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Abstract In this paper, we consider expected value, variance and worst—case opti-
mization of nonlinear models. We present algorithms for computing optimal expected
value, and variance policies, based on iterative Taylor expansions. We establish con-
vergence and consider the relative merits of policies based on expected value opti-
mization and worst—case robustness. The latter is a minimax strategy and ensures
optimal cover in view of the worst—case scenario(s) while the former is optimal ex-
pected performance in a stochastic setting.

Both approaches are used with a small macroeconomic model to illustrate relative
performance, robustness and trade-offs between the alternative policies.

Keywords Expected value - Worst—case analysis - Policy design

1 Introduction

Model-based policy design entails a reasonable specification of the underlying model
and an appropriate characterization of the uncertainties. The latter can be an exoge-
nous shock, parameter uncertainty, or uncertainty regarding model structure. The lat-
ter requires a setting that admits rival structures purporting to represent the same
underlying system. In this paper, we consider methods that address the first two types
of uncertainty.

The two approaches used are expected value optimization of nonlinear systems,
and minimax, or worst—case optimization. The starting point for the former is the
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expected value evaluation used in [15, 18] for systems governed by parametrized
feedback rules. The starting point for the worst—case optimization approach is that of
Rustem and Howe [17]. The results from both are compared in order to explore the
trade—off between robustness cover and performance (as measured by the objective
or cost function).

The worst—case approach to economic policy design in this paper is an application
of minimax to decision making. The problem solved is the minimization of a convex
(or locally convex) objective function with respect to the decision variable, and max-
imization of the same function with respect to the uncertainties. The uncertainties
are characterized in terms of ranges in which the uncertain parameters or exogenous
effects may vary.

An alternative approach to worst—case robust design is the H strategy [1]. The
latter approach augments the objective function with a concave term. We have fol-
lowed the more intuitive approach based on a continuum of scenarios contained in a
compact set.

When the cost or objective function is also convex with respect to the uncertain
variables the maximum will be at the boundary of the feasible region. This may, for
example, correspond to one or more vertices of the hypercube defined by the upper
and lower bounds on the uncertain variables. If the objective function is concave, with
respect to the uncertainties, the maximum may lie anywhere within the hypercube.
An advantage of the present approach is that it is straightforwardly applicable to
nonlinear systems.

The contribution of this paper is the development of an algorithmic framework
for the expected value optimization of nonlinear systems. Moreover, we compare the
expected value approach to that of worst—case analysis. The computational compari-
son is made on a real world application from economics. One can present arguments
for and against expected value optimization, and similarly for worst—case analysis.
Using the methods to solve real world problems is bound to give more insight into
the usefulness and properties of the two frameworks. The computational experiments
illustrate the efficacy of the two frameworks as well as their limitations.

2 The stochastic problems

Assume that a stochastic system f (x, v), is given:

filx,v)
f2(x,v)
fawm=|"" ", )
Ji(x,v)
and let a function F(x, v) be defined as follows:
Fx,v)=fT(x,v)f(x,v): R >R, )

x € R" and v € R™. We assume that v contains noise, so v =v + €, where € has a
normal distribution, with zero mean and A deviation: € ~ A (0, A).
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The problems we consider in this paper are expected value optimization:

rriinEv(F(x, v)). 3)

We also consider the optimization of the variance of F(x, v):

rrEnVarv(F(x, v)). )

The motivation for minimizing the variance of F stems from the application oriented
requirement of computing strategies that do not deviate far from the expected perfor-
mance. In (3) we minimize the deviation of the Ly norm of the functions from zero,
whereas in (4) we minimize the deviation from the mean performance of the system.
Similar concepts are used in the design of minimum variance controllers in control
theory.

For non-linear models, in general, it can not be assumed that the deterministic
value of the objective function is a satisfactory measure of the mean value. There are
a number of studies of nonlinearity that have demonstrated the discrepancy between
the two can be numerically important [3, 6, 7]. It is possible, using the Taylor series
expansion, to refine the computation of E,(F (x, v)) by taking into account any bias
which is due to nonlinearity of the model in computing this expectation [8, 15]. The
following two results are standard, we will use them repeatedly in the sequel, and so
we state them as propositions.

Proposition 2.1 Let e € R", e ~ N(0, A), and Q € R"" a symmetric matrix. Then
we have

E(e” Qe) = trace(A Q).
Proposition 2.2 Lerv € R, v~ N (v, A), and q € R". Then
Ey(qg"v)*=(q"9)? +4" Aq.

Proposition 2.3 Letv € R", v ~ N (0, A) and Q a symmetric matrix of dimension n.
Then

E[(v Qv)]? = [trace(A Q)]* + 2 trace(A Q)°.

