The Semantics of Predicate Logic as a Programming Language

M. H. VAN EMDEN AND R. A. KOWALSKI

Unwersity of Edinburgh, Edinburgh, Scotland

ABSTRACT Sentences in first-order predicate logic can be usefully interpreted as programs In this paper the
operational and fixpoint semantics of predicate logic programs are defined, and the connections with the proof
theory and model theory of logic are investigated It 1s concluded that operational semantics is a part of proof
theory and that fixpoint semantics 1s a special case of model-theoretic semantics

KEY WORDS AND PHRASES predicate logic as a programming language, semantics of programming languages,
resolution theorem proving, operational versus denotational semantics, SL-resolution, fixpoint charactenza-
tion

CR CATEGORIES® 422,521,524

1. Introduction

Predicate logic plays an important role 1n many formal models of computer programs [3,
14, 17]. Here we are concerned with the interpretation of predicate logic as a program-
ming language [5, 10]. The ProLoG system (for PROgramming in LOGic), based upon
the procedural mterpretation, has been used for several ambitious programming tasks
(including French language question answering |5, 18}, symbolic integration [9], plan
formation [24], theorem proving, speech recognition, and picture interpretation). In this
paper we 1gnore the practical aspects of programming n logic and investigate instead the
semantics of predicate logic regarded as a programming language. We compare the
resulting semantics with the classical semantics studied by logicians.

Two kinds of semantics [22], operational and fixpoint, have been defined for program-
ming languages. Operational semantics defines the input-output relation computed by a
program 1n terms of the individual operations evoked by the program inside a machine.
The meaning of a program 1s the mnput-output relation obtained by executing the
program on the machine. As a machine independent alternative to operational seman-
tics, fixpoint semantics [1, 6, 17, 22] defines the meaning of a program to be the input-
output relation which 1s the mimimal fixpoint of a transformation associated with the
program. Fixpoint semantics has been used [6, 7, 15, 17] to justify existing methods for
proving properties of programs and to motivate and justify new methods of proof.

Logicians distinguish between the syntax and the semantics of formal languages.
Syntax deals with the formal part of language n abstraction from its meamng. It deals
not only with the definition of well-formed formulas, syntax in its narrow sense, but also
with the broader study of axioms, rules of inference, and proofs, which constitutes proof
theory. Semantics, on the other hand, deals with the interpretation of language and
includes such notions as meaming, logical implication, and truth. Church’s Introduction to
Mathematical Logic [4] contains a thorough discussion of the respective roles of syntax
and semantics.

Copyright © 1976, Association for Computing Machinery, Inc General permussion to republish, but not for
profit, all or part of this material 1s granted provided that ACM’s copynght notice 1s given and that reference 1s
made to the publication, to its date of issue, and to the fact that repninting privileges were granted by
permission of the Association for Computing Machiery

This work was supported by the U K Science Research Council

Authors’ present addresses M H van Emden, Department of Computer Science, Umversity of Waterloo,
Waterloo, Ontario, Canada N2L 3G1, R A Kowalski, Department of Computation & Control, Impenal
College, 180 Queens Gate, London SW7, United Kingdom

Journal of the Association for Computing Machmnery, Vol 23, No 4, October 1976, pp 733-742

734 M. H. VAN EMDEN AND R. A. KOWALSKI
L

We use the interpretation of predicate logic as a programming language in order to
compare the notions of operational and fixpoint semantics of programming languages
with the notions of syntax and semantics of predicate logic. We show that operational
semantics is included in the part of syntax concerned with proof theory and that fixpoint
semantics 1s a special case of model-theoretic semantics. With this interpretation of
operational semantics as syntax and fixpoint semantics as semantics, the equivalence of
operational and fixpoint semantics becomes a special case of Godel’s completeness
theorem.

This paper is concerned with the analysis and comparison of some of the most basic
notions of logic and computation As a by-product 1t is virtually self-contained and
requires only a general knowledge of logic but no special familiarity with the operational
and fixpoint semantics of programming languages.

