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A MULTIGRID APPROACH TO SDP RELAXATIONS OF SPARSE
POLYNOMIAL OPTIMIZATION PROBLEMS∗
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Abstract. We propose a multigrid approach for the global optimization of polynomial optimiza-
tion problems with sparse support. The problems we consider arise from the discretization of infinite
dimensional optimization problems, such as PDE optimization problems, boundary value problems,
and some global optimization applications. In many of these applications, the level of discretiza-
tion can be used to obtain a hierarchy of optimization models that capture the underlying infinite
dimensional problem at different degrees of fidelity. This approach, inspired by multigrid methods,
has been successfully used for decades to solve large systems of linear equations. However, multi-
grid methods are difficult to apply to semidefinite programming (SDP) relaxations of polynomial
optimization problems. The main difficulty is that the information between grids is lost when the
original problem is approximated via an SDP relaxation. Despite the loss of information, we develop
a multigrid approach and propose prolongation operators to relate the primal and dual variables of
the SDP relaxation between lower and higher levels in the hierarchy of discretizations. We develop
sufficient conditions for the operators to be useful in practice. Our conditions are easy to verify, and
we discuss how they can be used to reduce the complexity of infeasible interior point methods. Our
preliminary results highlight two promising advantages of following a multigrid approach compared
to a pure interior point method: the percentage of problems that can be solved to a high accuracy
is much greater, and the time necessary to find a solution can be reduced significantly, especially for
large scale problems.
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1. Introduction. Exploiting sparsity with specialized semidefinite programming
(SDP) relaxations had a huge impact on the application of SDP relaxations to realistic
polynomial optimization problems. Indeed, when using the classical Lasserre hierar-
chy, it is only possible to solve problems with a few dimensions, but by exploiting
the sparsity present in many applications, it is possible to solve problems with sev-
eral hundred variables [18, 36]. In this paper, we argue that many applications have
additional structure that can be exploited to a similar effect. In particular, many
large scale polynomial optimization problems have their origins in the discretization
of an infinite dimensional model. The resulting finite dimensional model is sparse but
has a large number of degrees of freedom. Optimization models that fit this class are
boundary value problems [28], optimization with PDEs [12, 4], optimal control [3, 8],
and Markov decision processes [13], among others. Despite the progress made in the
last decade, it is still not possible to solve realistic instances of the models arising in
these applications using sparse SDP relaxations. The main contribution of this paper
is to show how to take advantage of both sparse and hierarchical structures present in
many applications. Our theoretical results suggest that under appropriate conditions
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2 JUAN S. CAMPOS AND PANOS PARPAS

we should expect significant improvements in computational complexity. Our numer-
ical results further support this claim, and we show that a multigrid approach can
improve the robustness and reduce the time required to solve large scale polynomial
optimization problems.

Our approach is inspired by multigrid methods. When solving a system of linear
equations, and in some optimization problems, it is widely accepted that if a multi-
grid method is applicable, then it is often the best numerical method to use [5, 33].
For examples of the multigrid approach to various optimization problems we refer the
interested reader to [5, 10, 26, 39] for PDE optimization, [15] for convex optimiza-
tion problems in image processing, and [13] for Markov decision processes. The core
principle of multigrid methods is to construct a coarse model of the original (high res-
olution/fine) model and use the information obtained from solving the coarse model
to improve the current solution. This approach works extremely well when coarse and
fine models share a common structure. Additionally, based on the intuition that the
coarse model is a global approximation to the fine model (as opposed to only using
local information to construct a search direction), the hope is that multigrid methods
can potentially be applied to global optimization problems too.

Motivated by the potential numerical improvements and the fact that the coarse
model retains global information about the model, we develop the multigrid principle
for SDP relaxations of polynomial optimization problems (POP). In particular, we
propose a multigrid framework for the SDP relaxation of the following POP:

(1) min
x∈Rn

Fn(x) ,
n1−1∑
k=1

fk(xk) +
n2∑
k=n1

f0(xk) +
n−p+1∑
k=n2+1

fk(xk),

where fk : Rp 7→ R are p-dimensional polynomial functions of degree dk, k =
0, 1, . . . , n1 − 1, n2 + 1, . . . , n − p + 1, xk = (xk, xk+1, . . . , xk+p−1), and n1, n2, n are
positive integers such that n1 +p+1 ≤ n2 ≤ n−p+1. Note that the problem is sparse
in the sense that every variable only appears together with p− 1 of its neighbors. In
our numerical experiments we typically have n1 = 2 and n2 = n − p. The principal
technical difficulty of applying multigrid to a (sparse or otherwise) SDP relaxation of
(1) is that the information among the variables is lost through the relaxation process.
In this paper, we take the first steps towards addressing this issue. We show that
despite the loss of information, it is still possible to obtain useful information from
the coarse SDP relaxation and to construct a good approximation to the solution of
the fine SDP relaxation. We do not propose a new hierarchy for polynomial problems.
Instead, we take the most popular and widely used hierarchy for sparse problems [36]
and show how the resulting semidefinite programs can be solved more efficiently by
making use of additional structures present in many applications. In particular, our
main contributions are as follows:

1. We present the construction of operators that relate the primal and dual solu-
tions of the coarse SDP relaxation to the original SDP relaxation. Borrowing termi-
nology from the multigrid literature we call these operators prolongation operators.

2. We give derivations of sufficient and easily verifiable conditions for these op-
erators to be useful in practice.

3. We show that if our conditions are satisfied, then it is possible to improve the
worst case complexity of infeasible interior point methods.

4. We report the results from our numerical experiments that show that our
conditions are indeed satisfied in many practical problems and that our multigrid
framework can be used to improve the numerical performance of infeasible interior
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A MULTIGRID APPROACH TO SDP RELAXATIONS 3

point methods.
A multigrid approach in the context of sparse SDP relaxations was used in

[21, 22] to solve finite difference approximations to optimal control problems and
PDE problems. However, the authors used the standard multigrid operators to inter-
polate between the variables in the original space, whereas we work directly with the
primal/dual variables of the SDP relaxation. The SDP variables contain much more
information than just the solution to (1). The additional information can be put to
good use in the next level of the hierarchy. This advantage is reflected in our numerical
and theoretical results. In particular, we can solve bigger problems with our approach
rather than using SDP relaxations as a black box. Another related approach is the
application of multigrid methods to SDP relaxations of combinatorial optimization
problems [20]. Their approach is specific to the particular SDP relaxations appearing
in graph problems and are not applicable to the general SDP relaxations of (1) that
we consider in this paper.

The rest of the paper is structured as follows: section 2 defines the notation used,
and in section 3 we review sparse relaxations for unconstrained problems developed
in [36]. In section 4 we study the characteristics of the relaxation when applied to
problem (1), and section 5 defines the hierarchy at different levels and the prolonga-
tion operators. Section 5 also establishes improvements in worst case complexity of
an infeasible interior point method when our assumptions are satisfied. Finally, in
section 6 we report results from our numerical experiments.

2. Notation and preliminaries. Given a real-valued polynomial function f :
Rn → R of degree d, we denote the monomial xα1

1 xα2
2 . . . xαn

n by xα and denote its
coefficient by bα, where α ∈ Nn and N is the set of nonnegative integers. Letting
Γnd = {α ∈ Nn :

∑
i αi ≤ d}, any polynomial of degree at most d can be written as

f(x) =
∑
α∈Γn

d
bαxα. The support of f is defined by supp(f) = {α ∈ Γnd : bα 6= 0}.

For any set Φ ⊆ {1, 2, . . . , n}, let AΦ
d = {α ∈ Nn :

∑
i αi ≤ d, αi = 0 if i /∈ Φ}, and

let u
(
x,AΦ

d

)
be a column vector with the monomials xα for α ∈ AΦ

d . For example, if
Φ = {2, 4} and d = 2, then u

(
x,AΦ

d

)
= [1, x2, x4, x

2
2, x2x4, x

2
4]>. The size of the vector

u
(
x,AΦ

d

)
is equal to

(|Φ|+d
d

)
= (|Φ|+d)!

|Φ|!d! and will be denoted by g(|Φ|, d), where |Φ|
corresponds to the number of elements in the set Φ. For any matrix Q ∈ Rr1×r2 , [Q]i,j
will correspond to the element in position (i, j) (if r1 = 1 or r2 = 1, we will write [Q]i
for the ith element). If Q ∈ Rr×r is a symmetric matrix, then λi(Q) will represent the
ith eigenvalue of Q, where λ1(Q) ≤ λ2(Q) ≤ · · · ≤ λr(Q). Likewise, if Q1, Q2 ∈ Rr×r
are two matrices, we will use the usual inner product 〈Q1, Q2〉 = Tr(Q>1 Q2) and
its induced norm ‖Q‖2 = 〈Q,Q〉 (where Tr(Q) is the trace of the matrix Q). For
any symmetric matrix Q ∈ Rr×r, Q � (�) 0 means that Q is positive semidefinite
(resp., definite). The matrix I ∈ Rr×r will represent the identity matrix, and its size
will be understood from the context. The notation so far is standard, and we refer
the interested reader to [36] for more details and examples. Below we introduce two
definitions that are specific to this paper.

Definition 1. For any 1 ≤ i ≤ n, let Bi , {α ∈ Γnd : αi > 0, αj = 0 for j < i}.

Note that Γnd \ {0} = ∪ni=1Bi, and Bi ∩Bj = ∅ for any i 6= j.
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4 JUAN S. CAMPOS AND PANOS PARPAS

Example 2. If n = d = 2, then

Γnd = {[0, 0]>, [1, 0]>, [0, 1]>, [2, 0]>, [1, 1]>, [0, 2]>},
B1 = {[1, 0]>, [1, 1]>, [2, 0]>},
B2 = {[0, 1]>, [0, 2]>}.

Definition 3. If α ∈ Rn is equal to [α1, α2, . . . , αn]>, then α+,α− ∈ Rn are
defined as α+ , [0, α1, α2, . . . , αn−1]> and α− , [α2, α3, . . . , αn, 0]>. Likewise, if
t ∈ N and t ≥ 2, then α−t ∈ Rn is defined as α−t , [αt+1, αt+2, . . . , αn, 0, . . . , 0]>.

Example 4. Let α = [1, 4, 6, 0]>. Then α− = [4, 6, 0, 0]>, α+ = [0, 1, 4, 6]>, and
α−2 = [6, 0, 0, 0]>.

3. Sparse POP relaxations. In our work we will use the relaxations formulated
in [36] to find an approximate solution for problem (1). In this section, we briefly
describe the so-called sparse relaxations for unconstrained problems.

Consider the unconstrained POP for the function f(x) =
∑
α∈Γn

d
bαxα with even

degree d, given by

(2) f? , min
x∈Rn

∑
α∈Γn

d

bαxα.

In [16] Lasserre developed a hierarchy of SDP relaxations for polynomial min-
imization and proved that under certain assumptions, it is possible to extract an
approximate solution for problems like (2) by solving these relaxations (see [11] for
details). This hierarchy can be obtained by viewing (2) as a moment problem or
trying to compute a sum-of-squares decomposition of f(x) − f? (see, for example,
[29, 30] for more details). However, if the number of variables (or constraints in the
general case) is large, the resulting semidefinite program can be too large to be solved
in practice. For the case when the number of elements in the support of the objec-
tive function is small, Waki et al. [36] developed a sparse relaxation that reduces the
number of variables and constraints in the SDP relaxation. Although this method-
ology was originally heuristic, Lasserre proved in [17] that the optimal value of this
new hierarchy converges to the optimal value of the polynomial problem under some
additional technical assumptions.

