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Abstract

Significant changes in the power generation mix are posing new challenges and opportunities for balancing systems of the grid
utilising Demand Response (DR). We explore the opportunities for a water distribution system (WDS) to provide balancing services
with demand response through pump scheduling and evaluate the associated benefits. Using a benchmark network and demand
response mechanisms available in the UK, these benefits are assessed in terms of reduced green house gas emissions from the grid
due to the displacement of more polluting power sources and additional revenues for water utilities. The optimal pump scheduling
problem is formulated as a mixed-integer optimization problem and solved using a branch and bound algorithm. The formulation
finds the optimal level of power capacity to commit to the provision of demand response for a range of demand response schemes
offered in the UK. We show that DR from WDS can offer financial benefits to WDS operators while providing response energy to
the grid with less greenhouse gas emissions than competing reserve energy technologies. Using a Monte Carlo simulation based
on data from 2014, we show that the cost of providing the storage energy is less than the financial compensation available for the
equivalent energy supply. The GHG emissions from the demand response provision from a WDS are also shown to be smaller
than those of contemporary competing technologies such as open cycle gas turbines. The demand response services considered
variations in their response time and duration as well as commitment requirements. The financial viability of a demand response
service committed continuously is shown to be strongly dependent on the utilisation of the pumps and the electricity tariffs used by
water utilities. Through a range of water demand scenarios and financial incentives, we demonstrate how a WDS can participate in
a demand response scheme and generate financial gains and environmental benefits.
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1. Introduction

Electricity storage schemes and grid management methods
are becoming ever more important as the landscape of the elec-
tricity grid changes to more decentralised renewable produc-
tion. The intermittent nature of these sources and the unavail-
ability of contemporary technology for storing large quantities
of electrical energy efficiently and cost effectively has led to
a demand for new energy storage systems and more intelligent
electricity demand management [52]. Edmunds et al. [14] high-
light significant reductions in greenhouse gas (GHG) emissions
from future UK power grids when storage technologies are im-
plemented, while Lau et al. [23] show considerable GHG emis-
sion savings can be achieved through a range of demand re-
sponse programs.

In demand response, an electricity consumer reduces its
power consumption when requested to do so in exchange for
compensation. For an electricity consumer with an electricity
demand that is predictable into a future operational horizon,
demand response (DR) is provided by reducing its electricity
consumption compared to the predicted consumption [2]. Dif-
ferent DR mechanisms may impose requirements on how long
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the power reduction must last, how large it has to be, at what
rate it must be reduced and within what timeframe it must be
achieved. A detailed summary of possible mechanisms and
their properties is provided by Ma et al. [26]. Despite the poten-
tial of active demand management to increase renewables pen-
etration [16], a large share of demand response services is cur-
rently provided through backup generators instead of demand
shifts by consumers [28].

Water utilities are a major electricity consumer, accounting
for up to 5% of a city’s electricity consumption [5]. Most of
this energy is used to drive the pumps of the water distribution
systems (WDS) [20]. The pumps are operated with schedules to
guarantee adequate water supply for consumers. By making use
of low tariff periods and the pumps’ efficiency characteristics,
the operating cost can be minimized through the optimisation of
pumping schedules. With the emergence of smart power grids
and the penetration of intermittent renewable power sources,
existing operational paradigms are being questioned. The in-
creased utilisation of renewable energies to power the operation
of WDS has, for example, been shown to reduce the GHG emis-
sions considerably [7]. We investigate how a WDS can provide
reserve energy to a power grid through demand response. Three
schemes available in the UK are used as case studies to evalu-
ate the financial and environmental implications of the partici-
pation of WDS in such mechanisms.
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The financial and environmental benefits from participating
in a demand response scheme are assessed through a compar-
ison of its optimised operational cost to that of normal oper-
ations that minimise only the operating cost for a given elec-
tricity tariff and water demand. To ensure this comparison is
valid, we solve both schedules to a sufficiently small certifi-
able optimality gap; an optimality gap that is smaller than the
model uncertainty is chosen [30]. When assessing the ability of
a WDS to curtail its electricity usage at request to participate
in the demand response market, we separate the hurdles to im-
plementation into system and operational hurdles. The system
constraints considered are the available financial rewards, the
given electricity price structure and the water network’s pump
utilisation rate. These dictate whether a demand response pro-
gram can be considered financially viable. Examples of opera-
tional constrains are ramp rates, pump switching constraints or
minimum network pressure constraints. This investigation fo-
cusses on the system hurdles using quasi steady state modelling
and simplified operating constraints; we assume the operational
hurdles can be met with available control and monitoring tech-
nologies and design expertise.