2. A Syntax of Well-Formed Formulas

It is convenient to restrict attention to predicate logic programs written in clausal form.
Such programs have an especially simple syntax but retain all the expressive power of the
full predicate logic.

A sentence 1s a finite set of clauses.

A clause 1s a disjunction L, \/ - -+ \/ L, of literals L,, which are atomic formulas
P(ty, . . ., t,) or the negations of atomic formulas P(t,, . . . ,), where P is a predicate
symbol and ¢, are terms. Atomic formulas are positive literals. Negations of atomic
formulas are negative literals.

A term is either a variable or an expression fit,, . . . , t,,) where f is a function symbol
and ¢, are terms. Constants are 0-ary function symbols.

A set of clauses {C,, . .., C,} is interpreted as the conjunction, C, and . .. and C,. A
clause C containing just the varablesx,, . . ., x, 1s regarded as universally quantified:

forallx,, ..., x, C

For every sentence S 1n predicate logic there exists a sentence S, in clausal form which is
satisfiable if and only if S, is. For this reason, all questions concerning the validity or
satisfiability of sentences in predicate logic can be addressed to sentences in clausal form.
Methods for transforming sentences into clausal form are described in [16].

We have defined that part of the syntax of predicate logic which 1s concerned with the
specification of well-formed formulas. Aspects of syntax concerned with proof theory are
dealt with 1n the next two sections.

3. The Procedural Interpretation

It is easiest to interpret procedurally sets of clauses which contain at most one positive
hiteral per clause. Such sets of clauses are called Horn sentences. We distinguish three
kinds of Horn clauses .

(1) O the empty clause, contaming no hiterals and denoting the truth value false, is
interpreted as a halt statement.

(2) B,V --- VB, aclause consisting of no positive Iiterals and n = 1 negative literals
18 terpreted as a goal statement .

B3AVEB V-V B, a clause consisting of exactly one positive literal andn = 0
negative literals 1s interpreted as a procedure declaration. The positive Iiteral A is the
procedure name and the negative literals are the procedure body. Each negative
literal B, in the procedure body 1s interpreted as a procedure call. When n = 0 the
procedure declaration has an empty body and 1s imnterpreted as an unqualified
assertion of fact

In the procedural interpretation a set of procedure declarations 1s a program. Compu-
tation 1s initiated by an 1nitial goal statement, proceeds by using procedure declarations

The Semantics of Predicate Logic as a Programmung Language 735

to derive new goal statements from old goal statements, and terminates with the
derivation of the halt statement Such derivation of goal statements is accomplished by
resolution [20], which 1s interpreted as procedure invocation. Given a selected procedure
call A, mnside the body of a goal statement

AV---VA,VAVALV---VA,
and given a procedure declaration
A'\/B,\/"'\/Bm, mZO

whose name matches the selected procedure call (in the sense that some most general
substitution 6 of terms for variables makes A, and A’ identical), resolution derives the
new goal statement

(AN VALVBN -V By VAV VA 6.

In general, any dernivation can be regarded as a computation and any refutation (i.e.
derivation of 0) can be regarded as a successfully terminating computation. However
only goal oriented resolution dertvations correspond to the standard notion of computa-
tion. Such a goal-oriented derivation from an nitial set of Horn clauses A and from an
mitial goal statement C, in A 1s a sequence of goal statements Cj, . . ., C, such that each
C, contains a single selected procedure call and C,4, is obtained from C, by procedure
mvocation relative to the selected procedure call in C, using a procedure declaration in
A

In model elimination [13], ordered linear resolution [19], and SL-resolution [12], the
selection of procedure calls 1s governed by the last in/first out rule: A goal statement 1s
treated as a stack of procedure calls. The selected procedure call must be at the top of the
stack. The new procedure calls which by procedure invocation replace the selected
procedure call are inserted at the top of the stack. The more general notion of goal
oriented dertvation defined above corresponds to computation with coroutines [10].
Computation with asynchronous parallel processes 1s obtained by using the splitting rule.
[2, 8, 23].

