ts(series[i:(npred+i-1)], frequency = 1) 
 series_ar <- ar(current_time,aic=F, order.max=order,method="yw",var.method=2) 
  
 # make prediction 
 model.pred <- predict(series_ar,n.ahead=1) 
  
 #remember predicted values 
 series.pred <- c(series.pred,as.numeric(model.pred$pred)) 
  
 # remember standard error of predicted values 
 series.se <- c(series.se,as.numeric(model.pred$se))    
} 
 
#create a time series of the AR forecast 
series.pred  <- ts(as.numeric(series.pred[1:(length(series)-npred)]), frequency =7) 
 
#create a time series of standard error in the ST forecast used to find the 95% confidence interval 
series.se  <- ts(as.numeric(series.se[1:(length(series)-npred)]), frequency =7) 
 
#calculate the AR model predictions of the arrivals using the predicted differences 
series.actual.pred  <- ts(series_ts[(npred+1):(length(series))] + series.pred, frequency =7) 
 
#find the percentage of predictions inside the 95% confidence interval  
c95 <- 1.96 
conf <- series.pred[abs(unseen_data - series.pred) > (c95 * series.se)  ] 
length(conf)/length(unseen_data) * 100  
 
#forecast measures for difference predictions 
 
#find the correlation between the predicted differences and the differenced actual data 
cor.test(unseen_data,series.pred) 
 
#calculate the mean 95% confidence interval 



A.2. Auto-regressive Models 159

#calculate the mean bias of the difference predictions 
bias<- ts(series.pred-unseen_data, frequency = 1) 
mean(bias) 
 
#calculate the sum of squares 
sum_squares<-0 
 
count <- 1: (length(series.pred)) 
for (i in count) 
{  
 sum_squares<- (sum_squares + (series.pred[i] - unseen_data[i])* (series.pred[i] - unseen_data[i])) 
}  
 
#calculate the root mean square error 
rmse<- sqrt(sum_squares/length(series.pred)) 
 
#plot model forecast of differences 
plot (unseen_data,type='b',xlab='weeks',ylab='no. of patients', main = 'differenced walk-in autoregressive model difference 
predictions') 
lines(series.pred,col='blue') 
lines(series.pred - (c95 *  series.se),col='red') 
lines(series.pred + (c95 *  series.se),col='red') 
legend("topleft",c("differenced\"unseen\" data","AR model difference predictions","95% confidence interval"), col= 
c("black","blue","red"),bty="n",lty = 1) 
 
#create scatterplot of the differences 
plot(unseen_data,series.pred,xlab='observed differences',ylab='predicted differences',main='walk-in arrival differences', 
ylim=c(-80,80), xlim=c(-80,80)) 
abline(0,1,lty=2) 
 
#forecast measures for arrival predictions  
 
#find the correlation between the predicted arrivals and the actual data 
cor.test(actual_unseen_data,series.actual.pred) 
 
#calculate the mean bias of the arrival predictions 
bias<- ts(series.actual.pred-actual_unseen_data, frequency = 1) 
mean(bias) 
 
#calculate the sum of squares 
sum_squares<-0 
count <- 1: (length(series.actual.pred)) 
for (i in count) 
{  
 sum_squares<- (sum_squares + (series.actual.pred[i] - actual_unseen_data[i])*(series.actual.pred[i]  

- actual_unseen_data[i])) 
}  
 
#calculate the root mean square error 
rmse<- sqrt(sum_squares/length(series.actual.pred)) 
 
#plot model forecast of arrivals 
plot (actual_unseen_data,type='b',xlab='weeks',ylab='no, of patients', main = 'walk-in autoregresive model predictions') 
lines(series.actual.pred,col='blue') 
lines(series.actual.pred - (c95 *  series.se),col='red') 
lines(series.actual.pred + (c95 *  series.se),col='red') 
legend("topleft",c("\"unseen\" data","AR model predictions","95% confidence interval"),  
col= c("black","blue","red"),bty="n",lty = 1) 
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#create scatterplot of arrival predictions 
plot(actual_unseen_data,series.actual.pred,xlab='observed arrivals',ylab='predicted arrivals',main='walk-in arrivals', 
ylim=c(135,305), xlim=c(135,305)) 
abline(0,1,lty=2) 
 
#calculate predictions for more than one day ahead 
#current lag value (varies from 2 to 7) 
lag<-6 
 
lag_series.pred <- data.frame() 
lag_series.se <- data.frame() 
lag_actual_series.pred <- data.frame() 
lag_only_actual_series.pred <- data.frame() 
lag_only_actual_unseen_data <- data.frame() 
lag_only_unseen_data <- data.frame() 
lag_only_series.pred <- data.frame() 
 
#index of how far along the data we are 
lag_index <- 0:((length(series)-npred)%/%lag) 
for (j in lag_index) 
 
{  
 #work out data to fit model to 
 i=j* lag 
 current_time<-ts(series[(i+1):(npred+i)], frequency = 1) 
  
 series_ar <- ar(current_time,aic=F, order.max=series_ar$order,method="yw",var.method=2) 
 
 # make differenced prediction for the lag value days ahead 
 lag_model.pred <- predict(series_ar,n.ahead=lag) 
 
 # remember differenced values of the lag difference 
 lag_series.pred <- c(lag_series.pred,as.numeric(lag_model.pred$pred[lag])) 
 
 # remember standard error of predicted differences for the lag difference 
 lag_series.se <- c(lag_series.se,as.numeric(lag_model.pred$se[lag])) 
 
 #work out the corresponding difference in the unseen data       
 lag_only_unseen_data<-c(lag_only_unseen_data, as.numeric(series[(npred+i+lag)])) 
 
 #work out actual preditions 
 
 act_index<-1:lag  
 current_sum<-0 
 
 for (k in act_index) 
 {   
  current_sum<- current_sum+as.numeric(lag_model.pred$pred[k]) 
  
  lag_actual_series.pred<-c(lag_actual_series.pred, (as.numeric(current_sum) + series_ts[npred+1+i])) 
 }  
 
 # remember predicted arrival for the lag value day 
        lag_only_actual_series.pred<-c(lag_only_actual_series.pred, as.numeric(lag_actual_series.pred[i+lag]))   
 
 #work out the corresponding day in the unseen data of acutal arrivals 
        lag_only_actual_unseen_data<-c(lag_only_actual_unseen_data, as.numeric(series_ts[(npred+1+i+lag)])) 
}  
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#create a time series of the AR forecast standard errors 
lag_series.se  <- ts(as.numeric(lag_series.se[1:((length(series)-npred)%/%lag)]), frequency =1) 
 
#create a time series of the corresponding days in the unseen differenced data 
lag_only_actual_unseen_data<-ts(as.numeric(lag_only_actual_unseen_data[1:((length(series)-npred)%/%lag)]), 
frequency=1) 
 
#create a time series of the AR arrivals forecast 
lag_only_actual_series.pred<-ts(as.numeric(lag_only_actual_series.pred[1:((length(series)-npred)%/%lag)]), frequency=1) 
 
#find the percentage of predictions inside the 95% confidence interval  
c95 <- 1.96 
conf <- lag_only_actual_series.pred[abs(lag_only_actual_unseen_data - lag_only_actual_series.pred) > (c95 * 
lag_series.se)  ] 
length(conf)/length(lag_only_actual_unseen_data) * 100  
 
#forecast measures for actual arrivals 
 
#find the correlation between the predicted arrivals and the actual data 
cor.test(lag_only_actual_unseen_data,lag_only_actual_series.pred) 
 
#calculate the mean 95% confidence interval 
mean(c95 * lag_series.se) 
 
#calculate the mean bias of the arrivals predictions 
lag_bias<- ts(lag_only_actual_series.pred-lag_only_actual_unseen_data, frequency =1) 
mean(lag_bias) 
 
#calculate the sum of squares 
sum_squares<-0 
 
count <- 1:(length(lag_only_actual_series.pred)) 
for (i in count) 
{ 
 sum_squares<- (sum_squares + (lag_only_actual_series.pred[i] - lag_only_actual_unseen_data[i])^2) 
} 
 
#calculate the root mean square error 
rmse<- sqrt(sum_squares/length(lag_only_actual_series.pred)) 
 
#calculate entire week ahead predictions 
week_series.pred <- data.frame() 
week_series.se <- data.frame() 
week_actual_series.pred <- data.frame() 
week_only_actual_series.pred <- data.frame() 
 
#index of how far along the data we are 
lag_index <- 0:52 
for (j in lag_index) 
 
{ 
 #work out data to fit model to 
 i=j*7 
 current_time<-ts(series[(i+1):(npred+i)], frequency = 1) 
  
 series_ar <- ar(current_time,aic=F, order.max=series_ar$order,method="yw",var.method=2) 
 
 # make differenced prediction for one entire week ahead 
 week_model.pred <- predict(series_ar,n.ahead=7) 
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 # remember differenced values for the week 
 week_series.pred <- c(week_series.pred,as.numeric(week_model.pred$pred)) 
 
 # remember standard error of predicted differences for the week  
 week_series.se <- c(week_series.se,as.numeric(week_model.pred$se)) 
 
 #work out actual preditions 
 act_index<-1:7  
 current_sum<-0 
 
 for (k in act_index) 
 {  
  current_sum<- current_sum+as.numeric(week_model.pred$pred[k]) 
  
  week_actual_series.pred<-c(week_actual_series.pred, (as.numeric(current_sum) + series_ts[npred+1+i]))  
 } 
} 
 
#create a time series of the AR forecast differences 
week_series.pred  <- ts(as.numeric(week_series.pred[1:(length(series)-npred)]), frequency =7) 
 
#create a time series of the AR forecast standard errors 
week_series.se  <- ts(as.numeric(week_series.se[1:(length(series)-npred)]), frequency =7) 
 
#create a time series of the AR arrivals forecastl 
week_actual_series.pred<-ts(as.numeric(week_actual_series.pred[1:(length(series)-npred)]), frequency =7) 
 
#find the percentage of predictions inside the 95% confidence interval  
c95 <- 1.96 
conf <- week_actual_series.pred[abs(actual_unseen_data - week_actual_series.pred) > (c95 * week_series.se)  ] 
length(conf)/length(actual_unseen_data) * 100  
 
#forecast measures for actual arrivals 
 
#find the correlation between the predicted arrivals and the actual data 
cor.test(actual_unseen_data,week_actual_series.pred) 
 
#calculate the mean 95% confidence interval 
mean(c95 * week_series.se) 
 
#calculate the mean bias of the arrivals predictions 
week_bias<- ts(week_actual_series.pred-actual_unseen_data, frequency =7) 
mean(week_bias) 
 
