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ABSTRACT
Stochastic performance models are widely used to analyse
systems that involve the flow and processing of customers
and resources. However, model formulation and parame-
terisation are traditionally manual and thus expensive, in-
trusive and error-prone. Our earlier work has demonstrated
the feasibility of automated performance model construction
from location tracking data. In particular, we presented a
methodology based on a four-stage data processing pipeline,
which automatically constructs Generalised Stochastic Petri
Net (GSPN) performance models from an input dataset of
raw location tracking traces. This pipeline was enhanced
with a presence-based synchronisation detection mechanism.
In this paper we introduce Coloured Generalised Stochas-

tic Petri Nets (CGSPNs) into our methodology to provide
support for multiple customer classes and service cycles.
Distinct token types are used to model customers of dif-
ferent classes, while Johnson’s algorithm for enumerating
elementary cycles in a directed graph is employed to detect
service cycles. Coloured tokens are also used to enforce ac-
curate customer routing after the completion of a service
cycle. We evaluate these extensions and their integration
into the methodology via a case study of a simplified model
of an Accident and Emergency (A&E) department. The
case study is based on synthetic location tracking data, gen-
erated using an extended version of the LocTrackJINQS

location-aware queueing network simulator.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modelling Techniques;
I.6.5. [Model Development]: Modelling Methodologies
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1. INTRODUCTION
Complex customer-processing systems are frequently en-

countered in everyday life. Such systems, e.g. airports, hos-
pitals and factory assembly lines, are subject to stringent
Quality of Service (QoS) requirements. Failure to com-
ply with these requirements can have severe financial im-
plications and may lead to high profile fiascos, such as the
opening of Heathrow Terminal 51 and the unacceptably long
waiting times of patients in Accident and Emergency depart-
ments in the UK2. Accurate performance models of these
systems can be used as a predictive tool to ensure the pro-
vision of adequate QoS under foreseeable workloads. Un-
fortunately, the availability and quality of such models are
currently limited due to the associated construction cost,
both in terms of time and money, and the high degree of
manual intervention required, in terms of data collection,
model construction and model parameterisation.

The gradual realisation of the Internet of Things and the
increasing adoption of Real Time Location Systems (RTLSs)
have led to the availability of low-level data which describes
the movements of customers and/or resources in a given sys-
tem. In this context, our earlier work demonstrated the fea-
sibility of automated performance model construction from
location tracking data [2]. In particular, we presented a
methodology, based on a four-stage data processing pipeline,
which automatically constructs Generalised Stochastic Petri
Net (GSPN) [15, 4] performance models from raw location
tracking traces. The developed methodology proved its abil-
ity to capture the stochastic features and abstract structure
of customer-processing systems which satisfy the following
assumptions: static service centres, random service disci-
pline, single customer class, single-server service semantics
and probabilistic customer routing. The resulting models
can be visualised using PIPE2, the Platform Independent
Petri net Editor [5, 7].

In subsequent research, we developed a presence-based
synchronisation detection mechanism [3]. This determines
whether the processing of customers at each service area de-
pends on the presence of a certain number of customers at
other service areas. If synchronisation is detected, then the
extracted service time samples are adjusted accordingly.

1http://www.computerweekly.com/news/2240086013/
British-Airways-reveals-what-went-wrong-with-Terminal-5

2http://www.guardian.co.uk/society/2012/may/31/
patients-waiting-four-hours-2004



We now introduce Coloured Generalised Stochastic Petri
Nets (CGSPNs) [14] into our methodology in order to ad-
dress some of its limitations. In particular we provide sup-
port for multiple customer classes and allow customers to be
routed according to service cycles. Different token types (rep-
resented by distinct colours) are used to model customers of
different classes. Johnson’s algorithm for enumerating ele-
mentary cycles in a directed graph [11] is used to identify
service cycles. Coloured tokens are also used to enforce accu-
rate customer routing after the completion of a service cycle.
Together these extensions allow for more realistic modelling
of complex customer-processing systems.
The rest of this paper is organised as follows. Section 2

presents previous research related to our work. Section 3
provides an overview of our existing and modified method-
ologies. Section 4 presents a case study to examine the ac-
curacy and effectiveness of the modified approach. This uses
synthetic location tracking data generated using an extended
version of LocTrackJINQS [9]. The paper concludes with
a summary of the results and a discussion on future work.