Predicate logic is a nondeterministic programming language: Given a single goal
statement, several procedure declarations can have a name which matches the selected
procedure call. Each declaration gives rise to a new goal statement. A proof procedure
which sequences the generation of derivations in the search for a refutation behaves as an
interpreter for the program incorporated in the initial set of clauses. These and other
aspects of the procedural interpretation of Horn clauses are investigated 1n greater detail
elsewhere [10]

The procedural nterpretation has also been nvestigated for non-Horn clauses [11].
However, 1n this paper we restrict ourselves to Horn clauses.

Example The following two clauses constitute a program for appending two lists.
The term cons(x,y) is interpreted as a list whose first element, the head, 1s x and whose
tail, y, 1s the rest of the list. The constant nil denotes the empty list. The terms u, x, y,
and z are variables. Append(x,y,z) denotes the relationship: z is obtained by appending
ytox.

(1) Appen(nilx,x).

(2) Append(cons(x,y)z,cons(x,u)) \V Append(y,z,u)

To compute the result of appending the list cons(b,nil) to the list cons(a,nil), the
program 1s activated by the goal statement

(3) Append(cons(a,nit),cons(b ,nil),v),
where v is a variable and a and b are constants, the “‘atoms” of the lists With this goal
statement the program is determumstic. With a goal directed theorem prover as inter-
preter, the following computation ensues:

&

G
G

Append(cons(a,nil) ,cons(b ,ml),v),
Append(nil ,cons(b nil),w) 6,,
O 6,,

736 M. H. VAN EMDEN AND R. A. KOWALSKI

where 0, is the substitution v = cons(a,w) and 6, 1s w := cons(b,nil). The result of the
computation is the value of v in the substitution 6,6,, which is v := cons(a,cons(b,nil)).

4. Operational Semantics

To define an operational semantics [22] for a programming language is to define an
implementation independent interpreter for it For predicate logic the proof procedure
behaves as such an interpreter

We regard the terms contaming no variables which can be constructed from the
constants and other function symbols occurring 1n a set of clauses A as the data structures
which the program, incorporated in A, manipulates. The set of all such terms 1s called
the Herbrand universe H determined by A. Every n-ary predicate symbol P occurring in
A denotes an n-ary relation over the Herbrand universe of A We call the n-tuples which
belong to such relations inpur-output tuples and the relations themselves input-output
relations .

Given a spectfic inference system, the operational semantics determines a unique
denotation for P: The n-tuple (¢,, .. ., t,) belongs to the denotation of P in A iff A
P(ty, ..., ty), where X + Y means that there exists a dertvation of Y from X. For
resolution systems we employ the convention that X + Y means that there exists a
refutation of the sentence 1n clausal form corresponding to X & Y. We use the notation

D, (P)={(ty ... ta) : AF P(ty, ..., ta)}

for the denotation of P in A as determined by operational semantics

It needs to be emphasized that only goal onented inference systems correspond to the
standard notion of operational semantics, where procedure calls are replaced by proce-
dure bodies. In theory, however, any inference system for predicate logic specifies,
implicitly at least, an abstract machine which generates exactly those derivations which
are determined by the given inference system

Notice that in our treatment predicate logic programs compute relations. The relations
computed are denoted by predicate symbols in the defining set of clauses A. Those
special relations which are functions are also denoted by predicate symbols The function
symbols occurring in A do not denote functions computed by the program but construct
the data structures which are the mput and output objects of the relations (or functions)
computed.

It 1s a significant application of the proof theory of resolution systems to the computa-
tion theory of predicate logic programs that if A is consistent and A +- P(¢,, . . ., t,) then

there exists a resolution refutation of A & P(x,, - . ., x,,) in which the vaniablesx,, . . ., x,,
are eventually instantiated to terms which have¢,, . . ., t, as an instance. More generally,
if AFP(¢, ..., ts), then for any subset of the arguments ¢,, . . ., ¢, of P there exists a

computation which accepts those arguments of P as input and computes the remaining
arguments as output. A useful practical consequence of this fact 1s that a predicate logic
program can first be written to test that a given relationship holds among the members of
an n-tuple of objects but can later be used to generate, from some subset of objects in the
n-tuple given as input, the remaining objects in the n-tuple as output. See, for example,
the goal statement 3(a) below. Another important consequence 1s that variables occur-
ring 1n input or output can be used to represent incompletely specified data See, for
example, the goal statement 3(b) below. It is these considerations which motivate the
terminology ‘“‘input-output relation” for the relation denoted by a predicate symbol in a
set of clauses.