#calculate the sum of squares 
sum_squares<-0 
 
count <- 1:(length(week_actual_series.pred)) 
for (i in count) 
{ 
 sum_squares<- (sum_squares + (week_actual_series.pred[i] - actual_unseen_data[i])^2) 
} 
 
#calculate the root mean square error 
rmse<- sqrt(sum_squares/length(week_actual_series.pred)) 
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A.3 Structural Time Series Models

#read in all the data here we use the daily ambulance arrivals data 
series_data <- scan("amb_02-07.txt", list("","")) 
 
#set data as a time series with 7 day frequency 
series<- ts(as.numeric(series_data[[2]]),frequency =7) 
 
#take first 1456 values use last 370 to evaluate predictions 
npred <- 1456 
 
#truncate the data to get just the training data 
training_data <- ts(series[1:npred],frequency=7) 
 
#keep the rest of the data as the unseen data 
unseen_data<-ts(series[(npred+1):length(series)], frequency =7) 
 
#fit a ST model to the training data 
series_st <- StructTS(training_data,type="BSM") 
 
#ST model fit 
series_st_fit <- ts(apply(series_st$fitted[,c(1,3)],1,sum),frequency=7) 
 
#ST model residuals 
series_st_resid <- ts(training_data-series_st_fit, frequency=1) 
 
#plot the ST model data fit 
plot(training_data,ylab="no. of patients", xlab="weeks",main=("ambulance structural time series model fit")) 
lines(series_st_fit,col="blue") 
legend("topleft",c("\"training\" data ","ST model fit"), col= c("black","blue"),bty="n",lty = 1) 
 
#find the correlation between the model fit and the actual data 
cor.test(training_data,series_st_fit) 
 
#plot the autocorrelation function for the residuals 
acf(series_st_resid, main="Residual acf for ambulance arrivals") 
 
#fit a normal distribution to the residuals 
x_series<- -60:60 
sd_series <- sd(series_st_resid) 
mean_series <- mean(series_st_resid) 
y_series <- dnorm(x_series,mean_series,sd_series) 
 
#histogram of residuals with associated normal distribution 
hist(series_st_resid,xlab="residuals", main="Residual histogram for ambulance arrivals", prob=T, ylim=c(0,0.05), 
xlim=c(-30,30)) 
lines(x_series,y_series) 
 
#plot the residuals against time 
t<-1:npred 
plot(t, series_st_resid, type="b", main="Residual plot for ambulance model fit against time", xlab="time", ylab="residuals")
 
#plot the residuals against fitted value 
plot(series_st$fit[1:npred], series_st_resid[1:npred],  main="Residual plot for ambulance model fit ", xlab="fitted value", 
ylab="residuals") 
 
 
#Ljung-Box test for independence of the residuals. testing over 30 lags 
Box.test(series_st_resid, lag=30, type= "Ljung") 
 
#calculate one day ahead predictions 
series.pred <- data.frame() 
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#index of how far along the data we are 
index <- 1: (length(series)-npred) 
for (i in index) 
 
{  
 #work out data to fit model with 
 current_time<-ts(series[(ntrim+i-1):(npred+i - 1)], frequency = 7)  
 series_st <- StructTS(current_time,type = "BSM") 
  
 # make prediction 
 model.pred <- predict(series_st,n.ahead=1) 
 
 # remember predicted values 
 series.pred <- c(series.pred,as.numeric(model.pred$pred)) 
 
 # remember standard error of predicted values 
 series.se <- c(series.se,as.numeric(model.pred$se)) 
}  
 
#create a time series of the ST forecast 
series.pred  <- ts(as.numeric(series.pred), frequency =7) 
 
#create a time series of standard error in the ST forecast used to find the 95% confidence interval 
series.se  <- ts(as.numeric(series.se), frequency =7) 
 
#find the percentage of predictions inside the 95% confidence interval  
c95 <- 1.96 
conf <- series.pred[abs(unseen_data - series.pred) > (c95 *  series.se)  ] 
length(conf)/length(unseen_data) *  100  
 
#find the correlation between the model forecast and the unseen data 
cor.test(unseen_data,series.pred) 
 
#calculate the mean 95% confidence interval 
mean(c95*series.se) 
 
#calculate the mean bias 
bias<- ts(series.pred-unseen_data, frequency = 7) 
mean(bias) 
 
#calculate the sum of squares 
sum_squares<-0 
count <- 1: (length(series.pred)) 
for (i in count) 
{  
 sum_squares<- (sum_squares + (series.pred[i] - unseen_data[i])* (series.pred[i] - unseen_data[i])) 
}  
 
#calculate the root mean square error 
rmse<- sqrt(sum_squares/length(series.pred)) 
 
#plot model forecast 
plot (unseen_data,type='b',xlab='weeks',ylab='no. of patients', main = 'ambulance structural time series model predictions') 
lines(series.pred,col='blue') 
lines(series.pred - (c95 *  series.se),col='red') 
lines(series.pred + (c95 *  series.se),col='red') 
legend("topleft",c("\"unseen\" data","ST model predictions","95% confidence interval"),  
col= c("black","blue","red"),bty="n",lty = 1) 
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#create scatterplot 
plot(unseen_data,series.pred,xlab='observed arrivals',ylab='predicted arrivals',main='ambulance arrivals', ylim=c(135,305), 
xlim=c(135,305)) 
abline(0,1,lty=2) 
 
#calculate predictions for more than one day ahead 
#current lag value (varies from 2 to 7) 
lag<-7 
 
lag_series.pred <- data.frame() 
lag_series.se <- data.frame() 
lag_future_series<-data.frame() 
 
#index of how far along the data we are 
lag_index <- 0:((length(series)-npred)%/%lag -1) 
for (j in lag_index) 
  
{  
 #work out data to fit model to 
 i=j* lag 
 current_time<-ts(series[(ntrim+i):(npred+i)], frequency = 7) 
   
 series_st <- StructTS(current_time,type = "BSM") 
  
 # make prediction for the lag value days ahead  
 lag_model.pred <- predict(series_st,n.ahead=lag) 
 
 # remember predicted values for the lag value day 
 lag_series.pred <- c(lag_series.pred,as.numeric(lag_model.pred$pred[lag])) 
 
 # remember standard error of predicted values 
 lag_series.se <- c(lag_series.se,as.numeric(lag_model.pred$se[lag])) 
   
 #work out the corresponding day in the unseen data  
 lag_future_series <- c(lag_future_series, series[(npred+i+lag)]) 
}  
 
#create a time series of the ST forecast 
lag_series.pred  <- ts(as.numeric(lag_series.pred[1:(370%/%lag)])) 
 
#create a time series of the standard error of the ST forecast 
lag_series.se  <- ts(as.numeric(lag_series.se[1:(370%/%lag)])) 
 
#create a time series of the corresponding days in the unseen data 
lag_future_series<-ts(as.numeric(lag_future_series[1:(370%/%lag)])) 
 
#find the percentage of predictions inside the 95% confidence interval  
c95 <- 1.96 
conf <- lag_series.pred[abs(lag_future_series - lag_series.pred) > (c95 *  lag_series.se)  ] 
length(conf)/length(lag_future_series) *  100 
 
#find the correlation between the model forecast and the unseen data 
cor.test(lag_future_series,lag_series.pred) 
 
#calculate the mean 95% confidence interval 
mean(c95 *  lag_series.se) 
 
#calculate the mean bias 
lag_bias<- ts(lag_series.pred-lag_future_series) 
mean(lag_bias) 
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#calculate the sum of squares 
sum_squares<-0 
count <- 1:(length(lag_series.pred)) 
for (i in count) 
{ sum_squares<- (sum_squares + (lag_series.pred[i] - lag_future_series[i])^2) } 
 
#calculate the root mean square error 
rmse<- sqrt(sum_squares/length(lag_series.pred)) 
 
#calculate entire week ahead predictions 
week_series.pred <- data.frame() 
week_series.se <- data.frame() 
lag_index <- 0:52 
for (j in lag_index) 
{ 
 i=j*7 
 current_time<-ts(series[(ntrim+i):(npred+i)], frequency = 7) 
  
 series_st <- StructTS(current_time,type = "BSM") 
  
 # make a week ahead prediction  
 week_model.pred <- predict(series_st,n.ahead=7) 
 
 # remember predicted values for the entire week ahead and the standard errors 
 week_series.pred <- c(week_series.pred,as.numeric(week_model.pred$pred)) 
 week_series.se <- c(week_series.se,as.numeric(week_model.pred$se)) 
} 
 
#create a time series of the week ahead ST forecast 
week_series.pred  <- ts(as.numeric(week_series.pred[1:370]), frequency = 7) 
 
#create a time series of the standard error of the week ahead ST forecast 
week_series.se  <- ts(as.numeric(week_series.se[1:370]), frequency = 7) 
 
#find the percentage of predictions inside the 95% confidence interval  
c95 <- 1.96 
conf <- week_series.pred[abs(future_series - week_series.pred) > (c95 * week_series.se)  ] 
length(conf)/length(future_series) * 100  
 
#find the correlation between the model forecast and the unseen data 
cor.test(future_series,week_series.pred) 
 
#calculate the mean 95% confidence interval 
mean(c95 * week_series.se) 
 
#calculate the mean bias 
week_bias<- ts(week_series.pred-future_series) 
mean(week_bias) 
 
#calculate the sum of squares 
sum_squares<-0 
count <- 1:(length(week_series.pred)) 
for (i in count) 
{ 
 sum_squares<- (sum_squares + (week_series.pred[i] - future_series[i])^2) 
} 
 
#calculate the root mean square error  
rmse<- sqrt(sum_squares/length(week_series.pred)) 
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B.1 Walk-In Arrivals
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B.2 Ambulance Arrivals
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C.1 Models Fitted to Walk-in Arrivals

walk-in arrivals significance (p)
lag R2 max temp min temp mean temp rainfall wind sun wind chill

0 0.0396 - 0.0209 0.0007 5.3e-06 0.0005 - 0.0004
1 0.0239 - 0.0223 0.0896 0.0001 0.0832 - 0.0927
2 0.0159 - 0.0718 - 0.0019 - - -
3 0.0140 - - - 0.0026 - - -
4 0.0159 - 0.0528 - 0.0030 0.0881 - 0.0989
5 0.0082 - - 0.0591 0.0811 0.0619 - 0.0579
6 0.0113 - 0.0089 - 0.0953 - - -
7 0.0214 - 0.0022 0.0840 0.0082 0.0527 - 0.0677
8 0.0229 - 0.0540 0.0736 0.0015 0.0576 - 0.0685
9 0.0133 - 0.0784 - 0.0900 - - -
10 0.0142 - - - 0.0092 - - -
11 0.0120 - - 0.0998 0.0549 0.0682 - 0.0866
12 0.0105 - - - - - - -
13 0.0141 - 0.0705 - - - - -
14 0.0109 - - - - - - -

Table C.1: R2 and significance values (where - represents p ≥ 0.1) of the multiple
regression models of weather factors fitted to walk-in arrivals for 0 up to a 14 day lag.

