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Abstract We propose a stochastic algorithm for the global optimization of chance
constrained problems. We assume that the probability measure with which the constraints
are evaluated is known only through its moments. The algorithm proceeds in two phases.
In the first phase the probability distribution is (coarsely) discretized and solved to global
optimality using a stochastic algorithm. We only assume that the stochastic algorithm exhib-
its a weak* convergence to a probability measure assigning all its mass to the discretized
problem. A diffusion process is derived that has this convergence property. In the second
phase, the discretization is improved by solving another nonlinear programming problem. It
is shown that the algorithm converges to the solution of the original problem. We discuss the
numerical performance of the algorithm and its application to process design.

1 Introduction

We discuss the global optimization of a model for decision making under uncertainty.
Consider the following problem:
wex ¥

st P(f(x,w)>y)<8. (1.1)
P(gx,w) >0)<$é

where f : R" x Q@ — R, and g : R” x Q — R™, are assumed to be smooth but not
necessarily convex. The random variables are assumed to live in the space (2, B, P). Where
Q is some compact subspace of R'. The problem in (1.1) can be interpreted as follows: one
tries to compute the optimal strategy x, so that the probability of the realized optimal value
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deviating from the optimal one is small. At the same time, the optimal strategy must satisfy
the constraints (g) of the system with a certain probability. The parameter § > 0 is specified
by the decision maker. If § is small, then the decision will be feasible for almost all the pos-
sible realizations of the uncertainties. However, for a small §, the optimal objective function
value will increase. Therefore the parameter § is used by the decision maker to select the
level of robustness required.

Problems in the form of (1.1) are known as chance constraints. They have a long history
in the realm of decision making under uncertainty. They were first proposed in [1]. Despite
the fact that this class of problems has been studied for a long time, their solution poses
a significant challenge. One of the reasons is that even if f and g are linear, the resulting
problem may not be convex (see [2, pp. 104] for an example).

One of the key aspects of the modeling phase of any decision making problem, is the
description of the probability measure P. If the solution of a Stochastic Programming prob-
lem is to have any value then the chosen uncertainty representation must conform to the
beliefs of the decision maker about the problem. Making assumptions about the distribution
of the random variables, while theoretically convenient, hinders the usefulness of applying
optimization methods in decision making. A review of available methods to generate mean-
ingful descriptions of the uncertainties from data can be found in [3]. In this work we will
concentrate on a moment matching approach. That is, we assume that the decision maker can
not provide an exact description of the distribution but only knows some of its moments. We
therefore assume that P € P, and that P is defined using moment information. In concrete
terms we propose to discuss an algorithm for the optimization of the following system:

min
xeX,y Y

st P(f(x,w)>y)<48. YPeP P)
P(gx,w) >0) <. YPeP.

Different §’s can be used in the formulation above, for clarity of exposition one § will be used.
In this paper we discuss the global optimization of the problem in (P). A similar problem
formulation was also proposed in [4]. In [4] uncertainty was assumed to be uniform and with a
support given by closed intervals. Moreover, in [4] linear problems were considered. The dis-
tinctive feature of this paper is that we propose a stochastic global optimization algorithm that
is applicable to problems that are not convex. Moreover we discuss more general distributions
as well as allowing the support of the distribution to be (more or less) arbitrary. The approach
is based on an appropriately defined Stochastic Differential Equation (SDE) discussed in Sect.
2.3. The basic idea is to select some realizations of the uncertainties and solve a deterministic
version of (P). We then formulate another nonlinear programming problem which we use in
order to improve the discretization. The algorithm will be explained in detail in Sect. 2. The
proposed model has been motivated by practical applications in chemical engineering. Using
a standard case study analyzed by Floudas [5,6], Androulakis et. al. [7], and Ronnqvist [8]
(among others), we discuss initial numerical experience with the proposed algorithm in Sect.
4. Similar problems can be approached with the methods developed in [9-12].
Convergence of the algorithm will be discussed in an appendix.

2 A global optimization algorithm

In this section we describe the proposed algorithm for the solution of (P). A convergence
analysis will be carried out in the next section. To start the analysis, suppose that we have
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an i.i.d sample ¢ from some probability measure from P. At the kth (k > 0) iteration, the
following approximate problem is solved:
F(k) = min
xeX,y
st fx,w) <y VYo e Q (Dy)
gx,w) <0 Vo € Q.

