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SINGULARLY PERTURBED MARKOV DECISION PROCESSES: A
MULTIRESOLUTION ALGORITHM∗
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Abstract. Singular perturbation techniques allow the derivation of an aggregate model whose
solution is asymptotically optimal for Markov decision processes with strong and weak interactions.
We develop an algorithm that takes advantage of the asymptotic optimality of the aggregate model
in order to compute the solution of the original model. We derive conditions for which the proposed
algorithm has better worst case complexity than conventional contraction algorithms. Based on our
complexity analysis, we show that the major benefit of aggregation is that the reduced order model is
no longer ill conditioned. The reduction in the number of states (due to aggregation) is a secondary
benefit. This is a surprising result since intuition would suggest that the reduced order model can
be solved more efficiently because it has fewer states. However, we show that this is not necessarily
the case. Our theoretical analysis and numerical experiments show that the proposed algorithm can
compute the optimal solution with a reduction in computational complexity and without any penalty
in accuracy.
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1. Introduction. Recently there has been considerable interest in modeling and
control of stochastic dynamics across different timescales. Typical applications appear
in molecular dynamics [7], networked systems [11], manufacturing [15], and optimal
control of energy systems [12], to name just a few. Controlling dynamics across
different scales is computationally difficult, and a considerable amount of literature
has been devoted to the challenge of finding approximate models that capture the
effective dynamics of the system. The main techniques used for optimal control are
based around aggregation, averaging, and homogenization. Starting from the work
of Simon and Ando [16], hierarchical decomposition and aggregation has been at
the core of approximation techniques for modeling and controlling dynamics across
different scales. The literature around this topic is substantial, and we refer the
interested reader to [10] for early work on singular perturbation techniques in optimal
control. The averaging principle and applications in manufacturing are described in
[15]. The homogenization for deterministic optimal control problems has been studied
in [1]. The recent research monograph by Yin and Zhang [18] describes the main
mathematical results in the context of stochastic optimal control using the theory of
singularly perturbed Markov processes. The mathematical framework described in
[18] is the one we adopt in this paper. The main result of the aggregation techniques
and averaging principles reviewed in [15] and [18] is the derivation of an approximate
model that captures the slow dynamics of the system. The approximate model is
based on an asymptotic analysis of a singularly perturbed control problem. (See [18]
for details and section 2 of this paper for precise definitions.)
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The mathematical properties and especially the use of asymptotic techniques
coupled with the perturbation approach for controlling Markov processes have been
extensively studied. However, numerical methods that take into consideration the
specific structure of multiscale Markov processes have not received much attention.
Given all the work that has gone into the development of aggregate models, it is
surprising that the obvious question of whether the reduced order models can be
solved more efficiently than the original model has not been addressed. We take
the first steps toward answering this question for a particular class of multiscale
Markov processes. Based on our complexity analysis, we show that the major ben-
efit of aggregation is that the reduced order model is no longer ill conditioned, and
the reduction in the number of states (due to aggregation) is a secondary bene-
fit. This is a surprising result since intuition would suggest that the reduced order
model can be solved more efficiently because it has fewer states. However, it will
be shown later that this is not necessarily the case. There is no standard defini-
tion for an ill conditioned Markov decision process (MDP). In the context of this
paper, an MDP is ill conditioned if the contraction modulus of value iteration is
approximately equal to one. This means that progress at each iteration will be ex-
tremely slow. We propose a class of multiresolution contraction algorithms that are
not sensitive to the ill conditioning of weakly connected MDPs. Because we are con-
sidering a particular class of MDPs, we are able to improve the worst case complexity
of algorithms based on value iteration. We illustrate our approach on value itera-
tion, but any contraction algorithm can potentially be improved using the proposed
scheme.

It is important to stress that the proposed algorithm aims to solve the original
model and not just obtain an approximation using the aggregate model. The aggregate
model is only asymptotically optimal, and our algorithm exploits its approximate
optimality to reduce the number of iterations with the high dimensional (and often ill
conditioned) model. Our algorithm is ideal when there is some scale separation, but it
is not known whether there is sufficient scale separation to just solve the approximate
model. This setting is the most frequently scenario encountered in practice. For
simplicity, we study a multiscale MDP (MMDP) with two timescales, but generalizing
the results to problems with more than two timescales is straightforward.

The rest of the paper is structured as follows: In section 2 we define the notation
we use and provide a review of existing results. In section 3 we review complexity
results for the value iteration algorithm. We extend some known results from discrete
time to continuous time and give particular emphasis to MMDPs. In section 4 we
review the full approximation scheme (FAS). The FAS can be used to accomplish
some of the objectives we set to achieve in this paper, i.e., take advantage of the
structure of MMDPs to improve the computational efficiency of algorithms for this
class of MDPs. The FAS is a nonlinear extension to the traditional multigrid scheme,
and in section 4, we show that it may not be an appropriate choice for MDPs. Based
on our observations of the complexity of MMDPs in section 3 and the FAS scheme
in section 4, we propose an alternative scheme in section 5. We named our proposed
scheme the alternating multiresolution scheme (AMS) since it uses features from the
FAS and known results regarding the quality of the approximate (aggregate) model.
In section 6, we propose a refinement of our scheme that allows the scheme to be
applied to problems that have a large number of actions. Finally, in section 7, we
illustrate the proposed scheme on two applications, one from manufacturing and one
from chemistry.
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2. Multiscale Markov decision processes. The notation and framework for
MMDPs that we adopt in this paper is standard, and more information and results
can be obtained in [18].

2.1. Markov decision processes. Let xh(t) denote the state of a discrete state
continuous time MDP at time t. We use the subscript h to denote processes that
capture effects at the fast timescale h. We assume that the chain can take one of
a finite number states X h � {l1, l2, . . . , lN}. For each of the states i, 1 ≤ i ≤ N ,
the available actions of state i are denoted by the set Ah

i . A policy uh : X h → Ah

maps states into actions and is described by uh = (a1, a2, . . . , aN ), where ai ∈ Ah
i for

∀i ∈ X h. The space of all policies uh’s is denoted by Uh � {(a1, a2, . . . , aN ) : ai ∈
Ah

i , i = 1, 2, . . . , N}, and we use Ah to denote the space of all possible actions, i.e.,
Ah = ∪Ni=1Ah

i . We assume that we are given a cost function Gh : X h ×Ah → R that
measures the cost associated with a particular state-action pair. We will focus on the
infinite horizon case and denote the discount factor by ρ. All the results reported
in the paper can be extended to the finite horizon case. We use MDP(N,L) to
denote the class of problems for which |X h| = N , |Ah

i | = L for i = 1, 2, . . . , N . It
is easy to generalize our results to the case where each of the action spaces Ah

i have

different cardinality |Ah
i | = Li, but for ease of exposition we assume that |Ah

i | = L
for i = 1, 2, . . . , N . With the notation introduced above we are now in a position to
state the class of problems we study in this paper,

min
uh∈Uh

Jh(i, uh) = E

[∫ ∞

0

e−ρtGh(xh(t), uh(xh(t))) dt
∣∣∣xh(0) = i

]
.(2.1)

The expectation above is taken with respect to a probability matrix P , and we use
Pi,j(t, s) to denote the probability of the process transitioning to state j at time t given
that it starts from state i at time s. According to the theory of Markov processes,
the transition matrix satisfies the following equation:

(2.2)
dP (t, s)

dt
= P (t, s)Qε

h(uh), P (s, s) = IN ,

where Qε
h denotes the infinitesimal generator of xh, and IN denotes the N×N identity

matrix. We are focusing on a Markov process with a multiscale structure, and so we
assume the generator of the process is defined as follows:

(2.3) Qε
h(uh) =

1

ε
Q̂(uh) +W (uh),

where Q̂(uh) = diag(Q̂1(uh), Q̂2(uh), . . . Q̂m(uh)) is a block diagonal matrix with m
blocks, with Q̂k(uh) ∈ R

nk×nk and
∑m

j=1 nj = N , for k = 1, 2, . . . ,m. We further

assume that each Q̂k(uh) is a weakly irreducible Markov generator. For ease of ex-
position, we assume that all blocks have the same size (n). All our results can easily
be generalized to the case where each block has size ni. We use Xk = {lk1, . . . , lknk

},
k = 1, . . . ,m, to denote the states corresponding to Q̂k. This decomposition is done
so that X = ∪mk=1Xk. The small parameter ε is used to capture the multiscale struc-
ture of the process. When ε � 1, the Markov process jumps frequently between the
states within a block Xk and less frequently between states that belong to different
blocks. The matrixW (uh) is also assumed to be a Markov generator, and it is used to
model the transition between the blocks. The smaller the ε, the faster the transitions
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inside the blocks. As ε approaches zero, the transitions inside the blocks happen at
such a fast rate that the process can be approximated by the equilibrium distribution
inside each of the blocks. This idea can be made rigorous, and we refer the reader to
Chapter 6 of [18] for the details. Our aim is to study the complexity and propose an
efficient algorithm for the solution of the stochastic control problem in (2.1).

The class of weakly connected process will be denoted by MMDP(ε, n,m,L),
which is a subclass of MDP(nm,L). Using the dynamic programming principle, it
can be shown that the value function associated with the problem

(2.4) vh(i) = min
uh∈Uh

Jh(i, uh)

satisfies the so-called the Hamilton–Jacobi–Bellman (HJB) equation,

(2.5) ρvh(i) = min
a∈Ah

i

⎡
⎣Gh(i, a) +

∑
j∈Xh,j �=i

qhij(a)[vh(j)− vh(i)]

⎤
⎦ .

Notice that we use min instead of inf in our problem definition because the action
space is discrete and we will assume the Gh is bounded. It was shown in [18] that
(2.5) is equivalent to

(2.6) vh(i) = min
a∈Ah

i

⎡
⎣ Gh(i, a)

|qhii(a)|+ ρ
+
∑
j �=i

qhij(a)

|qhii(a)|+ ρ
vh(j)

⎤
⎦ .

Our analysis will be based on the properties of the contraction operator derived from
value iteration. With that in mind we can rewrite the problem of computing the value
function as the solution of the nonlinear equation

Ahvh = 0,

where Ah is a nonlinear operator defined as follows:

(2.7) (Ahvh)(i) � min
a∈Ah

i

⎡
⎣ Gh(i, a)

|qhii(a)|+ ρ
+
∑
j �=i

qhij(a)

|qhii(a)|+ ρ
vh(j)

⎤
⎦ − vh(i).