In order to define the sparse hierarchy, Waki et al. [36] used the structure of
the so-called correlative sparsity pattern (CSP) matrix. If R is the CSP matrix,
then [R]i,j is nonzero if there exists a monomial with variables xi and xj which has
a nonzero coefficient in the objective function, and [R]i,j is zero otherwise. If R is
sparse, then problem (2) is called correlatively sparse. Associated to the CSP matrix
is the CSP graph G(V,E). The node set is V = {1, 2, . . . , n} and E = {{i, j} : i, j ∈
V, [R]i,j = ?, i < j}, where ? is any nonzero real number. The idea is to generate
a set of support sets for the polynomial function using the maximal cliques of this
graph. However, finding the maximal cliques of a graph is in general NP-hard (see, for
example, [2]), and for this reason the sparse relaxations are defined using the maximal
cliques of a chordal extension of the CSP graph.1 We refer the reader to [1, 9] for
more information about chordal extensions and algorithms to find maximal cliques in
chordal graphs.

1G(V, E′) is a chordal extension of G(V, E) if E ⊆ E′ and G(V, E′) is chordal.
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A MULTIGRID APPROACH TO SDP RELAXATIONS 5

Let {Φl}ml=1 be the maximal cliques of a chordal extension of G(V,E), and note
that zz> � 0 for any real vector z. Then, adding the constraints u

(
x,AΦl

w

)
u
(
x,AΦl

w

)>
� 0 (l = 1, 2, . . . ,m) to problem (2), we obtain the following equivalent problem:

(3)
min
x∈Rn

∑
α∈Γn

d

bαxα

s.t. u
(
x,AΦl

w

)
u
(
x,AΦl

w

)> � 0, l = 1, 2, . . . ,m,

where w ≥ d/2 is a degree that denotes the relaxation order. Note that the left-hand
side of constraint l is a square matrix containing monomials xα for α ∈ AΦl

2w. Let
MΦl
w (xα) = u

(
x,AΦl

w

)
u
(
x,AΦl

w

)>, and let y = {yα}. If the monomial xα is replaced
with the real variable yα, the wth sparse SDP relaxation is given by

(4)
min
y

∑
α∈F

bαyα

s.t. MΦl
w (y) � 0, l = 1, 2, . . . ,m,

where F = ∪ml=1AΦl
2w \ {0}. The matrix MΦl

w (y) is called the wth moment matrix
for variables indexed by the set AΦl

w . Note that this SDP relaxation admits a strict
interior point (see Theorem 3.1 in [27]).

4. Sparse POP relaxations for problem (1). In this section we analyze the
sparse relaxation for problem (1) and derive connections between the variables and
constraints that will be useful in the multigrid setting.

Let R ∈ Rn×n be the CSP matrix for (1), and let G(V,E) be the associated
CSP graph. The CSP matrix is a band symmetric matrix with bandwidth equal to
p − 1. This follows from the fact that the polynomials fk in (1) are functions of
{xl, xl+1, . . . , xl+p−1} for l = 1, 2, . . . , n− p+ 1, and therefore for any α ∈ supp(Fn),
if αi > 0 and αj > 0, then |i− j| ≤ p− 1. Given that the graph G is not necessarily
chordal, we will consider as a chordal extension of G the graph G(V,E′), where E ⊆
E′ = {{i, j} : i, j ∈ V, |i− j| ≤ p− 1}. The CSP matrix for this chordal extension is

(5) [R]i,j =


? if i = j,
? if |i− j| ≤ p− 1,
0 otherwise.

The next lemma establishes that G(V,E′) is indeed a chordal graph and identifies
its maximal cliques.

Lemma 5. If the CSP matrix R is given by (5), then the associated CSP graph
G(V,E′) is chordal, and the maximal cliques are given by Φl = {l, l+ 1, . . . , l+ p− 1}
for l = 1, 2, . . . , n− p+ 1.

Proof. The graph G(V,E′) is chordal because it is an interval graph with intervals
Ik = [k, k+ p− 1] for k = 1, 2, . . . , n (see section 3.2 in [35] for a definition of interval
graphs). Using the definition of maximal cliques it is straightforward to show that
the sets Φl for l = 1, 2, . . . , n− p+ 1 are indeed the maximal cliques of G(V,E′).

Let d (even) be the degree of Fn(x) in (1), and write Fn(x) as
∑
α∈Γn

d
bαxα

for appropriate bα. If w ≥ d/2 denotes the order of the relaxation, and Φl (l =
1, 2, . . . , n−p+1) are the maximal cliques defined in Lemma 5 of the chordal extension
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6 JUAN S. CAMPOS AND PANOS PARPAS

G(V,E′), then the wth SDP sparse relaxation for problem (1) (after deleting any
constant terms in the objective function) is given by

(6)
min
y

∑
α∈F

bαyα

s.t. MΦl
w (y) � 0, l = 1, 2, . . . , n− p+ 1,

where F = ∪n−p+1
l=1 AΦl

2w \ {0}. Letting S = (S1, S2, . . . , Sn−p+1), we can write (6) as

(7)

min
y,S

∑
α∈F

bαyα

s.t.
∑
α∈F

A(l,α)yα + C = Sl,

Sl � 0, l = 1, 2, . . . , n− p+ 1,

where A(l,α) can be deduced from the definition of the moment matrix MΦl
w (y) (l =

1, 2, . . . , n−p+ 1), and C is a matrix with one in position (1, 1) and zeros everywhere
else corresponding to the monomial of degree zero. Due to Lemma 5 all the moment
matrices in (6) and Sl have the same dimension g(p, w) × g(p, w). Letting X =
(X1, X2, . . . , Xn−p+1), the dual of problem (7) is

(8)

max
X
−
n−p+1∑
l=1

〈C,Xl〉

s.t.
n−p+1∑
l=1

〈
A(l,α), Xl

〉
= bα for α ∈ F ,

Xl � 0, l = 1, 2, . . . , n− p+ 1.

The matrices in the constraints of the relaxations satisfy important properties
that will be used in the proofs. We illustrate two of these properties with an example
and summarize them along with other properties in Lemma 7.

Example 6. Suppose that Φl = {l, l + 1} (i.e., p = 2) and w = 1; then

u
(
x,AΦi

w

)
u
(
x,AΦi

w

)>
=

 1 xi xi+1
xi x2

i xixi+1
xi+1 xixi+1 x2

i+1


=

1 0 0
0 0 0
0 0 0

+ xi

0 1 0
1 0 0
0 0 0

+ xi+1

0 0 1
0 0 0
1 0 0


+ x2

i

0 0 0
0 1 0
0 0 0

+ xixi+1

0 0 0
0 0 1
0 1 0

+ x2
i+1

0 0 0
0 0 0
0 0 1

 .
The six matrices in the above equation are independent of the clique Φi. This

means that the matrices multiplying the monomials xi, xi+1, x
2
i , xixi+1, x

2
i+1 in this

equation will be the same matrices multiplying the monomials xi+1, xi+2, x2
i+1,

xi+1xi+2, x2
i+2 in the equation for i + 1, respectively (i.e., u(x,AΦi+1

w )u(x,AΦi+1
w )>).

Also, monomials xα with αk > 0 for k ≤ i − 1 or k ≥ i + 2 do not belong to the
equation which means they have a zero matrix coefficient.
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A MULTIGRID APPROACH TO SDP RELAXATIONS 7

Lemma 7. Let A(l,α) for l = 1, 2, . . . , n − p + 1 and α ∈ F be the matrices in
problems (7) and (8).

(a) A(l,α) = A(l+1,α+) for any 1 ≤ l ≤ n− p. Equivalently A(l,α) = A(l−1,α−) for
any 2 ≤ l ≤ n− p+ 1.

(b) If αk > 0 and k ≤ l − 1 or k ≥ l + p, then A(l,α) = 0 for 1 ≤ k ≤ n.
(c) For all H ⊆ F , if zα ∈ R is such that |zα| ≤ ζ for all α ∈ F , then∥∥∑
α∈HA(l,α)zα

∥∥ ≤ g(p, w)ζ for any l = 1, 2, . . . , n− p+ 1.
(d)

∑
α∈Bl−1

A(l−1,α)yα =
∑
α∈Bl

A(l,α)yα− for l = 2, 3, . . . , n− p+ 1.
(e)

∑
α∈F A(l,α)yα =

∑
α∈∪l+p−1

k=l Bk
A(l,α)yα for l = 1, 2, . . . , n− p+ 1.

Proof. By definition, MΦl
w (y) =

∑
α∈F A(l,α)yα +C (l = 1, 2, . . . , n− p+ 1), and

therefore,
MΦl
w (xα) = u

(
x,AΦl

w

)
u
(
x,AΦl

w

)>
=
∑
α∈F

A(l,α)xα + C.

From the equation above we can deduce that for any 1 ≤ i, j ≤ g(p, w) (u
(
x,AΦl

w

)
is

a vector with g(|Φl|, w) = g(p, w) elements),

(9)
[
A(l,α)

]
i,j

=

{
1 if xα =

[
u
(
x,AΦl

w

)]
i

[
u
(
x,AΦl

w

)]
j
,

0 otherwise.

(a) We will prove the first part of the statement; the second part can be shown
following the same reasoning. Note that if the vectors u are ordered according to some
polynomial ordering (see [7] for more on orderings) we have that if xγi =

[
u
(
x,AΦl

w

)]
i
,

then xγ
+
i = [u(x,AΦl+1

w )]i (i.e., if the monomial xγi is the ith element of u
(
x,AΦl

w

)
,

then xγi
+

is the ith element of u(x,AΦl+1
w )). Therefore, (9) implies that to prove (a)

we need to show that the following two conditions are true: If xα = xγixγj , then
xα

+
= xγ

+
i xγ

+
j (i.e.,

[
A(l,α)

]
i,j

=
[
A(l+1,α+)

]
i,j

= 1), and if xα 6= xγixγj , then

xα
+ 6= xγ

+
i xγ

+
j (i.e.,

[
A(l,α)

]
i,j

=
[
A(l+1,α+)

]
i,j

= 0). Since
(
γi + γj

)+ = γ+
i + γ+

j ,

we can deduce that if α = γi + γj , then xα
+

= x(γi+γj)
+

= xγ
+
i +γ+

j , from which it
follows that both conditions are true.

(b) If k ≤ l− 1 or k ≥ l+ p, it follows from the definition of Φl that the variable
xk has a zero exponent in every monomial in u

(
x,AΦl

w

)
. Thus, if αk > 0, xα 6=[

u
(
x,AΦl

w

)]
i

[
u
(
x,AΦl

w

)]
j

for any i, j. We can therefore conclude that
[
A(l,α)

]
i,j

= 0
for all i, j.

(c) For any α 6= γ, if xα =
[
u
(
x,AΦl

w

)]
i

[
u
(
x,AΦl

w

)]
j
, it follows that xγ 6=[

u
(
x,AΦl

w

)]
i

[
u
(
x,AΦl

w

)]
j
. Then according to (9), if A(l,α) has a nonzero element

in position (i, j), A(l,γ) must have a zero in position (i, j) for any α 6= γ. This
implies that

∑
α∈HA(l,α) is a g(p, w)×g(p, w) matrix of ones and zeros, and also that〈

A(l,α), A(l,γ)
〉

= 0 if α 6= γ, from which we can conclude that
∑
α∈H

∥∥A(l,α)
∥∥2 =∥∥∑

α∈HA(l,α)
∥∥2 ≤ g(p, w)2. If |zα| ≤ ζ, by using

〈
A(l,α), A(l,γ)

〉
= 0 and the previous

inequality it is not difficult to see that
∥∥∑

α∈HA(l,α)zα
∥∥2 =

∑
α∈H z

2
α

∥∥A(l,α)
∥∥2 ≤

ζ2∑
α∈H

∥∥A(l,α)
∥∥2 ≤ g(p, w)2ζ2.