The problem above is solved using a stochastic algorithm that is described in Sect. 2.3. To
facilitate the discussion of the development of the algorithm suppose that a solution of (Dy)
is obtained. For simplicity, ignore the fact that the solution is only obtained in a probabilistic
sense. We will discuss these aspects of the algorithm in the appendix, the aim of this section
is to give an intuitive idea of how the algorithm works. With the aforementioned warnings in
mind, let (xi, yx) denote the solution of (D). The next step is to check whether the current
solution is also feasible in the original problem (P). In order to check for feasibility we need
to solve the following problem:

D (xk, Y&) = sup /l(f(k))du
neK

wewP, 2.1)

where KC denotes the set of all finite signed measures that are defined on the o-field F of 2.
1(A) denotes an indicator function on the set A. As was mentioned in the introduction, the
set P is defined by some known moments, and can be defined as follows: suppose a vector
of functions m(w) = [m(w) ...m,(w)] and a vector of scalars © = [u] ... u,] are given,
then P is given by:

P=[pel€’/m,-(a))dp=ui, i=1...w,/d,o=1].
Q Q
Finally, F (k) is defined as follows:

Fk) ={we Q| f(xx,w) >y, glg, w) > 0}. 2.2)

If the solution of (2.1) yields an optimal solution that is greater than the threshold § specified
by the decision maker, then new realizations are needed in order to ensure that the solution of
the next discretized problem to be considered, will satisfy the constraints in (P). The problem
in (2.1) is a well known problem in probability theory and statistics. Problems of this type are
known as optimal Chebyshev inequalities. They have a long history with contributions made
from various fields. A textbook reference on early results is [13]. For a more recent survey
of this interesting field see [14]. Before discussing the solution of (Dy), we will discuss two
alternative methods for the solution of (2.1).

2.1 SDP approximations for robust chance constraints

Recently useful results have been obtained by Bertsimas et al. [15], and Lasseree [16]. These
results are based on the fact that the problem in (2.1) is a conic optimization problem. Using,
suitable approximations of the cone involved in (2.1) one can find good approximate solu-
tions. The result that (2.1) can be viewed as a conic optimization problem can be found in [13].
The fact that these problems can be formulated as tractable cone problems is due to Bertsimas
et al. [15], and Lasseree [16]. However, in the view of the authors the SDP approach is not
appropriate for the class of problems considered in this paper. There are two main problems
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that need to be addressed when solving moment problems with the SDP approach. First,
when the problem is even of modest size, the SDP formulation is prohibitively large even for
the best available solvers. More importantly, solving the SDP relaxation will only gives us a
bound, and asymptotically we are guaranteed that the bound will be tight. However, to solve
robust chance constrained problems we also need the realizations of the uncertainties. There
is, currently, no known method that is guaranteed to extract the realizations of the random
variables in the SDP formulation. It is possible, under some rank assumptions, to use the
method described in [17] in order to extract this information. However, after some numer-
ical experimentation we found that, for the problems considered in this paper, the software
described in [17] could not yield the necessary realizations. For these reasons, we propose to
approach the problem of calculating @ using the nonlinear programming problem described
in the next sub-section.

2.2 Nonlinear programming formulation

It is a well known result (see for example [13]) that any distribution belonging to the set! P,
can be represented as a discrete distribution with w + 1 realizations. Motivated by this result,
we can reformulate (2.1) as follows:

w1
b (xk, Vi, €) = max i
(Xks Vi €) Jmax. Z,Oz
i=1
w1 w1
s.L. Zpimj(yi) + Z vimj(zi) = |4
i=1 i=1
w+1

D=1

i=1

Sk, y) — vk > €
gxk,y) > €

2,y €, p,v=>0.

(2.3)

For the optimal value of (2.1) given by ® (xx, y), it can be established thatlime o @ (xx, yx, €)
= ®(xx, vx)- The value of € can be selected to be a small positive constant. This will guarantee
that the realization of y have their support in (2.2).