Proof Let the matrix AY? be symmetric and AY2 . A2 — A. Furthermore, let
v = AY2p. Thus we have:

EbbTy =1, T ov) = (bT Bb),
where B = A'/2QA'/? and B is a symmetric matrix.
The components of vector b, where we denote the ith component with b; are

uncorrelated normally distributed variables and it follows from [16] that

Eb)?=1, E@®b)*=3, Vi
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Consider the transformed expression:

EaﬁBm2=E<§:b¢wwﬂ%BH)
i,j,k,l

The only nonzero terms arise from equality of all indices or equality in pars

e i=j k=1, i#k
o i=k j=1,i4#]j;
oi=1l, j=ki=j;

ei=j=k=I.
So we have
Eb"BbY? = Y BiBu+ Y. Bi+Y BijBji+3) B}
ik, itk Qi) ij i
=§:Bﬁmk+2§:Bé=nmmanf+2uMdB%. 5)
ik ij

Noting that for two square matrices D, F, trace(D F) = trace(F D) we have

trace(B) = trace(Al/zQAl/z) = trace(A1/2Al/2Q) =trace(A Q),
trace(B?) = trace(A /2 QA2 A2 QAY?) = trace(A QA Q) = trace(A Q)?. O

2.1 Expected value optimization

A naive approach to solve (3) is to use a standard nonlinear programming algorithm,
and perform function evaluations and gradient estimations using a numerical integra-
tion routine. However, performing numerical integration is time consuming, and such
an approach will not be applicable to large-scale problems. In this paper we propose
to solve problem (3) by using a Taylor series expansion in the neighborhood of v. The
motivation for using a Taylor series expansion is that the integration can be carried
out analytically. No doubt this approximation introduces some error into the problem,
we then proceed to find an estimate of this error and take it into account in the next
iteration.

A second order expansion, with respect to the random variables, is used for ap-
proximating the original problem:

- _ _ _ 1 _ _ _
fitx, V)2 [, D)+ Vo i, ) (v —0) + E(U —0)V} fi(x,0) fi(v — V),
where V,, fi(x, v), and Vf fi(x,v) denote the gradient and Hessian of f; respectively.

They are both evaluated at (x, v). We then evaluate the error term, &; (x), such that
the equality

Ey(fi(x,0)%) = Ey(fi (x,v) + @ (x))%, (6)
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is satisfied. Therefore @; (x) are (possibly complex conjugate) roots of the quadratic
equation:

Ey(fi(x, 0)%) +28; () Ey (fi (x, ) + & ()2 — Ey(fi(x, )} =0,  (7)

with real valued coefficients.

At the k™ iteration the algorithm proceeds to calculate the next point x| as
follows: for fixed x in (6) to xi, estimate &; (xx) using Monte Carlo simulation. Then
using the latter error estimate, the right hand side of (6) is minimized to obtain xj .
For the minimization problem to be efficiently solved we need to be able to compute,
in closed form, the expectation in the r.h.s. of (6). This calculation can be easily
performed as follows:

Ey(fi(x,v)?)
= Ey(fi(x,0) + Vo fi(x, )T (v = 0) + %(v ~0IV2fi(x, D) (v — 0))?

= E,(fi(x,0)%) + Ey(Vy fi (2, )T (v — 1))?
+2£i(x, D Ey(Vy fi (x, 0) (v — D))

+ }LEU«U _ DIV, ) (v — )
+ Ey((fi (6, 0) + Vo i (x5, D) (0 = 0) (v = D) V2 £i (x, D) (v — D))

= fi(x, 0>+ Vy f;(x, )T AV, fi (x,7) + %(trace(AVfﬁ(x,i)))z
+ %trace(AV,%fl-(x, )% + fi (x, Dtrace(AV2 fi (x, 7).

At the /th iteration, the algorithm proceeds by solving the following optimization
problem:

k
min Y Eo(fi (. v)?) + 28 (a1 Ey(fi (v, 0) + 6 (), ®
i=1

in order to obtain x;. In (8) only the first two terms are actually used, the last term is
constant in the /th iteration and can be ignored. The calculation of the expectations
of the first two terms can easily be performed as described above.

We now turn our attention to the calculation of the &; in (7). Solving (7) is straight-
forward once E,(f;(x, v)?) is known. We estimate the latter quantity using a Monte
Carlo method. Let {v; };\7:(11) denote N (!) i.i.d samples from a Gaussian density with
mean v and variance A. In (7) we use the following estimate:

, Mo

Ey(fi(x,v)%) ~ 7 D fitk, vt
j=1
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The above estimate is arbitrarily good provided that N (/) is large enough. Thus at the
[th iteration, x;_1 is available, and the &;’s are chosen to satisfy:

Ey(fi(x1-1,0)%) 4 2& (- 1) Eo (fi (x1-1, v)) 4 & (x1-1)?
N()

1
> fita—1.v))* =0. ©)
j=1

N0

We note that if f;(x, v) is quadratic in v, then &; (x) = 0, and the expected value of
(2) is exactly computed by:

k
Ey(F(x,v)) =Y Ey(fi(x, v))%.

i=1

If the problem is of higher order, then the above approximation is used for min-
imizing expected value. An iterative approach to solving higher dimensional prob-
lems is presented below. The algorithm is based on solving the deterministic solution
(for v) and determining the bias &; (x), the expected deviation due to the nonlinearity.
It requires repeated solution of the problem as shown in Algorithm 1.