(d) Note that for any 2 ≤ l ≤ n, Bl−1 = {α− : α ∈ Bl}; then (d) follows by
noticing that

∑
α∈Bl−1

A(l−1,α)yα is equal to
∑
α∈Bl

A(l−1,α−)yα− , and then using
(a).

(e) This equality is obtained by replacing F by ∪nk=1Bk and then eliminating the
zero matrices according to (b).
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8 JUAN S. CAMPOS AND PANOS PARPAS

5. Lower dimensional SDP relaxations. In this section, we will define fine
and coarse level problems and relate their corresponding hierarchies of sparse SDP
relaxations. The coarse level model has the same structure as the fine level model,
but it has fewer dimensions. We will define prolongation operators for the primal and
dual variables of the SDP relaxation. The aim of the prolongation operators is to
transfer information from the lower dimensional coarse model to the high dimensional
fine model. In the multigrid literature this operation is called prolongation, and we
adopt the same terminology here. We will study the properties of these operators and
establish theoretical results. In particular we will derive conditions that will guarantee
that the prolongation solution is within ε of the true solution (where ε > 0 is a user-
specified parameter). The conditions only include information from the coarse model
and thus are easy to compute in practice (Corollary 14). We show that when these
conditions are satisfied for a low tolerance ε, the complexity of infeasible interior point
methods is expected to improve (Theorem 15).

Consider the following problem for 0 ≤ t ≤ n2 − n1 − p:
(10)

POPt : min
xn−t∈Rn−t

Fn−t(xn−t) ,
n1−1∑
k=1

fk(xn−tk ) +
n2−t∑
k=n1

f0(xn−tk ) +
n−t−p+1∑
k=n2−t+1

fk+t(xn−tk ).

Note that t = 0 corresponds to the original problem (which we call the fine
problem or the problem at the fine level); models for t ≥ 1 are lower dimensional
problems. We will refer to lower dimensional models as coarse problems or problems
at the coarse level. Let yn−t = {yn−tα }α∈Fn−t , Sn−t =

(
Sn−t1 , Sn−t2 , . . . , Sn−tn−t−p+1

)
,

and Xn−t =
(
Xn−t

1 , Xn−t
2 , . . . , Xn−t

n−t−p+1

)
for 0 ≤ t ≤ n2 − n1 − p be variables in the

coarse levels (t ≥ 1) and fine level (t = 0) spaces. If the order of the relaxation w is
fixed, a sparse SDP relaxation using different values of t can be constructed,

(11) SDPt :



min
yn−t,Sn−t

∑
α∈Fn−t

bn−tα yn−tα

s.t.
∑

α∈Fn−t

A(l,α)y
n−t
α + C = Sn−tl ,

Sn−tl � 0, l = 1, 2, . . . , n− t− p+ 1,

where Fn−t = ∪n−t+p−1
l=1 AΦl

2w \ {0} and 0 ≤ t ≤ n2−n1− p. Likewise the dual SDP is

(12) SDP ∗t :



max
Xn−t

−
n−t−p+1∑

l=1

〈
C,Xn−t

l

〉
s.t.

n−t−p+1∑
l=1

〈
A(l,α), X

n−t
k

〉
= bn−tα for α ∈ Fn−t,

Xn−t
l � 0, l = 1, 2, . . . , n− t− p+ 1.

Note that all the properties in Lemma 7 are still valid for any fixed t (the underly-
ing POP has the same structure as (1)), and the sets Φl are the same as in Lemma 5.
The next example illustrates other important properties relating the coefficients of the
monomials for the different relaxations at different levels (coarse and fine). Lemma 9
formalizes these properties.

Example 8. Let Fn−t(x) =
∑n−t−1
k=1 (xn−tk − xn−tk+1)2 (in this case n1 = 1, n2 = 4).

If n = 5, consider the functions at levels t = 0 and t = 1 (where the superscript n− t
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A MULTIGRID APPROACH TO SDP RELAXATIONS 9

was dropped for simplicity):

t = 0 :
4∑
k=1

(xk − xk+1)2 = (x2
1 − 2x1x2) +

(
4∑
k=2

2x2
k − 2xkxk+1

)
+ (x2

5),

t = 1 :
3∑
k=1

(xk − xk+1)2 = (x2
1 − 2x1x2) +

(
3∑
k=2

2x2
k − 2xkxk+1

)
+ (x2

4).

Note that the monomials xαi
i x

αi+1
i+1 have the same coefficients in both levels for

i = 1, 2, 3, and the coefficient of the monomial x2
4 at level t = 1 is the same as the

coefficient of x2
5 for the level t = 0.

Lemma 9. For any t such that 0 ≤ t ≤ n2 − n1 − p, the SDP models in (11) and
(12) satisfy the following:

(a) For any i ∈ {1, 2, . . . , n2 − t}, if αi > 0, then bnα = bn−tα .
(b) For any i ∈ {n2, n2 + 1, . . . , n− t− p+ 1}, if αi > 0, then bn−tα = b

n−(t+1)
α− .

(c) For any i ∈ {n1 + p, n1 + p+ 1, . . . , n2 − t− 1}, if αi > 0, then bn−tα = bn−tα− .

Proof. (a) Let αi > 0 for some i ∈ {1, 2, . . . , n2 − t}. Then if l ≥ n2 − t + 1,
fk(xl) does not contain the monomial xα for any k. Using (10) with t = 0 and
t = t, we have that the coefficients bnα and bn−tα are determined by the functions∑n1−1
k=1 fk(xnk ) +

∑n2−t
k=n1

f0(xnk ) and
∑n1−1
k=1 fk(xn−tk ) +

∑n2−t
k=n1

f0(xn−tk ), respectively,
from where the result follows.

(b) Let αi > 0 for some i ∈ {n2, n2 + 1, . . . , n − t − p + 1}. Then if l ≤ n2 −
p, fk(xl) does not contain the monomial xα for any k. Setting t = t in (10), we
observe that the coefficient bn−tα is determined by the function

∑n2−t
k=n2−p+1 f0(xn−tk )+∑n−t−p+1

k=n2−t+1 fk+t(x
n−t
k ). Likewise, α− is positive in position i − 1 because αi > 0;

therefore if l ≤ n2− p− 1, fk(xl) does not contain the monomial xα for any k. Then,
setting t = t+ 1 in (10), it can be deduced that the coefficient bn−(t+1)

α− is determined

by the function
∑n2−t
k=n2−p+1 f0(xn−t−1

k−1 ) +
∑n−t−p+1
k=n2−t+1 fk+t(x

n−t−1
k−1 ), from where the

statement follows.
(c) Similarly to (b), the statement in (c) follows by noticing that bn−tα and bn−tα− are

determined by the functions
∑n2−t−1
k=n1+1 f0(xn−tk ) and

∑n2−t−1
k=n1+1 f0(xn−tk−1),

respectively.

5.1. Analysis for models Fn and Fn−1. In this subsection we will analyze
the relation between levels n and n − 1 (t = 0 and t = 1). The goal is to define
prolongation operators that allow the transformation of any point in the coarse level
semidefinite program into the fine level semidefinite program. It is not computa-
tionally advantageous to consider a coarse model with n − 1 components since the
dimensionality reduction is too small. In section 6 we will show how to use the op-
erators obtained from this simple case in a recursive manner to obtain much coarser
models with, for example, dn/2e components.

Action of the primal prolongation operators on the coarse primal vari-
ables. We denote the prolongation operators from the coarse level by Py and PS for
the variables yn−1 and Sn−1, respectively. If yn = Py

(
yn−1

)
and Sn = PS

(
Sn−1

)
,
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10 JUAN S. CAMPOS AND PANOS PARPAS

then these operators prolongate the variables to the fine level following (13) and (14):

ynα =


yn−1
α if α ∈ ∪i0−1

j=1 Bj ,

0.5
(
yn−1
α− + yn−1

α

)
if α ∈ Bi0 ,

yn−1
α− if α ∈ ∪nj=i0+1Bj ,

(13)

Snl =


Sn−1
l if l ∈ {1, 2, . . . , i0 − 1},

0.5
(
Sn−1
l−1 + Sn−1

l

)
if l = i0,

Sn−1
l−1 if l ∈ {i0 + 1, i0 + 2, . . . , n− p+ 1},

(14)

where 2 ≤ i0 ≤ n − p − 1. These operators are linear and depend on an integer
i0 ∈ {2, 3, . . . , n − p + 1}. This means that we can construct different operators by
selecting different values of i0. To gain intuition on how the primal operators work,
note that the fine primal semidefinite program has one more matrix variable than
the coarse primal semidefinite program. Suppose that the additional matrix at the
fine level is the i0th matrix. Then PS computes the i0th matrix as an average of
the i0th and (i0 − 1)th coarse matrices. Likewise, the operator Py assumes that the
additional variables ynα for the fine primal relaxation correspond to the monomials xα

with α ∈ Bi0 . Obviously, the operators depend on the choice of i0, and we discuss
how to choose i0 in practice in subsection 6.1.

For any feasible set for the coarse problems, the following theorem characterizes
the feasibility of the prolongated primal variables at the fine level. For

(
yi, Si, Xi

)
we define the primal (Ril) and dual residuals (riα) as

(15) Ril ,
∑
α∈Fi

A(l,α)y
i
α + C − Sil , riα ,

i−p+1∑
k=1

〈
A(k,α), X

i
k

〉
− biα

for l = 1, 2, . . . , i− p+ 1 and α ∈ F i.
Theorem 10. Let

(
yn−1, Sn−1

)
be feasible points for the coarse primal problem

(11) for t = 1. If yn = Py(yn−1), Sn = PS
(
Sn−1

)
are defined according to (13) and

(14), respectively, for some 2 ≤ i0 ≤ n− p− 1, then
(a) Snl � 0 for l = 1, 2, . . . , n− p+ 1.
(b) Let ε1 = max

{∣∣yn−1
α− − y

n−1
α

∣∣ }
α∈∪i0+p−1

k=i0
Bk

, then

‖Rnl ‖ ≤

{
0 if l ≤ i0 − p or l ≥ i0 + 1,
g(p, w)ε1 if i0 − p+ 1 ≤ l ≤ i0,

where Rnl is the residual matrix defined in (15).

Proof. (a) Snl is positive semidefinite for l = 1, 2, . . . , n− p+ 1 because the point
Sn−1 is feasible in the coarse relaxation, and hence the coarse matrices are positive
semidefinite.

(b) To calculate the feasibility of the primal fine problem, we use Lemma 7(e) to
write the feasibility constraints of the n− t relaxation as

(16)
∑

α∈Fn−t

A(l,α)y
n−t
α + C − Sn−tl =

∑
α∈∪l+p−1

k=l Bk

A(l,α)y
n−t
α + C − Sn−tl ,

where 1 ≤ l ≤ n− t− p+ 1.
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A MULTIGRID APPROACH TO SDP RELAXATIONS 11

Also, using Lemma 7(d) we have

(17)
∑

α∈Bk−1

A(k−1,α)y
n−t
α =

∑
α∈Bk

A(k,α)y
n−t
α− for 0 ≤ t ≤ n2 − n1 − p.