2. RELATED WORK
Previous research conducted by Kounev et al. examined

the automatic construction of performance models in a dif-
ferent context [12]. Their work presents an approach to
automatically extract the performance model of an Enter-
prise Data Fabric (EDF) in the form of a Queueing Petri
Net (QPN) [4]. An EDF is a distributed enterprise middle-
ware, located between the application and the host network,
and it is used to allocate and manage data and resources
across multiple, physically separate, hardware nodes. The
authors parameterise the model using readily available mon-
itoring data which are provided by the EDF. This approach
is implemented as part of the simulation-based tool Jewel
whose purpose is the automated performance prediction and
capacity planning for EDFs.
Another research endeavour in the field of automatic con-

struction of GSPN models has been made by Xue et al. [17].
Their methodology is applicable to Flexible Manufacturing
Systems (FMSs) and it is implemented by the FMSPet pro-
gram. An FMS consists of two components: the actual
manufacturing system, i.e. an assembly line, and a controller
which allows the system to react to various changes. FMS-
Pet requires as input the description of the FMS, specified
by an input language called FMSDL (presented in [17]), and
produces a GSPN model for the underlying system. How-
ever, the methodology does not extract the model from data;
the FMS must be explicitly defined in the input file.
Earlier work conducted by Horng et al. [10] is the most

closely related to ours. The authors present a methodol-
ogy designed to infer simple Queueing Network performance
models from high-precision location tracking data. The con-
structed models capture the structure of certain restricted
classes of underlying system – specified in terms of the rout-
ing probabilities of the customer flow – and the service time
distributions of its service areas. The inter-arrival time dis-
tribution of customers at service centres is also inferred. Un-
like in our present approach, however, there is no ability to
infer automatically the locations and radii of service areas,
the existence of presence-based synchronisation between ser-
vice areas or the presence of service cycles.

3. INFERRING PNPMS FROM
HIGH-PRECISION LOCATION
TRACKING DATA

3.1 Existing Data Processing Pipeline
Here, we provide an overview of our prior work [2, 3] since

some basic understanding of the existing methodology is re-
quired in order to introduce new features. A high-level de-
scription of the original data processing pipeline is shown
in Figure 1. The pipeline takes as input a set of raw loca-
tion tracking data, which describes the customer flow in a
customer-processing system, and outputs a Petri Net per-
formance model (PNPM) of the underlying system.

The first stage of the pipeline prepares the raw location
traces3 for processing by the subsequent stages. In partic-
ular, it converts the input data into a standardised format
and separates it into customer paths, one for each recorded
customer. A customer path consists of the location updates
associated with a particular customer’s movements through-
out its stay in the system. A speed-based filter is then ap-
plied on each customer path in order to remove location
updates that imply infeasibly rapid movement.

The second stage consists of three phases which infer the
locations and radii of stationary service areas in the sys-
tem. It operates under the assumption that customers stop
or slow down while receiving service. The three phases are:
speed filtering, density filtering and the application of the
DBSCAN clustering algorithm [8]. The speed and density
filters are applied on each customer path and aim to identify
the multiset of positions (two-dimensional Cartesian coordi-
nates) where the customer was stationary or moving at ‘low’
speed. These multisets – one for each customer path – are
aggregated into a single dataset on which the DBSCAN al-
gorithm is applied. The centroids of the produced clusters
are used to approximate the locations of the system’s ser-
vice areas. The radius of a service area is conservatively
approximated as 110% of the 95th percentile of the distance
between the corresponding cluster’s centroid and each of its
contained points.

Stage three constructs the basic structure of the derived
PNPM, beginning with the places and transitions required
to represent the flow of customers in the system. We dis-
tinguish between two types of places: places associated with
service areas (inferred from stage two) and places associ-
ated with customer movement between service areas. We
call these server and travel places respectively. Similarly, we
distinguish between two types of transitions: those which
connect server to travel places and those connecting travel
to server places. The latter are called travelling time tran-
sitions and the former service area service time transitions.
These transitions are not currently parameterised; they are
replaced during the next stage by a GSPN subnet that ac-
curately reflects the distribution of the relevant time delays.
In preparation for this, we compute response time samples –
for each customer – inside a service area broken into waiting
time and service time. Samples of the time required by each
customer to transit between two service areas are also com-
puted (travelling time samples). Then, the presence-based
synchronisation detection mechanism [3] is applied. When-
ever synchronisation involving the processing of customers

3A typical location update reading from an RTLS is a tu-
ple of the form (tagName, type, time, x, y, z, stderr).
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Figure 1: The four-stage data processing pipeline as in [3].

at a particular service area is detected, the corresponding
service time samples of those customers are adjusted to take
into account the proportion of time during which the syn-
chronisation condition(s) are satisfied4. Finally, a counting
mechanism calculates the initial and inter-routing probabil-
ities of the customer flow.
The fourth stage of the pipeline replaces the service area

service time transitions and travelling time transitions with
GSPN subnets that reflect the distributions of the corre-
sponding service and travelling time samples computed in
stage three. For each set of these time samples we fit sev-
eral hyper-Erlang distributions (HErDs) using the G-FIT
tool [16]. Each GSPN subnet is constructed in such a way
that it reflects the best-fit HErD which is selected using the
Akaike Information Criterion (AIC) [1].