Given a consistent set of clauses A representing a program and given a goal statement
C, the Herbrand universe for A can be different from the Herbrand universe for the set
of clauses AU{C}. Although this is an interesting case to consider, we assume for
simplicity that it does not arise and that C contains only constant symbols and function
symbols occurring in A. Similarly we assume that A always contains at least one constant
symbol.

The Semantics of Predicate Logic as a Programming Language 737

Example. The program for appending lists can be activated by the goal statement:
(3a) Append(x,cons(a,y),cons(a,cons(b ,cons(a,nil)))),
where a, b, and nil are constants, and x and y are variables. With this goal statement the
program behaves nondeterministically: There are two computations, one ends withx :=
nil, y := cons(b ,cons(a,nil)), and the other ends with x := cons(a,cons(b ,nil)), y := nil.
Activated by a goal statement with this pattern of constants and vanables, the program
checks whether a particular ttem occurs in the given list and gives a different computation
for each different occurrence. For each occurrence of the item, it determines the list of
items preceding the given occurrence as well as the list following it.
Example. The program for appending can also be activated by the goal statement:
(3b) Append(cons(b,nil),y,z),
where b and nil are constants and y and z are variables. Starting from this goal statement
there is one computation. It ends with z := cons(b,y), which can be interpreted as stating
that z is the list whose head 1s b and whose tail is the unspecified input y.

5. Model-Theoretic Semantics

There is general agreement among logicians concerning the semantics of predicate logic.
This semantics provides a simple method for determining the denotation of a predicate
symbol P in a set of clauses A:

Dy(P) ={(t;, . . ., tn) : AR P(ty, . . ., ta)},

where X = Y means that X logically implies Y. D,(P) 1s the denotation of P as
determined by model-theoretic semantics .

The completeness of first-order logic means that there exist inference systems such
that derivability coincides with logical implication; i.e. for such inference systems X + Y
iffX Y.)

The equivalence of operational and model-theoretic semantics D,(P) = Dy(P) 1s an
immediate consequence of the completeness of the inference system which determines
D,.

In order to make a comparison of the fixpoint and model-theoretic semantics, we need
a more detailed definition of D,. For this purpose we define the notions of Herbrand
interpretation and Herbrand model.

An expression (term, literal, clause, set of clauses) is ground if it contains no variables.
The set of all ground atomic formulas P(¢,, . . ., t,), where P occurs mn the set of clauses

JAand¢, ..., t, belong to the Herbrand umiverse H of A, 1s called the Herbrand base H
of A. A Herbrand interpretation I of A 1s any subset of the Herbrand base of A. A
Herbrand interpretation simultaneously associates, with every n-ary predicate symbol in
A, a unique n-ary relation over H. The relation {(¢,, ..., £,) : P(¢ty, ..., tn) € I} is
associated by I with the predicate symbol P in A.

(1) A ground atomic formula A is rue 1n a Herbrand interpretation / iff A € I.
(2) A ground negative literal A 1strue in [iff A € I.

(3) A ground clause L,V * * - V L, is true in I iff at least one literal L, is true in I.
(4) In general a clause C is true in I iff every ground instance Co of C 1s true inI. (Co is

obtamed by replacing every occurrence of a variable in C by a term in H. Different
occurrences of the same variable are replaced by the same term.)
(5) A set of clauses A is true in I iff each clause in A is true n 1.