In this paper we use the formulation in (2.3) in order to numerically compute the solution
of (2.1). The formulation above has the obvious disadvantage that it is a non-convex prob-
lem, whereas the SDP formulation is convex. However, the formulation in (2.3) can be used
to give the numerical values of the realizations of the uncertainties. Since obtaining these
realizations is pivotal to the proposed algorithm the formulation in (2.3) is better suited for
this class of problems. The only case where the SDP formulation would be appropriate is
when the problem involves linear or quadratic functions. In such a case, the SDP formulation
can be more attractive. However, if the problem only involves linear or quadratic functions
then the formulation given here will only involve linear and quadratic functions. Thus even in
this sense both formulations are equally powerful. Given that we are discussing the general
non-convex case, the formulation in (2.3) is more appropriate. A further advantage of the
formulation above is that it is easier to integrate together with the algorithm used to solve
(Dy) (see Sect. 2.3). Finally, the SDP formulation requires the solution of a possibly

! Under the assumption that u is in the interior of the moment space.
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infinite sequence of convex problems. The formulation in (2.3) requires the solution of a
single non-convex problem.

A potential complication with the formulation in (2.3) is that a solution may be found
such that:

w+1
Z'Oi >dbutp; <46 Vi.

i=1

In such a case it will be unclear which realization to add to € so that we ensure that problem
in (Dy) is the correct discretization of the original problem. This point is subtle so we will
discuss it briefly.

When § is taken to be zero, the the problem in (P) can be written as:

min y
xeX,y

st P(f(x,w)>y)=0. VPP 2.4
P(g(x,w) >0)=0. YP eP.

If one wanted to solve the problem above, then (2.3) could be solved and all the y realizations
would be added to 2. If this iterative process is stopped when the optimal objective function
value of (2.3) is less than &, then we essentially seek to find a § feasible solution to (2.4).
Such a solution may, or may not be optimal (it necessarily is feasible) for (P). Consequently,
if all the realizations computed in (2.3) are used we may end up with a bound on the opti-
mal solution. Such problems can be avoided if the following assumption is made about the
problem under consideration.
A2.11If (p, y, v, z) is an optimal solution of (2.3), and moreover:

w1

Z pi > 0.
i=1

Then there exists an event ¢ > § and an associated realization u, such that the following
system of equations has a feasible solution:

w+1
om;(u) + z vimj(zi) = |Lj
i=1

w+1

Q—}-Zvizl
i=1

fOop,u) —y > €
g(xk,u) > €
7,y €, o,v=>0.
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In our numerical experiments we always found this assumptions to be satisfied. Using the
above assumption the problem in (2.3) can be simplified to:

max Q
w41
st om;j(u)+ Z vimj(zi) = [Lj
i=1
w+1

o+ vi=1 (My)
i=l1

O u) —yx = €
g(xk,u) = €
7,y €, o,v=>0.
If the assumption does not hold then we can not add all the computed realizations to Q1

as this may lead to an over-conservative solution. One option is to add extra constraints to
(D). For example if J realizations are found, with associated probabilities p; such that:

SO, uj) —ye > €
g(xk,uj) > €

J

ij > 3§ max{p;} <.
‘ J

j=l1

In addition if Assumption (2.1) does not hold then all the J realizations can be added to €2,
along with the additional constraints:

If f(x,uj) —y >€and g(x,u;) —y > ethenh; =1, otherwise h; = 0.

Zhjpj < 4.
J

Since in our numerical experiments Assumption 2.1 was always satisfied we will assume it
holds true for the rest of the paper.

2.3 Diffusions for constrained global optimization

In this sub-section we describe an algorithm, based on a SDE, that can be used to compute
the global optima of general non-linear problems. The algorithm, and its properties will be
described in detail in a forthcoming publication [18]. The aim of this section is to give the
intuitive idea behind the algorithm. In order to describe the algorithm, consider the following
generic problem:

P* = min f (x)
s.t. g(x) =0. 2.5

where f : R" — R, g : R" — R are twice continuously differentiable. In order to solve
(2.5), one could solve the following ordinary differential equation (ODE):

dX(t) = =V f(X(@)dt — Vg(X ()" A(X (1))dt,
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where the Lagrange multiplier vector, A, is chosen so that it satisfies:

%7 = —Vg(XOIV (X)) + VeX (1)) LX) = —1g(X(1) T > 0.