The contraction operator will be denoted by Th and is defined below,

(2.8) (Thvh)(i) � min
a∈Ah

i

⎡
⎣ Gh(i, a)

|qhii(a)|+ ρ
+
∑
j �=i

qhij(a)

|qhii(a)|+ ρ
vh(j)

⎤
⎦ .

So far we have not used our assumption that ε� 1. This setting has been extensively
studied in the last thirty years, and in the next section we summarize the results we
will need in our analysis.

2.2. The coarse model. The computational cost of solving (2.1) exactly is ex-
tremely high when the Markov process has a large number of states. Many researchers
noticed that if the problem has the multiscale structure described in the previous sec-
tion, then the computational costs can be reduced by considering an approximate
model. In the approximate model, each set of states associated with each of the
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“fast” blocks is aggregated to a single state. For this reason the resulting approxi-
mate model is called the aggregate model. In this paper, however, we will adopt the
terminologies from the multigrid community by using fine model (defined in (2.1))
and coarse model (defined in (2.9) below) instead of exact and aggregate model. It
can be shown that if ε is small enough, the coarse model becomes arbitrarily accurate.
There are many results of this type for the model described in the previous section,
as well as generalizations to different models. These results are described in [18], and
we refer the reader there for a comprehensive literature review. In our work we will
need to make use of the coarse model and we describe the notation we use below.

The state space of the coarse model is denoted by XH � {l′1, l′2, . . . , l′m}, where
each state i in the coarse model represents block i in the fine model. The available
actions of state i in the coarse model aHi are combinations of the available actions
in block i, and they form the action space AH

i � {(ai1, ai2, . . . , ain) : aij ∈ Ah
Xi(j)
}.

Therefore, uH is the policy of the coarse model, and it takes values from the policy
space UH � {(aH1 , aH2 , . . . , aHm) : aHi ∈ AH

i , i = 1, 2, . . . ,m}. The coarse model is an
MDP(m,Ln) model.

In order to define the coarse model, we also need to define both the coarse Markov
generator and the coarse objective function. Let ϕ1(uH), . . . , ϕm(uH) denote the
stationary distributions of the blocks 1, 2, . . . ,m in the form of column vectors under
policy uH . We obtain the corresponding Markov generator,

QH(uH) = ϕ(uH)W (uH)�̃,

where

ϕ(uH) = diag(ϕT
1 (uH), ϕT

2 (uH), . . . , ϕT
m(uH)),

�̃ = diag(�n×1, �n×1, . . . , �n×1︸ ︷︷ ︸
m copies

),

where �n×1 � (1, 1, . . . , 1)T ∈ R
n×1, and diag(·) is a function which maps its argument

to a diagonal matrix. The coarse cost function is given by

GH(i, uH) =

n∑
k=1

(ϕi(uH))kG
h(Xi(k), uH) ∀i ∈ XH .

Given the notation above, the coarse model is

min
uH

JH(i, uH) = E

[∫ ∞

0

e−ρtGH(xH(t), uH(xH(t))) dt

]
,

s.t. xH ∼ QH(uH(xH(t))) , t ≥ 0,(2.9)

xH(0) = i , uH ∈ UH ,

vH(i) = min
uH∈UH

JH(i, uH).

The corresponding HJB equation becomes

(2.10) vH(i) = min
aH∈AH

i

⎡
⎣ GH(i, aH)

|qHii (aH)|+ ρ
+
∑
j �=i

qHij (aH)

|qHii (aH)|+ ρ
vH(j)

⎤
⎦ .

For the problem, we denote by AH and TH the nonlinear operator and its corre-
sponding contraction operator, respectively. Using singular perturbation techniques
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(see [18]), it can be shown that under the assumptions made in this paper the following
result holds:

v�H(k)→ v�h(i) for i ∈ Xk as ε→ 0,

where v�H denotes the solution of (2.9) and v�h denotes the solution of (2.1). Also,

(2.11) |v�H(k)− v�h(i)| = O(ε) for i ∈ Xk.

3. Computational complexity of multiscale Markov decision processes.
In this section we review the complexity of value iteration for the MMDP model in-
troduced in the previous section. The purpose of this section is twofold. First, the
complexity of MDPs in continuous time has not received as much attention as that
of their discrete-time counterparts. Even though the complexity results here are new,
they are straightforward generalizations of results from discrete time. The second and
main purpose of this section is to point out that the convergence rate of value iteration
becomes arbitrarily bad when ε becomes small. We believe that this insight is an im-
portant consideration when designing algorithms for multiscale processes. Previously,
it was claimed that the coarse model might have lower complexity because it has fewer
states than the fine model. Here we show that an additional and (as discussed later
on) more important advantage is that the coarse model is better conditioned since it
does not depend on ε. We also show that the complexity results below are tight.

3.1. Value-iteration. Value iteration is one of the first methods to be proposed
to solve dynamic programming problems. Value iteration is used to compute the value
function. After the value function, v�h(x), is obtained, the optimal policy u�h can be
obtained by

u�h(i) ∈ arg min
a∈Ah

i

⎡
⎣ Gh(i, a)

|qhii(a)|+ ρ
+
∑
j �=i

qhij(a)

|qhii(a)|+ ρ
v�h(j)

⎤
⎦ .

Therefore, solving the HJB equation is equivalent to solving for the optimal policy u�h
[2]. State-of-the-art deterministic methods for solving HJB equations fall into three
broad categories: linear programming, policy-iteration, and value-iteration [13]. In
this paper, value-iteration is applied to solve the HJB equation even though the cen-
tral idea of this paper can be applied to all three of the methods. The extension of the
proposed framework to the stochastic case (e.g., to approximate dynamic program-
ming techniques) is beyond the scope of the current paper. Value iteration is simply
defined as

(3.1) vk+1
h = Thv

k
h.

The nonlinear operator Th was defined in (2.8), and it is well known that it is a
contraction mapping,

(3.2) ‖Thv1 − Thv2‖∞ ≤ αh‖v1 − v2‖∞,

where v1, v2 ∈ R
N , αh is the Lipschitz constant, 0 < αh < 1. For the MDP model we

study in this paper, the Lipschitz constant is given by

(3.3) αh = max
i∈Xh,a∈Ah

i

|qhii(a)|
|qhii(a)|+ ρ

.
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The Lipschitz constant above is derived in [18], where the HJB equation (2.6) is
reformulated as an HJB equation for discrete time problems with a discount factor
αh in (3.3). For discrete time problems, the discount rate itself is the Lipschitz
constant of the problem [13]. Using the Banach fixed point theorem [17], it can be
shown that for an initial guess v0h, one can compute the solution of the HJB equation
by iteratively applying Th on v0h,

vτhh � T τh
h v0h = (Th ◦ Th ◦ · · · ◦ Th)︸ ︷︷ ︸

τh copies

v0h → v�h as τh →∞.

The Lipschitz constant αh is an upper bound for the convergence rate of the value-
iteration algorithm. In particular,

(3.4) ‖v�h − vτhh ‖∞ ≤ αh‖v�h − vτh−1
h ‖∞ ≤ ατh

h ‖v
�
h − v0h‖∞.

A smaller αh guarantees a faster convergence rate for algorithm. Other than equation
(3.4), we will make use of the following well-known properties of contraction mappings,

‖v�h − vτhh ‖∞ ≤
αh

1− αh
‖vτhh − v

τh−1
h ‖∞,(3.5)

≤ ατh
h

1− αh
‖v1h − v0h‖∞.(3.6)

3.2. Model assumptions. In this section, we state our assumptions, and these
will hold throughout the paper. Some of our results will be asymptotic and will rely
on the assumption that the problem has multiscale structure stronger than certain
threshold ε0. To be precise we assume that ε is such that the value function of the
fine model (2.1) and its corresponding coarse model satisfy the inequality

(3.7) |v�H(k)− v�h(i)| ≤ K̃ε ∀ε < ε0, ∀i ∈ Xk

for some constants K̃ and ε0 < 1. That this inequality holds for an ε small enough
follows from [18, Theorem 7.10, p. 273].

Our second main assumption is that the objective function is bounded. We will
assume that there exists a constant ζ such that

0 ≤ Gh(xh, ah) ≤ ζ ∀xh ∈ X h, ah ∈ Ah.

The bounded assumption is needed to avoid trivialities. Since Gh(·, ·) is assumed to
be bounded, the value function should also be bounded; in other words, there exists
a constant K̂ such that

0 ≤ ‖v�h‖∞ ≤ K̂, 0 ≤ ‖v�H‖∞ ≤ K̂.

Without loss of generality we will assume that the initial guess v0h and v0H are both zero
vectors of the appropriate dimensions. Finally, to simplify our notation, instead of
using K̂ and K̃ we will directly use K � max{K̂, K̃}, where K̃ is defined in equation
(3.7). With these two assumptions, we obtain

0 = ‖v0h‖∞ ≤ ‖v1h‖∞ ≤ ‖v2h‖∞ ≤ · · · ≤ ‖v�h‖∞ ≤ K,(3.8)

0 = ‖v0H‖∞ ≤ ‖v1H‖∞ ≤ ‖v2H‖∞ ≤ · · · ≤ ‖v�H‖∞ ≤ K.(3.9)
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The above inequalities follow from the fact that both operators Th and TH are mono-
tone contraction operators [2]. Also, from (3.8)–(3.9), we have

‖v�h − vh‖∞ ≤ K, ‖Thvh − vh‖∞ ≤ K ∀vh,
‖v�H − vH‖∞ ≤ K, ‖THvH − vH‖∞ ≤ K ∀vH .

Notice that (3.7) and K̃ ≤ K gives

(3.10) |v�H(k)− v�h(i)| ≤ Kε ∀i ∈ Xk.

3.3. Complexity. In this section we discuss the complexity of continuous time
MDPs. The complexity result in this section is a variant of the existing discrete time
result [6]. We use δ > 0 to denote the convergence tolerance for the value iteration
algorithm, i.e., the algorithm terminates when

(3.11) ‖v�h − vτhh ‖ < δ.

The parameter δ > 0 is user specified and since Th is a contraction mapping, for large
enough τh, the above inequality can be satisfied. A more interesting question is how
large τh should be to guarantee that (3.11) holds. We answer this question in the
lemma below by providing an upper bound, and then we give an example to show
that this bound is tight.