3.2 Modelling Multiple Customer Classes
The first extension introduces CGSPNs into the data pro-

cessing pipeline in order to support multiple customer classes.
The main assumption here is that the class of each customer
in the system is known and provided through the customer’s
associated location updates, e.g. the type field of a typical
location update contains the category the monitoring tag be-
longs to, or by a static mapping of each customer’s unique
identifier (tagName) to the class it belongs to. Here we focus
on the third stage of the pipeline, especially on the way we
form the initial structure of the PNPM.
In a CGSPN, each transition can support many firing

modes, i.e. a transition can be enabled under several differ-
ent markings. For example, consider the CGSPN depicted
in Figure 2 where p1 is marked with three token types: two
blue, two red and one black. The transition t1 may require

4We assume that service progresses only when the syn-
chronisation condition(s) are met.

two blue tokens to be enabled, or one red, or one black,
or even a combination of distinct types, e.g. one blue, one
red and one black. The set of markings under which t1 is

p1 p2t1

Figure 2: A simple CGSPN with three token classes.

enabled must be specified so that the dynamic behaviour
of the model accurately reflects the underlying system’s be-
haviour. We note that a different firing rate or weight can
be associated with each supported firing mode of a timed or
immediate transition respectively.

To facilitate the unambiguous visualisation of a transi-
tion’s firing modes we use a different transition for each fir-
ing mode that we wish to support. That is, if we consider the
latter example, assuming that t1 has three firing modes (see
Table 1) we use three transitions; this is shown in Figure 4.

Section 3.1 presented an overview of the existing pipeline,
which included the various tasks performed during the third
stage. When dealing with multiple customer classes the pro-
cess of place construction remains the same. Service area
service time transitions are created in a similar manner as
before but instead of having one such transition we now have
multiple transitions: one for each class of customers that
was processed by the corresponding service area. The same
principle applies for the construction of travelling time tran-
sitions. The total number of customer classes is obtained
during the computation of the response and travelling time
samples by simply counting the distinct classes observed.
The operation of this process requires no modifications; how-



Mode I−(p1, t1)(red) I−(p1, t1)(blue) I−(p1, t1)(black) I+(p2, t1)(red) I+(p2, t1)(blue) I+(p2, t1)(black)
1 1 0 0 1 0 0
2 0 1 0 0 1 0
3 1 1 1 1 1 1

Table 1: The supported (three) firing modes of transition t1 shown in Figure 2. I−(pi, tj)(ck) denotes the number of

tokens of colour ck that must be present in pi in order for tj to be enabled. I+(pi, tj)(ck) denotes the number of tokens

of colour ck that are created in pi when tj fires.
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Figure 3: CGSPN subnet representation for service area service time transitions. The colour of tokens supported

varies according to the customer class to which the net applies. The complementary place labelled as server num is

shared among subnets associated with the same service area. This allows only one token to be in a subnet at a time

and thus prohibits parallel service of distinct customer classes (we assume single-server semantics). p0 represents a

service area and p1 is associated with the movement of customers between p0 and some other service area.
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Figure 4: The CGSPN shown in Figure 2 with one tran-

sition for each different firing mode of t1 (cf. Table 1).

ever, the computed service and travelling time samples are
now separated into groups, one for each customer class.
The GSPN subnet reflecting the best-fit HErD of a partic-

ular group of time samples now becomes a CGSPN. The fir-
ing mode of each transition in the subnet is set according to
the class of customers the group of time samples corresponds
to. The general form of a CGSPN subnet used to replace ser-
vice area service time transitions is shown in Figure 3. All
such subnets that are associated with a particular service
area share the same complementary place server num. This
place contains one token and ensures that no more than one
token is allowed in a subnet simultaneously (thus prohibiting
parallel service of customers of different classes). Subnets
used to replace travelling time transitions are similarly struc-
tured but without the complementary place server num.

3.3 Service Cycles and Customer Routing
The approach presented here assumes one class of cus-

tomers. The extension to multiple customer classes is dis-
cussed in the next section.

Often, in customer-processing systems, routing is not prob-
abilistic but deterministic with several phases of processing.
The journey through these processing phases may involve
repeated visits to the same service centres. In order to be
able to model this kind of customer behaviour we introduce
the concept of a service cycle. An example of such a sys-
tem is shown in Figure 5 where the service cycle consists of
Service Area A, B and C. Formally,

Service
Area A

Service
Area B

Service
Area C

System entry

System exit

1

2

34
5

Figure 5: A customer-processing system which provides

services to customers in a cyclic fashion. Arrows indicate

the flow of customers in the system.

Definition 1. Consider a physical customer-processing sys-
tem consisting of the set of service areas S = {Si | i =
1, . . . , N}, for some finite N ∈ N. A finite sequence of dis-
tinct service areas from which the customers of the system



obtained some service, is said to be a service cycle given that
the following conditions hold:

1. If the customers initiate their service sequence at Si,
Si ∈ S, they must also terminate it at Si after service
completion at Sk, Sk ∈ S and i 6= k.

2. When the customers complete their service at Si for
the second time, i.e. after obtaining service at Sk, they
do not repeat the same service sequence.

The service area which marks the initiation and termination
of the service cycle is called the head of the service cycle.