Such an algorithm was considered in [19]. These algorithms are related to gradient projec-
tion algorithms developed in [20,21]. Gradient projection methods are not very popular in
non-linear programming due to the expensive projection step. However, results obtained in
[22] and in [23], show that these algorithms can be competitive with the current state of the
art. One disadvantage of this class of algorithms is that they converge to local optima. For
the linearly constrained case, Parpas et al. [24] recently proposed to use a SDE instead of an
ODE. For the unconstrained case the use of SDEs was also advocated in [25-28]. The advan-
tage of the SDE is that it can help the algorithm escape from local minima and eventually
reach the global solution. The SDE used is given by:

dX(@t)=-Vf(X(@)—VgX (t))TA(X ), tH)dt + /T ()dB(t) (2.6)
where:
A(x, 1) 2 [Ve) V) T  g(x) + T(1) A g(x) — Vg(x)V £(x)] 2.7

B represents an n-dimensional Brownian motion. The latter process is assumed to live on the
probability space (R", F(z), G). The basic idea behind the SDE in (2.6) can be explained as
follows: The first term encourages the trajectory to reduce the objective function value, but it
does not take into account the constraints of the problem. The second term forces the trajec-
tory to remain inside the feasible set. This property can be shown to hold, for a large enough
t [18]. Finally, the last term helps the trajectory to escape from local minima by adding some
noise. The function 7 (¢) is used to control the level of noise. This function is usually referred
to as the annealing schedule. In order for the algorithm to theoretically exhibit convergence
to the global solution, the annealing schedule is selected as follows [18,25-27]:

c
rn= log2+1)’

where c is some large constant. For the unconstrained case the algorithm has been studied in
[25-28]. It has been shown to theoretically converge, in a probabilistic sense, to the global
unconstrained global optimum. For the case where the constraints are linear, an algorithm
has been proposed in [24]. Numerical experiments from [24] show that the algorithm can be
used for large scale problems (about n = 103), and the algorithm is also robust. For a more
detailed discussion of the performance of the algorithm, we refer the reader to [24].

It can be shown that the diffusion in (2.6) eventually converges to a stochastic process
with some distribution, say o [18]. It can also be shown that o assigns positive mass only to
the global minima of the constrained problem in (2.5). The proof is rather long, but the basic
idea is quite simple and will briefly be explained below.

The diffusion in (2.6) is a Markov process, and under quite general conditions its generator
is given by:

_ af (x) agj(x) op(x,1) 9 p(x, 1)
Apx.ny =" ™ +Z,-“ i Aj(x, 1) T JrT(z)Zi"iax2 2.8)

i i
The transition density of (2.6) is then given by the solution of the following PDE:
ap(x, 1)

o A*p(x,1). (2.9)
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where A* denotes the adjoint of A4, and it is given by:

a
8x,-

of (x) 9g;(x) p(x, 1)
Aplety =" + D | pO ) [+ T D =5
- ax; r 0X; - 0x;
(2.10)
The transition density of the diffusion defines the probability of moving at time s from point
Xg, to some point x; € B, at a later time t > s. It is given by:

IM(xg,s, B, ) = / p(xs,s,y, 7)dy.
B

It can be shown that, under quite general conditions, the transition density function also satis-
fies (2.10). The equation in (2.10) is known as the Fokker—Planck or Kolmogorov’s forward
equation. The proof in [18] (as well as the proof for the linear case in [24]) take advantage
of this property of diffusions, by establishing that, asymptotically, the solution of (2.10)
converges to some function say 6. It is then shown that 6 assigns mass only to the global
minima of (2.5). This result is summarized in the following theorem (for a proof see [18]).

Theorem 2.2 Let p denote the solution of (2.10), so that:
MG0.0.8.0) = [ plro. 0. .0dy.
B

where B is any Borel set in R". Let r be any bounded and continuous function, then

lim / r(x)p(xo,o,y,t)dy=/V(X)Q()’)d)’»
t—oo [p B

where 0 is the density function of a probability measure that assigns all its mass to the global
minima of (2.5).