Lemma 3.1. The number of iterations in the value-iteration algorithm is bounded
by

(3.12) τh ≤ max

⎧⎪⎪⎨
⎪⎪⎩

log

(
K

(1− αh)δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭ ,

where K = max{K̂, K̃}.
Proof. We use (3.6),

(3.13) ‖v�h − vτhh ‖∞ ≤
ατh
h

1− αh
‖v1h − v0h‖∞ ≤

ατh
h

1− αh
K,

where we used the fact that ‖Thv0h − v0h‖ < K. We then select τ ′h such that

α
τ ′
h

h

1− αh
K = δ.

Rearranging the preceding equation, we obtain the following expression:

τ ′h =

log

(
K

(1− αh)δ

)
| logαh|

.

Since v
τ ′
h

h guarantee the desired accuracy, we have τh ≤ max{τ ′h, 0}.
Equation (3.12) gives an upper bound for the number of iterations we need when

using value-iteration. The complexity of the value-iteration algorithm can be easily
derived from Lemma 3.1. The complexity model we consider in this paper is consistent
with [6], where each arithmetic operation or comparison is considered to cost one unit
of computation.
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Theorem 3.2. The worst–case complexity for the value iteration algorithm in
(3.1) for MDP(N,L) is

(3.14) O

⎛
⎜⎜⎝max

⎧⎪⎪⎨
⎪⎪⎩

log

(
1

(1− αh)δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭N2L

⎞
⎟⎟⎠ .

Proof. For the contraction operator in (2.8) and for an MDP problemMDP(N,L),
the worst-case complexity of computing Thvh is O(N2L), since the total complexity
of the algorithm is the number of iterations multiplied by the cost per iteration. We
obtain the complexity result it (3.14) by applying Lemma 3.1.

A natural question to ask is whether the complexity result in Theorem (3.2) is
tight. We end this section by showing that indeed the bound is tight.

Remark 3.3. Consider an instance ofMDP(N,L) that satisfies the following:
• |Ah

i | = 1 ∀i ∈ X h. This assumption means that the corresponding HJB
equation is a linear equation.
• The cost function Gh(i, ai) = g > 0 ∀i ∈ X h is a constant. Therefore, the
value function v�h(i) = v� is also a positive constant.
• qhii = q ∀i ∈ X h, i.e., each state has the same jump rate.
• The initial guess v0h = 0 is a zero vector, so v0h < Thv

0
h < T 2

hv
0
h < · · · < v�h.

Given the assumptions above, it follows that vτh � T τ
h v

0
h are all constants, i.e., vτh(i) =

vτ ∀i ∈ X h, τ ∈ Z
+. Consider the error reduction rate between iteration τ and τ +1,

‖v�h − vτ+1
h ‖∞ = ‖v�h − T τ+1

h v0h‖∞
= ‖Thv�h − Thvτh‖∞

= max
i∈Xh

∣∣∣∣∣∣ g

|q|+ ρ
+
∑
j �=i

qhij
|q|+ ρ

v� − g

|q|+ ρ
−
∑
j �=i

qhij
|q|+ ρ

vτ

∣∣∣∣∣∣
= max

i∈Xh

∣∣∣∣∣∣
∑
j �=i

qhij
|q|+ ρ

(v� − vτ )

∣∣∣∣∣∣
= max

i∈Xh

∣∣∣∣ |q||q|+ ρ

∣∣∣∣ ‖v�h − vτh‖∞
= αh‖v�h − vτh‖∞.

Therefore, in this particular instance of anMDP(N,L), the number of iterations is
exactly the one given by Lemma 3.1.

3.4. Convergence rate and complexity for multiscale Markov decision
processes. The main motivation for stating Theorem 3.2 is that it will enable us
to make precise statements concerning the computational advantages of the coarse
model derived in section 2.2. Using the results derived above, we show that the
principal benefit of the coarse model is not that the number of states is less, but that
the rate of convergence is much higher (provided that scale separation is present).
In fact, the complexity of the coarse model when no scale separation is present, i.e.,
ε ≈ 1, is greater than that of the original model. The lemma below shows that
MMDP(ε, n,m,L) becomes ill conditioned as ε approaches zero. Note that there is
no standard definition for an ill conditioned MDP. However, in the context of this
paper, an MDP is ill conditioned if the contraction modulus of value iteration is
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approximately equal to one. The lemma below shows that this indeed is the case if
the MDP is singularly perturbed.

Lemma 3.4. For MMDP(ε, n,m,L) with Lipschitz constant αh,

αh → 1 as ε→ 0.

Proof. InMMDP(ε, n,m,L), the Lipschitz constant has the form

αh = max
i∈Xh,a∈Ah

i

∣∣∣∣1ε q̂ii(a) + wii(a)

∣∣∣∣∣∣∣∣1ε q̂ii(a) + wii(a)

∣∣∣∣+ ρ

→ 1 as ε→ 0.

When ε is small, the guaranteed improvement in each iteration is almost zero for
the fine model. On the other hand, for the coarse model the corresponding Lipschitz
constant is given by

αH = max
i∈XH ,aH∈AH

i

∣∣qHii (aH)
∣∣∣∣qHii (aH)

∣∣+ ρ
.

Crucially, αH is independent of the multiscale structure of the original model. There-
fore, there exists a ε� such that

αH ≤ αh for ε ≤ ε�.

In other words, the guaranteed convergence behavior of coarse model is superior to
that of the fine model when ε is small enough. We end this section by comparing the
computational complexity associated with the two models,

Fine Model,MMDP(ε, n,m,L) : O

⎛
⎜⎜⎝max

⎧⎪⎪⎨
⎪⎪⎩

log

(
1

(1− αh)δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭ (mn)2L

⎞
⎟⎟⎠ ,

Coarse Model,MDP(m,Ln) : O

⎛
⎜⎜⎝max

⎧⎪⎪⎨
⎪⎪⎩

log

(
1

(1− αH)δ

)
| logαH |

, 0

⎫⎪⎪⎬
⎪⎪⎭m2Ln

⎞
⎟⎟⎠ .

(3.15)

If ε ≈ 1, then there are no benefits to aggregating the model using the singular
perturbation approach. Indeed, as the preceding equation shows, the coarse model
has an exponential dependence on n that is not present in the original model. We will
discuss ways to alleviate this issue in section 6. Finally, in the setting of this paper,
as ε→ 0, the complexity of the fine model goes to infinity.

4. Analysis of the full approximation scheme. The conventional way to
exploit multiresolution structure of a model is the FAS (see, e.g., [9]). The FAS
is an extension of the multigrid scheme to nonlinear problems. Algorithms based
on multigrid are in spirit close to the scheme we propose in this paper. In other
words, multigrid algorithms try to solve the fine model by considering a hierarchy of
approximate models. We also develop a scheme that fits within this general principle,
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but we propose a different way to couple the models together than the one used in
FAS. We stress that the theory around the FAS is still valid and that the convergence
proof developed in [9] can be used to show that the FAS will converge to the solution of
MMDP(ε, n,m,L). However, we will use a simple numerical example to illustrate the
point that even though convergence is guaranteed, the rate of convergence is likely to
be worse than just solving the fine model with the single level value iteration algorithm.
In section 5, we show how to overcome this problem of the FAS by proposing a different
way of incorporating information from the coarse model to the iterations of the fine
model. We refer the interested reader to the tutorial in [3] for an introduction to
multigrid and the FAS. The FAS is rigorously developed in [9]. In this section, we
just mention some of the key ideas behind multigrid and FAS in order to understand
how the existing framework is likely to fail for multiscale MDPs.

4.1. Prolongation and restriction. The first step in the development of the
FAS is the definition of the prolongation and restriction operators. The prolongation
operator is used to transfer solutions from the coarse model to the fine model. We
use IhH and IHh to denote the prolongation and restriction operators, respectively.
Typically, they are linear operators, and in this paper we take IhH and IHh to be
constant matrices. The exact definition of these operators is problem dependant. For
the class of models we consider in this paper, it is natural to define IhH and IHh based
on the asymptotic properties of the fine and coarse models. The prolongation operator
is given by

IhH = diag(�n×1, �n×1, . . . , �n×1︸ ︷︷ ︸
m copies

) ∈ R
nm×m.

The choice of IhH is based on (3.10), which shows that the value functions are asymp-
totically the same for the states that are in the same block. The definition of the
restriction operator is not as straightforward as that of IhH . There is no obvious
property to approximate vH by vh. However, a natural choice that can be rigorously
justified (see section 5) is to restrict vh into the same size as vH using the station-
ary distribution of each block. Let ϕi denote the column vector for the stationary
distributions associated with block i. We define the restriction operator as follows:

(4.1) IHh = diag(ϕT
1 , ϕ

T
2 , . . . , ϕ

T
m) ∈ R

m×nm.

In other words, we “compress” the values of the value function in block i by forming
a convex combination with the elements in each of the blocks. Notice that Qε

h(uh)
depends on the policy uh and so there exist many different stationary distributions
for each block. To address this problem, we select Qε

h(ũh) with ũh as the best policy
for the current incumbent solution at iteration τ , vτh. That is, we select ũ such that

ũh(i) ∈ arg min
a∈Ah

i

⎡
⎣ Gh(i, a)

|qhii(a)|+ ρ
+
∑
j �=i

qhij(a)

|qhii(a)|+ ρ
vτh(j)

⎤
⎦

for the current solution vτh, and apply (4.1) with ϕ1, ϕ2, . . . , ϕm as the stationary
distributions of blocks 1, 2, . . . ,m in Qε

h(ũh). It follows from (3.10) that there exists
a constant K such that

(4.2) ‖v�h − IhHv�H‖∞ ≤ Kε.
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Fig. 1. The FAS.

4.2. The FAS algorithm. With the definitions of IHh and IhH provided above,
we are now in a position to fully specify the FAS. The main idea of the FAS is simple,
and we describe it as a solution algorithm for the following general nonlinear equation:

(4.3) Ah(vh) = fh.

In our case, Ah is given in (2.7) and fh can be taken to be zero (at the finest level).
Given an incumbent solution v̂h, we can proceed to compute the exact correction for
v̂h so that it solves (4.3). That is, we compute an e�h such that

Ah(v̂h + e�h) = fh.