Algorithm 1 (Expected value optimization)

STEP O: Initialization: [ = 1, choose x.
STEP 1: Calculate &; (x;) Vi, using MC simulation (see (9)).
STEP 2: Solve (see (8)):

X141 € argmin Ey (F (x, v)).
X

f [lx741 —xzl

T < € stop, otherwise [ =1 + 1, goto

STEP 3: Check for convergence: i
STEP 1.

The convergence of the algorithm is tested in Step 3 to check if a fixed-point has been
reached. The convergence of the algorithm is discussed below. Additionally, numer-
ical experience has been positive. As also reported in [15, 18], even for nonlinear
models.

In order to account for the error introduced by the Monte Carlo simulation we
will need the following result. It is a simple generalization of the weak law of large
numbers.

Proposition 2.4 Let {x;} be any sequence converging to x, and suppose that
llim N () = oo. Furthermore suppose that:
—00

Var(fi(x,v)) <oo Vx,i=1,...,m.

Then given any € > 0,

>E>=0.

1 N({+1)
. ) N2 : 2
11_1)120P<'7N(l+1) /Z_; fi G, v)* = Ey(fi(x, v)%)
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Proof Using our assumption that Var(f;(x, v)) < c¢j < 00, it follows by the domi-
nated convergence theorem (see e.g. [4]) that:

lim E, (fi(x, v)?) = Ey lim (f;(x1,v)%) = Ey (fi (x, v)?).
[—o0 [—o0
It follows that there exists a L > 0, such that
2 2 €
[Ey(fi(x1,v)7) — Ey(fi(x, v)7)] < 3 Vi>L.

Therefore,

1 N({+1)
— ) ﬁ(Xz,v-)z—Ev(ﬁ(x,v)z)‘
‘N(l+l) = !

1 N(+1)
=|——— Y filw,v))* = Eo(fi(x,v)?)
’N(Z—H) o J

+ Ey(fi(x1,v)%) — Ey(fi(x, v)z)‘

N(I+1)

1
> fiGa ) = Ey(fi(x,v))
j=1

N(I+1)

:

+ | B, 00 = Eu(fi 6 0)2)|

N(I+1)

1
D fitav)? = Ey(fiGa,v)?)
j=1

N(I+1)

=

+6
7

Using the preceding estimate we obtain:

1 N(+1)

1 N(l+1)
§P<‘ > fitavp)? = Ey(fi(x, v)?)
j=1

N(I+1)

+e
—>€
2

> %) (10)
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Using the Chebychev [4] inequality we obtain:

1 N(I+1) .
P(m ; fi(xl,vj)z—Ev(fi(x],v)z) >§)

N(I+1)

= N(1+1)2 2V ( Z fix.vj) ) N(l+])62

€
lim P -1 =0.
zingo < = 2)

The result now follows from (10). Il

Consequently:

N(+1)

1
NG+ 1) ; fiGa,v))? = Eo(fi(x, 0)%)

Proposition 2.5 In addition to the assumptions of Proposition 2.4, suppose that {x;}
is a sequence generated in Step 2 of Algorithm 1, and that it remains in a compact
set X. Then since X is compact the sequence {x;} generated by the algorithm has a
limit point, and any such point minimizes the expectation of F(x,v) on X.

Proof Let x be an arbitrary point in X'. Let {x;} be any sequence converging to x. At
every step of the algorithm the following function is minimized:

k k
D e, ) &Y E(fitxv) + & (0)%,

i=1 i=1
where &; (1) satisfy:

Ey(fi (i1, 0)%) +28; ) Ey (fi (x1-1, v)) + @ (1)?
N()

N(l) Z fiu—1,v)?=0, i=1,...,k
Evaluating the limit in the expression above, we have that:
Jlim By (i (o1, 0)%) + 28 (O Eu (Fi (a1, v) + 63 (1)
N

= jfim, N(l) Zf’(x’ v

Using Proposition 2.4:
N()

N(I)Zfz(xz L) =Ey(fi(x,0)?) ip.
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Consequently we must have that:
Jim Ey(fi (a1 0)%) 428 (D Ey(fi (a1, 0) + 80 = Ev(fi(x. v0)?)ip.

Summing over all the k functions we obtain:

k k k
Jim gci (1, D) =z£rgo;’5v<ﬁ(xz, V) + &0 =) Ey(filx,v)).

i=1

The preceding equation establishes that the sequence {Zle ci(x;, D)}, converges
in probability to the original function. Convergence in probability is stronger
than convergence in distribution. Therefore we have also shown the sequence
{Zle ci(x, 1)}, converges in distribution to the original function. It follows from
Theorem 2.8 in [2] that the sequence also epi-converges to the original function. It
follows from Theorem 2(b) in [12] that if x* is an accumulation point of the sequence
{x;} generated by Algorithm 1, then x* is a solution to the original problem. Such
an accumulation point exists because X is compact. Furthermore, if {x;(,)} is any
subsequence of {x;} converging to x* we have:

Uli)nolominz ci(x1), [(v)) = min Y~ Ey (fi (x,v)%). O

Convergence can only be established along a subsequence of {x;} since the objective
of the problem is assumed to have multiple minima.