C.2 Models Fitted to Ambulance Arrivals

ambulance arrivals significance (p)
lag R2 max temp min temp mean temp rainfall wind sun wind chill

0 0.0389 - 0.0309 - - - - -
1 0.0431 - 0.0167 - 0.0601 - - -
2 0.0477 - 0.0099 0.0299 - 0.0409 - 0.0410
3 0.0439 - - - - - - -
4 0.0406 0.0660 - - - - - -
5 0.0455 - 0.0669 - - - - -
6 0.0611 - - - 0.0795 - 0.0076 -
7 0.0518 - - - - - - -
8 0.0596 - - - - - 0.0339 -
9 0.0645 0.0302 - - 0.0237 - - -
10 0.0623 0.0914 - - 0.0366 - - -
11 0.0597 - - - - - - -
12 0.0582 0.0960 - - - - - -
13 0.0580 0.0043 - - 0.0286 - - -
14 0.0529 0.0022 - - - - - -

Table C.2: R2 and significance values (where - represents p ≥ 0.1) of the multiple
regression models of weather factors fitted to ambulance arrivals for 0 up to a 14 day
lag.
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D.1 Self-Referred Arrival Flow Diagrams
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D.2 GP-Referred Arrival Flow Diagrams
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D.3 Ambulance Arrival Flow Diagrams
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E.1 Simulation Results (by arrival mode)

walk-in arrivals
majors priority minors priority no priority

load mean std dev mean std dev mean std dev
0.25 1.5367 1.3876 1.5360 1.3866 1.5369 1.3862
0.3 1.5457 1.3935 1.5448 1.3922 1.5452 1.3924
0.4 1.5699 1.4086 1.5681 1.4076 1.5695 1.4082
0.5 1.6080 1.4355 1.6031 1.4322 1.6053 1.4312
0.6 1.6662 1.4771 1.6547 1.4689 1.6591 1.4671
0.7 1.7609 1.5489 1.7291 1.5220 1.7427 1.5226
0.75 1.8349 1.6082 1.7798 1.5590 1.8030 1.5632
0.8 1.9401 1.6981 1.8447 1.6073 1.8815 1.6165
0.85 2.1005 1.8453 1.9247 1.6667 1.9967 1.7024
0.9 2.3822 2.1323 2.0324 1.7474 2.1641 1.8345
0.95 2.9197 2.7274 2.1788 1.8628 2.4569 2.1020
1.0 4.4391 4.6034 2.3926 2.0271 3.0440 2.7149
1.05 – – 2.7347 2.3059 – –
1.1 – – 3.4227 2.9136 – –
1.15 – – 5.6451 5.0911 – –

Table E.1: Mean and standard deviation (std dev) of service times (in hours) for walk-
in arrivals under varying workloads as calculated by simulation, including the results
for workloads over 1.0 for minors priority only.

ambulance arrivals
majors priority minors priority no priority

load mean std dev mean std dev mean std dev
0.25 1.9712 1.4617 1.9731 1.4640 1.9721 1.4616
0.3 1.9789 1.4656 1.9801 1.4652 1.9797 1.4663
0.4 1.9986 1.4772 2.0042 1.4849 2.0007 1.4777
0.5 2.0278 1.4948 2.0382 1.5088 2.0331 1.5000
0.6 2.0688 1.5195 2.0894 1.5512 2.0779 1.5286
0.7 2.1274 1.5559 2.1600 1.6114 2.1422 1.5711
0.75 2.1704 1.5845 2.2074 1.6557 2.1848 1.6001
0.8 2.2235 1.6256 2.2658 1.7124 2.2387 1.6370
0.85 2.3003 1.6926 2.3370 1.7860 2.3093 1.6892
0.9 2.4206 1.8247 2.4271 1.8822 2.4013 1.7620
0.95 2.6338 2.1283 2.5466 2.0223 2.5433 1.8979
1.0 3.1934 3.2386 2.7096 2.2101 2.7952 2.2145
1.05 – – 2.9528 2.5084 – –
1.1 – – 3.4064 3.080 – –
1.15 – – 4.5646 4.5912 – –

Table E.2: Mean and standard deviation (std dev) of service times (in hours) for
ambulance arrivals under varying workloads as calculated by simulation, including the
results for workloads over 1.0 for minors priority only.
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E.2 AGFA Technique Results (by priority scheme)

no priority
walk-in arrivals ambulance arrivals

load mean std dev mean std dev
0.25 1.5148 1.5517 1.9238 1.7725
0.3 1.5238 1.5592 1.9321 1.7797
0.4 1.5494 1.5805 1.9550 1.7999
0.5 1.5878 1.6130 1.9881 1.8300
0.6 1.6446 1.6615 2.0350 1.8740
0.7 1.7305 1.7346 2.1016 1.9386
0.75 1.7910 1.7855 2.1456 1.9822
0.8 1.8705 1.8516 2.2002 2.0366
0.85 1.9818 1.9438 2.2720 2.1077
0.9 2.1615 2.0983 2.3867 2.2152
0.95 2.5461 2.4498 2.6717 2.4424
1.0 3.5283 3.2031 3.5589 2.9775

Table E.3: Mean and standard deviation (std dev) of service times (in hours) for walk-
in and ambulance arrivals under no priority for varying workloads as calculated using
the AGFA technique.

majors priority
walk-in arrivals ambulance arrivals

load mean std dev mean std dev
0.25 1.5151 1.5517 1.9231 1.7716
0.3 1.5243 1.5592 1.9309 1.7780
0.4 1.5506 1.5806 1.9519 1.7954
0.5 1.5905 1.6136 1.9815 1.8202
0.6 1.6504 1.6636 2.0223 1.8547
0.7 1.7434 1.7419 2.0796 1.9039
0.75 1.8116 1.7992 2.1178 1.9373
0.8 1.9060 1.8787 2.1670 1.9810
0.85 2.0518 2.0048 2.2405 2.0459
0.9 2.3428 2.2793 2.4125 2.1822
0.95 3.1581 3.0696 3.0824 2.5904
1.0 4.2218 4.2426 4.0598 3.4293

Table E.4: Mean and standard deviation (std dev) of service times (in hours) for walk-
in and ambulance arrivals under majors priority for varying workloads as calculated
using the AGFA technique.
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minors priority
walk-in arrivals ambulance arrivals

load mean std dev mean std dev
0.25 1.5145 1.5517 1.9244 1.7734
0.3 1.5234 1.5591 1.9333 1.7814
0.4 1.5481 1.5802 1.9582 1.8046
0.5 1.5850 1.6125 1.9951 1.8412
0.6 1.6388 1.6612 2.0486 1.8988
0.7 1.7181 1.7366 2.1266 1.9932
0.75 1.7718 1.7910 2.1787 2.0648
0.8 1.8393 1.8643 2.2432 2.1654
0.85 1.9259 1.9701 2.3243 2.3185
0.9 2.0462 2.1426 2.4293 2.5850
0.95 2.2004 2.4935 2.5723 3.1652
1.0 2.4418 3.4517 2.7880 4.7862

Table E.5: Mean and standard deviation (std dev) of service times (in hours) for walk-
in and ambulance arrivals under minors priority for varying workloads as calculated
using the AGFA technique.
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� �
comments are placed inside brackets

� �

� � ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ���
� � ���
� �

Closed 2 � class MVA Priority Model
���

� � ���
� � ��� � ����� � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ���

MVA2MMmP � S1_, S2_, v_, vf2_, m_, lam_ � : �
Block � 	 M, R, totmu, B, B2, H, Hf2, Hcheck, Q, Q2, W, W2, pi, q, X 
 , lam1 � lam;
	 K1, K2 
�� Dimensions � S1 ����� 	 2, 3 
 � �
� 1;
M � Length � S1 � ;
R � 2; IR ��	 	 1, 0 
 , 	 0, 1 
 
 ;
totmu �
Table � If � S1 � � i, a, b, 1 � ��� 0, If � S1 � � i, a, b, 2 � ��� 0, Infinity, 1 � S1 � � i, a, b, 2 � � � ,
1 � S1 � � i, a, b, 1 � ��� If � S1 � � i, a, b, 2 � ��� 0, 0, 1 � S1 � � i, a, b, 2 � � ��� ,
	 i, 1, M 
 , 	 a, 1, K1 � 1 
 , 	 b, 1, K2 � 1 
 � ;

B � Table � 	 S1 � � i, Min � 2, K1 � 1 � , 1, 1 ��� , S1 � � i, 1, Min � 2, K2 � 1 � , 2 � ��
 , 	 i, 1, M 
 � ;
B2 � Table � 	 S2 ��� i, Min � 2, K1 � 1 � , 1, 1 � � , S2 � � i, 1, Min � 2, K2 � 1 � , 2 ��� 
 , 	 i, 1, M 
�� ;
H � Hf2 � Hcheck � Table � 0, 	 k1, 1, K1 � 1 
 , 	 k2, 1, K2 � 1 
 , 	 i, 1, M 
 � ;
W � W2 � Q �

Q2 � L � Lf2 � LQ � LQf2 � Table � 0, 	 k1, 1, K1 � 1 
 , 	 k2, 1, K2 � 1 
 , 	 i, 1, M 
 , 	 r, 1, R 
 � ;
R1 � R2 � Table � 0, 	 k1, 1, K1 � 1 
 , 	 k2, 1, K2 � 1 
 , 	 r, 1, R 
 � ;
pi � Table � 0, 	 i, 1, M 
 , 	 k1, 1, K1 � 1 
 , 	 k2, 1, K2 � 1 
 , 	 j1, 1, K1 � 1 
 , 	 j2, 1, K2 � 1 
�� ;
Do � pi ��� i, 1, 1, 1, 1 � ��� 1, 	 i, 1, M 
�� ;
T � Table � 0, 	 k1, 1, K1 � 1 
 , 	 k2, 1, K2 � 1 
 , 	 r, 1, R 
�� ;
S0 � S02 � Table � 0, 	 i, 1, M 
 , 	 r, 1, R 
 � ;
q � Table � 0, 	 i, 1, M 
 , 	 r, 1, R 
 � ;
X � Table � 0, 	 r, 1, R 
 , 	 j, 1, 3 
 � ;

Do � Do � If � k1 � k2 � m ��� i � ��� 2,
X ��	 If � k1 � 1, 	 0, 0, 0 
�� Sum � pi ��� i, k1 � 1, k2, j1, j2 ������	 totmu � � i, j1, j2 ��� ,