Of course the preceding nonlinear equation is just as hard as the original problem. The
idea behind the FAS is instead of computing e�h using the fine model, an approximation
of e�h is computed using the coarse model by solving the correction problem

AH(IHh v̂h + eH) = dH ,

where

dH � AH(IHh v̂h)− sIHh (Ah(v̂h)− fh)

for some stepsize s. The existences of s and dH establishes a useful relation between
the fine and coarse models [9]. Finally, we complete the correction v̂h + 1/sIhHeH .
Figure 1 illustrates the main steps of FAS. We first compute v̂h by τ applications of
Th. We then restrict the solution to the coarse scale and perform some iterations in
the coarse scale to obtain an approximate correction eH . We then prolongate the error
correction term to the fine model and continue performing iterations at the fine scale.
The addition of the prolongated error 1/sIhHeH to the current solution v̂h can lead
to faster convergence rates than just using the fine model. The stepsize s is needed
because this is a nonlinear problem. Obviously, it is possible to have more than one
level. The full details of the algorithm are given in [9].

4.3. Numerical example from a multiscale manufacturing system. The
full approximation scheme appears to be a good method to solve multiscale MDPs.
It solved both the problems we set out to address in this paper, i.e., it uses the coarse
model that is better conditioned, but still computes an exact solution for the original
model. However, we will show using a simple example that for MDPs with multiscale
structure the FAS can have an extremely slow convergence rate. The algorithm still
converges, but it is much slower than simple value iteration. We propose a solution
to this issue in the next section.

The example we use is not a contrived model but a simple and widely used
model motivated by a manufacturing application. The model is described in [18] and
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concerns the control of a manufacturing process with two machines. Each machine
has two states, up and down. We use 1 to denote that machine is working and 0
for the state when the machine is broken down. The total number of states in the
system is {(1, 1), (0, 1), (1, 0), (0, 0)}, where (i, j) represents the state where machine
1 in state i and machine 2 in state j. In this manufacturing process, the state of each
machine depends on the action a, which is the rate of preventive maintenance. The
overall goal of the problem is to pick the policy u such that the machines do not break
down often while the cost of maintenance is not too high. The model further assumes
that the two machines have failure rates that occur in different timescales. To reflect
this assumption, the following generator is used:

Qε
h(a) =

1

ε

⎡
⎢⎢⎣
−λ1(a) λ1(a) 0 0
μ1(a) −μ1(a) 0 0
0 0 −λ1(a) λ1(a)
0 0 μ1(a) −μ1(a)

⎤
⎥⎥⎦(4.4)

+

⎡
⎢⎢⎣
−λ2(a) 0 λ2(a) 0

0 −λ2(a) 0 λ2(a)
μ2(a) 0 −μ2(a) 0
0 μ2(a) 0 −μ2(a)

⎤
⎥⎥⎦ ,

where λ1(a)/ε and μ1(a)/ε are the breakdown and repair rates for machine 1 and
λ2(a) and μ2(a) for machine 2, respectively. As we can see, (4.5) is in the same form
of (2.3). Intuitively, the more preventive maintenance is performed on a machine, then
the machine is more likely to stay in state 1. For this simple example, we assume
X h = {1, 2, 3, 4}, a ∈ {1, 2, . . . , 5}, and

λ1(a) = 1/a, μ1(a) = a2,

λ2(a) = 3/a, μ2(a) = 3a.

A higher value of a would ensure the system is online more often. Of course, the more
maintenance is performed, the higher the costs. To reflect this trade-off we use the
following objective function:

Gh(x, a) = x2 + a2 ∀x ∈ X h , a ∈ {1, 2, 3, 4, 5}.

We used the FAS scheme to solve the infinite horizon version of the model described
above. We plot the iteration history of the FAS against the exact solution of the fine
model in Figure 2. The exact solution was obtained using linear programming. It may
initially appear the FAS has a similar performance as the value iteration algorithm
when applied to the fine model. On closer inspection, this is not the case. To illustrate
this point we zoom in to the part of the computation where the FAS jumps to the
coarse model (iteration 5000 in this example). From Figure 2 we see that actually
no useful computation is performed during the coarse iterations. We point out that
we tried different strategies for updating the stepsize as well as experimenting with
the different parameters (such as when to jump to the coarse model and how many
iterations to perform there). The numerical performance of the FAS is disappointing.
It appears that the correction does not help the incumbent solution to get closer to
the exact solution. In the next section, we discuss some possible reasons why the FAS
may not be suitable for solving MDPs.
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Fig. 2. Performance of the FAS, ε = 10−2, initial number of iterations in the fine model: 5000,
stepsize s = 1. The figure shows that no useful computation is performed by the FAS during the
coarse iterations.

4.4. Lack of progress in the coarse iterations of the FAS. In this section,
we provide some possible explanations as to why the coarse iterations of the FAS do
not provide useful corrections to the current fine solution. To simplify the analysis,
suppose that there is only one policy uh. We drop the dependence on uh from Qε

h

and Gh(·). It is easy to generalize our conclusions to the case when the policy space
is richer. With these simplifications, our model reduces to the linear equation

(Ahvh)(i) �
Gh(i)

|qhii|+ ρ
+
∑
j �=i

qhij
|qhii|+ ρ

vh(j)− vh(i) = 0,

which can be written more compactly as Lhvh = bh, where

Lh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 qh12
|qh11|+ ρ

. . .
qh1nm
|qh11|+ ρ

qh21
|qh22|+ ρ

−1 . . .
qh2nm
|qh22|+ ρ

...
. . .

. . .
...

qhnm1

|qhnmnm|+ ρ
. . . . . . −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, bh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Gh(1)

|qh11|+ ρ

− Gh(2)

|qh22|+ ρ
...

− Gh(nm)

|qhnmnm|+ ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding coarse model also reduces to the linear system LHvH = bH , where

LH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 qH12
|qH11|+ ρ

. . .
qH1m
|qH11|+ ρ

qH21
|qH22|+ ρ

−1 . . .
qH2m
|qH22|+ ρ

...
. . .

. . .
...

qHm1

|qHmm|+ ρ
. . . . . . −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, bH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Gh(1)

|qh11|+ ρ

− Gh(2)

|qh22|+ ρ
...

− Gh(m)

|qhmm|+ ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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(a) Traditional Discretization in Differential
Equations

(b) Aggregation for MMDP

Fig. 3. Different ideas between discretization and aggregation.

Given an incumbent solution vh and the exact correction e�h, we have

Lh(vh + e�h) = bh,

from which we obtain the following:

e�h = L−1
h bh − vh = L−1

h bh − L−1
h Lhvh = L−1

h (bh − Lhvh).

Letting dh = Lhvh − bh, we obtain

e�h = L−1
h (bh − Lhvh) = −L−1

h dh.

The FAS approximates e�h by computing a correction in the coarse model. For the
correction problem, we let vH � IHh vh, dH � LHvH − sIHh dh and compute

ṽH � L−1
H dH = vH − sL−1

H IHh dh.

Then, the correction is

ẽh � 1

s
IhH(ṽH − vH) =

1

s
IhH(−sL−1

H IHh dh) = −IhHL−1
H IHh dh.

In the case when IhHL−1
H IHh ≈ L−1

h , the correction problem provides a good approx-
imation of e�h. Traditionally, multigrid methods are aimed toward the solution of
differential equations and discretize a continuous space into different grid sizes. The
assumption that IhHL−1

H IHh ≈ L
−1
h usually holds because LH and Lh are discrete op-

erators derived from the same continuous operator. However, in the case of MMDP,
our coarse model is obtained by averaging each block with its stationary distribution,
which makes LH different than Lh. Also, as ε→ 0, LH remains unchanged, but this
is not the case for Lh. Figure 3 illustrates the differences between the two kinds of
problems.

In order to give some deeper insights into the numerical challenges caused by
MMDP models, we consider the example from the previous subsection when we
have a single action, a = 1. In this simple setting we can compute Lh and LH exactly
and see the differences between the two operators. We performed this analysis with the
parameters described in the previous section and found that the difference between
IhHL−1

H IHh and L−1
h is very large, especially for smaller ε. The difference between

the two operators was measured using the spectral norm. We also computed the
eigenvalues of L−1

h in closed form. The resulting expression are long but can be easily
computed using a symbolic mathematics package. From our calculations we observed
that as ε approaches zero, the matrix Lh becomes nearly singular and therefore its
inverse does not exist. In contrast, LH is independent of ε and its inverse always exists.
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Fig. 4. The AMS.

This explains why the difference between IhHL−1
H IHh and L−1

h is very large for small ε.
In addition, we found that this difference, when measured using the spectral norm,
is a log-linear function of ε. This indicates that FAS is not suitable for our problem
because the basic motivation of FAS does not fit with the setup ofMMDP models.
In the next section, we will introduce a new scheme, the alternating multiresolution
scheme that attempts to address some of these issues.

5. The alternating multiresolution scheme. We have already seen in sec-
tion 4 that the traditional full approximation scheme is not suitable forMMDP. We
introduce a new algorithm, the AMS, to address the low convergence rate of the FAS.
One can think of the AMS as a modified version FAS. In particular, we eliminate
the correction problem in the coarse model and replace it with the original coarse
problem. The main idea of the AMS is to split all the iterations in the coarse model
into many pieces.

Algorithm 1. The P-AMS.

• Start with initial guess v0H .
• v1H ← T

τH,P

H v0H .
• v0h ← IhHv

1
H .

for p = 1, 2, . . . , P do
• v1h ← T

τh,P

h v0h.
• v1H ← IHh v

1
h.

• v2H ← T
τH,P

H v1H .
• v0h ← v1h + sIhH

[
(v2H − v1H)

]
(where s is the stepsize).

end for
while Ah(v

0
h) ≥ δ do

• v0h ← Thv
0
h.

end while

In the AMS, neither the coarse model nor the fine model are solved completely
once. Instead, we apply the coarse contraction map τH,P times to the initial guess of
the coarse model then project the solution to the fine model as an initial guess. We
then apply the fine contraction map Th for τh,P times, project it back to the coarse
model for τH,P iterations to find the approximate error, and so on. The scheme
is shown in Figure 4. For convenience we number the nodes and pair up one fine
iteration node with one coarse iteration node together. We start with node 1, which
is a coarse iteration node, and we add 1 to the iteration counter whenever we switch
between coarse and fine iterations. With this indexing convention, all the odd nodes
are iterations with the coarse model, and all the even nodes are iterations with the fine
model. For an alternating multiresolution scheme with M nodes, we pair up node 2j
and node 2j + 1 together, j = 1, 2, . . . , (M − 2)/2. A P-AMS denotes the alternating
multiresolution scheme with P pairs. Figure 4 illustrates the P-AMS with P = 3. We
state the full algorithm below.
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Fig. 5. The one-way multiresolution scheme (OWMS).

In order to have a fully specified algorithm, we need to decide τh,P , τH,P , and a
strategy to pick the stepsize parameter s. We discuss how the number of iterations is
determined below. We first discuss this issue on a simplified version of AMS before
addressing the general case.