We can now evaluate five different cases for the residual constraints Rnl . We will
only show the details of two of these cases which illustrate how to use the properties
of the problem; the remaining three cases can be proved using a similar argument.
Given that yn−1 and Sn−1 are feasible points for the coarse primal relaxation, when
the variable Sn−1

l appears it will be replaced according to the constraints in (11) for
t = 1, and the variables ynα and Snl will be replaced by the operators (13) and (14),
respectively.

Case 1. l = 1, 2, . . . , i0 − p:

Rnl =
∑

α∈∪l+p−1
k=l Bk

A(l,α)y
n
α + C − Snl

=
∑

α∈∪l+p−1
k=l Bk

A(l,α)y
n−1
α + C − Sn−1

l

=
∑

α∈∪l+p−1
k=l Bk

A(l,α)y
n−1
α + C −

 ∑
α∈∪l+p−1

k=l Bk

A(l,α)y
n−1
α + C


= 0.

Case 2. l = i0 + 1, i0 + 2, . . . , n− p+ 1:

Rnl =
∑

α∈∪l+p−1
k=l Bk

A(l,α)y
n
α + C − Snl

=
∑

α∈∪l+p−1
k=l Bk

A(l,α)y
n−1
α− + C − Sn−1

l−1

=
∑

α∈∪l+p−1
k=l Bk

A(l,α)y
n−1
α− + C −

 ∑
α∈∪l+p−2

k=l−1Bk

A(l−1,α)y
n−1
α + C


=

∑
α∈∪l+p−1

k=l Bk

A(l,α)y
n−1
α− −

∑
α∈∪l+p−1

k=l Bk

A(l,α)y
n−1
α−

= 0,

where (17) was used to replace
∑
α∈∪l+p−2

k=l−1Bk
A(l−1,α)y

n−1
α to go from the third to the

fourth equality.

Case 3. l = i0:

Rnl =
∑

α∈∪i0+p−1
k=i0+1Bk

A(i0,α)0.5
(
yn−1
α− − y

n−1
α

)
.

Case 4. l = i0 − p+ 2, . . . , i0 − 1:

Rnl =
∑
α∈Bi0

A(l,α)0.5
(
yn−1
α− − y

n−1
α

)
+

∑
α∈∪l+p−1

k=i0+1Bk

A(l,α)
(
yn−1
α− − y

n−1
α

)
.
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12 JUAN S. CAMPOS AND PANOS PARPAS

Case 5. l = i0 − p+ 1:

Rnl =
∑
α∈Bi0

A(l,α)0.5
(
yn−1
α− − y

n−1
α

)
.

Then, if |yn−1
α− − yn−1

α | ≤ ε1 for α ∈ ∪i0+p−1
k=i0 Bk, using Lemma 7(c) we can

conclude from the previous five cases that the norm of the constraints of the fine
primal relaxation are either zero or smaller than g(p, w)ε1.

We note that if ε1 → 0, then ‖Rnl ‖ → 0. We also note that ε1 is easy to calculate
from coarse information only.

Action of the dual prolongation operators on the coarse dual variables.
We now turn our attention to the relationship between the coarse and fine dual vari-
ables. As the fine dual relaxation contains one more matrix variable than the coarse
relaxation, the operator works in the same fashion as PS for the primal case (i.e., the
additional matrix is calculated as an average of the coarse matrices). We perform an
analysis similar to that in the primal case.

Let PX be the prolongation operator for the variable Xn−1. As in the case of the
primal operators, the dual prolongation will depend on an integer j0, which allows us
to define different operators. If Xn = PX

(
Xn−1

)
, then

(18) Xn
l =


Xn−1
l if l ∈ {1, 2, . . . , j0 − 1},

0.5
(
Xn−1
l−1 +Xn−1

l

)
if l = j0,

Xn−1
l−1 if l ∈ {j0 + 1, j0 + 2, . . . , n− p+ 1},

where n1 + p + 1 ≤ j0 ≤ n2 − 2. The feasibility of the dual prolongation is proven
below.

Theorem 11. Let Xn−1 be a feasible point for the coarse dual problem (12) for
t = 1. If Xn = PX

(
Xn−1

)
is defined according to (18) for some n1 + p + 1 ≤ j0 ≤

n2 − 2, then
(a) Xn

l � 0 for l = 1, 2, . . . , n− p+ 1.
(b) Let ε2 = max

{∥∥Xn−1
l−1 −X

n−1
l

∥∥}j0+p−1

l=j0
, then for any α ∈ Fn,

|rnα| ≤

{
0 if α ∈ Bl, and l ≤ j0 − 1 or l ≥ j0 + p,

g(p, w)pε2 if α ∈ Bl, and j0 ≤ l ≤ j0 + p− 1,

where rnα is the residual defined in (15).

Proof. (a) As in the primal case, the matrices in PX
(
Xn−1

)
are positive semidef-

inite because they are a linear combination of positive semidefinite matrices (Xn−1 is
feasible for the coarse dual relaxation).

(b) Once more we will divide the proof into different cases to calculate the dual
residual for rnα (α ∈ Fn), and we will make use of the following fact. If α ∈ Bl, then
a consequence of Lemma 7(b) is

(19)
n−t−p+1∑
k=1

〈
A(k,α), X

n−t
k

〉
=

l∑
k=l−p+1

〈
A(k,α), X

n−t
k

〉
.

Given that Xn−1 is feasible for the coarse dual relaxation, when the variable
bn−1
α appears it will be replaced according to the constraints in (12) for t = 1, and the
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A MULTIGRID APPROACH TO SDP RELAXATIONS 13

variable Xn
l will be replaced by the operator (18). We will show the details for two

of the five cases to illustrate how to use the properties of the problem; the remaining
cases can be deduced following a similar procedure.

Case 1. α ∈ Bl and l = 1, 2, . . . , j0 − 1:

rnα =
l∑

k=l−p+1

〈
A(k,α), X

n
k

〉
− bnα

=
l∑

k=l−p+1

〈
A(k,α), X

n−1
k

〉
− bn−1

α

=
l∑

k=l−p+1

〈
A(k,α), X

n−1
k

〉
−

l∑
k=l−p+1

〈
A(k,α), X

n−1
k

〉
= 0,

where bnα was replaced by bn−1
α using Lemma 9(a) with t = 0 (note that we can use

Lemma 9 because αl > 0 by the definition of Bl).

Case 2. α ∈ Bl and l = n2, n2 + 1, . . . , n:

rnα =
l∑

k=l−p+1

〈
A(k,α), X

n
k

〉
− bnα

=
l∑

k=l−p+1

〈
A(k,α), X

n−1
k−1

〉
− bn−1

α−

=
l∑

k=l−p+1

〈
A(k,α), X

n−1
k−1

〉
−

l−1∑
k=l−p

〈
A(k,α−), X

n−1
k

〉
=

l∑
k=l−p+1

〈
A(k,α), X

n−1
k−1

〉
−

l∑
k=l−p+1

〈
A(k−1,α−), X

n−1
k−1

〉
=

l∑
k=l−p+1

〈
A(k,α), X

n−1
k−1

〉
−

l∑
k=l−p+1

〈
A(k,α), X

n−1
k−1

〉
= 0,

where we used Lemma 9(b) with t = 0 to substitute bnα for bn−1
α− , and used Lemma 7(a)

to substitute A(k−1,α−) for A(k,α) in the last equation.

Case 3. α ∈ Bl and l = min{j0 + p− 1, n2 − 1}+ 1, j0 + p+ 1, . . . , n2 − 1:

rnα = 0.

Case 4. α ∈ Bl and l = j0 + 1, . . . ,min{j0 + p− 1, n2 − 1}:

rnα =
〈
A(j0,α), 0.5

(
Xn−1
j0−1 −X

n−1
j0

)〉
+

l∑
k=j0+1

〈
A(k,α), X

n−1
k−1 −X

n−1
k

〉
.

Case 5. α ∈ Bl for l = j0:

rnα =
〈
A(j0,α), 0.5

(
Xn−1
j0−1 −X

n−1
j0

)〉
.
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14 JUAN S. CAMPOS AND PANOS PARPAS

Note that Case 3 might not be needed for all problems, for example, if n = 5,
n1 = 1, n2 = 4, p = 2, and j0 = 3.

To find the upper bound of the constraints that are not equal to zero (Cases 4
and 5), let Zk ∈ Rg(p,w)×g(p,w) be such that ‖Zk‖ ≤ ε. Note that A(k,α) is a matrix
of zeros and ones with at most g(p, w)2 − 1 elements different from zero. Then, using
the triangle and Cauchy–Bunyakovskii–Schwarz inequalities, we observe that for any
m1,m2 ∈ N with 1 ≤ m1 ≤ m2 ≤ n− p+ 1,∣∣∣∣∣

m2∑
k=m1

〈
A(k,α), Zk

〉∣∣∣∣∣ ≤ (m2 −m1 + 1)g(p, w)ε.

Note that for the cases where the constraints are not zero, the number of terms
in the summation does not exceed p (in Case 4 if l = min{j0 + p − 1, n2 − 1} =
j0 + p− 1, we have m1 = j0 and m2 = j0 + p− 1). Then, if

∥∥Xn−1
k−1 −X

n−1
k

∥∥ ≤ ε2 for
l = j0, j0 + 1, . . . , j0 + p − 1, and α ∈ Fn, using the previous inequality with ε = ε1
and Zk = Xn−1

k−1 −X
n−1
k , it is easy to see that the constraints that are not zero are

less than g(p, w)pε2.

As in the primal case, we note that if ε2 → 0, then |rnα| → 0, and ε2 is easy to
calculate from coarse information only.

Note that the primal prolongations were defined for some i0 (with 2 ≤ i0 ≤
n−p−1), and the dual prolongation were defined for some j0 (with n1 +p+1 ≤ j0 ≤
n2 − 2), but these numbers do not need to be the same. The constant j0 for the dual
prolongation has to be selected from a bounded set that depends on the variables n1
and n2, but i0 does not. This is due to the fact that the constraints of the primal
relaxation depend only on the sets Φl (which do not depend on any particular value of
n1 or n2), while the constraints of dual relaxation depend directly on the coefficients
of Fn, which, given the structure of problem (1), are a function of n1 and n2. The case
i0 = j0 characterized the duality gap, leading to the following theorem (Theorem 12).

Theorem 12. Let
(
yn−1, Sn−1, Xn−1

)
be feasible points for the coarse primal and

dual problems (11) and (12) for t = 1. If yn = Py
(
yn−1

)
, Sn = PS

(
Sn−1

)
, Xn =

PX
(
Xn−1

)
are defined as in (13), (14), and (18) for some n1 + p+ 1 ≤ i0 ≤ n2 − 2

and j0 = i0, then
∥∥Sn−1

i0−1 − S
n−1
i0

∥∥ ≤ g(p, w)ε1 and

(20)

n−p+1∑
k=1

〈Xn
k , S

n
k 〉 ≤

n−p∑
k=1

〈
Xn−1
k , Sn−1

k

〉
+ 0.5

(〈
Xn−1
i0

, Sn−1
i0

〉
+
〈
Xn−1
i0−1, S

n−1
i0−1

〉)
+ g(p, w)ε1ε2,

where ε1, ε2 are defined in Theorem 10 and Theorem 11, respectively.