0.5 totmu ��� i, j1, j2 � � ^2, 1 
 , 	 j1, 1, k1 � 1 
 , 	 j2, Max � 1, m � � i � ��� j1 � 2 � , k2 
 � ,
	 0, 0, 0 
�� , If � k2 � 1 , 	 0, 0, 0 

� Sum � pi ��� i, k1, k2 � 1, j1, j2 � ���

	 totmu � � i, j1, j2 ��� , 0.5 totmu � � i, j1, j2 ��� ^2, 1 
 , 	 j1, 1, k1 
 , 	 j2,
Max � 1, m ��� i � ��� j1 � 2 � , k2 � 1 
 � , 	 0, 0, 0 
 ��
 , X � Table � 0, 	 r, 1, R 
 , 	 j, 1, 3 
 ��� ;

q ��� i � ��� Transpose � X ����� 3 ��� ;
S0 � � i � ��� Transpose � X ��� � 1 � ���
	 If � q � � i, 1 ����� 0, q ��� i, 1 ��� , 1 � , If � q ��� i, 2 ����� 0, q ��� i, 2 � � , 1 ��
 ; S02 � � i � ���

Transpose � X ��� � 2 � ����	 If � q � � i, 1 � ��� 0, q � � i, 1 � � , 1 � , If � q � � i, 2 � ��� 0, q � � i, 2 � � , 1 � 
 ;

If � k1 � 1, Q ��� k1, k2, i, 1 � ��� � q � � i, 1 ����� LQ � � k1 � 1, k2, i, 1 � � � S0 � � i, 1 � ��� ;
If � k2 � 1, Q ��� k1, k2, i, 2 � ��� � q � � i, 2 ����� H ��� k1, k2 � 1, i ��� �

S0 � � i, 2 � ��� � 1 � lam1 v ��� i, 1 � � S0 � � i, 2 ��� � � ; W � � k1, k2, i � ��� Q � � k1, k2, i ����� B ��� i ��� ;
If � k1 � 1, W ��� k1, k2, i, 1 � ��� 0 � ;
If � k2 � 1, W ��� k1, k2, i, 2 � ��� 0 � ;

If � k1 � 1, Q2 � � k1, k2, i, 1 � � � � LQf2 � � k1 � 1, k2, i, 1 � � � 2 LQ � � k1 � 1, k2, i, 1 � � �
S0 � � i, 1 � � ^2 � � q � � i, 1 � � � LQ � � k1 � 1, k2, i, 1 � � � S02 � � i, 1 � � � ;

AGFA.nb 1

Printed by Mathematica for Students



182 Chapter F. Mathematica Implementation of the AGFA Technique

If
�
k2 � 1, kk1 � k1; kk2 � k2 � 1; rho � lam1 v � � i, 1 � � S0 � � i, 2 � � ; Q2 � � k1, k2, i, 2 � � ��
q
� �
i, 2 � � S02 � � i, 2 � � � Hf2 � � kk1, kk2, i � � S0 � � i, 2 � � ^2 � � H � � kk1, kk2, i � � �

lam1 v
� �
i, 1 � � Q ��� k1, k2, i, 2 � � � � S02 � � i, 2 � �	� 2 S0 � � i, 2 � � ^2 ����
 � 1 � rho^2 ���

2 rho S0
���
i, 2 � � ^2 � Hf2 � � kk1, kk2, i ����� H ��� kk1, kk2, i � � ��
 ��� 1 � rho � � 1 � rho^2 ���
� ;

W2
���
k1, k2, i � ��� Q2 � � k1, k2, i � �	� B2 ��� i ����� 2 Q ��� k1, k2, i � � B � � i � � ;

, � i, 1, M � � ;

T
� �
k1, k2 � ���

� k1 � 1, k2 � 1 ��
 � If � k1 ��� 1, If
�
k2 ��� 1, � 1, 1 � , � 1, 0 ��� , If

�
k2 � � 1, � 0, 1 � , � 0, 0 � ���

� Sum � v ��� i ��� W � � k1, k2, i � � , � i, 1, M ��� � ;

Do
�
LQ
� �
k1, k2, i ����� T � � k1, k2 � � v � � i � � Q ��� k1, k2, i � � ; L � � k1, k2, i � ���

T
� �
k1, k2 ��� v � � i � � W � � k1, k2, i � � ; H � � k1, k2, i � ��� Apply � Plus, LQ

���
k1, k2, i ��� � ;

Hcheck
���
k1, k2, i � ��� Dot

�
T
���
k1, k2 � � v ��� i ��� , Q

� �
k1, k2, i � � � ;

LQf2
� �
k1, k2, i ����� � T ��� k1, k2 � � v ��� i ��� � ^2 Q2 ��� k1, k2, i � � ;

Lf2
���
k1, k2, i � ��� � T � � k1, k2 � � v � � i � � � ^2 W2 ��� k1, k2, i � � ; Hf2 ��� k1, k2, i � ����

Plus ��� � T � � k1, k2 � � v � � i � � � � ^2 Dot � Q2 � � k1, k2, i ��� , v
� �
i � ����
 Plus ��� v ��� i ��� ;

, � i, 1, M � � ;

R1
���
k1, k2 � ��� Sum � v ��� i ��� W � � k1, k2, i � � , � i, 1, M ��� ;

R2
���
k1, k2 � ��� R1 � � k1, k2 � � ^2 �

Sum
���
vf2

� �
i � ��� v � � i � � ^2 � W � � k1, k2, i ��� ^2 � v ��� i ��� W2 ��� k1, k2, i ��� , � i, 1, M � � ;

Do
�
pi
� �
i, k1, k2, j1, j2 ����� v � � i, 1 � � T � � k1, k2, 1 � � pi � � i, k1 � 1, k2, j1 � 1, j2 ���

S1
� �
i, j1, j2, 1 � � , � j1, 2, k1 � , � j2, 1, k2 � , � i, 1, M � � ;

Do
�
pi
� �
i, k1, k2, 1, j2 � ��� v � � i, 2 ��� T � � k1, k2, 2 � �

pi
� �
i, k1, k2 � 1, 1, j2 � 1 ��� S1 � � i, 1, j2, 2 � � , � j2, 2, k2 � , � i, 1, M � � ;

Do
�
pi
� �
i, k1, k2, 1, 1 � ��� 1 � pi � � i, k1, k2, 1, 1 ���	�

Sum
�
pi
� �
i, k1, k2, j1, j2 ��� , � j1, 1, k1 � , � j2, 1, k2 � � , � i, 1, M ��� ;

, � k1, 1, K1 � 1 � , � k2, 1, K2 � 1 � � ;
�

� � ��� � ����� � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� �� � � �� �
Closed 2 � class MVA No � priority Model

� �� � � �� � ��� � ����� � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� � �

MVA2MMmNP
�
S1_, S2_, v_, vf2_, m_ � : �

Block
� � totmu, B, B2, H, Hf2, Hcheck, Q, Q2, pi, q, X � ,

� K1, K2 ��� Dimensions � S1 � ��� � 2, 3 � � �	� 1;
M � Length � S1 � ;
R � 2; IR ��� � 1, 0 � , � 0, 1 � � ;
totmu �
Table

�
If
�
S1
� �
i, a, b, 1 � � � 0, If

�
S1
� �
i, a, b, 2 � � � 0, Infinity, 1 
 S1 � � i, a, b, 2 � � � ,

1 
 S1 � � i, a, b, 1 � � � If � S1 � � i, a, b, 2 � � � 0, 0, 1 
 S1 � � i, a, b, 2 � � � � ,
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�
i, 1, Length � mu � � , � a, 1, K1 � 1 � , � b, 1, K2 � 1 � � ;

B � Table � � S1 � � i, Min � 2, K1 � 1 � , 1, 1 � � , S1 � � i, 1, Min � 2, K2 � 1 � , 2 � � � , � i, 1, M � � ;
B2 � Table � � S2 ��� i, Min � 2, K1 � 1 � , 1, 1 � � , S2 � � i, 1, Min � 2, K2 � 1 � , 2 ��� � , � i, 1, M ��� ;
H � Hf2 � Hcheck � Table � 0, � k1, 1, K1 � 1 � , � k2, 1, K2 � 1 � , � i, 1, M � � ;
W � W2 � Q �

Q2 � L � Lf2 � LQ � LQf2 � Table � 0, � k1, 1, K1 � 1 � , � k2, 1, K2 � 1 � , � i, 1, M � , � r, 1, R � � ;
R1 � R2 � Table � 0, � k1, 1, K1 � 1 � , � k2, 1, K2 � 1 � , � r, 1, R � � ;
pi � Table � 0, � i, 1, M � , � k1, 1, K1 � 1 � , � k2, 1, K2 � 1 � , � j1, 1, K1 � 1 � , � j2, 1, K2 � 1 ��� ;
Do � pi ��� i, 1, 1, 1, 1 � ��� 1, � i, 1, M ��� ;
T � Table � 0, � k1, 1, K1 � 1 � , � k2, 1, K2 � 1 � , � r, 1, R ��� ;
S0 � S02 � Table � 0, � i, 1, M � , � r, 1, R � � ;
q � Table � 0, � i, 1, M � , � r, 1, R � � ;
X � Table � 0, � r, 1, R � , � j, 1, 3 � � ;

Do � Do � If � k1 � k2 � m ��� i � �	� 2,
X � � If � k1 � 1, � 0, 0, 0 �	� Sum � pi ��� i, k1 
 1, k2, j1, j2 ����� � totmu � � i, j1, j2 ��� ,

0.5 totmu ��� i, j1, j2 � � ^2, 1 � , � j1, 1, k1 
 1 � , � j2, Max � 1, m � � i � �

 j1 � 2 � , k2 � � ,
�
0, 0, 0 ��� , If � k2 � 1 , � 0, 0, 0 ��� Sum � pi ��� i, k1, k2 
 1, j1, j2 � �	�
�
totmu � � i, j1, j2 ��� , 0.5 totmu � � i, j1, j2 ��� ^2, 1 � , � j1, 1, k1 � , � j2,
Max � 1, m ��� i � �

 j1 � 2 � , k2 
 1 � � , � 0, 0, 0 � ��� , X � Table � 0, � r, 1, R � , � j, 1, 3 � ��� ;

q ��� i � ��� Transpose � X ����� 3 ��� ;
S0 � � i � ��� Transpose � X ��� � 1 � �	�
�
If � q � � i, 1 ����� 0, q ��� i, 1 ��� , 1 � , If � q ��� i, 2 ����� 0, q ��� i, 2 � � , 1 ��� ; S02 � � i � ���

Transpose � X ��� � 2 � �	� � If � q � � i, 1 � ��� 0, q � � i, 1 � � , 1 � , If � q � � i, 2 � ��� 0, q � � i, 2 � � , 1 � � ;