5.1. One-way multiresolution scheme. We begin our analysis of the AMS for
the specific case where we only have two nodes. We call this specific scheme the one-
way multiresolution scheme (OWMS). In this scheme, we solve the coarse model first
and prolongate the solution as an initial guess for the fine model. Figure 5 illustrates
the simplified scheme. The lemma below gives an upper bound on the number of
iterations that need to be performed in the coarse model. The significance of the
lemma below is that it provides an estimate of the number of iterations required and
relies on known input data.

Lemma 5.1. The number of iterations required to achieve the following accuracy
in the coarse model,

(5.1)
∥∥∥vτH,0

H − vτH,0−1
H

∥∥∥
∞
≤ Kε(1− αH)

αH
,

is bounded by

(5.2) τH,0 ≤
log

(
1

ε(1− αH)

)
| logαH |

.

In addition, when (5.1) is satisfied, v
τH,0

H satisfies

(5.3) ‖v�H − v
τH,0

H ‖∞ ≤ Kε,

where the constant K was defined in (3.10).
Proof. Using the contraction property (3.5),

‖v�H − v
τH,0

H ‖∞ ≤
αH

1− αH
‖vτH,0

H − vτH,0−1
H ‖∞ ≤

αH

1− αH
K
ε(1− αH)

αH
≤ Kε.

In order to find the bound of τH,0, we select τ ′H,0 such that

‖vτ
′
H,0

H − vτ
′
H,0−1

H ‖∞ ≤ α
τ ′
H,0−1

H ‖v1H − v0H‖∞ ≤ α
τ ′
H,0−1

H K = K
ε(1− αH)

αH
,

and so

α
τ ′
H,0−1

H K = K
ε(1− αH)

αH
,(5.4)

τ ′H,0 =

log

(
1

ε(1− αH)

)
| logαH |

.(5.5)
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Fig. 6. Stopping criteria in the coarse model.

Notice that τ ′H,0 > 0 because both ε < 1 and αH < 1. Since v
τ ′
H,0

H guarantees the
desired accuracy, we have τH,0 ≤ τ ′H,0, for τ

′
H,0 in (5.5).

Figure 6 illustrates the concept behind the stopping criterion developed in the
preceding lemma. The reason we do not compute the exact v�H is that using v

τH,0

H as
the initial point for the fine iterations (bold line) is always faster than the alternative
(dotted line) of computing the fine solution v�H and then performing fine iterations to
compute v�h. The preceding lemma just gives a rigorous backing to the intuitive idea
that the exact solution of the approximate model does not add enough information
to justify the cost of computing it.

The next step in the definition of the OWMS is the definition of τh,0, i.e., the
number of iterations that need to be performed in the fine scale. Of course, this
number must depend on the a user specified error tolerance δ defined as follows:

‖v�h − v
τh,0

h ‖∞ < δ.

Any solution that satisfies the solution above is called δ-optimal. (Note that under
our assumptions v�h is unique.) The upper bound derived in the lemma below depends
on δ and the amount of scale separation present in the problem ε.

Lemma 5.2. Suppose that the initial point for the fine iterations is

v0h � IhHv
τ ′
H,0

H ,

where τ ′H,0 satisfies (5.1). Then the number of iterations in the fine model required to
compute a δ-optimal solution is bounded by

(5.6) τh,0 ≤ max

⎧⎪⎪⎨
⎪⎪⎩

log

(
Kε(2− αH)

δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭ .

Proof. Since the initial guess of the fine model is the solution in the coarse model,
using Lemma 5.1, we have

‖v0h − v�h‖∞ ≤ ‖v0h − IhHv�H‖∞ + ‖IhHv�H − v�h‖∞,

≤ ατ ′
H,0

H ‖v0H − v�H‖∞ +Kε,

≤ ατ ′
H,0

H K +Kε,

= ε(1− αH)K +Kε,

= Kε(2− αH).
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Hence, we select a parameter τ ′h,0 such that

‖vτ
′
h,0

h − v�h‖∞ ≤ α
τ ′
h,0

h ‖v0h − v�h‖∞ ≤ α
τ ′
h,0

h Kε(2− αH) = δ,

and so

τ ′h,0 =

log

(
Kε(2− αH)

δ

)
| logαh|

,

as required.
It follows from the lemma above that the number of iterations in the fine model

decrease as ε decreases. This is because when ε decreases, the coarse model is a
better approximation of the fine model and so we require fewer iterations in the fine
model. This is in stark contrast to the classical single scale value iteration algorithm
that requires more iterations as ε decreases. As ε → 0, the contraction modulus of
value iteration αh will tend to 1. In practice this means that if there is sufficient
scale separation in the model, value iteration will be extremely slow. According to
Lemma 3.1, the number of iterations required will tend to infinity as αh → 1. However,
when ε→ 0, the prolongated value function IhHvH will equal tend to vh, and so only
using the coarse model will be enough to get an accurate solution.

For OWMS and when ε → 0, it follows from Lemma 5.2 that the upper bound
of the number of iterations needed in the fine model tends to zero, i.e., no iterations
are needed in the fine model. This is very good news from the point of computation
because, as alluded to above, when ε is small the algorithm may require arbitrarily
many iterations using the full model to converge. At the regime of ε→ 0, the coarse
model can replace the fine model completely, and OWMS can detect that ε is small
enough and not perform any expensive iterations using the fine model.

Note that ε is not an input parameter for our algorithm but represents the scale
difference in the problem. On the other hand, δ is a user specified parameter and
it represents the accuracy of the final solution. Therefore, the two parameters are
independent of each other. For larger δ, the final solution could be less accurate, and
so it requires less iterations in the fine model. This again can be seen from Lemma 5.2.
While ε and δ are not directly related, they could have similar effects, for example, a
small δ (high accuracy), and for a fixed ε will mean that more iterations using the fine
model will be performed by both value iteration and OWMS. Similarly, for a fixed δ,
a small ε would imply more iterations for the classical value iteration algorithm, but
the situation for OWMS is more complicated. For example, if ε � δ, then OWMS
will make no iterations with the fine model. All these relationships can be derived
from the expressions derived in Lemma 5.2 and depend on parameters that are known
(up to a multiplicative constant) by the user.

Of course, comparing just the number of iterations in the fine model is not suf-
ficient. In order to perform a more rigorous and fair comparison between the newly
proposed scheme OWMS and the classical single scale value iteration, we derive the
complexity of OWMS. We then find the conditions the MDP has to satisfy in order
for the OWMS to have a more favorable complexity than value iteration.

Theorem 5.3. For MMDP(ε, n,m,L), the complexity of the OWMS is

(5.7) O

⎛
⎜⎜⎝
log

(
1

ε(1− αH)

)
| logαH |

m2Ln +max

⎧⎪⎪⎨
⎪⎪⎩

log

(
ε(2− αH)

δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭ (nm)2L

⎞
⎟⎟⎠ .
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Proof. The complexity of the algorithm is divided into two parts. The first part
is the computational complexity associated with the coarse model. The second part is
the complexity associated with fine iterations. Combining the information obtained
by the Lemmas 5.1 and 5.2, we obtain the required result.

We are now in a position to derive conditions that the MDP needs to satisfy so
that we can guarantee that the proposed scheme will outperform value iteration.

Theorem 5.4. Suppose that the tolerance δ < min{ε(2− αH), 1}. For MMDP
(ε, n,m,L), the complexity of the OWMS is less than the complexity of the value-
iteration if

(5.8) n2 ≥ log(ε(1− αH))

log(ε(2− αH)(1 − αh))

| logαh|
| logαH |

Ln−1.

Proof. From (5.7) and (3.15), we know the complexity of both algorithms. Also,
since δ < min{ε(2− αH), 1},

log

(
ε(2− αH)

δ

)
> 0 and log

(
1

(1− αh)δ

)
> 0.

We proceed by computing the difference between the complexities:

log

(
1

(1 − αh)δ

)
| logαh|

(nm)2L−
log

(
1

ε(1− αH)

)
| logαH |

m2Ln −
log

(
ε(2− αH)

δ

)
| logαh|

(nm)2L

=
m2

L

[
log

(
1

ε(1− αh)(2− αH)

)
n2

| logαh|
− log

(
1

ε(1− αH)

)
Ln−1

| logαH |

]
.

Using inequality (5.8) implies that the difference is greater than

≥ m2

L

[
log

(
1

ε(1− αH)

)
Ln−1

| logαH |
− log

(
1

ε(1− αH)

)
Ln−1

| logαH |

]
.

≥ 0.

As we can see, the complexity of the OWMS is not always less than the single
resolution algorithm. This is due to the fact that the number of actions for each coarse
state is an exponential compared to the number of actions for each single state in the
fine model. We will return to this issue in section 6. If the problem has sufficient
scale separation (which is the setting of this paper), then we see that because

log(ε(1 − αH))

log(ε(1− αh)(2 − αH))

| logαh|
| logαH |

→ 0 as ε→ 0,

inequality (5.8) is asymptotically satisfied in ε. Therefore, for a small enough ε, the
complexity of the OWMS is less than that of value iteration.

5.2. Convergence analysis of AMS. In this section we turn our attention
to the full AMS which includes the OWMS as a special case. We first prove some
technical lemmas that will be used later on.
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Lemma 5.5. IHh I
h
H = Im, where Im is the identity matrix in R

m×m.
Proof. By definition, IhH = diag(�n×1, �n×1, . . . , �n×1︸ ︷︷ ︸

m copies

), so for any v = (vi) ∈ R
m,

IhHv = diag(�n×1, �n×1, . . . , �n×1︸ ︷︷ ︸
m copies

)v = diag(v1,v2, . . . ,vm),

where vi = vi�n×1, for i = 1, 2, . . . ,m. The equality above follows from the fact that
the vector v is premultiplied with a block diagonal matrix. Using the definition of
IHh , we obtain

IHh I
h
Hv = diag(ϕT

1 , ϕ
T
2 , . . . , ϕ

T
m)diag(v1,v2, . . . ,vm).

Using the fact that the ϕi are the stationary distribution vectors,

n∑
j=1

(ϕi)j = 1 ∀i ∈ {1, 2, . . . ,m},

we obtain ϕT
i vi = vi and I

H
h I

h
Hv = v, as claimed.

Lemma 5.6. ‖IhH‖∞ = ‖IHh ‖∞ = 1.
Proof. IhH is a matrix with only one 1 in each of its rows, and so ‖IhH‖∞ = 1. On

the other hand, IHh is a stochastic matrix, and so ‖IHh ‖∞ = 1.