The type of convergence established above is known as weak™ convergence. In the next
section, we show how to use the algorithm we just described for the solution of (P) using the
approximate problems (Dy) and (Mp).

3 Description of the algorithm

We finally have the necessary tools to specify the proposed algorithm. As was mentioned in
the previous section, the algorithm proceeds in two phases. In the first phase the discretized
problem in (Dy) is solved. Then using the obtained solution we solve (Mj).

Let Z(t) = [X (1), y ()] € R"T!, then at the kth iteration, the following SDE is considered
for the solution of (Dy):

dZi(t) = =VH(Zi(t), Q. t)dt + /T (t)d B (1), (3.1)
where V'H denotes the gradient of the Lagrangian of (Dy), when the Lagrange multipliers

are given by (2.7).
Similarly for the problem in (My), let U(¢) denote the 2(w + 1) decision vector. The
relevant SDE is given by:

dUi(t) = =V T Uk(t), t, xi, yr)dt + /T (t)d B (t).

We assume that the two Brownian motions are independent.
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Step 0 Let Ty > 0 and (xo, yp) be given. Set k=0.
Step 1 Fort = kTy to T = (k + 1)Ty; estimate:

T T
Ur(T) = Ui(t) —/ VI Ui(z), T, Xk, yi)dt +/ VT (t)dB(7).
t t

(A) LetU(k) = Ep[Ux(T)|Fr]. From Uy let p(k), and u(k) denote the probability and
realization vector respectively.
(B) If k > 0 and p(k) < § then stop, x (k) is optimal.
(C) Otherwise, Q41 = Q Uu(k), and set k :=k + 1.
Step 2 Fort = (k — 1)Ty to T = kT estimate:

T T
Zi(T) =Zk(z)—/ VH(Zk(r),Qk,t)dT—l—/ JT@)dBs (7).
t t

(a) Let Z(k) = Ep[Zx(T)|Fr]. From Z(k) let x(k), and y (k) denote the part of the
vector corresponding the x, and the y variables respectively. Go to Step 1.

4 A nonlinear pooling problem

In this section we discuss the numerical performance of the algorithm on a classical pooling
problem (Fig. 1). Due to space limitations we do not discuss how the implementation of the
algorithm is done. We only point out that for the algorithm to be implementable then the
process defined in (2.6) needs to be discretized to:

X(t+6t)=X(@)—Vf(X())dt — Vg(X(z))T/\(X(t), t)6t + /T (t)dtu.

where u ~ N(0, I). We also note that it is not necessary to exactly compute gradients (and
the Laplacian) as defined in the previous sections. This problem was first considered in [29],
the formulation given here is closer to the one in [8,6]. We note that this is an interesting
global optimization problem with many applications and it has been considered in the past
by many authors (see e.g. [5,6]). It is well known that this problem is non-convex (see e.g.
[5]). The example given here is a modified version of the one in [8]. An illustration is given in
Fig. 1. There are three input chemicals A, B and C. These chemicals when blended provide
two output products Q and R. We assume that demand for Q and R is uncertain but has mean
(1@, mgr) and variance (a,%, aé). No distribution assumptions are made on the demands. We
also assume that the cost per unit of chemical (raw materials) is also uncertain. The specifi-
cation of the uncertainties is given in Table 1. We also assume that each product has a fixed

A 3%S Sell Q
“a Blend Q Store Q
B 1%S .~

c 4%S

Sell R

Blend R
Store R

Fig. 1 The Haverly pooling problem
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Probability of diviation from the optimal value
0.8 T T T

e
3
T
1

1

ST e

20 25 30 35
Iteration

Fig.2 P is the probability of the optimal function value being less then the the calculated, i.e. the probability
of constraint (4.1-4.3) being violated

Tabl~e 1 Uncertainty Variable Support Mean Variance
specification

D : Demand for Q [50,100] 75 5

R: Demand for R [100,200] 150 20

C4: Costs for A [5,10] 7.5 1

Cp: Costs for B [10,20] 15 4

Cc: Costs for C [12,25] 18 4

profit per unit (Cp = 100 and Cg = 150). Any product that is not sold is stored. Storage
costs are fixed and are denoted by Sp (= 5) and Sg (= 8). The full problem specification is
given by:

max y
2 2
st P [CQ min {/Xg. /D] + Comin { Xz, VDx| @1
—CaXa—CpXp—CcXc (4.2)