The conditions in Proposition 2.5 above are sufficiently general for most appli-
cations. If however, the function grows without bound, and this growth occurs on a
set of positive measure, then one could introduce the noise in such a way so that it
has its support on a compact set. In this approach we introduce the noise through an
auxiliary function:

v="1+ g(e),

where the mean v may be zero.
The auxiliary function g : R™ — R™ is defined as follows:

8(x) =1xexy(x — ), (1)

where:

1 _ 1 ifxek,

trek) = 0 otherwise,

pi = / win(@)do, (12)
K

exp(—%a)TA_la))
n(w) = n 1
2m)2det(AN)2

K is defined as the hypercube: [—a, a]™, for some finite a. The derivations of this
section remain largely the same so we omit the details.
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2.2 Variance optimization

When minimizing expected value performance, it is possible to consider quadratic
approximations. However, when considering variance optimization, a linear approx-
imation is the only computationally viable option. An analysis of the first order ap-
proximation is proposed in this section. The variance is given by:

Var, (F(x,v)) = E,[F(x,v) — E,(F(x, v))]z. (13)
Let the model be given, as in (1):

fix,v)

falx,v)
fx,v) = : (14)
Sie(x, v)

The first order Taylor series approximation of f;(x, v) in the neighborhood of v
and the corresponding expectation yield:

fl,v) = fi(x,0) + Vy fi (2, 5) (v = D),

_ 5)
E(fi(x,v)) = fi(x,v).

As in previous section, §; (x) will represent the expected deviation of Var( f; (x, v)?)
and Var(fz(x, v)2). 8; (x) is calculated so that it satisfies:

Var( f; (x, v)?) = Var(f] (x, v) + 8 (x))?, (16)

where §; (x) is estimated using a quasi—-Monte Carlo simulation. The variance term in
the r.h.s. of (16) is evaluated as follows:

Var, (e 0% = E(Vo @) +4fie 0>V i@ AV, f:D)

2
— (Vi@ AV, £®)
= [trace(A Df; (x))]* + 2 trace(A Df; (x))?
+4f )2V, fi@T AV, ;@) = (Vo i T AV, i (0))2,
(17)

where Df;(x) =V, f; @'V, fi @7 The problem of minimizing the variance is for-
mulated as:

k
min Vary (F (x, v)) =rr§nZVarv(ﬁ(x, V) + 8 (x))2. (18)

i=1
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If f;(x,v) is linear in v then §; (x) = 0, and Var, (F (x, v)) is exactly computed by:

k
Var, (F(x,v)) = Y Var,(fi(x, v)?).

i=1

An iterative approach to solving higher dimensional problems is presented in the
Appendix. If the problem is of higher order, then a linear approximation is used for
minimizing variance.

3 The minimax approach

In the previous two sections we were interested in the optimization of the expected
value or variance of the objective function. We now turn our attention to a different
approach: worst—case analysis. The latter type of analysis has a game—theoretic in-
terpretation. The first player is the decision—maker, choosing the decision vector x.
The second player is nature, and is assumed to be antagonistic to the decision maker.
Nature selects the realizations of the random variables. Therefore, the aim of worst—
case analysis is to minimize the objective function with respect to the worst possible
outcome of the uncertain variables v.

According to the framework described above, the optimization problem we con-
sider in this section is given by:

Gi=min max F(x,v),
X v
S.t. v—A<v<v+A, A>0. (19)
Due to the hypercube constraining (19), the problem above is referred to as box-
constrained. Robustness and the price paid for this desirable property, has been the

topic of interest for a number of years [11]. Robustness is ensured by an optimality
condition. Let x*, v* solve (19). Then we have

F(x*,v*) > F(x*,v), for all feasible v.

Let

O(x) = max F(x,v), (20)
T—A<v<T+A

for all x. We call ®(x) the max—function. Therefore, (19) can be written as
min @ (x). 2D
X

To solve (21) a quasi—Newton algorithm is used. The algorithm generates a descent
direction based on a subgradient of F(x, .) and uses an approximate Hessian (Hy) in
the presence of possibly multiple maximizers of (20) as well as a step size strategy
that ensures sufficient decrease in @ (x) at each iteration (the algorithm is described
in [20]).
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Problem (21) poses several difficulties:

e ®(x) is in general continuous but may have kinks, so it might not be differentiable.
At a kink the maximizer is not unique and the choice of subgradient to generate a
search direction is not simple;

e ®(x) may not be computed accurately as it would require infinitely many iterations
of an algorithm to maximize f(x, y);

e In (21) a global maximum is required in view of possible multiple solutions. The
use of a local maximum cannot guarantee a monotonic decrease in @ (x).

Full minimax algorithms and applications to a number of problems in engineering,
finance and macroeconomics are presented in [17, 19, 22].