Lemma 5.7. ‖I − IhHIHh ‖∞ ≤ 2, where I is the identity matrix in R
mn×mn.

Proof. Notice that IHh is a stochastic matrix, and

IhHI
H
h = diag(�n×1, �n×1, . . . , �n×1︸ ︷︷ ︸

m copies

)diag(ϕT
1 , ϕ

T
2 , . . . , ϕ

T
m) = diag(ϕ̂T

1 , ϕ̂
T
2 , . . . , ϕ̂

T
m),

where ϕ̂T
i � �n×1ϕ

T
i for i = 1, 2, . . . ,m. In addition, IhHI

H
h is also a stochastic matrix

because each of ϕ̂T
i is a stochastic matrix. Therefore, the sum of the absolute values

for every row of I − IhHIHh must be less than or equal to 2.
Suppose we have a current solution vh; we then restrict it to the coarse model for

correction, and we then prolong the correction to the fine model and add it to vh. We
call this process a correction, and the associated correction operator is defined as

(5.9) Tτvh � vh + sIhH (T τ
HI

H
h vh − IHh vh).

If the correction v′h = Tτvh is useful for the problem, then the new solution v′h should
be closer to the optimal solution than the original vh. In the next lemma, we provide
a link between the corrected value function v′h and the current incumbent vh.

Lemma 5.8. For the current value vh in the fine level, let v′h = Tτvh, and then

(5.10) ‖v�h − v′h‖∞ ≤ [|1− s|+ sατ
H ] ‖v�h − vh‖∞ + (sατ

H + s)Kε+ 2Ks,

where s ≥ 0 is the fixed stepsize.
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Proof.

‖v�h − v′h‖∞ = ‖v�h − vh − sIhH(vτH − IHh vh)‖∞
= ‖v�h − vh − sIhHvτH + sIhHI

H
h vh‖∞

≤ |1− s‖|v�h − vh‖∞ + s‖v�h − IhHvτH‖∞
+ s‖vh − IhHIHh vh‖∞

≤ |1− s‖|v�h − vh‖∞ + s‖v�h − IhHv�H‖∞
+ s‖IhHv�H − IhHvτH‖∞ + s‖I − IhHIHh ‖∞‖vh‖∞

≤ |1− s‖|v�h − vh‖∞ + sKε+ s‖IhH‖∞‖v�H − vτH‖∞ + 2Ks

≤ |1− s‖|v�h − vh‖∞ + sKε+ sατ
H‖v�H − IHh vh‖∞ + 2Ks

≤ |1− s‖|v�h − vh‖∞ + sKε+ sατ
H‖v�H − IHh v�h‖∞

+ sατ
H‖IHh v�h − IHh vh‖∞ + 2Ks

≤ |1− s‖|v�h − vh‖∞ + sKε+ sατ
H‖IHh ‖∞‖IhHv�H − v�h‖∞

+ sατ
H‖v�h − vh‖∞ + 2Ks

≤ (|1− s|+ sατ
H)‖v�h − vh‖∞ + (s+ sατ

H)Kε+ 2Ks.

Lemma 5.8 provides a bound for the difference between the new solution v′h and
the optimal solution v�h. Using the preceding result, we then derive the conditions
required for the new error to be smaller than the previous error. Therefore, when
these conditions are satisfied, Algorithm 1 is a contraction, and the convergence is
guaranteed by the fixed point theorem.

Theorem 5.9. Algorithm 1 is guaranteed to be a contraction if

(1− ατ
H)‖v�h − vh‖∞ ≥ (ατ

H + 1)Kε+ 2K for 0 ≤ s ≤ 1,[
2

s
− (1 + ατ

H)

]
‖v�h − vh‖∞ ≥ (ατ

H + 1)Kε+ 2K for s > 1.

Proof. In the case 0 ≤ s ≤ 1, using Lemma 5.8 we obtain

‖v�h − v′h‖∞ ≤ [|1− s|+ sατ
H ] ‖v�h − vh‖∞ + (sατ

H + s)Kε+ 2Ks

= ‖v�h − vh‖∞ + s ([ατ
H − 1] ‖v�h − vh‖∞) + s ((ατ

H + 1)Kε+ 2K)

≤ ‖v�h − vh‖∞ − s ((ατ
H + 1)Kε+ 2K) + s ((ατ

H + 1)Kε+ 2K)

≤ ‖v�h − vh‖∞.

For the case 1 < s, we obtain

‖v�h − v′h‖∞ ≤ [|1− s|+ sατ
H ] ‖v�h − vh‖∞ + (sατ

H + s)Kε+ 2Ks

= ‖v�h − vh‖∞ + s

(
−2

s
+ (1 + ατ

H)

)
‖v�h − vh‖∞ + s ((ατ

H + 1)Kε+ 2K)

≤ ‖v�h − vh‖∞ − s
(
(ατ

H + 1)K̃ε+ 2
)
+ s ((ατ

H + 1)Kε+ 2K)

≤ ‖v�h − vh‖∞.

We note from the conditions of Theorem 5.9 that (ατ
H +1)Kε+2K is a constant

through out all the iterations. However, ‖v�h − vh‖∞ depends on the current solution
vh. This indicates the correction is not guaranteed to be useful when the current
solution is too close to the exact solution v�h. This suggests that we should restrict
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the number of coarse iterations of the algorithm. We should not perform coarse
iterations when the current solution is close to v�h. The result does not provide insight
into how to select s since it depends on the optimal solution. In the result below, we
provide the range that s can take so that the conditions of Theorem 5.9 are satisfied.

Corollary 5.10. Algorithm 1 is guaranteed to be a contraction if the stepsize
is chosen so that

0 ≤ s ≤ 2

1 + ατ
H

.

Proof. Using the result from Theorem 5.9, we obtain

(ατ
H + 1)Kε+ 2K ≥ 0.

Algorithm 1 is guaranteed to be a contraction only if

1− ατ
H ≥ 0 for 0 ≤ s ≤ 1,(5.11)

2

s
− (1 + ατ

H) ≥ 0 for s > 1.(5.12)

In the case when s ≤ 1, (5.11) is always satisfied, and in addition the following holds:

|1− s|+ sατ
H = 1− s+ sατ

H = 1− s(1− ατ
H) ≤ 1.

However, when s > 1, (5.12) is only satisfied when

s ≤ 2

1 + ατ
H

.

For 1 < s ≤ 2

1 + ατ
H

,

|1− s|+ sατ
H = −1 + s+ sατ

H = −1 + s(1 + ατ
H) ≤ 1.

The above corollary shows that when s > 2/(1+ατ
H), it is not guaranteed that the

correction would be useful. With the results obtained above concerning the correction
iterations, we are now in a position to derive the complexity of the proposed scheme.

Let v2ia,h denote the solution after calculations in node 2i, and let v2i−1
a,H be the

solution after calculations in node 2i− 1 for i = 1, 2, . . . , P + 1. Since the incumbent
solution v2i−1

a,H is in the coarse level, we prolongate the solution of the coarse model to
the fine model as follows:

vja =

{
vja,h if j is even,

IhHv
j
a,H if j is odd

for j = 1, 2, . . . , 2(P + 1).

With this notation, the flow of computations for the AMS is

v0a ⇒ v1a ⇒ v2a ⇒ · · · ⇒ v2P+1
a ⇒ v2(P+1)

a ,

where v
2(P+1)
a is the final solution computed by the algorithm and therefore satisfies

‖v�h − v2(P+1)
a ‖∞ ≤ δ,

where δ is a user specified error tolerance. We assume that for P-AMS, we always
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perform τH,P iterations in each coarse iteration node and τh,P iterations in first P
fine iteration node for constants P , τh,P , and τH,P . In the complexity analysis below,
we fix these constants and calculate the number of iterations the algorithms needs to
refine the final solution from the AMS.

Lemma 5.11. Suppose that in the P-AMS, we perform τH,P iterations in node
1, 3, 5, . . . , 2P + 1 and τh,P iterations in node 2, 4, 6, . . . , 2P , and with a constant
stepsize s satisfying the conditions in Corollary 5.10. Then the initial point (v2P+1

a )
from which the computations in the final node 2P + 2 start satisfies

(5.13) ‖v�h − v2P+1
a ‖∞ ≤ ηPKε+ ηPα

τH,P

H K +
1− ηP+1

1− η sC,

where η � (|1 − s|+ sα
τH,P

H )α
τh,P

h and C � (1 + α
τH,P

H )Kε+ 2K.
Proof. We will prove this using induction. Using the contraction mapping prop-

erty,

‖v�h − v1a‖∞ ≤ ‖v�h − IhHv�H‖∞ + ‖IhHv�H − v1a‖∞
≤ Kε+ α

τH,P

H ‖v�H − v0H‖∞
= Kε+ α

τH,P

H K

and

‖v�h − v2a‖∞ ≤ α
τh,P

h ‖v�h − v1a‖∞.

Using Lemma 5.8, we have

‖v�h − v3a‖∞ ≤
[
|1− s|+ sα

τH,P

H

]
‖v�h − v2a‖∞ + (sα

τH,P

H + s)Kε+ 2Ks,

which gives the following estimate:

‖v�h − v3a‖∞ ≤
[
|1− s|+ sα

τH,P

H

]
α
τh,P

h ‖v�h − v1a‖∞ + (sα
τH,P

H + s)Kε+ 2Ks

= η‖v�h − v1a‖∞ + sC.

By induction, after P pairs, we have

‖v�h − v2P+1
a ‖∞ ≤ ηP ‖v�h − v1a‖∞ + sC

P∑
k=0

ηk

= ηP ‖v�h − v1a‖∞ +

(
1− ηP+1

1− η

)
sC

≤ ηPKε+ ηPα
τH,P

H K +

(
1− ηP+1

1− η

)
sC,

as required.
Lemma 5.11 establishes the error of the current solution before entering the last

node. We now complete the analysis by deriving an upper bound for the number of
iterations required in the fine model to get the final solution with tolerance δ.