A literal, clause, or set of clauses is false in I iff it is not true. If A is true in I, then we
say that I is a Herbrand model of A and we write |=; A. It is a simple version of the
Skolem-Lowenheim theorem that a sentence A in clausal form has a model iff it has a
Herbrand model.

We can now formulate an explicit definition of the denotation determmned by the
model-theoretic semantics. Let M(A) be the set of all Herbrand models of A; then
MM(A), the intersection of all Herbrand models of A, is itself a Herbrand interpretation

738 M. H. VAN EMDEN AND R. A. KOWALSKI

of A. If A contains the predicate symbol P, then the denotation D,(P) is the relation
associated with P by the Herbrand interpretation NM(A). In symbols,

Dy(P) ={(ty, ..., tn) : P(ts, ..., ta) € "M(A)}

for any set of clauses A.

PrROOF. (¢4, ..., t,) € Dy(P)
iff A= P(ty, ..., ty),
iff A U {P(ty, ..., tn)} has no model,
1iff A U {P(t,, ..., t.)} has no Herbrand model,
iff P(ty, . .., t,) 1s false in all Herbrand models of A,
iff P(ty, ..., ty) 15 true in all Herbrand models of A,
iff P(ty, ..., t,) € NM(A).

Notice that the above equality holds for any set of clauses A even if A is inconsistent.
If A 1s a consistent set of Horn clauses then NM(A) is itself a Herbrand model of A.
More generally, Horn clauses have the model intersection property: If L 1s any nonempty
set of Herbrand models of A then NL is also a model of A.

Proor. Assume NL is not a model of A. Then NL falsifies some ground instance Co
of a clause C € A.

If C 1s a procedure declaration, then

Ce=AVA,V VA, mz0, A&NL, and A, ...,A, € NL.

Therefore for some] €L, A € I and A,, ..., A, € 1. Cis false in I, contrary to
assumption that / € L.
If C is a goal statement, then

Co=A,V' " VA, m>0, A,...,A,€NL.

Therefore forallI €L, A,, ..., A, €I. Cis false in /, contrary to assumption that
IeL.

{P(a) V P(b)}, where a and b are constants, is an example of a non-Horn sentence
which does not have the model-intersection property: {{P(a)}, {P(b)}} is a nonempty set
of models, yet its intersection (J is a Herbrand interpretation which is not a model.

6. Fixpoint Semantics

In the fixpoint semantics, the denotation of a recursively defined procedure is defined to
be the mmnimal fixpoint of a transformation associated with the procedure definition.
Here we propose a similar definition of fixpomnt semantics for predicate logic programs.
In order to justify our definition we first descgibe the fixpoint semantics as it has been
formulated for more conventionally defined recursive procedures. Our description fol-
lows the one given by de Bakker [6]

Let P < B(P) be a procedure declaration in an Algol-like language, where the first
occurrence of P 1s the procedure name, where B(P) is the procedure body, and where the
occurrence of P in B(P) distinguishes all calls to P in the body of the procedure.
Associated with B 1s a transformation 7 which maps sets I of put-output tuples into
other such sets J = T(I). When the transformation T 1s monotonic (which means that
T{,) € T(,) whenever I, C I,) the denotation of P 1s defined as

AT C 1,
which is 1dentical to the intersection of all fixpoints of T,
N{:TW) = 1,
and which 1s 1tself a fixpoint (the least such) of T.

In a similar way a transformation T can be associated with a finite set of mutually
recursive procedure declarations

The Semantics of Predicate Logic as a Programnung Language 739

Py &EBy(Py, ..., Pl

P, & B, Py ..., P

' The minimal fixpoint of T, which exists when T 1s monotonic, can be decomposed into
components, the 1th of which s the denotation of the procedure P,.