There is an interesting relationship between the order of the min and max operators
in (19) that is worth discussing. This relationship can best be explained when one
attempts to view (19) as a two—person zero—sum game between the Decision Maker
(DM) and Nature (N).

In this game player (DM) chooses the x variables, and player (N) chooses the v
variables. If (DM) chooses x’, and (N) chooses v/, then (DM) pays F(x’, v’) to (N).
Naturally, player (DM) wishes to minimize this quantity, while player (N) attempts
to maximize it.

In game theory equilibria play an important role. An equilibrium, in the present
context, means a point from which no player will gain by a unilateral change of
strategy. For the game outlined above an equilibrium point (x*, v*) must satisfy:

Fx,v>Fx*v)>Fx*v) VxeX,Vve[v—A,v+A] (22)

A point satisfying the preceding equation is also known as a saddle point of F'. Con-
sider the following situation: Player (DM) chooses a strategy first, and then player (N)
chooses a strategy. Thus (N) already knows the strategy that (DM) has chosen. As a
result (N) will have an advantage. Player (DM) will argue as follows: “If I choose
X, then (N) will choose max, F'(x, v), therefore I better choose the strategy that will
minimize my losses.” In other words (DM) will choose the optimal strategy given by
solving (19).

Now consider the same game, but with the order of play reversed, i.e. Player (N)
chooses first, and Player (DM) second. Then applying the rules of rational behavior
(as above) we see that (N) will select the v that solves:

Gy = max min F (x, v). (23)
VE[T—A,T+A] X

In our modeling framework it is thus natural to consider the game in (19) where the
(DM) decides first and (N) second, since uncertainty is in the future. It is well known
that the game will have a saddle point if F' is convex in x and concave in v. Under
such convexity assumptions then G| = G». Unless convexity is assumed it is difficult
to know whether the order of the min and max operators can be changed.

A different way of formulating (19) would be to allow the distribution of v to be
uncertain. For example, v can be assumed to be a random variable with mean v and
variance belonging to the set [v — A, v 4+ A]. The minimax problem can then be
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formulated as follows:

min  max / F(x,v)du()
X neP(K)

s.t. f vdu(v) = u,
T—A< /(v —0)2dpu(v) <T+A.

Where P denotes the set of probability measures with their supported contained in
some compact set K. The formulation above is just one possible way to view the
minimax problem in a different context. For numerical methods dealing with such
problems we refer the interested reader to [5, 13].

4 Numerical results

One can present arguments for and against expected value optimization, and sim-
ilarly for worst—case analysis. Using the methods to solve real world problems is
bound to give more insight into the usefulness and properties of the two frameworks
adumbrated in previous sections. In this section we will present and compare results
obtained with the two different approaches:

e Worst—case analysis using the minimax formulation:

min max F(x,v)
X v

st. vV— Aoy, <v<v+ Aogy.

e Minimization of expected value performance:
min  E,(F(x,v))
X
st. v~N(@, AN),

where A is a positive scalar parameter. In the minimax model, A has the effect of
enlarging the space from which worst case scenarios can be constructed. In the ex-
pected value model it represents volatility. The algorithm proposed in this paper will
be used in the next section to analyze an economic model. Before we delve into that
model, we show in Fig. 1 how the bias of the algorithm converges. It can be seen
from Fig. 1 that the bigger the volatility the bigger the distance between to successive
iterates. However, the algorithm seems to be robust for different values of A. The ex-
act details of the model solved to obtain the results shown in Fig. 1 will be described
in the next section.

4.1 A model of the economy

In a recent paper, Orphanides and Wieland [14] use a simple macroeconomic model
of inflation, output and interest rates to investigate different motives for inflation point
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Convergence of bias

1.4
A=1 +
1.2 ° A=2 =
R o o A=4 o
1
o o o
0.8
A(k) * * o o o
046%*
* + *
0.4 —+ o o
+ * x o
0.2 + 4+ "o °
+ + _T_ * ° o o
0 A I SN A
2 4 6 8 10 12 14 16 18 20

Iteration

Fig. 1 Convergence of algorithm. A (k)2 = i@ (xg) —a (g1 )2

versus inflation zone targeting. In the first case, the policymaker varies short-term
nominal interest rates in order to stabilize inflation around a target point. In the sec-
ond case, the emphasis is on containing inflation within a target range. Inflation point
targeting arises naturally in linear models of the economy with a quadratic loss func-
tion for the policymaker (the L—-Q model in [14]). Orphanides and Wieland show that
inflation zone targeting may be motivated by a non-linear, or more precisely, zone-
linear Phillips curve relationship between the change in inflation and the output gap
(the ZL—-Q model in [14]).

In the minimalist macro model of [14], the two key variables for the policy deci-
sion process are inflation and output. The policy instrument is the short term nominal
interest rate. The dynamic structure of the model is represented by a single lag of
inflation in the Phillips curve, and a single lag of the output gap in the aggregate de-
mand equation. It is appropriate, therefore, to interpret the length of a period to be
rather long, say half a year to a year. In the rest of this Section we will first set up
the model as a dynamic optimization model, we will then describe its solution using
a feedback rule.