If � k1 � 1, Q ��� k1, k2, i, 1 � ����� q � � i, 1 ���	� H ��� k1 
 1, k2, i ��� � S0 ��� i, 1 ��� � ;
If � k2 � 1, Q ��� k1, k2, i, 2 � ����� q � � i, 2 ���	� H ��� k1, k2 
 1, i ��� � S0 ��� i, 2 ��� � ;
W � � k1, k2, i ����� Q ��� k1, k2, i � ��� B � � i � � ;
If � k1 � 1, W ��� k1, k2, i, 1 � ��� 0 � ;
If � k2 � 1, W ��� k1, k2, i, 2 � ��� 0 � ;

If � k1 � 1, Q2 � � k1, k2, i, 1 � ����� Hf2 � � k1 
 1, k2, i � ��� 2 H ��� k1 
 1, k2, i ��� � S0 ��� i, 1 � � ^2 �
� q � � i, 1 � ��� H � � k1 
 1, k2, i ��� � S02 � � i, 1 ��� � ;

If � k2 � 1, Q2 � � k1, k2, i, 2 � ����� Hf2 � � k1, k2 
 1, i � ��� 2 H ��� k1, k2 
 1, i ��� � S0 ��� i, 2 � � ^2 �
� q � � i, 2 � ��� H � � k1, k2 
 1, i ��� � S02 � � i, 2 ��� � ;

W2 ��� k1, k2, i � ��� Q2 � � k1, k2, i � ��� B2 ��� i ���	� 2 Q ��� k1, k2, i � � B � � i � � ;

,
�
i, 1, M � � ;

T � � k1, k2 � ���
�
k1 
 1, k2 
 1 �	��� If � k1 ��� 1, If � k2 ��� 1, � 1, 1 � , � 1, 0 ��� , If � k2 � � 1, � 0, 1 � , � 0, 0 � ���
� Sum � v ��� i ��� W � � k1, k2, i � � , � i, 1, M ��� � ;

Do � LQ � � k1, k2, i ����� T � � k1, k2 � � v � � i � � Q ��� k1, k2, i � � ; L � � k1, k2, i � ���
T � � k1, k2 ��� v � � i � � W � � k1, k2, i � � ; H � � k1, k2, i � ��� Apply � Plus, LQ ��� k1, k2, i ��� � ;
Hcheck ��� k1, k2, i � ��� Dot � T ��� k1, k2 � � v ��� i ��� , Q � � k1, k2, i � � � ;
LQf2 � � k1, k2, i ������� T ��� k1, k2 � � v ��� i ��� � ^2 Q2 ��� k1, k2, i � � ;
Lf2 � � k1, k2, i � � � � T � � k1, k2 � � v � � i � � � ^2 W2 � � k1, k2, i � � ; Hf2 � � k1, k2, i � � �
� Plus ��� � T � � k1, k2 � � v � � i � � � � ^2 Dot � Q2 � � k1, k2, i � � , v � � i � � � � Plus ��� v � � i � � ;

,
�
i, 1, M � � ;
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R1
� �
k1, k2 � � � Sum � v � � i � � W � � k1, k2, i � � , � i, 1, M � � ;

R2
���
k1, k2 � ��� R1 � � k1, k2 � � ^2 �

Sum
���
vf2

� �
i � �
	 v � � i � � ^2 � W � � k1, k2, i ��� ^2 � v ��� i ��� W2 ��� k1, k2, i ��� , � i, 1, M � � ;

Do
�
pi
� �
i, k1, k2, j1, j2 ����� v � � i, 1 � � T � � k1, k2, 1 � � pi � � i, k1 	 1, k2, j1 	 1, j2 ���

S1
� �
i, j1, j2, 1 � � , � j1, 2, k1 � , � j2, 1, k2 � , � i, 1, M � � ;

Do
�
pi
� �
i, k1, k2, 1, j2 � ��� v � � i, 2 ��� T � � k1, k2, 2 � �

pi
� �
i, k1, k2 	 1, 1, j2 	 1 ��� S1 � � i, 1, j2, 2 � � , � j2, 2, k2 � , � i, 1, M � � ;

Do
�
pi
� �
i, k1, k2, 1, 1 � ��� 1 � pi � � i, k1, k2, 1, 1 ����	

Sum
�
pi
� �
i, k1, k2, j1, j2 ��� , � j1, 1, k1 � , � j2, 1, k2 � � , � i, 1, M ��� ;

, � k1, 1, K1 � 1 � , � k2, 1, K2 � 1 � � ;
�
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 �

Mu2
�
mu_, i_, 0, 0, m_ � : ��� Infinity, Infinity � ; Mu2

�
mu_, i_, j1_, j2_, m_ � : �

If
�
j1 ��� 0, � Infinity, Min

�
m, j2 � mu � � i, 2 ��� � , If

�
j2 � 0, � Min � m, j1 � mu � � i, 1 � � , Infinity � ,

If
�
j1 � j2 � m � 1, � � j1, j2 � mu ��� i ��� � , � � j1, j2 � mu ��� i ��� � m � � j1 � j2 ��� � �
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Open 2 	 class MVA non 	 priority Model
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Parallel independent multi 	 servers for each of 2 classes,

single node. Max
�
kr,Kr � at class r population kr

�
1 � r � R, R � 2 � . Single

server first and second moments r1,r2, cf. s1, s2 in closed model

 �

SingleNode2
�
r1_, r2_, lambda_ � : � Block

� � � ,
� K1, K2 ��� Dimensions � r1 � ��� � 1, 2 � � ��	 1;
R � Last � Dimensions � r1 ��� ;
B ��� r1 � � Min � 2, K1 � 1 � , 1, 1 ��� , r1

���
1, Min

�
2, K2 � 1 � , 2 � � � ;

B2 ��� r2 � � Min � 2, K1 � 1 � , 1, 1 � � , r2
� �
1, Min

�
2, K2 � 1 � , 2 � ��� ;

W � W2 � Q � Q2 � L � LQ � LQf2 � Table � 0, � r, 1, R � � ;

Mu
�
j1_, j2_ � : �

� If � j1 � K1 � 2, Max
�
1, j1 	 1 � , Max

�
1, K1 ��� , If

�
j2 � K2 � 2, Max

�
1, j2 	 1 � , Max

�
1, K2 � � ���� � If � j1 � 1, Infinity, 0 � , If

�
j2 � 1, Infinity, 0 � � �

r1
� �
If
�
j1 � K1 � 2, j1, K1 � 1 � , If

�
j2 � K2 � 2, j2, K2 � 1 � � � � ;
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statemap
�
i_, j_, n_ � : �

If
� �
i � n � ��� � j � n � , 1 � � n 	 1 � ^2, �

i 	 1 � � n 	 1 � � j � ; invmap � k_, n_ � : �
If
�
k ��� 1 � � n 	 1 � ^2, 
 n, 1 � , 
 Quotient � k 	 1, n 	 1 � , Mod

�
k 	 1, n 	 1 � ���

 1, 1 ��� ;

eps � 1.0; n � Max � K1, K2 ��	 5; pi � Table � 0, 
 i, 1, n 	 1 � , 
 j, 1, n 	 1 ��� ;
While

�
eps � 10^ 	 3, pi1 � pi; n ��� 10;

pi � Table � 0, 
 i, 1, n 	 1 � , 
 j, 1, n 	 1 � � ;

m � Table � 0, 
 i, 1, n � , 
 j, 1, n � , 
 k, 1, n � , 
 l, 1, n � � ;
Do
�
If
�
i � 1, m

� �
i 	 1, j, i, j ����� lambda � � 1 � � � ;

If
�
j � 1, m

���
i, j 	 1, i, j � ��� lambda � � 2 � ��� ;

m
� �
i � 1, If

�
i � n 	 1, 1, j � , i, j � ����� Mu � i � 1, j � � � 1 � � ;

m
� �
If
�
j � n 	 1, n, i � , If

�
j � n 	 1, 1, j � 1 � , i, j � ����� Mu � i, j � 1 � � � 2 ��� ;

m
� �
i, j, i, j ������	 � Dot � 
 If � i � 1, 1, 0 � , If

�
j � 1, 1, 0 � � , Mu

�
i, j � ��� Plus ��� lambda � ,


 i, 1, n 	 1 � , 
 j, 1, n 	 1 � � ;

Do
�
m
� �
n 	 1, j, n, 1 ������� lambda � � 1 ��� ;

m
� �
j, n 	 1, n, 1 � ����� lambda ��� 2 ��� ,


 j, 1, n 	 1 � � ;
m
� �
n, 1, n, 1 � ����	 Sum � Mu � i, n � ��� 2 ��� , 
 i, 1, n 	 1 ����	 Sum � Mu � n, j � � � 1 � � , 
 j, 1, n 	 1 � � ;

m2 � Table � m ��� #1, #2, #3, #4 ��� & ��� Flatten � � invmap � � # � & � ��
�
 k, n � , 
 l, n � ��� ,

 k, 1, 1 � � n 	 1 � ^2 � , 
 l, 1, 1 � � n 	 1 � ^2 � � ;

m3 � Append � Drop � #, 	 2 � , 1 � & � � Drop � m2, 	 1 � ;
pilin � N � LinearSolve � Transpose � m3 � , Append

�
Table

�
0, 
 i, 1, Length

�
m3 ��	 1 � � , 1 ��� � ;

Do
�
pi
� �
i, j � ��� pilin � � statemap � i, j, 1 � Length � pi � ��� � ,


 i, 1, Length
�
pi � � , 
 j, 1, Length

�
pi � � � ;

eps � Max ��� Abs � Flatten � � Take � #, Length
�
pi1 ��	 5 � & ��� � Take � pi, Length

�
pi1 ��	 5 ��	

�
Take

�
#, Length

�
pi1 ��	 5 � & ��� � Take � pi1, Length

�
pi1 ��	 5 � � � ;

Print
�
"n � ", n, ", eps � ", eps � ; �

q � 1 	�
 Sum � pi � � j1, j2 ��� , 
 j1, 1, Min
�
Length

�
pi � , K1 � � , 
 j2, 1, Length

�
pi ����� ,

Sum
�
pi
� �
j1, j2 � � , 
 j1, 1, Length

�
pi � � , 
 j2, 1, Min

�
Length

�
pi � , K2 ��� � � ;

S0 �
q ��
 Sum � pi � � j1, j2 � � Mu � j1, j2 � � � 1 � � , 
 j1, K1 � 1, Length

�
pi ��� , 
 j2, 1, Length

�
pi ��� � ,

Sum
�
pi
���
j1, j2 ��� Mu � j1, j2 � � � 2 � � , 
 j1, 1, Length

�
pi ��� , 
 j2, K2 � 1, Length

�
pi � ��� � ;