This paper is organized as follows. First we describe the
demand response mechanisms in section 2 and the assessment
methods used for the financial and environmental benefits sec-
tion 2.2. Based on our previous work on pump scheduling [30],
we formulate the optimal scheduling problem for DR in sec-
tion 3. The simulation of demand response events is described
in section 4.1. Section 5 shows and discusses the results ob-
tained from the a benchmark network. Finally, further work
and conclusions are summarised in section 6.

2. Demand response

2.1. Service description
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Figure 1: Approximate time scales for the National Grid response services to
demand and supply mismatches. Adapted from National Grid [34]

In the United Kingdom, National Grid operates the electricity
grid, maintaining it as tightly as possible around the desirable
frequency of 50Hz. In case of a significant drop in frequency,
as illustrated by Figure 1, National Grid recognises two mech-
anisms relevant for this work, frequency response and reserve
energy. Within two seconds of an incident that causes the fre-
quency to drop, the frequency response services are brought

on-line to stabilise the grid. Reserve energy providers are then
brought on-line within 20-30 minutes to enable the fast re-
sponding frequency services to be switched off to be used again
at future events. The services considered here that can pro-
vide frequency response (FR) through demand response are the
Firm Frequency Response (FFR) and Frequency Control by De-
mand Management (FCDM). The reserve energy provision ser-
vice considered is the Short Term Operational Reserve (STOR).

The first demand response service considered for the WDS
case studies is STOR since the technical requirements suggest
that it can be implemented in a WDS more readily. A STOR
provider offers a steady demand reduction and must deliver the
reduction within 4 hours after being called and may be required
to reduce the demand for up to 2 hours. However, the tender
records show that the mean call duration in 2013 was 82 min-
utes and that National Grid prefers services that can respond
within 10 – 20 minutes [28]. Since the minimum offered power
requirement for STOR participation in the UK is 3MW, only
large WDSs would be able to participate in a STOR scheme
directly. However, through an aggregator, a company that ag-
gregates several consumers and bids their capacities to National
Grid, a smaller WDSs could participate in these mechanisms
by sharing the profits generated with the aggregator. To offer
STOR National Grid recognises a range of pathways to suit the
wide range of suppliers [35]. The pathways modelled here are
based on offering STOR services during both availability win-
dows or just in one, this can be achieved through tendering ei-
ther a committed or flexible service. The STOR windows and
tariff structure is described in further detail in section 2.2 and in
Figure 4.

The second method for demand response energy provision
considered here is the provision of frequency response ser-
vices through FFR or FCDM. National Grid requires that an
FFR provider is able to deliver a minimum of 10MW response
power; smaller users can offer FFR through an aggregator. For
the secondary response service, which is considered here, the
response must occur within seconds and be maintained for a
few minutes. The service may be tendered for any time period,
with National Grid preferring tenders that can offer and deliver
the service most times. Furthermore, there are requirements
detailing the metering and communication systems in place
as well as pre-qualification assessments that need to be per-
formed [40, 41]. FCDM is a bespoke service arranged through
bilateral agreements with National Grid. In general an FCDM
provider must provide the demand reduction within 2 seconds
of instruction and deliver for a minimum of 30 minutes. The
minimum demand reduction to be delivered is 3MW, which
may be achieved by aggregating a number of smaller loads at
same location. FCDM calls occur only ten to thirty times per
annum [43].

For our analysis, the frequency response services FFR and
FCDM are approximated by removing the minimum power de-
livery constraint and requiring the WDS to be able to deliver
demand response throughout the day. The event duration for
which water must be supplied to customers with reduced pump
power is set to 30 minutes. For the analysis of the financial
viability of DR the difficulties associated with sudden pump
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switches are neglected as we use quasi steady state models
to represent the energy consumption; we consider the pump
switching speed a technical issue to be resolved with the hy-
draulic (transient) modelling of the individual systems and their
local control. A range of measures that can be employed to
enable the pump switching speeds required for frequency re-
sponse are discussed in Section 6.