If the existing methodology is applied to a set of location
tracking data retrieved from the system depicted in Fig-
ure 5, under the assumption of one customer class, then the
inferred GSPN model (non-parameterised version) is shown
in Figure 6. Although the structure of the model resembles

Repository

Arrived

t8

Server 0 Travel 0 Server 1

Server 2

Travel 1Travel 2

t9 t1

t7

t4

Intermediate
t10

t3

t2

t6

t5

Figure 6: The GSPN model (non-parameterised ver-

sion) for the system depicted in Figure 5 using our ex-

isting methodology. Places labelled as Server 0, Server

1 and Server 2 represent the service areas A, B and C

respectively.

the underlying system, the model fails to capture the desired
behaviour and routing of customers in the system. In par-
ticular, the second condition of Definition 1 can be possibly
violated because of the race condition between transitions
t1 and t4; when the place Server 0 is marked with at least
one token t1 and t4 are simultaneously enabled. The tran-
sition to fire is selected probabilistically and the probability
of each transition depends on their firing rates.
The key idea here is to identify the transitions involved in

such race conditions and adjust their firing mode, i.e. change
the supported token type, so that the race condition ceases
to exist. The different token types are used to express the
customers’ “phases of service”. That is, we distinguish be-
tween customers who have obtained service from each service
area contained within the service cycle and customers who
are about to enter it, i.e. obtain service from the head of the
service cycle. We classify the former and latter groups of cus-
tomers as serviced and unserviced respectively. The CGSPN
model (non-parameterised version) that is obtained for the
previous example when this modelling approach is applied,
is shown in Figure 7.
To apply this approach, the system being modelled must

first be examined for the presence of service cycles. To per-
form this task we obtain a directed graph G, G = (V,E),

Repository

Arrived

t8

Server 0 Travel 0 Server 1

Server 2

Travel 1Travel 2

t9 t1

t7

t4

Intermediate
t10

t3

t2

t6

t5

1

1

11

1

1

Figure 7: The CGSPN model (non-parameterised ver-

sion) for the system depicted in Figure 5, which enables

the distinction between serviced (red tokens) and unser-

viced (black tokens) customers. Where no arc inscription

is explicitly shown one black (default) token is assumed.

which represents the flow of customers in the system. V
denotes the set vertices of the graph and E the set of its
edges. This graph is derived from the non-parameterised
model by mapping each place in the model to a vertex and
each transition – along with its incident arcs – to a directed
edge (cf. Figure 8). We then use Johnson’s algorithm [11]

Repository

Arrived Server 0 Travel 0 Server 1

Server 2

Travel 1Travel 2

Intermediate

Figure 8: The directed graph produced for the Gener-

alised Stochastic PNPM depicted in Figure 6. The paths

consisting of black and red edges are two elementary cy-

cles beginning at vertex Server 0.

to ascertain whether the derived graph contains elemen-
tary cycles. An elementary cycle is a sequence of vertices
cv = (v1 = v, v2, . . . , vk = v) such that (vi, vi+1) ∈ E for
1 ≤ i < k, where no vertex, apart from the first and last,
appears twice. For more information we refer the reader
to a standard graph theory textbook, e.g. [6]. This algo-
rithm requires as input the directed graph and outputs the
sequence of vertices that form each identified elementary
cycle. The direct application of the algorithm on G would
always return at least one elementary cycle which will in-
clude the Repository place, e.g. see Figure 8. This place of
the PNPM represents the entry/exit point of the underlying
system and thus, is actually not part of any service cycle. To
avoid such unwanted cycles to be detected by the algorithm
we examine the subgraph of G induced by the set of vertices



Transition| Original Firing Mode Modified Firing Mode
t4 |I−(Server 0, t4)(black) = 1 I+(Interm., t4)(black) = 1 I−(Server 0, t4)(red) = 1 I+(Interm., t4)(red) = 1
t7 |I−(Travel 2, t7)(black) = 1 I+(Server 0, t7)(black) = 1 I−(Travel 2, t7)(black) = 1 I+(Server 0, t7)(red) = 1
t10 |I−(Interm., t10)(black) = 1 I+(Rep., t10)(black) = 1 I−(Interm., t10)(red) = 1 I+(Rep., t10)(black) = 1

Table 2: The required firing mode modifications, if any, for each transition of the PNPM shown in Figure 6 to enable

the accurate representation of the underlying system’s customer flow (Figure 7). Interm. and Rep. denote the places

labelled as Intermediate and Repository respectively.

V − {Repository} instead of G. Also, according to the fol-
lowing theorem we restrict the algorithm’s search to begin
only with vertices which have at least two predecessors5 and
at least two successors.

Theorem 1. Given a customer-processing system and its
corresponding directed graph, a service cycle exists only if the
vertex vi which corresponds to the head of the service cycle
Si has at least two predecessors and at least two successors.