—Spomax{Xg — Dg,0}* — Sgmax{Xg — Dg, 0}* < y] <8 VP (43)
XA+ Xp=Yp+7Yg
Yo+ Xco =Xp
Yr+ Xcr = Xg
Xco+ Xcr = Xc
ZYo +4Xco <2.5Xg
ZYg +4Xcg < 1.5Xg
3Xa+Xp=Z(Xa+ Xp)
1<Z<3.

The variables in the optimization problem above are as follows:

X;: Amount (in units) of chemical or product i used, i = A,B,C,R,Q.

Y;: Flow (in units) from the pooling tank to product i, i = Q,R.
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Table 2 Comparison of optimal

. Variable k=1 Robust solution
solutions
XA 48.74 37.04
XpB 146.26 111.2
Xc 30 31.81
When k = 1 i.e. in the first Xo 75 79:53
iteration of the algorithm the XR 150 100.51
optimal solution obtained is Yo 45 4775
shown in the second column.
With this strategy the profit is YR 150 1005
27067.4, but with probability Xco 30 31.80
0.79 the profits will change. The Xcr 0.002 0.005
robust solution is shown in the 7 15 15
last column. The profit has been ) ’
reduced to 21708.8 but the Profit 27067.4 21708.8
probability of not achieving this Probability 0.21 0.95

is less than 0.05

Xc;: Flow (in units) from chemical C to product i, i = Q,R.
Z: Sulphur concentration (in percentage) of the pooling tank.

The objective of the problem is to maximize profits. This objective is expressed in con-
straint (4.1-4.3). The first part of the constraint (4.1) attempts to maximize profits, the second
part (4.2) takes into consideration the costs of the raw materials. The third part (4.3) represents
the costs of storage. The aim is to calculate the optimal strategy so that the probability of the
profit being less than the one calculated is less than § (taken to be 0.05 in our implementation).
In Fig. 2 we show how the probability of satisfying constraint (4.1-4.3) is reduced. In itera-
tion 1, the optimal strategy yields a profit of $27067.4, but with probability 0.79, the realized
profit will be different. The robust strategy yileds a profit of $21708.8, and the probability
that profits will be different from this value is 0.048. Results on the optimal strategies are
shown in Table 2.

Acknowledgements The support of EPSRC grants GR/T02560/01 and EP/C513584/1 are gratefully
acknowledged. The authors also wish to acknowledge helpful comments from two anonymous referees.

Appendix

The basic idea behind the convergence analysis is to show that if €2 is generated as in Step
1.C of the algorithm, then the problem in (Dy) will eventually yield a solution that is feasible
in (P). Of course, any such feasible solution must also be optimal (note that we are making
use of assumption 2.1). The second part of the convergence analysis shows that the diffusion
process generated for the solution of (3.1) will converge. From Theorem 2.2 we must then
have that (3.1) eventually converges to a stochastic process that assigns its mass to the global
minima of (P).

Theorem 4.1 Suppose that assumption (2.1) holds, and that Qi is generated as in Step 1.C

of the algorithm. Moreover assume that the original problem is feasible, and that (My) has a
solution, for any (x, y). Finally, assume that Ty; is large enough so that the solution obtained
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in Step 1 is globally optimal (with probability 1) for (My). Then there exists a ko, such that
for any k > kg the solution of:

F(k) = min y
xeX,y
st f(x,w) >y VYo € Q4 4.4

gx,w) >0 Vo € Q,

will eventually yield an optimal solution for (P).

Proof Let us first note that if the solution of (4.4) is feasible for (P) then it must also be
optimal. This is because if (xx, ) is feasible in the original problem, no new discretizations
will be generated when solving (My) (or (2.3)). Since (4.4) always yields a lower bound for
(P) it follows that such a solution must also be optimal.