S01 ��
 Sum � pi ��� j1, j2 ��� r1 ��� K1 � 1, If
�
j2 � K2 � 2, j2, K2 � 1 � , 1 � ��� Max � 1, K1 � ,


 j1, K1 � 1, Length
�
pi ��� , 
 j2, 1, Length

�
pi ��� � ,

Sum
�
pi
���
j1, j2 ��� r1 ��� If � j1 � K1 � 2, j1, K1 � 1 � , K2 � 1, 2 � ��� Max � 1, K2 � ,


 j1, 1, Length
�
pi � � , 
 j2, K2 � 1, Length

�
pi ��� � ���


 If � q � � 1 � ��� 0, q
���
1 ��� , 1 � , If

�
q
� �
2 � ��� 0, q

� �
2 � � , 1 ��� ;

S02 ��
 Sum � pi ��� j1, j2 ��� r2 ��� K1 � 1, If
�
j2 � K2 � 2, j2, K2 � 1 � , 1 � ��� Max � 1, K1 � ^2,


 j1, K1 � 1, Length
�
pi ��� , 
 j2, 1, Length

�
pi ��� � ,

Sum
�
pi
� �
j1, j2 � � r2 � � If � j1 � K1 � 2, j1, K1 � 1 � , K2 � 1, 2 � � � Max � 1, K2 � ^2,


 j1, 1, Length
�
pi � � , 
 j2, K2 � 1, Length

�
pi � � � � �


 If � q � � 1 � � � 0, q
� �
1 � � , 1 � , If

�
q
� �
2 � � � 0, q

� �
2 � � , 1 � � ;
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186 Chapter F. Mathematica Implementation of the AGFA Technique

B � Sum � pi � � j1, j2 � � � r1 � � If � j1 � K1 � 1, j1 � 1, K1 � 1 � , If
�
j2 � K2 � 2, j2, K2 � 1 � , 1 � � ,

r1
� �
If
�
j1 � K1 � 2, j1, K1 � 1 � , If

�
j2 � K2 � 1, j2 � 1, K2 � 1 � , 2 � � � ,

� j1, 1, Length
�
pi � � , � j2, 1, Length

�
pi � ��� ;

B2 � Sum � pi � � j1, j2 � ��� r2 � � If � j1 � K1 � 1, j1 � 1, K1 � 1 � , If
�
j2 � K2 � 2, j2, K2 � 1 � , 1 � � ,

r2
� �
If
�
j1 � K1 � 2, j1, K1 � 1 � , If

�
j2 � K2 � 1, j2 � 1, K2 � 1 � , 2 � � � ,

� j1, 1, Length
�
pi � � , � j2, 1, Length

�
pi � ��� ;

pimarg � Transpose � � Plus 	 	 Transpose � pi � , Plus 	�	 pi � � ;
L � Sum � pi ��� j1, j2 ���
� j1 � 1, j2 � 1 � , � j1, 1, Length

�
pi ��� , � j2, 1, Length

�
pi ��� � ;

Lf2 � Sum � pi � � j1, j2 � ���
� j1 � 2 ��� j1 � 1 � , � j2 � 2 ��� j2 � 1 ��� ,
� j1, 1, Length

�
pi � � , � j2, 1, Length

�
pi � ��� ;

LQ � � Sum � pi � � j1, j2 � ��� j1 � K1 � 1 � , � j1, K1 � 2, Length
�
pi � � , � j2, 1, Length

�
pi � � � ,

Sum
�
pi
� �
j1, j2 � ��� j2 � K2 � 1 � , � j1, 1, Length

�
pi ��� , � j2, K2 � 2, Length

�
pi � � ��� ;

LQf2 � � Sum � pi � � j1, j2 � ��� j1 � K1 � 1 ��� j1 � K1 � 2 � , � j1, K1 � 2, Length
�
pi ��� ,

� j2, 1, Length
�
pi ��� � , Sum

�
pi
� �
j1, j2 � ��� j2 � K2 � 1 ��� j2 � K2 � 1 � ,

� j1, 1, Length
�
pi ��� , � j2, K2 � 2, Length

�
pi � ��� � ;

nzlambda � Table � If � lambda ��� i ���
� 0, � 1, lambda
� �
i � � � , � i, 1, Length

�
lambda � ��� ;

W � L � nzlambda;
Q � LQ � nzlambda;
W20 � Lf2 ��� nzlambda^2 � ;
Q2 � LQf2 ��� nzlambda^2 � ;
W2 � Q2 � B2 � 2 Q B;
� �
Q � q S0 ��� 1 � lambda S0 � ;
W � Q � B;
LQ � lambda Q;

L � lambda W;

Q2 � � 2 LQ S0^2 ��� q � LQ � S02 ����� 1 ��� lambda S0 � ^2 � ;
W2 � Q2 � B2 � 2 Q B;

LQf2 � � lambda � ^2 Q2;

Lf2 � � lambda � ^2 W2;

���
�

� � ��� � ����� � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� �����
� � ���
� � Open 1 � class MVA non � priority Model ���
� � ���
� � ��� � ����� � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� �����

� � Parallel independent multi � servers for each of 2 classes,

using product � form approximation. WORKS FOR SINGLE CLASS CASE IF YOU SET K2 TO 0 ���

SingleNode
�
r1_, r2_, lambda_ � : � Block

� � � ,
� K1, K2 � � Dimensions � r1 � � � � 1, 2 � � � � 1;
R � Last � Dimensions � r1 � � ;
B � � r1 � � Min � 2, K1 � 1 � , 1, 1 � � , r1

� �
1, Min

�
2, K2 � 1 � , 2 � � � ;
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B2 � � r2 � � Min � 2, K1 � 1 � , 1, 1 � � , r2 � � 1, Min � 2, K2 � 1 � , 2 � � � ;
W � W2 � Q � Q2 � L � LQ � LQf2 � Table � 0, � r, 1, R � � ;

mst � Table � r1 ��� ix1 � If � j1 � K1 � 2, j1, K1 � 1 � , ix2 � If � j2 � K2 � 2, j2, K2 � 1 � ���	�
� If � j1 � K1 � 2, Max � 1, j1 
 1 � , Max � 1, K1 ��� , If � j2 � K2 � 2, Max � 1, j2 
 1 � , Max � 1, K2 ��� � ,
� j1, 1, 100 � , � j2, 1, 100 ��� ;

eps � 10.0; n � 0; pi2 ��� � 1 � � ;
While � eps � 10^ 
 8, n ��� ; pi � pi2;
pi1 � Append � pi, Last � pi � lambda � � 1 � ��
 First � � Take � mst ��� n � 1 � � , n � ��� ;
piT � Transpose � pi1 � ; pi2 � Transpose �

Append � piT, Last � piT � lambda ��� 2 � ��
 Last � � Take � Transpose � mst ��� � n � 1 � � , n � 1 � ��� � ;
eps � Plus � � Last � pi1 ��� Plus � � Last � Transpose � pi2 � ��� ;

pi � pi2 ��
 Plus � � Plus ��� pi � ;

q � 1 
 � Sum � pi � � j1, j2 � � , � j1, 1, Min � Length � pi � , K1 ��� , � j2, 1, Length � pi � ��� ,
Sum � pi ��� j1, j2 ��� , � j1, 1, Length � pi ��� , � j2, 1, Min � Length � pi � , K2 � ��� � ;

S0 ��� Sum � pi � � j1, j2 � � r1 � � K1 � 1, If � j2 � K2 � 2, j2, K2 � 1 � , 1 ���	� Max � 1, K1 � ,
� j1, K1 � 1, Length � pi ��� , � j2, 1, Length � pi ��� � ,

Sum � pi ��� j1, j2 ��� r1 ��� If � j1 � K1 � 2, j1, K1 � 1 � , K2 � 1, 2 � ��� Max � 1, K2 � ,
� j1, 1, Length � pi � � , � j2, K2 � 1, Length � pi ��� � ��� q;

S02 ��� Sum � pi ��� j1, j2 ��� r2 ��� K1 � 1, If � j2 � K2 � 2, j2, K2 � 1 � , 1 � �	� Max � 1, K1 � ^2,
� j1, K1 � 1, Length � pi ��� , � j2, 1, Length � pi ��� � ,

Sum � pi ��� j1, j2 ��� r2 ��� If � j1 � K1 � 2, j1, K1 � 1 � , K2 � 1, 2 � ��� Max � 1, K2 � ^2,
� j1, 1, Length � pi � � , � j2, K2 � 1, Length � pi ��� � ��� q;

B � Sum � pi ��� j1, j2 ��� � r1 � � If � j1 � K1 � 1, j1 � 1, K1 � 1 � , If � j2 � K2 � 2, j2, K2 � 1 � , 1 � � ,
r1 � � If � j1 � K1 � 2, j1, K1 � 1 � , If � j2 � K2 � 1, j2 � 1, K2 � 1 � , 2 � � � ,

� j1, 1, Length � pi � � , � j2, 1, Length � pi � ��� ;
B2 � Sum � pi � � j1, j2 � � � r2 � � If � j1 � K1 � 1, j1 � 1, K1 � 1 � , If � j2 � K2 � 2, j2, K2 � 1 � , 1 � � ,

r2 � � If � j1 � K1 � 2, j1, K1 � 1 � , If � j2 � K2 � 1, j2 � 1, K2 � 1 � , 2 � � � ,
� j1, 1, Length � pi � � , � j2, 1, Length � pi � ��� ;

pimarg � Transpose � � Plus � � Transpose � pi � , Plus ��� pi � � ;
L � Sum � pi ��� j1, j2 ��� � j1 
 1, j2 
 1 � , � j1, 1, Length � pi ��� , � j2, 1, Length � pi ��� � ;
Lf2 � Sum � pi � � j1, j2 � � � 
 j1 
 2 ��
 j1 
 1 � , 
 j2 
 2 ��
 j2 
 1 ��� ,
� j1, 1, Length � pi � � , � j2, 1, Length � pi � ��� ;

LQ ��� Sum � pi � � j1, j2 � ��
 j1 
 K1 
 1 � , � j1, K1 � 2, Length � pi � � , � j2, 1, Length � pi � � � ,
Sum � pi � � j1, j2 � ��
 j2 
 K2 
 1 � , � j1, 1, Length � pi ��� , � j2, K2 � 2, Length � pi � � ��� ;