In every period, the policymaker sets the nominal interest rate, R, with the objec-
tive to maintain inflation 7, close to a desired target and output close to the econ-
omy’s natural level. To describe the policymaker’s welfare loss during a period ¢,
a per—period loss function is specified:

Iy =1(m, 1)

Assuming that the policymaker discounts the future with a fixed factor B, we can
view the objective in period ¢ as to minimize the expected discounted sum of future
per—period losses from ¢ 4+ 1 onwards:

minE{Zﬂ'll,}. (24)
t=1
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The per—period loss facing the policymaker in period ¢ + 1, [, can be expressed
as a weighted average of the deviation of inflation 7 from its desired target 7* and
the output deviation from the economy’s natural level y.

Lt =wmgr — 792+ (1 —w)yZ,, we(0,1), (25)

where w is a weighting parameter. The following two equations describe the evolu-
tion of the economy:

yi=W@+0)y—1—&r +38+u,

(26)
mp=m—1+ (@+a)(p+p)yi—1 — (@+a)ér + (@ + )8+ (a +o)u; + e,
where «, p, e; and u; are normally distributed, zero—-mean shocks:
o, 0, Ut, € NN(O’ A)a Vt (27)

As shown in [14], the optimal policy incorporates a target zone for inflation if the
Phillips curve is nonlinear. This is the case, if small output deviations have a more
than proportional impact on inflation. This can be modeled by means of a zone—
generating function Z(-; ¢; c¢) of the following form:

Z"——l++£2+l+—+£2 28
(x;¢;0)=x 5 c (x 2) 5 c <x 2). (28)

The motivation behind the definition of Z is given in [14]. In the numerical examples
in this paper we use ¢ = 0.1. ¢ is a parameter controlling the width of the zone gener-
ated by the function. Using the zone—generating function Z, the following equations
can be used to describe the evolution of the economy:

Vi=(p—=Pp)yi—1 —&Ers + 6 +uy,
m=m—1+ @+ Z(y;¢0) + e

(29)

When constraints (26) are used in the model, the model is referred to as the point
targeting model. When (29) are used, the resulting model is referred to as the zone
targeting model. We note that in both cases the proposed model is non-linear (and non
quadratic) in the uncertain parameters, and therefore the generality of the algorithm
described in Sect. 2.1 is required in order to solve the expected value model.

The objective function is defined in terms of a sum of per—period losses /;:

Frovy=Y g7l (30)
t=1

In order to solve the model we use an approach described in Tetlow and von zur
Muehlen [21]. In this approach (also Hansen and Sargent in [9], see [10] for a related

@ Springer



250 P. Parpas et al.

approach) the policymaker chooses the parameters x; and x» of the feedback law:
Ty =X17T—1 +X2Yr—1. 31

This rule is referred to as a feedback rule, and the x’s are referred to as the feedback
parameters. The problem can be formulated as:

min E,(F(x,v)), (32)
X1,X2

where E, denotes the expectation computed for the uncertain variables v, the objec-
tive function F is given by (30). The constraints on the systems are given by (26) or
(29). The feedback law is given by (31). Thus the decision we are seeking are the val-
ues of the two parameters x; and x», and these two parameters are valid for all time
periods. In this framework, the decision maker commits to following the feedback
rule in the future. Let

pim — ") By,
A= 7T pew=| P2 (33)
8% Grr — BEyr
then, the objective function can be formulated as:
F,oy=wfl fi+A—-w)f) f. (34)
so the problem becomes:
minfwEy (f (. 0) f(rv) + (1= wE(ff @) faleo)). G5)

4.2 Computational experiments

The results that follow are obtained for 7% =2, T =20, § = 0.9 and the same weight
w = 1 for both inflation and output gap. For the model parameters the estimates
obtained by Orphanides and Wieland [14] are used. These estimates are summarized
in Table 1. Only the estimates from the first column (Euro Area 1976—1998) are used
for the numerical solutions.

There are three sets of results in Table 2, corresponding to different bounds on the
uncertainties. For example, by %Ua we mean that the « variable was allowed to vary

in the set [ty — %oa, o — %oa]. The two objective functions, F, and F; correspond
to the point and zone models respectively. By F/ we denote:

FP =wp'(m — ) + (1 —w)p'y,,
so that F?P = ZrT=1 F;, similar notation is used for the zone model. As was to be

expected the objective function increases as the bounds on the uncertainty increase. In
fact as Fig. 2 illustrates, the objective function value increases exponentially with the
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Table 1 State equation parameters

Euro Area United States
(OECD) (OECD) (CBO) (CBO)
1976-1998 1976-1998 1976-1998 1960-1998
8 1.07 1.03 0.54 0.64
) 0.77 0.47 0.64 0.63
& 0.40 0.32 0.23 0.23
Ou 0.84 1.51 1.62 1.80
o 0.34 0.39 0.31 0.31
¢ 2.00 1.90 3.10 2.90
c 0.1 0.1 0.1 0.1
op 0.20 0.20 0.20 0.20
Ou 0.10 0.10 0.10 0.10
Oe 0.96 0.85 0.89 1.06