Lemma 5.12. Suppose that in the P pairs alternating multiresolution scheme,
we perform τH,P iterations in node 1, 3, 5, . . . , 2P + 1 and τh,P iterations in node
2, 4, 6, . . . , 2P , and with a constant stepsize s satisfying the conditions in Corollary 5.10.
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The number of iterations in the last node τa is bounded by

(5.14) τa ≤ max

⎧⎪⎪⎨
⎪⎪⎩
log

(
KZ

δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭ ,

where

Z � ηP ε + ηPα
τH,P

H +
1− ηP+1

1− η s
(
(1 + α

τH,P

H )ε+ 2
)
,(5.15)

η � (|1− s|+ sα
τH,P

H )α
τh,P

h .(5.16)

Proof. Using Lemma 5.11 implies

‖v�h − v2P+1
a ‖∞ ≤ ηPKε+ ηPα

τH,P

H K +

(
1− ηP+1

1− η

)
sC

≤ K
[
ηP ε+ ηPα

τH,P

H +
1− ηP+1

1− η s
(
(1 + α

τH,P

H )ε + 2
)]

︸ ︷︷ ︸
=:Z

.

Now let v0h � v2P+1
a and select τ ′a such that

‖vτ
′
a

h − v�h‖∞ ≤ α
τ ′
a

h ‖v0h − v�h‖∞ ≤ α
τ ′
a

h KZ = δ

for a fixed tolerance δ. Using the same analysis as in Lemma 5.2, we obtain

τ ′a =

log

(
KZ

δ

)
| logαh|

,(5.17)

and therefore τa ≤ max{τ ′a, 0} as required.
Theorem 5.13. TheMMDP(ε, n,m,L), a P-AMS with τH,P iterations in node

1, 3, 5, . . . , 2P +1 and τh,P iterations in node 2, 4, 6, . . . , 2P , and a constant stepsize s
satisfying the conditions in Corollary 5.10 have the following worst-case computational
complexity,

(5.18) O

⎛
⎜⎜⎝
⎡
⎢⎢⎣max

⎧⎪⎪⎨
⎪⎪⎩

log

(
Z

δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭+ Pτh,P

⎤
⎥⎥⎦ (mn)2L+ (P + 1)τH,Pm

2Ln

⎞
⎟⎟⎠ ,

where Z is defined in (5.15).
Proof. Using Lemma 5.12, we obtain the total number of iterations in both the fine

and coarse models. Therefore, the complexity is the sum of the number of iterations
multiplied by the cost of each iteration for both fine and coarse model.

The theorem below shows that OWMS is one specific case of AMS if the param-
eters of AMS are judiciously chosen.

Theorem 5.14. Suppose the tolerance δ < min{Z, ε(2−αH)}, where Z is defined
in (5.15). For MMDP(ε, n,m,L), AMS has the same complexity as OWMS in the
case when P = 0, s = 0, and τH,P = τ ′H,0, where τ

′
H,0 is defined in (5.5).
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Proof. Using Theorem 5.13 with P = 0, s = 0, and τH,P = τ ′H,0, where τ
′
H,0 is

defined in (5.5), we obtain⎡
⎢⎢⎣
log

(
Z

δ

)
| logαh|

+ Pτh,P

⎤
⎥⎥⎦ (mn)2L+ (P + 1)τH,Pm

2Ln

=

log

(
Z

δ

)
| logαh|

(mn)2L+ τH,Pm
2Ln

=

log

(
Z

δ

)
| logαh|

(mn)2L+

log

(
1

ε(1− αH)

)
| logαH |

m2Ln,

where

Z = ηP ε+ ηPα
τH,P

H +
1− ηP+1

1− η s
(
(1 + α

τH,P

H )ε + 2
)

= ε+ ατ ′
H,0

= ε+ ε(1− αH) (Equation (5.4) implies α
τ ′
H,0

H = ε(1− α))
= ε(2− αH).

Therefore, the complexity of AMS becomes

O

⎛
⎜⎜⎝
log

(
ε(2− αH)

δ

)
| logαh|

(mn)2L+

log

(
1

ε(1− αH)

)
| logαH |

m2Ln

⎞
⎟⎟⎠ ,

which is same as the OWMS.
Using the preceding theorem, we can conclude that if we define the parameters,

(s�, τ�h,P , τ
�
H,P , P

�) = arg min
s,τh,P ,τH,P ,P

⎡
⎢⎢⎣max

⎧⎪⎪⎨
⎪⎪⎩

log

(
Z

δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭+ Pτh,P

⎤
⎥⎥⎦ (mn)2L

+ (P + 1)τH,Pm
2Ln,

then the complexity of AMS with parameters (s�, τ�h,P , τ
�
H,P , P

�) must be less than or
equal to the complexity of OWMS. Notice that the parameters (s�, τ�h,P , τ

�
H,P , P

�) are
optimizing the worse case complexity. While the result above is useful, it is difficult to
obtain a closed form solution for these parameters. Instead, in our numerical results
we will use a suboptimal solution that is motivated by the optimal parameter selection
problem above.

6. Action space sampling for the coarse model. It follows from the com-
plexity analysis of the preceding sections that the advantages of the coarse model are
(a) the dimensionality reduction in the state space and (b) the improved convergence
rate. However, the action space in the coarse model is exponentially larger than the
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fine model. If the fine model MMDP(ε, n,m,L) is aggregated using perturbation
theory, then the coarse model is anMDP(m,Ln) problem. We will take advantage of
the well established links between linear programming and MDPs together with con-
straints sampling techniques from [5, 4] to address the computational cost associated
with the coarse model.

6.1. Linear programming and MDPs. It is well known that the HJB equa-
tion (2.10) can be solved by the following LP:

max
∑
i∈XH

vH(i)

s.t. vH(i) ≤ GH(i, aH)

|qHii (aH)|+ ρ
+
∑
j �=i

qHij (aH)

|qHii (aH)|+ ρ
vH(j) ∀aH ∈ AH

i , i ∈ XH .

The LP formulation of MDP(m,Ln) has m variables and mLn constraints. For
large-scale problems, it is very likely that m � mLn, and so we will have a lot
more constraints than variables. In this commonly encountered scenario, most of the
constraints are not active at the optimum, and eliminating them could reduce the
computational cost of the problem [8]. We will use the constraint sampling technique
to reduce the action space and therefore the complexity. We will make the following
assumption regarding the relationship between samples samples and states.

Assumption 1. Let SSET � {(a1, x1), (a2, x2), (a3, x3), . . . , (aR, xR)} be the set
of R samples from the probability mass function ψ(aH , xH), and let SAi � {(aH , i) :
aH ∈ AH

i }. Then, SSET ∩ SAi �= ∅ ∀i ∈ XH .
Assumption 1 implies that the set of samples will contain at least one state-action

pair for each state. We use this assumption to ensure that our samples are enough to
formulate another MDP which has action sets that are the (nonempty) subset of the
action sets in the original problem.

Lemma 6.1. Let ÃH
i � {aH : (aH , i) ∈ SSET ∩ SAi }; then the optimal solution

of the LP

max
∑
i∈XH

ṽH(i),

s.t. ṽH(i) ≤ GH(i, aH)

|qHii (aH)|+ ρ
+
∑
j �=i

qHij (aH)

|qHii (aH)|+ ρ
ṽH(j) ∀(aH , i) ∈ SSET

(6.1)

is the value function of the MDP

min J̃H(i, uH) = E

[∫ ∞

0

e−ρtGH(xH(t), uH(x(t))) dt

]
,

s.t. xH ∼ QH(uH(xH(t))) , t ≥ 0,(6.2)

xH(0) = i , uH ∈ ŨH ,

ṽH(i) = min
uH∈ŨH

J̃H(i, uH),

where ŨH is the policy space for ÃH
i ∀i ∈ XH .

Proof. The LP in (6.1) is just the reformulation of (6.2) as a linear program.
We refer to the MDP in (6.2) as the reduced coarse model. Note that in the reduced

coarse model, we still maintain the fast convergence rate due to the elimination of the
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multiscale structure and at the same time we are able to control the complexity per
iteration by decreasing the number of actions. Of course when reduced order policy
space contains the optimal policy, then indeed the solution of the reduced coarse
model coincides with the the coarse solution. This simple observation is established
below.

Lemma 6.2. The solution of the reduced coarse model is the same as the solution
of the coarse model when

(6.3) u�H(i) ∈ ÃH
i ∀i ∈ XH .

In other words, the policy space of the reduced coarse model contains the optimal
policy.

Proof. Since the policy space in the reduced coarse model is a subset of the policy
space in the coarse model, if u�H minimizes the expected discounted cost in the coarse
model, it also minimizes the expected discounted cost in the reduced coarse model
with the same value function.

Of course it is unreasonable to make such a strong assumption as the one above.
Instead, we will analyze the performance of OWMS and AMS by sampling the actions
in the coarse model uniformly. In practice, it is often the case that some action-state
pairs are more important than others. As a result, the uniform distribution assump-
tion may not be the best from a computational perspective. However, if no additional
assumption is made about the MDP, then this is a valid assumption to examine.
We use basic combinatorics to obtain a quantitative estimate of the probability of
obtaining the optimal policy from the reduced coarse model.

Theorem 6.3. ForMMDP(ε, n,m,L), suppose that a P-AMS with τH,P itera-
tions in node 1, 3, 5, . . . , 2P +1 and τh,P iterations in node 2, 4, 6, . . . , 2P and stepsize
s is used. If R = (1−σ)1/mLn samples are drawn from AH

i ∀i ∈ XH , then the optimal
solution will be obtained with probability 1− σ and the complexity of AMS is

(6.4) O

⎛
⎜⎜⎝
⎡
⎢⎢⎣max

⎧⎪⎪⎨
⎪⎪⎩
log

(
Z

δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭+ Pτh,P

⎤
⎥⎥⎦ (mn)2L+ (P + 1)τH,Pm

2R

⎞
⎟⎟⎠ ,

where Z is defined in Lemma 5.12.
Proof. For state i in the coarse model, only one optimal action is needed to

construct the optimal policy. For R actions that are drawn from AH
i , the total

number of possible combinations is
(
Ln

R

)
. If the optimal action is obtained in the

samples, the total number of possible combinations is
(
Ln−1
R−1

)
. So, the probability of

obtaining the optimal action is (
Ln − 1
R − 1

)
(
Ln

R

) =
R

Ln
.