LQf2 ��� Sum � pi � � j1, j2 � ��
 j1 
 K1 
 1 ��
 j1 
 K1 
 2 � , � j1, K1 � 2, Length � pi ��� ,
� j2, 1, Length � pi ��� � , Sum � pi � � j1, j2 � ��
 j2 
 K2 
 1 ��
 j2 
 K2 
 1 � ,
� j1, 1, Length � pi ��� , � j2, K2 � 2, Length � pi � ��� � ;

nzlambda � Table � If � lambda ��� i ����� 0, 
 1, lambda � � i � � � , � i, 1, Length � lambda � ��� ;
W � L � nzlambda;
Q � LQ � nzlambda;
W20 � Lf2 � 
 nzlambda^2 � ;
Q2 � LQf2 � 
 nzlambda^2 � ;
W2 � Q2 � B2 � 2 Q B;
�
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188 Chapter F. Mathematica Implementation of the AGFA Technique

� �
Priority � 0 is no priority,

Priority � 1 is majors priority and Priority � 2 is minors priority
� �

Main � PRIORITY_, WalkInRate_, AmbRate_, BluRate_ � : � Block � � � ,

� � � ����� � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� �����
� � �	�
� �

Traffic equations for open Whole Model
�	�

� � �	�
� � � ����� � � ��� ��� � ��� � ��� � ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� �	�

NCC � False;
MAJ � Max � 1, PRIORITY � ;
MIN � 3 
 MAJ; BLU � 3; SR � 4;
� K1, K2 ��� KAEU ��� 25, 9 �
��� � MAJ, MIN � ��� ;
M � 5; R � 4;
TR � Table � 0, � a1, 1, M � , � c1, 1, R � , � a2, 1, M � , � c2, 1, R � � ;
rowsums � v1 � Lambda � Table � 0, � a1, 1, M � , � c1, 1, R � � ;
Lambda � � 1, SR � ��� WalkInRate;
Lambda � � 2, MAJ ����� AmbRate;
Lambda � � 3, BLU � ��� BluRate;
e1 � Lambda;

TR ��� 1, SR, 4, SR � ��� 0.7;
TR � � 1, SR, 5, MIN � ��� 0.206;
TR ��� 1, SR, 5, MAJ � ��� 0.094;
TR ��� 2, MAJ, 5, MAJ � ��� 0.65;

TR � � 2, MAJ, 1, SR ����� 0.35;
TR ��� 4, SR, 5, MIN � ��� 0.7682;

TR � � 4, SR, 5, MAJ ����� 0.0854;
TR � � 5, MAJ, 3, BLU ����� 0.0041 � 0.8335;
TR ��� 5, MIN, 5, MAJ ����� p12 � 0.1336 � � 0.1336 � 0.4236 � 0.09 � ;

If � NCC,
TR ��� 1, SR, 4, SR ����� 0.7;

TR � � 1, SR, 5, MIN � ��� 0.3;
TR ��� 1, SR, 5, MAJ � ��� 0.0;
TR ��� 2, MAJ, 5, MAJ � ��� 1;

TR � � 2, MAJ, 1, SR ����� 0.0;
TR ��� 4, SR, 5, MIN ����� 0.8536;

TR � � 4, SR, 5, MAJ ����� 0.0;
TR � � 5, MAJ, 3, BLU ����� 0;

TR ��� 5, MIN, 5, MAJ � ��� 0 � ;

Do � rowsums � � j, r � ��� Sum � TR � � j, r, i, s � � , � i, 1, M � , � s, 1, R ��� , � j, 1, M � , � r, 1, R � � ;
eps � 1; While � eps � 10^ 
 8, e � e1;

Do � e1 ��� i, s � ��� Lambda � � i, s ����� Sum � e ��� j, r ��� TR � � j, r, i, s � � , � j, 1, M � , � r, 1, R � � ,
� i, 1, M � , � s, 1, R ��� ; eps � Plus � � Flatten � Abs � e 
 e1 ��� �
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� ����� � � ��� ��� � ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� � �
� � � �
� �

Patient Paths in open Whole Model
���

� � ���
� ����� � � ��� ��� � ��� � ��� � ��� � ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� �����
M � Length � Lambda � ;

rowsums � v1 � Table � 0, � a1, 1, M 	 1 
 , � c1, 1, R 
 � ;
PP � Table � 0, � a1, 1, Length � v1 � 
 , � c1, 1, R 
 , � a2, 1, Length � v1 � 
 , � c2, 1, R 
 � ;
v1 � � 1, SR � ��� v1 � � 3, BLU � ��� v1 ��� 2, MAJ � ��� 1;
extv � v1;

PP � � 1, SR, 4, SR ����� 0.7;
PP ��� 1, SR, 5, SR � ��� 0.094;
PP � � 1, SR, 6, SR ����� 0.206;
PP � � 2, MAJ, 5, MAJ ����� 0.65;

PP ��� 2, MAJ, 1, MAJ � ��� 0.35;
PP � � 1, MAJ, 4, MAJ ����� 0.7;

PP ��� 1, MAJ, 5, MAJ � ��� 0.094;
PP � � 1, MAJ, 6, MAJ ����� 0.206;
PP � � 4, SR, 5, SR ����� 0.0854;

PP ��� 4, MAJ, 5, MAJ � ��� 0.0854;
PP ��� 4, SR, 6, SR � ��� 0.7682;
PP ��� 4, MAJ, 6, MAJ � ��� 0.7682;
PP ��� 5, MAJ, 3, MAJ � ��� 0.0041 � 0.8335;
PP � � 6, SR, 5, SR ����� p12;
PP � � 6, MAJ, 5, MAJ ����� p12;

If � NCC,
PP ��� 1, SR, 4, SR � �
� 0.7;

PP ��� 1, SR, 5, SR � ��� 0;
PP ��� 1, SR, 6, SR � �
� 0.3;
PP ��� 2, MAJ, 5, MAJ � ��� 1.0;

PP ��� 2, MAJ, 1, MAJ � ��� 0;
PP ��� 1, MAJ, 4, MAJ � ��� 0;

PP ��� 1, MAJ, 5, MAJ � ��� 0;
PP ��� 1, MAJ, 6, MAJ � ��� 0;
PP ��� 4, SR, 5, SR � �
� 0;

PP ��� 4, MAJ, 5, MAJ � ��� 0;
PP ��� 4, SR, 6, SR � ��� 0.8536;
PP ��� 4, MAJ, 6, MAJ � ��� 0;
PP ��� 5, MAJ, 3, MAJ � ��� 0;

PP ��� 6, MAJ, 5, MAJ � ��� 0;
PP ��� 6, SR, 5, SR � �
� 0 � ;

Do � rowsums � � j, r � ��� Sum � PP � � j, r, i, s ��� , � i, 1, Length � v1 � 
 , � s, 1, R 
 � ,
� j, 1, Length � v1 ��
 , � r, 1, R 
 � ;

eps � 1; While � eps � 10^ � 8, v � v1; Do � v1 � � i, s � ���
extv � � i, s � � 	 Sum � v � � j, r � � PP � � j, r, i, s � � , � j, 1, Length � v1 � 
 , � r, 1, R 
 � ,
� i, 1, Length � v1 � 
 , � s, 1, R 
 � ; eps � Plus ��� Flatten � Abs � v � v1 � � �
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eps � 1; vf21 � v1; n � 0;
While

�
eps � 10^ � 8, vf2 � vf21; n � � ; Do � vf21 � � i, s � � �

v
� �
i, s ��� ^2 � extv ��� i, s � � ^2 � Sum � � vf2 � � j, r � ��� v � � j, r � � ^2 	 � PP � � j, r, i, s � � 	 ^2,

j, 1, Length

�
v1 ��� , 


r, 1, R � � , 

i, 1, Length

�
v1 ��� , 


s, 1, R � � ;
eps � Plus ��� Flatten � Abs � vf2 � vf21 ��� �



lREC, lRN, lRES, lAR, lAEU � � e;

lREC � Append � Select � e � � 1 � � , # � 0 & � , 0 � ;
lRN � Append � Select � e � � 2 � � , # � 0 & � , 0 � ;
lRES � Append � Select � e � � 3 � � , # � 0 & � , 0 � ;
lAR � Append � Select � e � � 4 ��� , # � 0 & � , 0 � ;
lAEU � Select � e � � 5 � � , # � 0 & � ;
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Closed Accident and Emergency Unit sub � network �
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MAEU � 
 KAEU ��� MIN � � , 4, 2, 2, 2, 2, KAEU
� �
MAJ � � , 3, 4, 8 � ;

muMIN � 
 60, 3.5, 3, 1.2, ttt, ttt, ttt, ttt, ttt, 2 � ;
muMAJ � 
 ttt, ttt, 2.4, 1, 0.5, 1, 60, 4, 3, 2 � ;
muAEU � Transpose � 
 muMAJ, muMIN � ��� 
 MAJ, MIN � � ��� ;
M � Length � MAEU � ; R � 2;
RP � Table � 0, 


a1, 1, M � 1 � , 

c1, 1, R � , 


a2, 1, M � 1 � , 

c2, 1, R ��� ;

rowsums � vis � Table � 0, 

a1, 1, M � 1 � , 


c1, 1, R ��� ;
vis

���
M � 1, MIN � � � vis ��� M � 1, MAJ � � � 1;

vis1 � visf2 � vis;

RP
� �
1, MIN, 2, MIN � � � 1;

RP
� �
2, MIN, M � 1, MIN � � � 0.5572;

RP
� �
2, MIN, 3, MIN � � � 0.3528 0.45;

RP
� �
2, MIN, 10, MIN ��� � 0.3528 0.55;

RP
� �
2, MIN, 4, MIN � � � 0.09;

RP
� �
3, MIN, 2, MIN � � � 1;

RP
� �
3, MAJ, 9, MAJ ��� � 1;

RP
� �
4, MIN, M � 1, MIN � � � 1;

RP
� �
4, MAJ, M � 1, MAJ � � � 1;

RP
� �
5, MAJ, M � 1, MAJ � � � 1;

RP
� �
6, MAJ, M � 1, MAJ � � � 1;

RP
� �
7, MAJ, 8, MAJ ��� � 0.7745;

RP
� �
7, MAJ, 9, MAJ ��� � 0.2255;

RP
� �
8, MAJ, 3, MAJ ��� � 0.07;

RP
� �
8, MAJ, 10, MAJ � � � 0.93;

RP
� �
9, MAJ, 8, MAJ ��� � 0.1665;

RP
� �
9, MAJ, 4, MAJ ��� � 0.127;

RP
� �
9, MAJ, 5, MAJ � � � 0.06;

RP
� �
9, MAJ, 6, MAJ � � � 0.122;

RP
� �
9, MAJ, M � 1, MAJ � � � 0.5245;
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RP
� �
10, MIN, 2, MIN � � � 0.8364;

RP
� �
10, MIN, 3, MIN � � � 0.1636;

RP
� �
10, MAJ, 3, MAJ � ��� 0.3871;

RP
� �
10, MAJ, 9, MAJ � ��� 0.6129;

RP
� �
M � 1, MAJ, 7, MAJ � ��� 1;