Table 2 Minimax solution

Bounds Fp(x,v) Fz(x,v)
ou $0e 104 o, 48.63 80.63
ou oe o op 169.129 224.562
20, 20, 200 20, 1208.77 1340.59

Table 3 Expected value solution

Uncertainty Fp(x,v) Fr(x,v)
N, $ou) N, $oe) N@, Loa) N@. Sop) 15.67 30.13
N, 0y) N(0,0,) N@, o0q) N@,0p) 37.76 60.91
N, 20y) N0, 20,) N(@.204) N(@,20,) 137.16 179.96

size of the bounds. In Table 3 results of minimizing the expected value are presented.
It can be observed that the optimal objective function of the expected value model also
increases as the variance of the random variables increase. However, the increase is
not as much as in the minimax model. In Figs. 4 and 5 we show the results of linear
and exponential fits of how the objective function value changes as A changes. It is
clear from Fig. 4 that, in the minimax model, the relationship between the size of the
bounds and the optimal objective function value is exponential. The linear fit is not at
all an accurate representation of this relationship. Similarly comments apply for the
expected value model. From Fig. 5 it can be argued that the linear fit is more accurate
than in the minimax model. However, the exponential fit is clearly more precise for
both models.

It can be observed from the results (compare Tables 2 and 3) that expectation of
the loss is always lower than the worst—case. Results of cross evaluation are presented
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Minimax Model

1200
*

1000 . 4
800 Point Model (F* —+ *

Zone Model (F* * .+

F 600 « +
* +
400 * 4
* +
* 4
*

200 N * _T_ + +

0 $¢$¢$‘t++

0 02 04 06 08 1 1.2 14 16 18 2
A

Fig. 2 Objective function increase with size of bounds

Expected Value Model

180
160 *
140 Point Model (FP) + *
Zone Model (F? * *
120 * +
100 * *
* +
F * +
80 * +
*
N +
60 « * n +
* +
40 s * n +
* ¥ +
20 I 4 + +
++ + 1
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 3 Objective function increase with size of bounds

in Tables 4 and 5. In Table 4 the second column presents the worst case optimum for
the two models. In the last column we show the result of the Monte Carlo simulation
if the minimax strategy is followed. Similarly for Table 5, the second column shows
the expected value solution for the two models. In the last column of Table 5 we
present the deterioration of the optimal objective function value if the expected value
optimal solution is implemented but the worst case is realized. In order to understand
this relationship better, we plot the value of the objective function for each time pe-
riod separately in Figs. 6 and 7. In Fig. 6 we show how the objective function will
deteriorate if the worst case happens but the expected value policy is implemented.
It can be seen that the worst case strategy is always better, even in a time period by
time period comparison, up to period 30. Then the expected value strategy seems to
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Minimax Model

1200
1000 +
800 Point Model ~ + +
Exponential Fit +
600 Linear Fit T
kP +
400 +
Lt
200 + T
Lo+
+
o ++++ 7
-200
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
A
Fig. 4 Optimal objective function value, linear & exponential fit with bounds
Expected Value Model
140
120 Point Model ~ + +
Exponential Fit +
100 Linear Fit +
+
80 +
FP 60 + +
+
40 + F
Lt
20 ++ T
++ + 7
-20
0 02 04 06 08 1 1.2 14 1.6 1.8 2

A

Fig. 5 Optimal objective function value, linear & exponential fit with variance

be better, in the end the two converge. This result is due to the fact that we use a dis-
count factor (8" = 0.9") in our model. It is also an indication that the optimal solution
will greatly improve if we used a dynamic feedback rule. We note that the minimax
strategy always outperforms the expected value strategy, if the worst case happens,
provided that we add all the time periods together. Note that as A decreases from 4.5
in Fig. 6 to 1.0 in Fig. 7 the two strategies start to produce similar results.

In Fig. 8 we show how the objective function deteriorates as the bound of the
uncertainties increase. Risk in Fig. 8 is defined as:

Risk = FP(x, v"¢) — FP(x"¢, v™°),
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Table 4 Cross evaluation—-minimax solution

Minimax optimum

Bounds Worst—case Exp. val.

(Fp, F) (Fp, F7)
Sou Loe ou 1o, (48.63, 80.63) (18.58, 47.53)
ou oe 0 op (169.129, 224.562) (48.30,75.43)
20y 20, 204 20, (1208.77, 1340.59) (139.88, 183.07)

Table 5 Cross evaluation—expected value solution

Expected value optimum

Bounds Exp. val. Worst—case
(Fp, F?) (Fp, F?)
NO. 1o  NO o)  N@ dow) NG iop) o (1567,30.13) (57.65,87.52)
N, o) N(0, 0¢) N@,o0q) N@,0p) (37.56, 60.91) (186.74, 248.18)
N©,204)  N(©0,20,) N@204) N@205,)  (137.16,179.96)  (1223.46, 1356.01)
Cross Evaluation Results—Point Model
600
HFHAE Minimax Strategy +
500 ** *** Expected Value Strategy  *
* *
*
400 b
P + Hx
F? 300 L J“q*i
+ *,
+ *
200 * *
H
+
100 H: .
F
; o T,
0 10 20 30 40 50 60