Proof. Using the constraints in (11) for t = 1, and properties (e) (with l = i0)
and (d) of Lemma 7, we can deduce that

Sn−1
i0−1 − S

n−1
i0

=
∑

α∈∪i0+p−1
k=i0

Bk

A(i0,α)
(
yn−1
α− − y

n−1
α

)
.

Using the definition of ε1 in Theorem 10 and Lemma 7(c) with H = ∪i0+p−1
k=i0 Bk,

zα = yn−1
α− − y

n−1
α , and ζ = ε1, we conclude that

∥∥Sn−1
i0−1 − S

n−1
i0

∥∥ ≤ g(p, w)ε1.
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A MULTIGRID APPROACH TO SDP RELAXATIONS 15

Let ESi0 = Sn−1
i0−1 − S

n−1
i0

and EXi0 = Xn−1
i0−1 −X

n−1
i0

. Replacing Xn by PX
(
Xn−1

)
and Sn by PS

(
Sn−1

)
, and using the upper bound for ‖Sn−1

i0−1 − S
n−1
i0
‖ and the condi-

tions of part (b) of Theorem 11 (‖Xn−1
i0−1 −X

n−1
i0
‖ ≤ ε2), we obtain

n−p+1∑
k=1

〈Xn
k , S

n
k 〉 =

i0−1∑
k=1

〈
Xn−1
k , Sn−1

k

〉
+

n−p+1∑
k=i0+1

〈
Xn−1
k−1 , S

n−1
k−1

〉
+

i0∑
k=i0

〈
0.5
(
Xn−1
k−1 +Xn−1

k

)
, 0.5

(
Sn−1
k−1 + Sn−1

k

)〉
=
n−p∑
k=1

〈
Xn−1
k , Sn−1

k

〉
+ 0.5

(〈
Xn−1
i0

, Sn−1
i0

〉
+
〈
Xn−1
i0−1, S

n−1
i0−1

〉)
− 0.25

〈
EXi0 , E

S
i0

〉
≤
n−p∑
k=1

〈
Xn−1
k , Sn−1

k

〉
+ 0.5

(〈
Xn−1
i0

, Sn−1
i0

〉
+
〈
Xn−1
i0−1, S

n−1
i0−1

〉)
+
∣∣〈EXi0 , ESi0〉∣∣

≤
n−p∑
k=1

〈
Xn−1
k , Sn−1

k

〉
+ 0.5

(〈
Xn−1
i0

, Sn−1
i0

〉
+
〈
Xn−1
i0−1, S

n−1
i0−1

〉)
+ g(p, w)ε1ε2.

To obtain the last inequality, we used the inequality
∣∣〈EXi0 , ESi0〉∣∣ ≤ ∥∥EXi0 ∥∥ ∥∥ESi0∥∥

(Cauchy–Bunyakovskii–Schwarz inequality) to bound
∣∣〈EXi0 , ESi0〉∣∣ by g(p, w)ε1ε2.

Corollary 13. Under the assumptions of Theorem 12, if
(
yn−1, Sn−1, Xn−1

)
is feasible and µ =

∑n−p
k=1

〈
Xn−1
k , Sn−1

k

〉
/((n− p)g(p, w)), then

(21)
n−p+1∑
k=1

〈Xn
k , S

n
k 〉 ≤ 2g(p, w)(n− p)µ+ g(p, w)ε1ε2.

All the bounds calculated so far in this section depend on the terms ε1 and ε2
defined in Theorem 10 and Theorem 11. It is straightforward to see that if the goal
is to obtain a feasible point (yn, Sn, Xn) for the fine problem, it would be enough
to have a feasible coarse point such that ε1 and ε2 are zero. In the next corollary,
we formalize this idea by giving conditions for a coarse point (yn−1, Sn−1, Xn−1) to
provide a prolongated point that is ε-optimal.

Corollary 14. Let (yn−1, Sn−1, Xn−1) be feasible points for the coarse primal
and dual problems (11) and (12) (t = 1), and let ε ∈ R be a nonnegative scalar.

(a) If there exist i0, j0 ∈ N with 2 ≤ i0 ≤ n− p− 1 and n1 + p+ 1 ≤ j0 ≤ n2 − 2
such that

(22)
ε1 = max

{∣∣yn−1
α− − y

n−1
α

∣∣ }
α∈∪i0+p−1

k=i0
Bk
≤ ε

g(p, w)
,

ε2 = max
{∥∥Xn−1

l−1 −X
n−1
l

∥∥}j0+p−1

l=j0
≤ ε

g(p, w)p
,

then it is possible to prolongate the coarse variables using (13), (14), and (18) to obtain
(yn, Sn, Xn) such that |rnα| ≤ ε (α ∈ Fn) and ‖Rnl ‖ ≤ ε (l = 1, 2, . . . , n− p+ 1).
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16 JUAN S. CAMPOS AND PANOS PARPAS

(b) If in addition i0 = j0 and (yn−1, Sn−1, Xn−1) are optimal points with zero
duality gap for the coarse problem, then

∑n−p+1
k=1 〈Xn

k , S
n
k 〉 ≤ ε2/(g(p, w)p).

5.2. Exploiting multigrid structure in infeasible interior point methods
(IPM). The complexity (in terms of number of iterations) of infeasible IPMs depends
on the feasibility of the initial points and the associated duality gap. In light of the
results of Theorem 10, Theorem 11, and Theorem 12, it is reasonable to expect that
if a solution of the coarse level is prolongated and used as an initial point to solve the
fine level model using an infeasible IPM, then the complexity will depend again on
the variables ε1 and ε2 defined in Theorem 10, Theorem 11, and the duality gap of the
coarse solution. In this subsection we will use the results of the algorithm proposed in
[31] to show that its complexity can be improved as long as the values of ε1, ε2 and the
coarse duality gap are small. Thus the proposed approach is reminiscent of one-way
multigrid methods; i.e., we start at the bottom with the coarsest model, and then
use the solution of the coarse model to initialize the solution of the model one level
up. Our results in the next section will show that this approach can yield significant
benefits.

If the infeasible IPM proposed in [31] is used to solve the SDP relaxation at level
t = 0 with feasible or near feasible starting points

(
yn,0, Sn,0, Xn,0

)
∈ N (γ, τ0), then

it will terminate in at most O(
√
N ln(ε0/ε)) iterations (see Theorem 3.7 in [31]), where

ε is the user-specified solution accuracy, N = g(p, w)(n− p+ 1), and

ε0 , max


n−p+1∑
k=1

〈
Xn,0
k , Sn,0k

〉
,

(
n−p+1∑
l=1

∥∥∥Rn,0l

∥∥∥2
)1/2

,
{∣∣rn,0α ∣∣}

α∈Fn

 ,(23)

N (γ, τ0) ,
{

(yn, Sn, Xn) : Sn � 0, Xn � 0, ρ(Xn, Sn, τ0)1/2 ≤ γτ0
}
,(24)

ρ(Xn, Sn, τ0) ,
n−p+1∑
k=1

g(p,w)∑
i=1

(
λi (Xn

k S
n
k )− τ0)2 ,(25)

with 0 < γ < 1, τ0 = 1
N

∑n−p+1
k=1 〈Xn,0

k , Sn,0k 〉.
Let

(
yn−1, Sn−1, Xn−1

)
be a feasible point for the coarse problem, and use (13),

(14), and (18) with i0 = j0 to calculate the fine level point
(
yn,0, Sn,0, Xn,0

)
as

yn,0 = Py(yn−1), Sn,0 = PS(Sn−1), and Xn,0 = PX(Xn−1). Then using Theorem 10,
Theorem 11, and Corollary 13, and setting µ =

∑n−p
k=1

〈
Xn−1
k , Sn−1

k

〉
/((n−p)g(p, w)),

it is not difficult to see that

(26) ε0 ≤ max
{

2(N − g(p, w))µ+ g(p, w)ε1ε2, g(p, w)p1/2ε1, g(p, w)pε2
}
.

If
(
yn,0, Sn,0, Xn,0

)
∈ N (γ, τ0), the previous inequality shows how smaller values

of µ, ε1, and ε2 can reduce the maximum number of iterations needed to achieve a
solution with tolerance equal to ε (smaller values of µ will be expected if the initial
coarse point is close to the coarse solution). Although it is not possible to guarantee
that any prolongated solution of the coarse level will belong to N (γ, τ0) for some
γ ∈ (0, 1), the next result shows that if ε1 and ε2 are small enough, and the coarse
point is close to the infeasible central path of the coarse relaxation (i.e., close to the set
of points {(Xn−1

k , Sn−1
k )}n−pk=1 such that Xn−1

k Sn−1
k = µI), then

(
yn,0, Sn,0, Xn,0

)
∈

N (γ, τ0).

Theorem 15. Under the assumptions of Theorem 12, if Xn−1
k � 0 and Sn−1

k � 0
(k = 1, 2, . . . , n−p) and µ > 0, then τ0 > 0 and ρ(Xn,0, Sn,0, τ0)1/2 ≤ w1ε1ε2 +w2εµ,
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A MULTIGRID APPROACH TO SDP RELAXATIONS 17

where εµ = max{‖Xn−1
k Sn−1

k − µI‖}n−pk=1 , and w1, w2 < ∞ are constants that depend
only on the parameters n, p and the order of the relaxation w.

Proof. Replacing Sn,0 and Xn,0 by the prolongated coarse solutions and using∑n−p
k=1

〈
Xn−1
k , Sn−1

k

〉
= (N − g(p, w))µ, we obtain

(27) τ0 =
1
N

(
(N − g(p, w))µ+

〈
Xn,0
i0
, Sn,0i0

〉)
.

Note that λi(X
n,0
i0
Sn,0i0

) > 0 for all i because Xn,0
i0

and Sn,0i0
are positive def-

inite (see Corollary 7.6.2 in [14]), and therefore 〈Xn,0
i0
, Sn,0i0

〉 = Tr(Xn,0
i0
Sn,0i0

) =∑
i λi(X

n,0
i0
Sn,0i0

) > 0. From this it follows that τ0 > 1
N (N − g(p, w))µ > 0.

To prove the bound for ρ(Xn,0, Sn,0, τ0), first note that if Qk = Xn,0
k Sn,0k − µI,

then ‖Qk‖ ≤ εµ for any k 6= i0. If k = i0, by replacing Xn,0
i0

and Sn,0i0
by the

prolongated coarse points we can write Qi0 = 0.5(Qi0+1 + Qi0−1) − 0.25(Xn−1
i0−1 −

Xn−1
i0

)(Sn−1
i0−1 − S

n−1
i0

) and therefore ‖Qi0‖ ≤ εµ + g(p, w)ε1ε2 (here we used the fact
that under the assumptions of Theorem 12, ‖Sn−1

i0−1−S
n−1
i0
‖ ≤ g(p, w)ε1 and ‖Xn−1

i0−1−
Xn−1
i0
‖ ≤ ε2). Also, using the Bauer–Fike theorem (see Theorem 6.3.2 in [14]) we can

deduce that

(28) |λi(Xn,0
k Sn,0k )− τ0| = |λi(µI +Qk)− µ+ (µ− τ0)| ≤ g(p, w)‖Qk‖+ |µ− τ0|.