RP
� �
M � 1, MIN, 1, MIN � ��� 1;

Do
�
rowsums

� �
j, r � ��� Sum � RP � � j, r, i, s ��� , � i, 1, M � , � s, 1, R � � , � j, 1, M � , � r, 1, R � � ;

eps � 1; While
�
eps 	 10^ 
 8, vis � vis1;

Do
�
vis1

���
i, s � ��� Sum

�
vis

� �
j, r ��� RP � � j, r, i, s � � , � j, 1, M � 1 � , � r, 1, R � � ,

� i, 1, M � , � s, 1, R � � ; eps � Plus � � Flatten � Abs � vis 
 vis1 � ��� ;

eps � 1; visf2 � visf21 � vis1; n � 0;
While

�
eps 	 10^ 
 8, visf2 � visf21; n � � ;

Do
�
visf21

� �
i, s � �
� vis1

� �
i, s ��� ^2 � Sum � � visf2 � � j, r � ��
 vis1 � � j, r � � ^2 ��

RP
� �
j, r, i, s � � � ^2, � j, 1, M � , � r, 1, R � � , � i, 1, M � , � s, 1, R � � ;

eps � Plus � � Flatten � Abs � visf2 
 visf21 � ��� ;

VAEU � vis1;
VAEUf2 � visf2; ttt � Infinity ;
mu � muAEU;
s1AEU �
Table

�
1 � Mu2 � mu, i, a, b, MAEU

� �
i � ��� , � i, 1, Length

�
mu � � , � a, 0, K1 � , � b, 0, K2 � � ;

s2AEU � 2 s1AEU^2;
If
�
PRIORITY 	 0, MVA2MMmP

�
s1AEU, s2AEU, VAEU, VAEUf2, MAEU, lAEU

� �
1 ��� � ,

MVA2MMmNP
�
s1AEU, s2AEU, VAEU, VAEUf2, MAEU � � ;

r1AEU � R1; r2AEU � R2; LAEU � L; Lf2AEU � LQf2;
TAEU � T;

� � � ����� � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� �� � � �� �
Closed Assessment Room sub 
 network �

AR � � �� � � �� � � ����� � � ��� ��� � ��� � ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� �

VAR ��� � 1, 0 � , � 1, 0 ��� ;
VARf2 ��� � 0, 0 � , � 0, 0 ��� ;
KAR ��� K1, K2 ����� 5, 0 � ;
MAR ��� 5, 3 � ;
muAR ��� 60.0, 4.0 � ;
mu � Transpose � � muAR, � ttt, ttt ��� � ;
s1AR � Table � 1 � Mu2 � mu, i, a, b, MAR

���
i � � � , � i, 1, Length

�
mu � � , � a, 0, K1 � , � b, 0, K2 ��� ;

s2AR � 2 s1AR^2;
If
�
PRIORITY 	 0, MVA2MMmP

�
s1AR, s2AR, VAR, VARf2, MAR, lAR

���
1 � � � ,

MVA2MMmNP
�
s1AR, s2AR, VAR, VARf2, MAR ��� ;

r1AR � R1; r2AR � R2; LAR � LQ; Lf2AR � LQf2;
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� � � ����� � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� �
� � � �
� �

Closed Resusc sub � network �
RES

� ���
� � ���
� � � ����� � � ��� ��� � ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ���

VRES ��� � 1, 0 	 , � 1, 0 	 	 ;
VRESf2 ����� 0, 0 	 , � 0, 0 	 	 ;
KRES �
� K1, K2 	���� 4, 0 	 ;
MRES ��� 4, 2 	 ;
muRES ��� 60.0, 0.5 	 ;
mu � Transpose � � muRES, � ttt, ttt 	 	�
 ;
s1RES �
Table � 1 � Mu2 � mu, i, a, b, MRES � � i 
 
�
 , � i, 1, Length � mu 
 	 , � a, 0, K1 	 , � b, 0, K2 	 
 ;
s2RES � 2 s1RES^2;
If � PRIORITY � 0, MVA2MMmP � s1RES, s2RES, VRES, VRESf2, MRES, lRES � � 1 
�
 
 ,
MVA2MMmNP � s1RES, s2RES, VRES, VRESf2, MRES 
 
 ;

r1RES � R1; r2RES � R2; LRES � LQ; Lf2RES � LQf2;

� � � ����� � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� �����
� � ���
� �

Simple nodes � � Reception
�
REC

� ���
� � ���
� � � ����� � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ���

MREC � KREC ��� K1, K2 	���� 2, 0 	 ;
muREC ����� 6.0, ttt 	�	 ;
r1REC � Table � � a, b 	�� Mu2 � muREC, 1, a, b, KREC � � 1 
 
 
 , � a, 0, K1 	 , � b, 0, K2 	 
 ;
r2REC � 2 r1REC^2;

� � � ����� � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� �����
� � ���
� �

Receiving Nurse
�
RN
� ���

� � ���
� � � ����� � � ��� ��� � ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����� ��� ���

MRN � KRN ��� K1, K2 	���� 2, 0 	 ;
muRN ��� � 4.0, ttt 	 	 ;
r1RN � Table � � a, b 	�� Mu2 � muRN, 1, a, b, KRN � � 1 
 
 
 , � a, 0, K1 	 , � b, 0, K2 	 
 ;
r2RN � 2 r1RN^2;

OW � OW2 ��� 	 ; VREC � VRN � VAR; wght � 1;

SingleNode � r1REC, r2REC, lREC 
 ;
LsREC ��� LAGGREC � L 	 ; Lf2sREC ��� Lf2REC � Lf2 	 ;
OW � Append � OW, W 
 ; OW2 � Append � OW2, W2 
 ;

SingleNode � r1RN, r2RN, lRN 
 ;
LsRN � � LAGGRN � L 	 ; Lf2sRN � � Lf2RN � Lf2 	 ;
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OW � Append � OW, W � ; OW2 � Append � OW2, W2 � ;

SingleNode
�
r1RES, r2RES, lRES � ;

LAGGRES � L;
LsRES � Sum � pi � � j1, j2 � � LRES ��� If � j1 � K1 � 2, j1, K1 � 1 � , If

�
j2 � K2 � 2, j2, K2 � 1 ��� � ,�

j1, 1, Length
�
pi � � , �

j2, 1, Length
�
pi � ��� ;

Lf2sRES � Sum � pi � � j1, j2 � � Lf2RES � � If � j1 � K1 � 2, j1, K1 � 1 � , If
�
j2 � K2 � 2, j2, K2 � 1 � ��� ,�

j1, 1, Length
�
pi � � , �

j2, 1, Length
�
pi � ��� ;

OW � Append � OW, W � ; OW2 � Append � OW2, W2 � ;

SingleNode
�
r1AR, r2AR, lAR � ;

LAGGAR � L;
LsAR � Sum � pi � � j1, j2 � � LAR � � If � j1 � K1 � 2, j1, K1 � 1 � , If

�
j2 � K2 � 2, j2, K2 � 1 � � � ,�

j1, 1, Length
�
pi � � , �

j2, 1, Length
�
pi � ��� ;

Lf2sAR � Sum � pi � � j1, j2 � � Lf2AR ��� If � j1 � K1 � 2, j1, K1 � 1 � , If
�
j2 � K2 � 2, j2, K2 � 1 ��� � ,�

j1, 1, Length
�
pi � � , �

j2, 1, Length
�
pi � ��� ;

OW � Append � OW, W � ; OW2 � Append � OW2, W2 � ;

If
�
PRIORITY � � 0, SingleNode2

�
r1AEU, r2AEU, lAEU � , SingleNode

�
r1AEU, r2AEU, lAEU ��� ;

LAGGAEU � L;
LsAEU � Sum � pi � � j1, j2 � � LAEU ��� If � j1 � K1 � 2, j1, K1 � 1 � , If

�
j2 � K2 � 2, j2, K2 � 1 ��� � ,�

j1, 1, Length
�
pi � � , �

j2, 1, Length
�
pi � ��� ;

OW � Append � OW, W � ; OW2 � Append � OW2, W2 � ;

POW � Join � First 	 
 Drop � OW, � 1 � , Last
�
OW � � � � MAJ, MIN � � ��� ;

POW2 � Join � First 	 
 Drop � OW2, � 1 � , Last
�
OW2 � � � � MAJ, MIN � ��� � ;

OR1 � Table � Sum � v � � i, c ��� POW � � i � � , �
i, 1, Length

�
v ��� � , �

c, 1, 4 ��� ;
OR2 � OR1^2 � Table � Sum � � vf2 � � i, c � �
� v � � i, c � � ^2 � POW � � i � � ^2 � v � � i, c ��� POW2 � � i � � ,�

i, 1, Length
�
v1 ��� � , �

c, 1, 4 ��� ;
ORSD � Sqrt � OR2 � OR1^2 � ;
Print

�
OR1

� � �
SR, BLU, MAJ � ��� , " ",

Sqrt
�
OR2 � OR1^2 � � � � SR, BLU, MAJ � � � � ; �

� �
run for workloads between 0.25 to 1.0 under no priority

� �
Table

�
Main

�
0, t 8.1, t 3, 0.1667 � , �

t, 0.25, 1, 0.05 � �

� �
run for workloads between 0.25 to 1.0 under majors priority

� �
Table

�
Main

�
1, t 8.1, t 3, 0.1667 � , �

t, 0.25, 1.0, 0.05 � � ;

� �
run for workloads between 0.25 to 1.0 under minors priority

� �

Table
�
Main

�
2, t 8.1, t 3, 0.1667 � , �

t, 0.25, 1.0, 0.05 � � ;
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[100] A. Trifunović. Parallel Algorithms for Hypergraph Partitioning. PhD thesis,

Imperial College London, February 2006.

[101] A. Valmari. Lecture Notes on Petri Nets I: Basic Models, volume 1491 of Lecture

Notes in Computer Science, chapter The State Explosion Problem, pages 429–

528. Springer–Verlag, 1998.

[102] H. Wang and K.C. Sevcik. Experiments with improved approximate Mean Value

Analysis algorithms. Performance Evaluation, 39(1–4):189–206, 2000.

[103] W.T. Weeks. Numerical inversion of Laplace transforms using Laguerre functions.

Journal of the ACM, 13:419–426, 1966.

[104] E.N. Weiss, M.A. Cohen, and J.C. Hershey. An iterative estimation and validation

procedure for specification of semi-Markov models with application to hospital

patient flow. Operations Research, 30(6):1082–1104, 1982.

[105] E.M. Winands, I.J. Adan, and G.J. van Houtum. Mean Value Analysis for polling

systems. Queueing Systems: Theory and Applications, 54(1):35–44, September

2006.

[106] Wolfram Research Inc. Mathematica Edition: Version 5.1. Champaign, Illinois,

2004.