By means of the procedural interpretation, the fixpoint semantics of predicate logic 1s
defined similarly. A set of Horn clauses of the form A \/ A, \/ - - - \/ A, wherem = 0,
is mterpreted as a set of mutually recursive, possibly nondetermimstic, procedure
declarations We restrict the definition of the fixpoint semantics of predicate logic
programs to sentences A which are sets of such procedure declarations. Associated with
every such sentence A s a transformation 7 which maps Herbrand interpretations to
Herbrand interpretations. Suppose that P,, . ., P, are the predicate symbols occurring
in A. The transformation T can be defined in terms of individual transformations T,
associated with the individual predicate symbols P,. T, maps Herbrand interpretations /
to Herbrand interpretationsJ, = T,(/) which contain only atomic formulas beginning with
the predicate symbol P;:

J, = T(I) contamns a ground atomic formula A € H iff A begins with the predicate
symbol P, and, for some ground mstance Co of a clause C in A, Co = A V A,
V- " VApandA,, ..., A, €I, m=0.

The transformation T associated with A is defined by T({) = T,(h) U - - - U T,().

The mput-output relation associated by J, = T,(f) with P, can be regarded as the
relation obtained by “‘substituting,” for the procedure calls in the declarations of P, 1n A,
the appropriate input-output relations associated by /. This mterpretation of T, is
analogous to the corresponding definition for conventionally defined recursive proce-
dures. A simpler defimtion of 7, which 1s less directly analogous to the conventional
definition, 1s the following:

T(I) contains a ground atomtc formula A€ H iff for some ground nstance Co of a
clausse CmA,Co=AVA V' - VApandA,,... A, €I, m=0.

Notice that, independently of I, T(I) always contains all ground mstances Ao of
unqualified assertions A 1n A (corresponding to the case m = 0 in the definition of T(D)).

Let C(A) be the set of all Herbrand interpretations closed under the transformation T,
re. I € C(A)ff T(I) C 1. The denotation of a predicate symbol P occurring in a set of
procedure declarations A, as determined by the fixpoint semantics, 1s

Dy(P) = {(ts, . . . , 1) : Plts, . . ,1:) € NC(A)}.

As a corollary of the theorem below, NC(A) 1s 1tself closed under T and therefore D,(P)
1s the smallest set of input-output tuples closed under 7. In conventional fixpoint theory
this fact 1s proved by using the monotonicity of 7.

7. Model-Theoretic and Fixpoint Semantics

We shall show that for sets of procedure declarations A, model-theoretic and fixpoint
semantics comncide: D, = D,. It would be sufficient to show that "TM(A) = NC(A), butt
is easy to prove that even M(A) = C(A).

In other words, a Herbrand interpretation I of A 1s a model of A iff I 1s closed under
the transformation 7 associated with A.

THEOREM. If A is a set of procedure declarations, then M(A) = C(A), 1.e. F; A iff
T({) C I, for all Herbrand interpretations 1 of A

Proof. (5, A imphes T(J) C I.) Suppose that] 1s a model of A. We want to show J =
T() C1,r1e.thatif A €J then A € L

740 M. H. VAN EMDEN AND R. A. KOWALSKI

Assume that A € J; then by the definition of T, for some C € A and for some ground
instance Co of C,

Co=AVA V- ---VA,andA,,... A, €I

Because I is a model of A, Ca is true in I. But then A istrue in I, because A, . . ., and A,
are false in 1. Therefore A € I.

(T() € Iimplies |=; A). Suppose that I is not a model of A. We want to show that T(J)
¢ 1. But [falsifies some ground instance Co of a clause C in A, where Co = A \/ A,
\V *** \/Am, m = 0. Because [falsifies Co, A € Iand A,, . . . , A, € I. But then, be-
cause A,, ..., A, €1, it follows that A € T(l). Therefore T(I) € 1.

CoroLLARY. If A is a set of procedure declarations, then NC(A) is closed under T.

Proor. NC(A) = NM(A) by the model-intersection property is a model of A and by
the theorem 1s therefore closed under 7.

8. Operational and Fixpoint Semantics, Hyperresolution

The equivalence D, = D; between operational and fixpoint semantics, which follows
from the equivalences D, = D, and D, = Dy, has different interpretations depending
upon the inference system which determines D,. Here we investigate the interpretation
associated with a particular inference system based upon hyperresolution {21].