The proof of Theorem 1 is shown in the Appendix. When
the algorithm completes its search, it returns the ordered
list of vertices Vi which constitute the elementary cycle –
one list for each cycle i. For each such list we obtain the
(ordered) list of the corresponding places Pi; these places are
obtained by reversing the mapping used earlier to derive the
directed graph from the PNPM. Consider our initial example
of the customer-processing system shown in Figure 5 and its
corresponding PNPM (cf. Figure 6). In this example we have
only one service cycle: Server 0, Travel 0, Server 1, Travel 1,
Server 2, Travel 2, Server 0.
Now, using the latter information, we wish to accurately

represent the flow of customers in the system. We begin
by retrieving the sets of input and output transitions of the

place p
(i)
H that corresponds to the head of the ith service

cycle. For each transition tin contained in •p(i)H we obtain
its input place6and similarly, for each transition tout con-

tained in p
(i)
H • its output place. Here •p and p• denote

the sets of input and output transitions of a place p. Sim-
ilarly, •t and t• denote the sets of input and output places
of a transition t. In our example (cf. Figure 6) we have:

p
(i)
H = Server 0, •Server 0 = {t7, t9}, Server 0• = {t1, t4},

•t7 = {Travel 2}, •t9 = {Arrived}, t1• = {Travel 0}, and
t4• = {Intermediate}.
The next step is to determine the transition tin, tin ∈

•p(i)H , whose input place is in cycle i, and change its firing
mode. In particular, we only need to modify its forward
incidence function to support another token type. That is,

I+(p
(i)
H , tin)(black) = 1 → I+(p

(i)
H , tin)(c) = 1

for some (hitherto unused) colour c other than black. We

then identify the transition tout, tout ∈ p
(i)
H •, whose output

place pk is not in cycle i, and change both its backward and
forward incidence functions accordingly, i.e.

I−(p
(i)
H , tout)(black) = 1 → I−(p

(i)
H , tout)(c) = 1

I+(pk, tout)(black) = 1 → I+(pk, tout)(c) = 1.

5When two vertices vi, vj ∈ V are adjacent through the
edge (vi, vj) ∈ E, then vj is called a successor of vi and vi
is called a predecessor of vj [6].

6At this point, each transition in the model has only one
input and only one output place.

We proceed by recursively changing the backward and for-
ward incidence functions of all subsequent connected transi-
tions in the non-parameterised model; we consider two tran-
sitions ti, tj to be connected if ti • ∩ • tj 6= ∅. This process
continues until we reach the transition whose output place is
the Repository. For this transition we only change its back-
ward incidence function since we wish the original token type
to be restored in the Repository. Table 2 lists the required
changes of the transitions’ firing mode for our example. The
resulting model is shown in Figure 7.

3.4 Service Cycles and
Multiple Customer Classes

When multiple customer classes exist and in particular,
when at least two classes of customers perform the same ser-
vice cycle, the modelling approach presented in Section 3.3
is not applicable. Here, we demonstrate the reason the latter
approach fails and propose a solution.

Consider the customer-processing system shown in Fig-
ure 5 and assume the existence of two customer classes.
Following the methodology presented in Section 3.2 we ob-
tain the CGSPN model depicted in Figure 9. If we were to
map the places and transitions of that model to vertices and
edges to form the corresponding directed graph (as described
in Section 3.3), we would obtain a directed multigraph, also
known as p-graph with p = 2 (see Figure 10). In a p-graph,
p denotes the maximum number of arcs having the same ini-
tial and terminal vertices. If we have a system with three
customer classes where each class performs the same service
cycle, the corresponding graph of the PNPM for that system
would be a 3-graph. While Theorem 1 is still applicable for
this graph, Johnson’s algorithm considers the three elemen-
tary cycles as being the same and thus outputs only one.
The original approach fails since we can neither generalise
the detected service cycle to all customer classes, nor deduce
the class which performs the service cycle.

To resolve this issue we obtain the directed graph that
represents the flow of customers of each class – one graph
for each customer class – and then iteratively apply the
same approach as before, on each graph. To find these
graphs we proceed as follows. Assuming that we have N
customer classes in the system, we decompose the set of
the model’s transitions T into disjoint subsets Tci , where ci,
i = 1, . . . , N , denotes the token type that a transition’s firing
mode supports – this is unique since at this stage of model
construction there is a one-to-one correspondence between
each customer class and each token type. Of course when
the modelling approach presented in Section 3.3 is applied, a
one-to-many, in particular 1 : k+1, correspondence will ex-
ist between each customer class and each token type. Here k
denotes the number of service cycles performed by a partic-
ular customer class. Then, for each Tci – along with the con-
nected set of places – we apply the same mapping as before
to derive the directed graph that corresponds to the jour-
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Figure 9: The CGSPN model (non-parameterised ver-

sion) for the system depicted in Figure 5 when two cus-

tomer classes exist. Its corresponding 2-graph is shown

in Figure 10.

ney undertaken by each customer class. In our example, we
assumed two classes of customers represented by black and
red tokens respectively, i.e.N = 2, c1 := black, c2 := red. If
we denote the set of edges that were formed from the map-
ping of Tblack as Eblack, and similarly those formed from the
mapping of Tred as Ered, then the directed graphs that cor-
respond to the first and second customer classes are, respec-
tively, G1 = (V,Eblack) and G2 = (V,Ered) (see Figure 10).
Figure 11 shows the CGSPN model obtained via this ex-

tended version of our initial approach for the latter example.