Let g = g(p, w). Using (28) and the bounds for ‖Qk‖, we have

ρ(Xn,0, Sn,0, τ0) =
n−p+1∑
k=1

g∑
i=1

(
λi

(
Xn,0
k Sn,0k

)
− τ0

)2

≤
n−p+1∑
k=1

g∑
i=1

(
g‖Qk‖+ |µ− τ0|

)2
≤
n−p∑
k=1

g∑
i=1

(
gεµ + |µ− τ0|

)2
+

i0∑
k=i0

g∑
i=1

(
g(εµ + gε1ε2) + |µ− τ0|

)2
= (n− p)g

(
gεµ + |µ− τ0|

)2
+ g

(
g(εµ + gε1ε2) + |µ− τ0|

)2
≤ (n− p+ 1)g

(
g(εµ + gε1ε2) + |µ− τ0|

)2
= N

(
g(εµ + gε1ε2) +

1
N
|Tr(Qi0)|

)2

≤ N
(
g(εµ + gε1ε2) +

1
N

(g(εµ + gε1ε2))
)2

= (w1ε1ε2 + w2εµ)2
,

where w1 = N+1
N1/2 g

2, w2 = N+1
N1/2 g, and (27) was used to replace µ− τ0 by Tr(Qi0).

6. Numerical experiments. In this section we present numerical experiments
to evaluate the performance of the prolongation operators. We implement two types of
tests. The first set of experiments aims to illustrate how close a prolongated solution
is to optimality. The second applies the operators in a one-way multigrid fashion
along with an infeasible IPM to solve the resulting problems. The goal of this second
test is to compare a basic multigrid method with a pure interior point algorithm.
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18 JUAN S. CAMPOS AND PANOS PARPAS

To generate the problems, we use the package SparsePOP version 3.0 [37], which
is an implementation of the algorithm in [36], and to solve the SDP relaxation, we
use the infeasible IPM implemented in SDPT3 version 4.0 [34]. In order to obtain
problems with a unique solution we perturb every polynomial by adding a small linear
term (see [36]). If d is the degree of Fn, then the order of each relaxation is taken
as w = dd/2e. We also note that for the problems considered in this section, the
maximal cliques created using SparsePOP are identical to those described in section 4.

The infeasibility and gaps for (yi, Si, Xi) at level n = i are defined as follows:

• Primal feasibility: pfeas ,
‖(Ai)>yi+Ci−Si‖

(1+‖Ci‖) .

• Dual feasibility: dfeas ,
‖Ai(Xi)−bi‖

(1+‖bi‖) .

• Gap: gap ,
|〈Xi,Si〉|

(1+|(bi)>yi|+|〈Ci,Xi〉|) .

Xi,Si,Ci ∈ RN×N are a block diagonal matrix of dimension N = (i− p+ 1)g(p, w).
In the main diagonal the matrices Xi and Si contain the matrices Xi

1, X
i
2, . . . , X

i
i−p+1

and Si1, S
i
2, . . . , S

i
i−p+1, respectively, while Ci contains i− p+ 1 times the matrix C.

bi = {biα}α∈Fi , and Ai : RN×N → R|Fi| is the linear operator such that

Ai(Xi) ,

(
i−p+1∑
l=1

〈
A(l,α), X

i
l

〉)
α∈Fi

,

with adjoint (Ai)>. If ε is the given tolerance level, then SDPT3 will stop when
pfeas, dfeas, and gap are less than ε.

Our set of problems includes the following two classical test functions for global
optimization problems:

• Broyden tridiagonal [24]: Fn(x) =
∑n
k=1((3 − 2xk)xk − xk−1 − 2xk+1 +

1)2, x0 = xn+1 = 0.
• Generalized Rosenbrock [25]: Fn(x) =

∑n
k=2

(
100(xk − x2

k−1)2 + (1− xk)2
)
.

The second set of test problems follows the approach in [27] to solve prob-
lems that arise when a finite difference method is used to solve nonlinear boundary
value problems. The boundary value problem of finding a function x(t) such that
f (t, x(t), x′(t), x′′(t)) = 0, x(a) = xa, x(b) = xb, a ≤ t ≤ b, can be solved numeri-
cally by uniformly discretizing the domain, using central differences to approximate
the derivatives of x(t) and then solving the following system of polynomial equations:

fk (tk, xk−1, xk, xk+1) = f

(
tk, xk,

xk+1 − xk−1

2h
,
xk−1 − 2xk + xk+1

h2

)
= 0,

where x0 = xa, xn+1 = xb, tk = a + hk, and h = (b − a)/(n + 1) (k = 1, 2, . . . , n).
This system can be solved by minimizing the sum of the squares of the functions fk.
For example, consider the following boundary value problem:

• x′′(t)− 2x(t)3 = 0, x(0) = 1
2 , x(1) = 1

3 [27]. The associated polynomial is

Fn(x) =
n∑
k=1

(
xk−1 − 2xk + xk+1 − 2h2x3

k

)2
, x0 =

1
2
, xn+1 =

1
3
.

We use this approach to solve nine nonlinear boundary value problems for the
case where all problem data are given by polynomials. To formulate the constrained
problems as in (1), the constraints for the first and last variables are eliminated
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A MULTIGRID APPROACH TO SDP RELAXATIONS 19

by introducing them into the objective function. Note that for the boundary value
problems the function Fn does not follow exactly the structure of (1). However, when
the number of points in the grid is large (i.e., h is small) the difference between the
functions goes to zero and the formulation would follow the same structure. The nine
nonlinear differential equation problems we considered are given in Table 2.

6.1. Prolongated variables results. In section 5 we discussed how the pro-
longation operators can be defined for a single level, i.e., t = 1. If t > 1 in the
relaxation of the coarse problem (10), we can prolongate points in the coarse level
space n − t into level n by using t times the one level operators. In order to allow
for t > 1 we start by selecting i0 ∈ {n1 + p+ 1, n1 + p+ 2, . . . , n2 − t− 1} and use
it to define the prolongation operators applied to the points (yn−t, Sn−t), and select
j0 ∈ {2, 3, . . . , n− t− p} for the prolongation of Xn−t to obtain the points one level
up: (yn−t+1, Sn−t+1, Xn−t+1). Then the process is repeated for the points at level
n−t+1 by selecting i0 ∈ {n1 +p+1, n1 +p+2, . . . , n2−t}, j0 ∈ {2, 3, . . . , n−t−p+1}
for the prolongation of (yn−t+1, Sn−t+1) and Xn−t, respectively, and so on until level
n is reached.

Using the process described above we now specify prolongation operators for more
than one level. In the case of the dual operator (18), Theorem 11 suggests that the
selection of the integer j0 should be done such that ε2 is small. We found that for our
problems, selecting j0 = b(n− t− p+ 1)/2c (i.e., selecting the middle) returned small
values for ε2. From this observation, our strategy consists of prolongating Xn−t using
(18) t consecutive times, setting j0 = b(n− t− p+ 1)/2c for all the prolongations. If
Xn = (Xn

1 , X
n
2 , . . . , X

n
n+p−1) is obtained following the previous description, we can

write it as

(29) Xn
l =


Xn−t
l if l ∈ {1, 2, . . . , j0 − 1},

2t−1
2t Xn−t

j0−1 + 1
2tX

n−t
j0

if l ∈ {j0, j0 + 1, . . . , j0 + t− 1},
Xn−t
l−t if l ∈ {j0 + t, . . . , n− p+ 1}.

It is possible to take two different approaches for the primal variables. The first
is a linear operator similar to the one used for the dual variables. The prolongation
for Sn−t follows the same criterion as the one used for the dual variable using j0. The
prolongated primal variable yn is defined as

(30) ynα =


yn−tα if α ∈ Bl and l ∈ {1, 2, . . . , i0 − 1},
2t−1

2t yn−tα− + 1
2t y

n−t
α if α ∈ Bl and l ∈ {i0, i0 + 1, . . . , i0 + t− 1},

yn−tα−t if α ∈ Bl and l ∈ {i0 + t, i0 + t+ 1, . . . , n},

where i0 = j0 = b(n− t−p+ 1)/2c. We found this approach effective for the Broyden
tridiagonal and generalized Rosenbrock problems. Consider the solution for the gen-
eralized Rosenbrock function; in this case the optimal polynomial variables extracted
after solving the SDP relaxation are x1 ≈ −1 and xj ≈ 1 for j ≥ 2 independent of
the number n in Fn, and therefore xαi

i x
αi+1
i+1 . . . x

αi+p−1
i+p−1 −x

αi
i+1x

αi+1
i+2 . . . x

αi+p−1
i+p ≈ 0 for

any α ∈ supp(Fn) for i ≥ 2 (note that the primal variables yα replace the monomials
xα to obtain the SDP relaxation; then we expect that |xα− − xα| should be ap-
proximately equal to |yα− − yα|, which determines ε1 in Theorem 10). The Broyden
tridiagonal test problem also has a constant solution for most of its variables, and
therefore the prolongation works well for this problem too. In general we expect this
kind of operator to work well when the difference between the variables in the original
formulation is small or constant.
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20 JUAN S. CAMPOS AND PANOS PARPAS

For the boundary value problems, the use of the linear operators for the primal
coarse variables gave prolongated points at fine levels with large values for pfeas for
many of the problems. This is due to the fact that the difference between consecutive
variables (see Theorem 10(b)) should be small when the corresponding points in the
grid are close enough for the linear operator to be useful. Although the difference
between the variables of the solution in the polynomial space should decrease as the
number of points in the grid increases (assuming convergence of the method), in our
experiments the value of n used was not large enough to make the linear operator
useful. To address this issue, we defined a second prolongation for the primal variable
that directly follows the ideas of multigrid theory (see, for example, [6]). Let ync

be a point for the coarse level nc of the primal relaxation of a nonlinear differential
equation with boundary conditions x0 and xnc+1. If ej ∈ Nn is a unit vector with one
in position j, then the nonlinear prolongation yn = Pnly (ync) from level nc to level n
is calculated as

(31) ynα =
(
yne1
)α1

(
yne2
)α2

. . .
(
ynen

)αn
, α ∈ Fn,

where

ynei
= ync

ej
+
(
ync
e(j+1)

− ync
ej

)(
i

(
nc − 1
n− 1

)
− j
)

if i
(
nc − 1
n− 1

)
∈ [j, j + 1],

with ync
e0 = x0 and ync

enc+1
= xnc+1. The operator calculates the first moment

fine variables (ynei
) by using a linear interpolation of the first moment coarse vari-

ables (ync
ei

), and then calculates the rest of the moments in a nonlinear way. It
is not difficult to see that this operator gives feasible points for any ync in the
sense that

∑
α∈Fn A(l,α)[Pnly (ync)]α + C � 0 for l = 1, 2, . . . , n − p + 1. There-

fore, there is no need to define an operator for the variable Snc , and hence we take
Snl =

∑
α∈Fn A(l,α)[Pnly (ync)]α + C. Note that in practice it may not be known

which of the two prolongations to use. Since both prolongations are computationally
inexpensive, the best approach is to calculate both and use the one that provides the
least error.

In our first set of experiments we evaluate the performance of the prolongated
solutions in terms of feasibility and gaps in the fine level. For n = 1000 we prolongate
the solutions of the coarse model n/2 and calculate feasibility and optimality measures
of the new points (the SDPT3 tolerance was set to 10−7). Table 1 shows the results
for the Broyden tridiagonal and the generalized Rosenbrock functions using the linear
operators (29) and (30). The first three columns of each row contain the results when
the prolongated variables are used in the fine level n, and the last three columns
contain the information {pfeas, dfeas, gap} for the coarse model (nc = n/2). In both
problems the prolongated solutions give points with infeasibility and duality gap no
greater than 10−4.