Time

Fig. 6 Behavior of optimal strategies given that the worst case realizes, A = 3.5

where x¢, X and v"¢ represent the minimax strategy, expected value strategy and

worst case realization of the uncertainties respectively. Again it can be seen that as
the magnitude of the uncertainties increase the “risk” increases exponentially. It is
also of interest to assess what happens, on average, when the worst case strategy is
implemented. Figures 9 and 10 show that, on average, the expected value strategy
is better than the worst case strategy independently of the time period. Again it is
interesting to study this relationship as the size of the uncertainties increase. In Fig. 11
we display results concerning the “cost” of implementing the worst—case strategy.

@ Springer



Mean and Variance Optimization of Non—Linear Systems 255

Cross Evaluation Results—Point Model
30
Minimax Strategy
* Expected Value Strategy

* +

20

0+ R

0 10 20 30 40

Fig. 7 Behavior of optimal strategies given that the worst case realizes, A = 1.0

Cross Evaluation Results Point Model

18000
16000 +
14000 T
12000

Risk 10000 ++
8000 +
6000 +
4000 +
2000 ++++

+
0 b

A

Fig. 8 Deterioration of optimal objective function if worst case happens but expected value strategy is
implemented

Cost in Fig. 11 is defined as:
Cost=EF(x"¢,v) — EF(x,v),

where x*¢, and X represent the minimax strategy and expected value strategy re-
spectively. Again it can be seen that as the magnitude of the uncertainties increase
the “cost” increases exponentially. Fig. 8 suggests that the risk of not implementing
the minimax strategy increases exponentially as the size of the uncertainty increases.
Fig. 11 suggests that the cost of implementing the minimax strategy also raises expo-
nentially as the size of the uncertainties increase. However, the two increases are on
different scales, and for A sufficiently small (A < 3) the cost of the minimax strategy
is low, compared to the cost of not implementing the robust strategy. In conclusion,
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Cross Evaluation Results Point Model

100
Minimax Strategy +
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Fig. 9 Expected value of the worst case strategy compared with the optimal expected value strategy,

A=35
Cross Evaluation Results—Point Model
35
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Fig. 10 Expected value of the worst case strategy compared with the optimal expected value strategy,
A=35

robustness in this model is not as expensive as one might think. If A is large, then
one would not expect either strategy to perform well.

Therefore, this brings us to the main conclusion that, although the expected value
optimization performs better on average, minimax optimization guards against the
worst possible scenarios and provides the upper bound for (in this case) loss func-
tion. Performance is guaranteed for the worst—case and will improve if any scenario,
other than the worst—case, is realized. Our numerical experiments also indicate the
importance of the size of the uncertainties. As the size of the uncertainties increase,
then the expected value strategy can lead to an exponential increase in the objective
function if the worst case happens. This can be viewed as a risk taken by the de-
cision maker by implementing a strategy that is not robust against the worst case.
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Cross Evaluation Results Point Model
300

250
200
Cost 150

100 "

=

50 +

+
0 +++++++Tt Tttt
0 0.5 1 15 2 2.5 3

A

Fig. 11 Average optimal objective function value difference between expected value strategy and mini-
max strategy as size of uncertainty increases

On the other hand if the worst case strategy is implemented, then the cost of robust-
ness increases exponentially with the size of the uncertainties. These results stress the
importance of considering both decision models.

5 Conclusions

Methods for mean variance and worst—case optimization of nonlinear models have
been presented. Algorithms for computing optimal expected value and variance based
on iterative Taylor expansions have been developed and compared with a minimax
algorithm for computing robust policies.

To compare results a simple macroeconomic model of inflation, output and in-
terest rates due to Orphanides and Wieland [14] was used. The results presented in
Sect. 4 showed that, although the expected value optimization performed better on
average, the worst—case optimal strategy provided robust solutions, that performed
better under the worst—case scenarios. Cross evaluation of worst—case scenarios for
expected value strategy indicates that performance deterioration for the latter could
be a serious issue.

Acknowledgements The authors thank two anonymous referees for their fruitful suggestions that
helped improve the paper. This research was supported by two EPSRC grants—GR/T02560/01 and
EP/C513584/1.

Appendix: The algorithm for variance optimization

As in case of expected value optimization, the algorithm is based on solving the
deterministic solution (for v) and determining the bias §; (x) (the expected deviation
due to the nonlinearity). It requires repeated solution of the problem as shown in
Algorithm 2.
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Algorithm 2 (Variance optimization)

STEP 0: Initialization:

[ =0, choose xg

STEP 1: Calculate 85 = §; (x7)Vi, using MC simulation
STEP 2: Solve

X141 = argminy Var,(F (x, v)) (from (18))

STEP 3: Check for convergence:

if W < € stop, otherwise [ =1 + 1, goto STEP 1

STEP 4: End
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