Repository

Arrived Server 0 Travel 0 Server 1

Server 2

Travel 1Travel 2

Intermediate 1

Intermediate 0

Figure 10: The directed 2-graph produced for the

CGSPN model depicted in Figure 9. If Eblack and Ered

denote the set of black and red edges then the 2-graph

can be defined as G = (V,Eblack ∪ Ered). The directed

graphs for the first and second customer classes are

G1 = (V,Eblack) and G2 = (V,Ered) respectively.

3.5 Calculation and Representation of Inter-
routing Probabilities

This section presents the calculation and representation
of inter-routing probabilities of the customer flow within the
system, when multiple classes of customers exist.
During the response and travelling time extraction pro-
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Figure 11: The CGSPN model (non-parameterised ver-

sion) for system depicted in Figure 5 when two customer

classes exist. Black and green tokens are used to dis-

tinguish between unserviced and serviced customers of

class one. Red and blue tokens are used to distinguish

between unserviced and serviced customers of class two.

cess (third stage of the pipeline) we count the total number
of customers of each class who received service at each ser-
vice area. For each service area Si we maintain tables –
one for each customer class – whose tuples consist of two
fields: the identity of another service area Sk, k 6= i, and
the number of customers who visited Sk immediately after
they completed their service at Si. To calculate the routing
probability from Si to Sk for some k, k 6= i, we divide the
number of customers of class j who visited Sk immediately

after Si, say n
(j)
i,k , by the total number of customers of the

same class who were serviced by Si, n
(j)
i . The routing of

each customer class j is represented in the model as follows:

1. For each service area Si and for each customer class
j, an intermediate place is created, where tokens are
placed after the associated service time transition fires.

2. For each destination service area Sk of each origin ser-
vice area Si, immediate transitions are created from
the intermediate places of Si to a so-called “travel”

place. Their weights are set equal to n
(j)
i,k/n

(j)
i .

3. Travelling time transitions are created, connecting each
constructed travel place to the corresponding destina-
tion service area Sk.

4. CASE STUDY
We present a case study to evaluate the pipeline’s newly

added features and their integration in the existing method-
ology. For this case study we have generated location track-
ing data using an extended version of LocTrackJINQS [9].
Synthetic data provides two advantages over real traces:
it allows us to characterise the degree of accuracy of the
inferred distributions and their parameters – as the exact
model parameters and processes are known – and its gen-
eration is performed in a time efficient manner rather than
engaging in long experimental procedures.



Here, a simplified model of an A&E department is em-
ployed. It comprises five service areas: a reception (S1), an
examination room (S2), an x-ray operation room (S3), an x-
ray room (S4) and a treatment room (S5). The simulation
takes place in a 40 m × 28 m virtual environment. Figure 12
depicts the experimental setup. Each service area consists

Figure 12: The experimental setup in terms of abstract

system structure for this case study. The red arrows

represent the flow of customer classes 0 and 1. Blue ar-

rows are used to indicate the flow of customer classes 2

and 3. The blue dotted arrow (contained in the blue dot-

ted rectangle) indicates the synchronisation conditions

imposed by S3 on S4: one nurse (customer class 2) and

one radiologist (customer class 3) must be present in the

x-ray operation room (S3) so that the screening process

of patients in the x-ray room (S4) can be initiated. After

service completion at S4 and S5, customers of classes 0

and 1 obtain service from S1 (for the second time) and

then exit the system, thus defining two service cycles.

of a single customer-processing server with a random service
discipline. The location update error is normally distributed
with mean 0.15 m and standard deviation 0.2 m.
We assume minor and major patients classes which cor-

respond to customer classes zero and one respectively. Fur-
thermore, two more classes of customers exist: nurses (cus-
tomer class two) and radiologists (customer class three).
The arrival process for each customer class is shown in Ta-
ble 3. Patients entering the system are routed to the recep-
tion in order to register and then proceed to the examination
room. From there they get discharged, or are sent to the x-
ray room (S4) or to the treatment room (S5). This routing
occurs with probability 0.3, 0.4 and 0.3 respectively. Pa-
tients routed to the x-ray or treatment room must then re-
visit the reception to schedule a followup examination before
exiting the system, i.e. we have two service cycles: S1, S2,
S4, S1, and S1, S2, S5, S1. Nurses and radiologists are im-
mediately routed to the x-ray operation room (S3) and when
their service is terminated they exit the system. In order for
the scanning process of patients to initiate and progress, at
least one nurse and one radiologist must be present in S3.
The customers are assumed to travel between service areas
with speed drawn from a normal distribution whose param-
eters – for each class – are shown in Table 3. The service
time for each server and each customer class may follow a
different density function. Table 4 shows each service area’s

actual location and service radius, as well as its service time
density for each customer class.