Table 1
Feasibility and gaps of projected variables for Broyden tridiagonal and generalized Rosenbrock

functions (n = 1000).

Problem pfeas dfeas gap pnc
feas dnc

feas gapnc

Broyden tridiagonal 4e-06 7e-05 8e-08 1e-09 2e-12 8e-08
Generalized Rosenbrock 9e-08 3e-07 3e-08 8e-11 8e-12 3e-08

The same exercise was done for the boundary value problems but using the non-
linear operator (31) and size n+ 1 = 500 (see Table 2). In this case the coarse model
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A MULTIGRID APPROACH TO SDP RELAXATIONS 21

Table 2
Feasibility and gaps of projected variables for the nonlinear differential equations (n + 1 = 500).

Problem dfeas gap pnc
feas dnc

feas gapnc

1. x′′ − 2x3 = 0, x(0) = 1
2 , x(1) = 1

3 6e-05 2e-07 3e-08 3e-10 3e-07
2. x′′ + 1

2 (x + t)3 = 0, x(0) = 0, x(1) = 0 4e-05 3e-05 4e-09 6e-11 1e-04
3. x′′ − 2x3 + 100 sin(t) = 0, x(0) = 1

2 , x(1) = 1
3 3e-05 2e-05 2e-08 7e-11 6e-05

4. x′′ + ( 1
7x′)2 + 1 = 0, x(0) = 0, x(1) = 0 2e-07 5e-05 2e-08 2e-09 1e-04

5. x′′ − 3
2x2 = 0, x(0) = 4, x(1) = 1 8e-06 1e-06 5e-09 2e-09 3e-06

6. x′′ + x′x − x3 = 0, x(1) = 1
2 , x(2) = 1

3 8e-04 7e-06 3e-09 3e-11 7e-05
7. x′′ − 1

8

(
32 + 2t3 − x′x

)
= 0, x(1) = 17, x(3) = 43

3 2e-03 2e-06 5e-09 8e-11 4e-06
8. x′′t2 − 2 = 0, x(1) = 0, x(2) = 0 6e-05 1e-05 2e-08 7e-10 2e-05
9. 2x′′x + (x′)2 = 0, x(1) = 0, x(100) = 2 4e-06 6e-03 4e-08 1e-08 1e-03

has nc = (n− 1)/2 variables. The results show how the prolongated solutions can
provide good initial points to use, for example, as initial guesses for an algorithm to
solve the fine level. This idea will be explored in the next subsection. Note also that
SDPT3 cannot solve some of the coarse problems for the differential equations to the
desired accuracy (10−7). We will also address this point in the next subsection.

6.2. A multigrid approach to solve the fine problems. In our final set of
experiments we use a one-way multigrid approach to solve large scale boundary value
problems. In the previous subsection we observed that even when the size of the
problem is moderate, SDPT3 could not solve many of the relaxations for nonlinear
differential equations to the required tolerance. We overcome this problem for a large
number of cases using a multigrid approach in conjunction with an infeasible IPM
(in our experiments we use SDPT3). We describe the method in Algorithm 1. Let
IPM(A, b, C, y0, S0, X0, ε) be a function that uses an infeasible IPM to solve the SDP
problem with parameters A, b, C, using the initial point (y0, S0, X0). This function
then returns a solution (y, S,X) that satisfies the required error tolerance ε. If no
initial point is given, we will write IPM(A, b, C, [ ], [ ], [ ], ε) (in which case we use the
default initialization procedure of the algorithm). Also, let PX,j0 be the prolongation
operator defined by (29) for some n1 + p + 1 ≤ j0 ≤ n2 − 2, and let Pnly be the
nonlinear operator defined by (31). The parameter L indicates the total number of
levels, including the fine level, that are going to be used. If the goal is to solve a
problem with n variables, the method uses L − 1 coarse levels with ni = bni+1/2c
variables at level i (nL = n). Then the first coarse level (n1 variables) is solved to the
accuracy [tol]1 with no initial point provided, and the prolongated solution is used as
a starting point to solve the second coarse level (n2 variables) to an accuracy of [tol]2.
The process is repeated until the level L corresponding to the fine level is solved to
an accuracy of [tol]L.

There is a trade-off between solving the coarse levels to a high accuracy and the
CPU time used to achieve it. The coarse solution must provide meaningful information
to the fine level. However, computing a highly accurate coarse solution may not be
the most efficient use of CPU time; even an exact solution to the coarse model will
be at best an approximation for the fine model. We found that starting with an
accuracy of 10−4 for the coarse level with the fewest variables, and slowly increasing
the accuracy as the number of variables increases, is a good rule of thumb. We
use Algorithm 1 in conjunction with an infeasible IPM (SDPT3) to solve the SDP
relaxation for the nine nonlinear differential equations to an accuracy of 10−7 (i.e.,
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22 JUAN S. CAMPOS AND PANOS PARPAS

[tol]L = 10−7 in Algorithm 1). The sizes of the problems are n = 20, 30, 40, . . . , 1000
(99 relaxations for each of the boundary value problems). The first experiment consists
of setting L = 2 and tol = [10−4, 10−7] (we will refer to this settings as Multi2). In
the second experiment we allow more than two levels, depending on the size of the
problem (MultiL≥2). In particular if n ≤ 100, then L = 2, tol = [10−4, 10−7]; if
101 ≤ n ≤ 200, then L = 3, tol = [10−4, 10−5, 10−7]; if 201 ≤ n ≤ 500, then L = 4,
tol = [10−4, 10−5, 10−6, 10−7]; and if n ≥ 501, then L = 5, tol = [10−4, 10−5, 10−6, 5 ∗
10−7, 10−7].

Algorithm 1. Multigrid method L levels (MultiL) to solve SDP relaxation of (1)
with n variables.
Input: L, {ni}Li=1 ∈ N such that ni = bni+1/2c and nL = n, tol ∈ RL such that [tol]i > 0,

and {Ani ,bni ,Cni}Li=1 as defined at the beginning of section 6.
Procedure:

for i = 1 to i = L do
if i = 1 then

(yni , Sni , Xni)← IPM (Ani ,bni ,Cni , [ ], [ ], [ ], [tol]i)
else

(yni , Sni , Xni)← IPM
(
Ani ,bni ,Cni , yni,0, Sni,0, Xni,0, [tol]i

)
end if
if i < L then

j0 ← b(ni − p + 1)/2c
yni+1,0 ← P nl

y (yni)
Xni+1,0 ← PX,j0(Xni)
S

ni+1,0
l ←

∑
α∈Fni+1 A(l,α)y

ni+1,0 + C, for l = 1, 2, . . . , ni+1 − p + 1
end if

end for

The prolongated matrices PX (Xnc) should, in theory, be positive definite as
they are calculated using SDPT3. However, numerical errors make their eigenvalues
nonpositive in some cases. Also, the primal variables PS (Snc) are positive semidefinite
when the nonlinear operator is used. For this reason, before the initial guesses are
given to SDPT3 to solve the fine problem, we perturbed the matrices such that it
is possible to calculate a Cholesky factorization. When using Algorithm 1, the early
stops of SDPT3 given by the parameter OPTIONS.stoplevel were set to zero, and we
increased the tolerance of the early stop criteria for the infeasibility given in line 721
of the code sqlpmain.m (we substituted 10−4 tolerance for 10−12). These changes in
the code were done after observing that the initial length steps calculated by SDPT3
after giving the initial prolongated solution were very small, which, combined with
the small duality gap and/or infeasibilities, made SDPT3 end prematurely.

In our experiments we also compare our results with SeDuMi version 1.3 and
SDPA. For both solvers we set the tolerance again to 10−7. SDPA could only solve
20 of the 891 test problems to an accuracy of at least 10−4, and therefore we do not
report these results. It is important to note that the stopping criteria of SeDuMi
is not the same as the one used by SDPT3. Therefore, if SeDuMi reports that the
solution found has the required accuracy, it might not satisfy the accuracy criteria of
SDPT3. Table 3 shows, for each of the nine models based on nonlinear differential
equations, how many of the 99 fine relaxations were solved to the desired accuracy
by SDPT3, SeDuMi, and the multigrid approach. A relaxation is considered solved if
the solver reports that the solution satisfies the required accuracy.

SDPT3 solved a total of 105 out of the 891 relaxations, with no more than 19 out
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A MULTIGRID APPROACH TO SDP RELAXATIONS 23

Table 3
Comparison between relaxations solved by SDPT3, SeDuMi, and the multigrid approach for the

nonlinear differential equations.

Differential equation* 1 2 3 4 5 6 7 8 9
# relaxations solved by SDPT3 18 14 15 0 10 17 9 19 3
# relaxations solved by SeDuMi 41 13 37 21 99 37 99 9 0
# relaxations solved by Multi2 99 97 87 10 76 99 99 99 16
# relaxations solved by MultiL≥2 99 97 91 97 97 99 93 99 27

* The total number of relaxations per differential equation is 99.

of the 99 relaxations solved for each differential equation. SeDuMi improves over these
results by solving 356 relaxations. Using the multigrid approach Multi2 we are able to
solve 682 relaxations, with problems 4, 5, and 9 having the worst results with only 10,
76, and 16 relaxations solved. Using more than two levels, we can match or increase
the number of relaxations solved by Multi2, with a total of 799 relaxations solved
(except in problem 7, where we saw a small difference of six additional relaxations
solved by Multi2). In particular, for problems 4 and 5 MultiL≥2 can solve 97 of the
99 relaxations. We attribute the improvement to the fact that with more levels the
algorithm can find a better solution to prolongate because smaller problems are easier
to solve to a higher tolerance. We also tried two level experiments with 10−7 accuracy
for the coarse level, but the results did not improve with respect to Multi2 due to the
inability of SDPT3 to solve the relaxation to that accuracy.

MultiL≥2 performed well, except for problem 9 where it was only able to solve
27 relaxations. Upon further investigation we found that for problem 9 the finite
difference scheme used in this paper is not a consistent approximation for the under-
lying differential equation. However, the resulting POP shares the same polynomial
structure as the other problems considered in this paper. We therefore included this
problem in our numerical experiments to see if the inconsistency of the discretization
scheme has a large effect. Nevertheless, it is important to remark that MultiL≥2 was
able to solve 55 and 94 relaxations to an accuracy of 10−6 and 10−4, respectively, while
SDPT3 solved 6 and 12 relaxations to an accuracy of 10−6 and 10−4, respectively,
and SeDuMi reports 9 and 99 cases to an accuracy of 10−6 10−4, respectively.

When comparing how many models are solved as a function of the size (see
Figure 1), we observe that as n becomes larger, both SDPT3 and SeDuMi have
difficulties solving the sparse relaxations. In contrast, the multigrid approach with
more than two levels is able to solve almost all the problems (except problem 9)
independent of the size.

To investigate the reasons for the increase in performance of the multigrid ap-
proach, we report the condition number of the Schur-complement matrix for the last
iteration performed by the SDPT3 and MultiL≥2 (see [34] for more on the Schur-
complement matrix). In [32], it was shown how exploiting sparsity for SDP problems
using chordal completion and maximal clique decomposition approaches (like those
used by [36] and this paper) may lead to SDP problems that are primal degenerate.
As a consequence, the numerical experiments in this paper show an increase in the
condition number of the Schur-complement matrix when IPMs were used to solve
the sparse problem, compared with the condition number of the Schur-complement
matrix of the IPM of the nonsparse semidefinite program. Table 4 shows, for each
problem, in how many of the 99 relaxations SDPT3 had a larger condition number
for the last iteration than MultiL≥2 (“# CNSDPT3 > CNMultiL≥2”), the average of
the ratio between the condition number of the last iteration using SDPT3 and the

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/0

9/
18

 to
 1

46
.1

69
.1

47
.1

04
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 
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Fig. 1. Comparison of relaxations solved by SDPT3, SeDuMi, and the multigrid algorithm as
a function of the size of the problem (n) for the nonlinear differential equations.