The optimal policy is obtained only if each action space in the reduced coarse model
contains its optimal action. The probability of obtaining the optimal policy is then
1−σ � ( R

Ln )
m, and so R = (1−σ)1/mLn. If ṽ�H = v�H , the convergence of the reduced

coarse model is same as coarse model with less actions in each state. Therefore, with
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R = (1 − σ)1/mLn, the AMS has probability 1− σ to obtain v�h with complexity

O

⎛
⎜⎜⎝
⎡
⎢⎢⎣max

⎧⎪⎪⎨
⎪⎪⎩

log

(
Z

δ

)
| logαh|

, 0

⎫⎪⎪⎬
⎪⎪⎭+ Pτh,P

⎤
⎥⎥⎦ (mn)2L+ (P + 1)τH,Pm

2R

⎞
⎟⎟⎠ ,

as stated in Theorem 5.13.
OWMS is a specific case of AMS, and so Theorem 6.3 covers the case of OWMS

too. While the result above guarantees ṽ�H = v�H with certain probability, it may
still require a large number of samples. To address this last point, we make use of
the result from Calafiore [4] to estimate the number of action-state pairs that would
guarantee that one extra action-state pair would not change the value function of the
reduced coarse model with certain probability. This is useful because it provides a
guide of the number of sufficient samples required to obtain the most “useful” actions
so that the value function ṽ�H is likely to be close to v�H .

Theorem 6.4. Consider the reduced coarse model with state-action pairs set
SSET with size mR (R actions in each state in average) and let Assumption 1 hold.
Let (ãH , x̃H) be a state-action pair drawn from ψ(aH , xH). Let ṽ�H be the value func-
tion of reduced coarse model with SSET , and v̂�H be the value function of reduced
coarse model with SSET ∪ (ãH , x̃H). Let

(6.5) V(SSET ) � P((ãH , x̃H) ∈ ψ(aH , xH) : ṽ�H = v̂�H),

which is the probability that adding an extra action-state pair drawn from ψ(aH , xH)
does not change the optimal policy in the reduced coarse model. Then,

(6.6) P(SSET ∈ ψ(aH , xH)mR : V(SSET ) ≥ 1− 
) ≥ 1− β

if

(6.7) mR ≥ 2



log β−1 +

4



(m− 1)

for 
, β ∈ (0, 1).
Proof. The proof is provided in [4].
Note that the lower bound of the number of state-action pairs does not depend

on the number of state-action pairs in the original coarse model. In practice, it is
possible that one would have an idea of what actions are more likely to be optimal
in each state. Such knowledge can be used to construct a better constraint sampling
density ψ(aH , xH).

7. Numerical experiments. In this section, we illustrate the performance of
the AMS and the OWMS using two numerical examples. The first example is the
widely used example from the field of manufacturing we introduced in section 4.3.
The second example is motivated from stochastic molecular dynamics. Applications
in molecular dynamics (MD) have a strong multiscale structure, and applications
related to MD and stochastic optimal control are beginning to emerge [14]. In the
results below we compare the performance of the proposed algorithms and the con-
ventional value iteration algorithm. The numerical performance of FAS has already
been discussed. For reasons explained in section 4.4, FAS is not competitive with any
of the other methods.
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Fig. 7. Numerical performance of the different algorithms. Parameters: v0h = 0, v0H = 0,
s = 1.15, and ρ = 0.05. (Left) Iteration history. (Right) Relative increase in realized complexity
of the different algorithms. Value iteration was taken to be the baseline. Compared to value itera-
tion, conventional FAS has an increased complexity, whereas the proposed schemes achieve a 10%
reduction.

The AMS requires the specification of four parameters. In the numerical examples
below we fix τh,P = τH,P = 100. The stepsize s is selected according to the estimates
in Corollary 5.10. The parameter P is determined adaptively. To monitor the progress
of the algorithm, we define the measure

Φ(j) � ||Ahv
j−2
a −Ahv

j
a||∞ ∀j ∈ {2 + 2i : i ∈ Z

+},

which can be interpreted as the improvement of the solution in node j − 1 and j.
It follows from Theorem 5.9 that the coarse correction is only guaranteed to be a
contraction if the current solution is far away from the true solution. With that in
mind, we define

Ψ(j) � Φ(j − 2)− Φ(j)

Φ(j − 2)
∀j ∈ {2 + 2i : i ∈ Z

+}

to be the percentage change compared to the last two nodes. This measure of change
was used to detect whether the coarse correction is still useful during calculations,
and we stop using the coarse correction after node j when Ψ(j) is less than some
constant �. In the experiments below we set � = 0.1, and we used ε = 10−2. With
this parameter choice for ε, the two problems contain some multiscale structure but
it is not strong enough to just use the coarse model.

7.1. Manufacturing example. Recall that in section 4.3 we introduced an
example motivated by a multiscale manufacturing process. We showed that the FAS
fails in this example, and this was one of our motivations for developing the proposed
scheme. Figure 7 shows the performance of the different schemes for this example.
The parameter settings are exactly the same as in section 4.3. In Figure 7 (left) we
show the iteration history, in terms of the distance to the exact solution, for each of
the algorithms. The exact solution was obtained using linear programming. We do
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not plot the performance of the FAS for this model because it makes it difficult to see
the differences between value iteration and our algorithms. The iteration history of
FAS was plotted against value iteration in Figure 2. In Figure 7 (right) we plot the
(relative) comparisons of realized complexity of the different algorithms as the number
of iterations multiplied by the cost per iteration. We show the realized complexity of
each algorithm in relation to the realized complexity of value iteration. Since the size
of the problem is not large, we do not apply sampling in this example. Both of our
proposed multiresolution algorithms are better than solely using the fine model. In
this example, the total complexity can be reduced by 10% without any penalty on the
accuracy. Notice that in this example, we have αH = 0.9967. Therefore, the choice
of our stepsize s = 1.15 is reasonable because s < 2/(1 + α

τH,P

H ) with τH,P = 100 and
s = 1.15.

7.2. Example from molecular dynamics. In this section we use the proposed
scheme to solve a larger problem motivated by molecular dynamics. The problem of
controlling molecular dynamics is an active research area with many applications in
material science and chemical engineering [14]. The potential energy of molecules
is usually modeled as a stochastic differential equation, or as a Markov chain in
the discrete case. Even though the transitions from one energy level to another
energy level are considered to be stochastic, the underlying randomness is structured.
Molecules are stable when they are at a local minimum of the potential energy and
are very likely to make fast changes around the neighborhood of the local minimum.
It is rare that molecules would move from one stable configuration to another. The
event that a molecule jumps from one well to another is characterized as a rare event.

In this example, we consider a Markov chain with 50 states, where Q̂ is a block
diagonal matrix with 10 blocks, and each block is a 5 × 5 matrix. The state space
is X h = {1, 2, . . . , 50}. In this particular example, each block represents the transi-
tions between different configurations within a stable configuration. In practice, this
Markov chain is obtained by discretizing a stochastic differential equation. For this
reason, we assume that q̂ij = 0 if |i− j| > 1. The matrix W represents the connection
from one stable configuration to another. We assume wij = 0 if (i, j) is not from the
set {(a, b) : (a, b) ∈ {5, 6, 10, 11, 15, 16, 20, 21, 25, 26}2, |b−a| ≤ 1}. Since the system is
large, we simply sample the entries for Q̂ andW uniformly from the set {1, 2, 3, . . . , 9}.
In order to introduce a control element into the model, we assume that there exists
a catalysis that can be used to speed up or slow down the rate by which the system
moves between states. To be precise, we assume the following form of the generator:

Qε
h(a) = 3a

[
1

ε
Q̂+W

]
,

where a ∈ {−1,−2/3,−1/3, 0, 1/3, 2/3, 1}. The objective function is G(x, a) = x +
50|a|, and as before we solve the infinite horizon model. Optimizing the system with
this particular choice of cost function aims to control the dynamics so that the system
remains in or close to state 1 without using too much catalysis. Figure 8 shows the nu-
merical results of this example. For this example, FAS performed particularly badly.
In order to have a clearer comparison between the proposed algorithms and value iter-
ation, we do not plot the iteration history of the FAS. Notice that the OWMS scheme
takes more time to converge than value iteration. After a few hundred iterations in
the coarse model, the coarse model becomes ineffective because the current solution is
“too close” to the exact solution. Therefore, in this example, OWMS spends a lot of
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Fig. 8. Numerical results of different algorithms. Parameters: v0h = 0, v0H = 0, s = 1.1,
R = 10000, and ρ = 0.05. (Left) Convergence in each iteration. (Right) Relative increase in realized
complexity of the different algorithms. Value iteration was taken to be the baseline.

expensive iterations that do not achieve a significant error reduction. However, AMS
still outperforms value iteration. In the fine model, each state has seven available
actions, and so in the coarse model, each state has 75 = 16807 actions. As the action
space is so large, it is reasonable to apply the action sampling technique described
in section 6. In Figure 8 we plot the results when using AMS with action sampling
(SAMS), and R = 10000 samples. From Figure 8 (left) we see that applying the
sampling technique leads to a slower convergence rate of our scheme compared to the
original AMS and OWMS. However, since the size of the coarse model is reduced,
the time spend per iteration is less. This point is made in Figure 8 (right), where
the proposed scheme with action sampling computes the solution with less realized
complexity compared to all the others. The performance is not much better than the
original AMS due to the fact that uniform sampling is not very effective. In practice,
we would expect that it is possible to find a good distribution ψ(aH , xH) via empirical
analysis. Still, even without optimizing the proposed schemes, we are able to achieve
close to a 20% improvement over value iteration.

8. Discussion. We proposed the AMS for MDPs with a multiscale structure.
Our scheme is an alternative framework and, under certain conditions, is theoretically
superior to the conventional numerical methods used for this class of problems. The
main idea of AMS is to use the coarse (aggregate) model as much as possible and
avoid using the expensive full (fine) model for all the iterations. It was already known
that the coarse model has fewer states than the fine model. But more importantly, we
showed that the coarse model is also better conditioned. Using complexity analysis
and numerical examples, we showed that the proposed scheme outperforms value
iteration and the conventional multigrid based method (FAS). We also proposed a
sampling method to address the problem of large action space in the coarse model.

Our proposed scheme exploits the multiscale structure of the problem but does
not depend on it, i.e., the convergence does not depend on having scale separation.
When there is no scale separation, the algorithm still computes the correct solution,
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but there are no real benefits in terms of reduction of computation times. When
the multiscale structure is very sharp, most of the calculations will be done in the
coarse model, and the final solution is computed by sightly correcting the approximate
solution using the fine model.

We believe that the general scheme proposed in this paper can be extended to
more general settings or even to different classes of problems. For example, one
could replace value iteration by policy iteration. As long as the underlying algorithm
is a contraction, the theoretical results of this paper can be used to evaluate its
performance.

Acknowledgment. The authors wish to acknowledge the three anonymous ref-
erees for their helpful comments that led to substantial improvements of the paper.
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