Customer Class Arrival Distribution Speed Distribution
0 Exp(0.01) Normal(0.38, 0.1)
1 Exp(0.008) Normal(0.25, 0.1)
2 Exp(0.004) Normal(0.4, 0.2)
3 Exp(0.004) Normal(0.5, 0.15)

Table 3: The customer arrival process and speed distri-

bution for each customer class.

Server Service Service Time
Location Radius Density

S1 (10.0, 12.5) 1.0
Customer Class 0 Exp(0.033)
Customer Class 1 Exp(0.05)

S2 (20.0,12.5) 0.95
Customer Class 0 Erlang(2, 0.035)
Customer Class 1 Normal(40, 10)

S3 (33.0,10.0) 1.33
Customer Class 2 Erlang(6, 0.05)
Customer Class 3 Erlang(5, 0.04)

S4 (38.0,15.0) 1.8
Customer Class 0 Exp(0.033)
Customer Class 1 Exp(0.033)

S5 (28.0,22.0) 1.5
Customer Class 0 Exp(0.013)
Customer Class 1 Erlang(2, 0.013)

Table 4: The parameters for each service area in the

system, for each customer class.

4.1 Results
The locations and service radii of the service areas are in

general approximated well (see Table 6). The largest error
for the service area location inference – specified in terms
of the distance between the real and inferred points – is
0.320 metres. The maximum service radius approximation
error is 0.277 metres.

Service Customer Simulated Inferred
Area Class Probability Probability (3 d.p.)

S4
0 0.4 0.429
1 0.4 0.397

S5
0 0.3 0.280
1 0.3 0.298

Sink
0 0.3 0.291
1 0.3 0.305

Table 5: The simulated and inferred routing probabil-

ity (to three decimal places) of the customer flow from

service area S2.

The quality of the extracted service time samples and
the best-fit HErD are assessed by Kolmogorov-Smirnov tests
which examine their compatibility (see Table 7). To exam-
ine the degree of accuracy of the approximation of the the-
oretical (simulated) service time distribution by the best-fit
HErD we compute the relative entropy [13] of the two dis-
tributions. As shown in Table 8, good level of agreement is
observed between the parameters of the best-fit HErD and
the parameters of the corresponding theoretical service time
distribution (relative entropy for all fitted HErDs is bounded
by 0.119 nat). Figure 14 shows the cumulative histogram
of the extracted service time samples and its best-fit HErD
compared with the corresponding theoretical distribution for
customer class 0.

The inferred CGSPN performance model is shown in Fig-
ure 13. Customer classes 0, 1, 2 and 3 are represented by



Server Location Service Radius
Real Inferred Error Real Inferred Error

S1 (10.0, 12.5) (9.955, 12.511) 0.046 1.0 1.095 0.095

S2 (20.0, 12.5) (20.014, 12.546) 0.048 0.95 1.025 0.075

S3 (33.0, 10.0) (33.017, 10.014) 0.022 1.33 1.454 0.124

S4 (38.0, 15.0) (37.814, 14.976) 0.188 1.8 2.077 0.277

S5 (28.0, 22.0) (28.136, 22.290) 0.320 1.5 1.609 0.109

Table 6: The inferred location and service radius for

each service area in the system accompanied with the

absolute error. These values are given to three decimal

places.

red, blue, green and black coloured tokens. Places labelled
as Server 0, Server 1, Server 3, Server 2 and Server 4 cor-
respond to service areas S1, S2, S3, S4 and S5. The two
service cycles involving service areas S1, S2, S4 and S1, S2,
S5, have been correctly identified and modelled. In partic-
ular, the CGSPN subnets with labels HErD21 and HErD15
connect travel places, associated with customer movement
after S4 and S5, to S1 thus completing the service cycles
for customer class 0 (subnets HErD19 and HErD13 for cus-
tomer class 1). We note the token colour change for the first
customer class (class 0) from red to brown (by HErD21 and
HErD15) and for the second customer class (class 1) from
blue to yellow (by HErD19 and HErD13). Table 5 shows the
inferred routing probability from S2 to S4, S5 and Sink (rep-
resented by the Repository place). Also, the synchronisa-
tion conditions between S3 (synchronising service area) and
S4 (synchronised service area) have been modelled correctly;
one nurse (green colour) and one radiologist (black colour)
are required to be present in S3 so that patients in S4 can
be scanned.