For ground procedure declarations the definition of hyperresolution 1s very simple:

An atomic formula A is the hyperresolvent of ground clauses A VAly - - -\ A, and
Ay, ... ,A,. Aissaid to be obtained from A\ A, \/ - - - \/ Ap andA,, ..., A by
hyperresolutton

The connection with fixpoint semantics is obvious: If T 1s the transformation associated
with the set of procedure declarations A and if] is a Herbrand interpretation of A, then
T(1) is the set of all ground instances of assertions in A together with all hyperresolvents
derivable 1n one step from ground instances of clauses in A and from assertions in /. It
follows that -

A is derivable by means of a hyperresolution derivation from ground instances of
clauses in A iff A € U, T™ (@) where TY(Q) = & and T™Y(Q) = T(T™(D)).

Let D be the operational semantics associated with the two inferences rules of ground
instantiation of clauses in A and ground hyperresolution, i.e define

(t, ..., t) EDE(P)Iff Py, . .. 1) € "{.10 ™(2).

The equivalence of D Hand the model-theoretic semantics D, 1s the completeness, for
Horn clauses, of the inference system whose inference rules are ground nstantiation of
input clauses and ground hyperresolution. Completeness can be proved using standard
resolution-theoretic arguments. Here we present an alternative direct proof that for any
set of declarations A with associated transformation T, U%_, T™(%) = NM(A).

Proor. Let U abbreviate Ug-o T™(Q).

(UC NM(A)). Suppose that A € U. Then A is derivable by means of a hyperresolu-
tion derivation from ground instances of clauses 1n A. By the correctness of hyperresolu-
tion and instantiation, A [A and therefore A € NM(A).

(NM(A) C U). We show that U is closed under T, because then U € M(A), and
therefore NM(A) C U. Suppose that A € T(U). By the deflmtlon of T, either A is an
instance of an unqualified assertion in A or some clause A VA1V * - \VA,is an instance
ofaclause m A andAl,...,A,€ U.Inthe firstcase A€ U, becauseA e T™(g),m > 0.
In the second case A,, . . ., A, € TY() for some N = 0, and therefore A € T¥+() and
A € U. Therefore U is closed under T

Therefore for sets of declarations, D! = D,.

Because of the equivalence between model theoretic and fixpoint semantics, we also
have that D = D,, i.e. U2, T™Q) = N{I : TJ) C I}.

The Semantics of Predicate Logic as a Programming Language 741

This last fact is usually proved 1n the fixpoint theory by demonstrating the continuity ot
the transformation 7.

9. Conclusion

For arbitrary sentences X and Y of first-order predicate logic, proof theory determines
when X + Y and model theory determines when X = Y. We have argued that in the
procedural interpretation, operational semantics 1s proof theory and fixpoint semantics
is model theory. On the other hand, operational and fixpoint semantics only deal with the
case where Y 1s a set of ground atomic formulas. Moreover, fixpoint semantics only deals
with X, a set of procedure declarations. We believe that the added generality of proof
theory and model theory has useful consequences.

The completeness theorem of first-order logic states that the relations + of derivability
and k of logical implication are equivalent. For goal oriented inference systems this
equivalence establishes that various computation rules compute the relation determined
by the fixpoint semantics. More generally, this equivalence can be used to justify various
rules (such as Scott’s induction rule [6]) for proving properties of programs.

We have argued that various notions of the conventional theory of computing can be
understood in terms of the classical theory of predicate logic. We behieve moreover that
the predicate logic theory has further contributions to make both to the theory and to the
practice of computing.

ACKNOWLEDGMENTS. We are indebted to Michael Gordon for his interest and useful
criticism of work leading to this paper. Thanks are due also to Keith Clark, Alain
Colmerauer, Gerard Huet, David Park, and Willem-Paul de Roever for their helpful
comments on earlier versions of the paper. Suggestions from the referees have also been
incorporated in the paper.