Table 4
Condition number of the Schur-complement matrix for the last iteration at the fine level using

SDPT3 and MultiL≥2 for the nonlinear differential equations.

Differential equation 1 2 3 4 5 6 7 8 9
# CNSDPT3 > CNMultiL≥2 95 99 89 97 94 97 76 85 42
meanCNSDP T3/CNMultiL≥2

5e+13 7e+13 6e+07 4e+14 7e+06 3e+12 7e+15 3e+02 7e+01

minCNSDP T3/CNMultiL≥2
8e-02 4e+00 1e-06 5e-02 5e-02 9e-02 5e-37 6e-02 6e-04

maxCNSDP T3/CNMultiL≥2
4e+15 5e+15 5e+09 4e+16 1e+08 9e+13 7e+17 1e+04 6e+03

condition number of the last iteration using MultiL≥2 (“meanCNSDP T3/CNMultiL≥2
”),

and the minimum and maximum ratios. With the exception of problem 9, for most
of the problems the condition number is larger for the pure IPM method compared
with MultiL≥2, which could explain the results of the multigrid approach. How-
ever, in some cases the condition number was larger for the multigrid approach, but
SDPT3 could not solve the problem and MultiL≥2 could. More research is needed
to determine if this is the only reason that explains the superior performance of the
multigrid method and exactly how the approach helps in the case of SDP problems
with degenerate solutions.

In the final set of experiments, we use Algorithm 1 with the same settings as
in Multi2 and MultiL≥2, but we change the 10−7 tolerance at the fine level. In
particular, we set [tol]L in Algorithm 1 equal to the maximum between the feasibility
and duality gap measures for the fine model when it is solved by SDPT3. We repeat
this exercise using the maximum between the feasibility and duality gap measures for
the fine model obtained by SeDuMi (since SeDuMi uses a different feasibility measures
than SDPT3, we calculate pfeas, dfeas, and gap using the solutions reported by the
solver so they match the SDPT3 criteria). For these experiments we only considered
the cases where SDPT3 and SeDuMi achieved at least a 10−4 tolerance. We show the
results in three tables based on the number of variables n: small size (Table 5, where
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A MULTIGRID APPROACH TO SDP RELAXATIONS 25

Table 5
CPU time comparison for the nonlinear differential equations problems solved to at least a 10−4

accuracy. Small size: n = 20, 30, . . . , 100 (nine relaxations per differential equation).

SDPT3
Differential equations 1 2 3 4 5 6 7 8 9
# Solved SDPT3 9 9 9 9 9 9 9 9 9
# Solved Multi2 8 9 3 9 7 9 9 9 8
# Solved MultiL≥2 8 9 3 9 7 9 9 9 8
% Faster Multi2 88% 100% 0% 67% 0% 89% 11% 0% 25%
% Faster MultiL≥2 88% 100% 0% 67% 0% 89% 0% 0% 0%
tSPDT3/tMulti2 1.29 1.30 0.56 1.10 0.77 1.19 0.89 0.70 0.86
tSPDT3/tMultiL≥2 1.16 1.19 0.48 1.13 0.71 1.08 0.80 0.62 0.79

SeDuMi
Differential equations 1 2 3 4 5 6 7 8 9
# Solved SeDuMi 9 9 2 9 8 9 0 9 9
# Solved Multi2 9 9 2 9 8 9 - 9 9
# Solved MultiL≥2 9 9 2 7 8 9 - 9 9
% Faster Multi2 100% 100% 100% 100% 100% 89% - 100% 100%
% Faster MultiL≥2 89% 100% 100% 100% 100% 78% - 100% 100%
tSeDuMi/tMulti2 1.25 1.69 1.33 1.56 4.10 1.12 - 3.34 1.96
tSeDuMi/tMultiL≥2 1.15 1.53 1.15 1.61 3.75 1.01 - 2.91 1.76

Table 6
CPU time comparison for the nonlinear differential equations problems solved to at least a 10−4

accuracy. Medium size: n = 110, 120, . . . , 500 ( 40 relaxations per differential equation).

SDPT3
Differential equations 1 2 3 4 5 6 7 8 9
# solved SDPT3 35 32 36 12 40 25 40 25 3
# solved Multi2 35 32 36 12 40 25 40 25 3
# solved MultiL≥2 35 32 35 12 39 25 40 25 3
% faster Multi2 100% 100% 97% 92% 90% 100% 100% 80% 67%
% faster MultiL≥2 100% 100% 57% 100% 21% 100% 82% 44% 67%
tSPDT3/tMulti2 1.79 1.78 1.31 1.71 1.15 1.55 1.24 1.15 1.33
tSPDT3/tMultiL≥2 2.49 2.72 1.07 1.52 0.90 2.03 1.20 0.99 1.07

SeDuMi
Differential equations 1 2 3 4 5 6 7 8 9
# solved SeDuMi 40 40 40 40 37 40 0 40 40
# solved Multi2 40 40 40 2 37 40 - 39 19
# solved MultiL≥2 40 40 40 40 37 40 - 40 30
% faster Multi2 100% 100% 95% 100% 100% 100% - 100% 100%
% faster MultiL≥2 100% 100% 62% 100% 100% 100% - 100% 90%
tSeDuMi/tMulti2 2.14 2.76 1.66 2.06 8.10 2.14 - 7.37 2.14
tSeDuMi/tMultiL≥2 3.05 4.30 1.38 4.36 7.25 2.86 - 6.53 1.60

n = 20, 30, . . . , 100), medium size (Table 6, where n = 110, 120, . . . , 500), and large
size (Table 7, where n = 510, 520, . . . , 1000). Each table is divided into two parts: the
first part shows the comparison with SDPT3, and the second part shows comparison
with SeDuMi. We described the first part; the second part with the SeDuMi results
has the same structure. For each of the nine differential equations, the first part
shows the number of relaxations solved by SDPT3 to at least 10−4 accuracy (“#
solved SDPT3”), how many of those models solved were also solved by Multi2 and
MultiL≥2 to the same accuracy obtained by SDPT3 (“# solved Multi2,” “# solved
MultiL≥2”), the percentage of the relaxations solved to the same accuracy where the
time spent by SDPT3 was larger than the multigrid time (“% faster Multi2,” “%
faster MultiL≥2”), and, in the last two rows, the average of the ratio between the
CPU time required by SDPT3 and the CPU time required by the multigrid approach
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26 JUAN S. CAMPOS AND PANOS PARPAS

Table 7
CPU time comparison for the nonlinear differential equations problems solved to at least a 10−4

accuracy. Large size: n = 510, 520, . . . , 1000 ( 50 relaxations per differential equation).

SDPT3
Differential equations 1 2 3 4 5 6 7 8 9
# solved SDPT3 12 12 6 0 50 16 50 0 0
# solved Multi2 12 12 6 - 50 16 50 - -
# solved MultiL≥2 12 12 6 - 50 16 50 - -
% faster Multi2 100% 100% 100% - 100% 100% 100% - -
% faster MultiL≥2 100% 100% 100% - 12% 100% 74% - -
tSPDT3/tMulti2 2.30 1.95 1.49 - 1.09 1.53 1.17 - -
tSPDT3/tMultiL≥2 4.36 3.89 1.91 - 0.89 2.68 1.14 - -

SeDuMi
Differential equations 1 2 3 4 5 6 7 8 9
# solved SeDuMi 50 50 50 50 8 50 0 50 50
# solved Multi2 50 50 50 23 8 50 - 50 7
# solved MultiL≥2 50 50 50 50 8 50 - 50 32
% faster Multi2 100% 100% 100% 100% 100% 100% - 100% 100%
% faster MultiL≥2 100% 100% 100% 100% 100% 100% - 100% 75%
tSeDuMi/tMulti2 1.96 1.84 1.73 1.69 8.93 1.72 - 7.44 1.34
tSeDuMi/tMultiL≥2 4.04 4.16 1.72 3.99 8.74 3.10 - 8.29 1.26

(“tSDPT3/tMulti2 ,” “tSDPT3/tMultiL≥2”). We note that if tolSDPT3 is the maximum
error among pfeas, dfeas, and gap when using SDPT3, then we only compare times
if tolSDPT3 ≤ 10−4 and if the multigrid approach achieved a solution with tolSDPT3
accuracy (the same applies when using SeDuMi). The reported CPU time for the
multigrid approach includes the time spent creating the coarse model and prolongating
the variables.

In general, the multigrid algorithms can solve the relaxations to the same accuracy
as SeDuMi, with the exception of problem 9, where the multigrid approach cannot
achieve the same accuracy as SeDuMi for many relaxations in the medium and large
ranges (the same was observed for problem 5 but only compared with the two level
multigrid method). When compared with SDPT3, the multigrid method can achieve
the same accuracy for medium and large problems, but for small sizes there are
many relaxations where the accuracy obtained by SDPT3 cannot be reached by the
multigrid algorithm. In terms of times, the multigrid method is faster than SeDuMi
on average, while Multi2 is faster for medium and large sizes than SDPT3. For small
sizes, SDPT3 performs better for five of the nine problems than the two versions of
the multigrid method. It is important to note that SeDuMi achieved better accuracy
in general than SDPT3, and it is not surprising that it takes longer than SDPT3.
Our results suggest that using more than two levels in Algorithm 1 is beneficial for
solving medium to large scale problems with high accuracy. However, if the problem
is small and/or a low accuracy is required, then the overhead of creating many levels
and prolongating the solutions may be significant.

7. Conclusion. We showed how to take advantage of both sparsity and hierar-
chical structure present in many large scale polynomial optimization problems. The
hierarchical structure of many polynomial optimization problems indicates that it is
often possible to define fine and coarse models that capture the underlying applica-
tion at different levels of fidelity. Our main contribution was to show how to take
advantage of the information from the SDP relaxations of coarse models. Our the-
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oretical results suggest that if some easy-to-check conditions are satisfied, then we
should expect a significant reduction in complexity by integrating multigrid ideas
with infeasible IPMs. Our numerical results back up our theoretical analysis. In par-
ticular, we showed how the multigrid approach can improve the robustness of IPMs
and reduce solution times, especially for medium to large problems and when high
accuracy solutions are required. This work suggests some interesting directions for
future research. Using a basic one-way multigrid approach, we observed substantial
improvements in practical applications. Therefore, it would be interesting to imple-
ment a full multigrid algorithm that may include v and w-cycles. Another obvious
extension is to study the constrained cases such as in [21, 23], where we would ex-
pect similar patterns such as those described in this work. We concentrated on SDP
relaxations arising from global optimization problems, particularly for the solution
of boundary value problems; however, similar ideas are applicable in other settings
such as moment relaxations of optimal control problems [19]. Finally, in our work
we used the sparse polynomial relaxation developed in [36]. Recently a sparse relax-
ation was proposed in [38] with very promising theoretical and numerical results. The
application of multigrid and the development of prolongation operators for this new
hierarchy are also likely to lead to improvements.
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