5. CONCLUSION AND SUMMARY
This paper has introduced extensions to an existing data

processing pipeline for the automated derivation of perfor-
mance models from location tracking traces. These increase
its domain of applicability to customer-processing systems
supporting multiple customer classes and service cycles. The
calculation and representation of inter-routing probabilities
of the customer flow between the system’s service areas,
when multiple customer classes exist, has also been pre-
sented. All extensions are incorporated within the third
stage of the pipeline.
The case study results indicate that the extended method-

ology can infer the stochastic features of certain multi-class
systems accurately, even in the presence of synchronisation
and service cycles, at least when synthetically-generated lo-
cation tracking data is used.
Our current work assumes single-server semantics, ran-

dom service discipline and static customer classes. In future
work we intend to relax these assumptions. It should be
straightforward to modify the subnets used to model the
service times of service areas (cf. Figure 3) to support mul-
tiple servers by changing the number of tokens contained
in the complementary place which controls the number of
tokens (customers) which can be simultaneously in the sub-

Class 0 Class 1

S1 - 1st visit

Test Statistic 0.0741 0.0638
α 0.1 0.05 0.1 0.05

Critical Values 0.0807 0.0920 0.0877 0.0999
Compatible ? Yes Yes Yes Yes

S1 - 2nd visit

Test Statistic 0.0798 0.0422
α 0.1 0.05 0.1 0.05

Critical Values 0.0973 0.1109 0.1110 0.1265
Compatible ? Yes Yes Yes Yes

S2

Test Statistic 0.0479 0.0455
α 0.1 0.05 0.1 0.05

Critical Values 0.0809 0.0922 0.0901 0.1027
Compatible ? Yes Yes Yes Yes

S4

Test Statistic 0.1095 0.1293
α 0.1 0.05 0.1 0.05

Critical Values 0.1244 0.1418 0.1443 0.1645
Compatible ? Yes Yes Yes Yes

S5

Test Statistic 0.0928 0.1011
α 0.1 0.05 0.1 0.05

Critical Values 0.1529 0.1743 0.1671 0.1905
Compatible ? Yes Yes Yes Yes

Class 2 Class 3

S3

Test Statistic 0.0708 0.1374
α 0.1 0.05 0.1 0.05

Critical Values 0.1370 0.1562 0.1430 0.1630
Compatible ? Yes Yes Yes Yes

Table 7: Kolmogorov-Smirnov test at significance levels

0.1 and 0.05 applied to the extracted service time sam-

ples for each service area in this case study. The null

hypothesis is that each extracted sample belongs to the

corresponding best-fitted HErD.

net7. More challenging tasks include devising a means to
infer the number of servers present in each service area from
location tracking data, and supporting dynamic customer
classes (where class changes may occur after completion of
service at a service area).

Ultimately, we would like to examine the applicability and
performance of our pipeline in the context of more compli-
cated scenarios using location tracking data gathered by a
real RTLS. In fact, experiments on a real A&E department
would be of particular interest given the favourable outcome
of the synthetic A&E case study presented in this paper.
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APPENDIX
Proof of Theorem 1.

Proof. We consider a physical customer-processing sys-
tem consisting of the set of service areas S = {Si | i =
1, . . . , N}, for some finite N ∈ N. Assume that a service cy-
cle exists, and consider the directed graph which corresponds
to the PNPM (non-parameterised version) of the underlying
system.

We define:

1. Sc ⊆ S to be the subset of service areas that make up
the service cycle,

2. Pc = {vj , vj+1, . . . , vj+k} to be the set of vertices which
correspond either to the places representing service ar-
eas Si ∈ Sc or to the travel places that exist between
pairs of service areas Si, Sk, i 6= k, Si, Sk ∈ Sc.

We examine the two conditions of the theorem individually:
At least two predecessors are required.

If no predecessor of the vertex vj which corresponds to Sj ,
exists, then it is trivial that no service cycle exists. Now let
us assume that only one predecessor of the vertex vj exists,
say vp with p 6= j. We need to consider two cases. If vp ∈ Pc,
it corresponds to the travel place which connects the last
service area of the service cycle, say Sl, l 6= j, Sl ∈ Sc,
to the head of the service cycle Sj . This means that the
customers initiated their service sequence at the service area
Sl ∈ Sc. But since Sj is the head of the service cycle and
j 6= l, we reach a contradiction. If vp /∈ Pc, then vj is
not accessible from any vertex v ∈ Pc, and consequently
customers cannot reach Sj from the last service area of the
service cycle, meaning that no service cycle exists. Thus, we
obtain a contradiction.

At least two successors are required.
If no successor of the vertex vj which corresponds to Sj

exists, then it is trivial that no service cycle exists. Now
assume that only one successor of the vertex vj exists, say
vp, p 6= j. If vp ∈ Pc, it corresponds to the travel place which
connects Sj to the next service area in the service cycle, say
Sj+1. Since no other vertex is a successor of vj this means
that all customers completing their service cycle will be re-
routed to Sj+1, thus repeating the same service cycle. This
violates the second condition of definition 1 and therefore,
a contradiction is obtained. If vp /∈ Pc, then none of the
vertices corresponding to service areas Sl, l = j+1, . . . , j+k,
are accessible from Sj , hence no service cycle exists. Again,
we reach a contradiction.
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Figure 14: Case Study: Graphs 14(a), 14(b), 14(c), 14(d) and 14(e) show the cumulative histogram of the extracted

service time samples (adjusted for synchronisation in 14(d)) for customer class 0 and its best-fit hyper-Erlang distri-

bution compared with the corresponding theoretical distribution for S1 (entry to service cycle), S1 (exit from service

cycle), S2, S4 and S5 respectively.