REFERENCES

1 BEki¢, H Definable operations n general algebra, and the theory of automata and flow charts IBM Res
Rep , Vienna, 1971
2 Biepsoe, W W Sphitting and reduction heuristics 1n automatic theorem proving Aruf Intel 2 (1971),
55-77
3 BurstaLL, R M Formal description of program structure and semantics mn first order logic. In Machine
Intelligence 5, B Meltzer and D Michie, Eds , Edinburgh U Press, Edinburgh, 1969, pp 79-98
4 CHURCH, A Introduction to Mathemarnical Logic, Vol 1 Princeton U Press, Princeton, N J , 1956
5 CoLMERAUER, A , KaNoui, H , Pasiro, R., AND Rousser, P. Un syst¢éme de communication homme-
machine en frangais. Groupe d’Intelligence Artificielle, U E R de Luminy, Université 4’ Aix-Marseille,
Luminy, 1972
6 DE Bakker, J W Recursive procedures Tract No 24, Mathematical Centre, Amsterdam, 1971
7 DE BAKKER, J W, AND DE RoOEVER, W P A calculus of recursive program schemes. In Automata,
Languages and Programming, M Nwvat, Ed , North-Holland Pub Co , Amsterdam, 1973, pp 167-
196
8 ErNst, G W The utility of independent subgoals in theorem proving Inform Contr 18, 3 (Apnl 1971),
237-252
9 Kanout, H Apphlication de la démonstration automatique aux manipulations algebriques et a I'intégration
formelle sur ordinateur Groupe d’Intelligence Artificielle, U E R de Luminy, Université d’Aix-
Marseille, Luminy, 1973.
10 Kowarski, R Predicate logic as programming language Proc IFIP Cong 1974, North-Holland Pub
Co , Amsterdam, 1974, pp 569-574
11 Kowatski, R Logic for problem-solving DCL Memo 75, Dep Artificial Intelligence, U. of Edmburgh,
Edinburgh, 1974
12 Kowatski, R , AND KUEHNER, D Linear resolution with selection function Artif Intel 2 (1971), 227-
260
13. LoveLanDp, D.W A simplified format for the model elimination theorem-proving procedure.J. ACM 16,
3 (July 1969), 349-363
14 ManNA, Z Properties of programs and the first-order predicate calculus J ACM 16, 2 (Apnl 1969),
244-255
15 MILNER, R Implementation and applications of Scott’s logic for computable functions. Proc. ACM Conf
on Proving Assertions About Programs, Jan 1972, pp 1-6

742 M. H. VAN EMDEN AND R. A. KOWALSKI

16.

17

18

19

20.

21
22

23

24

NiLsson, N J Problem Solving Methods in Artificial Intelligence. McGraw-Hill, New York, 1971

Park, D Fixpomnt induction and proofs of program properties In Machne Intelligence 5, B Meltzer and

D Michie, Eds , Edinburgh U Press, Edinburgh, 1969, pp 59-78

Pastro, R. Représentation du frangais en logique du premier ordre en vue de dialoguer avec un
ordinateur Group d’Intelligence Aruficielle, U.E R de Luminy, Umversité d’Aix-Marseille, Luminy,

1973.
REITER, R Two results on ordering for resolution with merging and linear format J ACM 18, 4 (Oct

1971), 630-646

RoBINSON, J A A machine-onented logic based on the resolution principle.J ACM 12, 1 (Jan. 1965),

23-41.

RopiNsoN,] A Automatic deduction with hyper-resolution Int J Comptr Math 1 (1965),227-234

Scort, D Outhine of a mathematical theory of computation Tech Monog PRG-2, Comptg Lab,
Oxford U , Oxford, England

SLAGLE, J R, AND KoNiver, P Finding resolution graphs and usmg duplicate goals in AND/OR trees
Inform Sc 3 (1971), 315-342

WarreN, D H D WARPLAN A system for generating plans DCL Memo 76, Dep. of Artificial Intelli-
gence, U of Edinburgh, Edinburgh, 1974

RECEIVED MARCH 1974, REVISED APRIL 1976

Journal of the Assoctation for Computing Machinery, Vol 23, No 4, October 1976