We can now suppose that the algorithm does not stop in Step 1.B. We now establish that
eventually the solution of (4.4) will be feasible for (P). Clearly, the set be defined by:

P:[peIC‘/dp:l,/m,-(w):u,-,i:],...,w] (4.5)
Q

is convex. It follows from the Krein—Milman Theorem that P can be written as the closure
of the convex hull consisting of the extreme points of P:

P = cl[co(Ext P)].

The global solution of (My) consists of vector (o(k), v(k)) € R¥+2 of probabilities, and
an associated vector of realizations:(u(k), z(k)) € R¥*2. We claim that the finite collection
of points (u(k), z(k)) € R¥*2 is the support of the extremal measure that maximizes (2.1).
Suppose that this is not the case, then there must exist some probability measure with support
k), 2(k)) € R¥*2, and that satisfies the moment conditions in (4.5). Since we are assum-
ing that (u(k), z(k)) does not form the extremal support maximizing (2.1) we must have that
o(k) < o(k) contradicting that o(k) is the globally optimal solution of (My). We conclude
that the solution of (M) will yield the required measure maximizing (2.1).

The algorithm will therefore generate a sequence of probability measures QF. Such a
sequence is tight, since we are assuming that all the measures in P have compact support.
The sequence will therefore, by Prohorov’s Theorem, have a limit point Q*, say. As a result,
there must exist a kg, such that:

10*(F(x, 7)) — QX (F(x, )| < € Yk > ko. (4.6)

Let (x(k), y (k)) denote an optimal solution for (Dy). Then by using steps 1.A and 1.C of the
algorithm we must also have that:

O (F(x(k), y (k) < QX (F(x(k), y (K))).

Therefore, there must exist an » > 0 such that: Which implies that

O (F(x(k), y (k) < 8.

We conclude that there must exists a 120, such that

Q" (F(x(k), y (k) — 8| < e.
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Our next task is to show that the SDE associated with (D) will eventually converge. It is
known from Theorem 2.2 that once the transition density function converges, it will converge
to density that assigns positive probability only to the global minima of (Dy). However, The-
orem 2.2 establishes this property as ¢ grows large. It basically says that if T, (see Step 2 of
the algorithm) is allowed to be large enough, then Z;(¢) to will converge to Z;. The latter
process will have a density function that assigns positive probability to the global minima of
(Dy). Our main result (Theorem 4.2) will show that as k tends to infinity Z; also converges.
From Theorem 4.1 we must then have that once Z; converges, then we will have a solution
to our original problem.

The SDE under consideration is given by:

kTy kTm
Z(kTy) =Z((k—1DTy)— / VH(Z(7), T, Q)dt + / VT (t)dBa(r). (4.7)
(k—D)Ty (k=D Ty

where V'H is the gradient of the Lagrangian of (Dy), when the Lagrange multipliers are given
by (2.7). Associated with the SDE in (4.7) is the following initial value problem,

o _§ 9 . 19°p
== Z,: e (VH(x, £ Q)i p(x, z)) +T ()5 e
p(x,0) = h(x). 4.8)

Were h is some continuously differentiable function. Due to the way the noise is introduced
into the system the associated forward equation satisfies a uniform parobolicity condition.
Moreover under our assumptions the coefficients of (4.8) are regular. Under these assump-
tions the solution to the initial value problem is unique, and is given by the integral equation:

plt.x) = / T x. yh()dy.

The kernel I' is called the fundamental solution. The function p that satisfies the preceding
equation is called a generalized solution. Using the generalized solution we define a family
of operators O; as follows

Ooh(x) = h(x), O:h(x) Z/F(t,x,y)h(y)dy,

where t € [(k — 1)Ty, kTyr]. Using this operator we establish the desired convergence of
the process as k grows large.

Theorem 4.2 Suppose that the Lagrangian of (Dy) is three times continuously differentia-
ble and has compact support. Ty in Steps 1 and 2 of the algorithm is sufficiently large for
Theorem 2.2 to hold. Suppose that T (t) is defined as follows:

T = —°
()_ln(3+;)'

The there exists a ¢ such that for ¢ > ¢, and as k — oo the operator given by O,h(x), with
t € [(k — )Ty, kTy), will converge to O*.
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Proof Consider the following SDEs:

dZ(s) = =VH(Z(s), s; Qu)ds + /T (s)d B (s) (4.9)
Z((k—=1D)Ty) =z s ek —1)Ty, kTyl.
dZ(s) = /T (s)dBa(s) (4.10)

Z((k—DTm) =z s € [(k — DTy, kTy].

Let R, and Q, be the transition probability measures, associated with (4.9), and (4.10), respec-

tively. Then, by Girsanov’s theorem, the Radon—Nikodym derivative of Q w.r.t R, is given
by:

d Y HZ ). s 2 O IYHZE). 5 Q02
99 /() = exp <M,mm>— / IVH(Z(s), 5 @01 |

dR JT () 27(s)

(k=1 Ty (k=D)Ty

4.11)
From (4.9) we have:

dZ(s) + VH(Z(s), s; Q)ds
JT(s) '

Consequently, (4.11) can be written as follows:

dBs(s) =

kTy

do _ VH(Z(s), s; Q)
EZ(-) = exp’ / <—T(s) ,dZ(s)>

(k—=1)Ty

T VHZe). s 20

S), S, Saf .
=+ / <T,VH(Z(S),S,Q]()>£1S].
(k—=1)Ty

Under our assumptions Z(s; ) (with s in [(k — 1)Tas, kTar]) will remain in a compact set.
Using this fact the following bound can be derived:

kT
VH(Z(s), s; Q) . _a
/ <W,VH(Z(A~),S, Qk))>ds < TTy)’
(k=D)Ty

where to derive the last inequality we used the monotonicity property of 7'(¢).
By It6’s Lemma:

oM 1 3*H
dIH(Z(s), s; Q)] = (VH(Z(s), s; Qu,dZ(s)) + st + 5 |:T(s) IZ 3)62:| ds.

l

Therefore,

9*H
Bxiz

(4.12)

< dZ(s)> 1 1 oK, 1 B

VH(Z(s), s; Qu%, m = T(s)d[H(Z(s), s; Q)] — mﬁds 3 |:Z
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Integrating by parts, we can calculate the following bound for the first term in the right-
hand-side of (4.12):

kTy

|
/ md[H(Z(S), 53 824)]
k—1)Ty
kTy
— Lz 'sz)‘kTM — / H(Z(s) S'Q)d[ ! ] <_©
T Yo PN T O T ThTy)
(k=1)Ty

where we used the fact that Z remains in a compact set. Using the same argument, bounds
for the rest of the terms in (4.12) can be found:

KTy
[ P
T(s) ot T (kTy)
k=1)Ty
kT )
1 0°“H
/ z(Zax.Z)‘“ = e
k—DTy i !

Therefore, there must exist a constant cs, such that:

dQ cs
ag 7= ‘ T&Ta) ] '

Under (4.10), Z(kTys) is normally distributed. Indeed, its mean and covariance matrix are
given by:

kTu
E[(ZkTy)] = E[Z((k — DVTy)] + E / <1/2T(s), dB(s)> =z
*k-DTy
COV(Zi(kTM)Zj(kTM))
=E[Z;(kTy)Zj(kTy)] — ziz;
kTy kTm
=E||z+ / JT()dBis) | | zj + / VT()dBL(s) | | - ziz;
*k=1)Ty *k=1)Ty
KTy
= / T(S)S,’jds.
*k=1Ty

By A we denote the covariance matrix, whose i jth entry is given by the preceding equation.
Let € be an arbitrary positive constant.

_ L, AT A—=Ll¢,
R[|Z(kTM)—W|5e]zexp[—075] / (-39 AT w=2),

T (kTy) 27)3 (det A)?
u—W|ze
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It is easy to see that there exists a ce, such that:

RIZ(KTy) — W] < €] > exp [—kCTﬁM] .

Therefore,

8 = inf p((k — )Ty, x, kT, y)
X,y

R(IZ(kTy) —W| =€)

1
inf lim
X,y e—0 (2€)"

> __9
= eXp[ T(kTM)] '

Finally, if we choose ¢ > ¢7 then T (¢) satisfies:

c7 1
exp— > .
T (kTyr) 3+ kTy
Therefore

lim [Okr),h(x), 0] =0.
k—o00

The result now follows from Theorem 7.4.1 in [30]. O
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