Table 1: Summary of the range of monetary rewards for FFR and STOR service
options [4, 42, 28, 41]. Rewards for FCDM are based on custom agreements
with National Grid [43].

Type FFR STOR
Windows available: 24h 1st & 2nd 1st

Availability £/MW/h 80 – 150 7 – 9 1.8 – 2.5
Energy pay £/MWh – 75 – 200 75 – 200
Total £/ MW (R) 45k–100k 30k – 45k 15k – 30k

Both FFR and STOR services are tendered at the beginning
of the month or season respectively. Potential providers place
bids with their cost and availability restrictions. Using histor-
ical data the range of energy provision and revenue generated
from the reserve energy provision can be calculated. The finan-
cial rewards for a successful tender are summarised in Table 1.
Frequency response services provide a small amount of energy
– in a short (< 30Minutes) high power (> 10MW) burst – at
short notice, while reserve energy services provide the reserve
power over a longer time period but do not react as quickly as
the frequency response services. This is reflected in the pay-
ment structure, where the revenue contribution of the availabil-
ity payment is much more significant for frequency response
services than for reserve energy services [28]. FFR and STOR
are tendered in each of the six seasons National Grid considers
and pricing varies significantly between seasons. The services
are more lucrative for the providers in winter due to tighter mar-
gins in the grid [4]. The revenue achievable for STOR provi-
sion is based on 3436 to 3457 hours of allocated windows on
workdays during which availability payments can be received
and 90 minute mean duration of calls for STOR activity. Non-
work days are neglected in this analysis as they are less fre-
quent and generally have a larger grid margin and fewer STOR
events. For a more detailed summary of the effects and bene-
fits of demand response in general applications, see Albadi and
El-Saadany [2].

2.2. Environmental and Financial assessment

The environmental benefits of demand response from WDS
is assessed by comparing the change in GHG emissions due to
a change in operating schedule to the operational GHG emis-
sions from competing energy storage mechanisms. The three
largest power plants for STOR provision are open cycle gas tur-
bines (OCGT), pumped hydro and diesel internal combustion
engines [36, 39].

The GHG emissions attributed to the WDS operation are due
to the time dependent energy consumption and the associated
GHG emissions of the electricity grid. To define the GHG emis-
sions caused by demand response the operations when provid-

ing demand response the operations when the service is avail-
able and when the response energy is provided are considered
separately. The GHG emissions from either operation are com-
pared to the normal operation when not providing demand re-
sponse services. The cost of providing demand response are
evaluated using the same method. However, as the GHG emis-
sions are not explicitly minimised in the objective function the
change in GHG emissions can be both negative or positive
while the cost are minimised and thus a deviation from the nor-
mal optimal operating schedule is expected to incur a cost for
the operation when providing demand response.

Table 2: Range of call frequencies, durations and resulting energy delivery in
terms of committed power for the DR services considered [37, 41].

Type FFR FCDM STOR
Call frequency ∼/annum 10–30 10–30 20–100
mean duration (min.) 30 30 82
Max. duration 30 –∗ 240
Energy provided (MWh/MW/a) 5–15 15 27–137
∗FCDM is based on bespoke agreements between Na-
tional Grid and the supplier

The GHG emissions and cost due to the provision of response
energy in the case of a demand response event can readily be
calculated in terms of the energy provided during an event. To
compute the GHG emissions and cost due to the availability to
provide demand response, assumptions based about the usage
of the service must be made as the GHG emissions and cost
are incurred for the power provided and are independent of the
actual energy delivered in events and are found from the differ-
ence to normal operations. These assumptions are summarised
in Table 2. The analysis shows that the frequency response ser-
vices FFR and FCDM deliver only a small amount of energy,
due to the short nature of their responses, which is also reflected
in the payment structure. The energy delivered from STOR in
a given year varies by how often the provider is called, which
is itself a function of the price of the the energy offered as Na-
tional Grid uses a strict merit order system to call response en-
ergy [35].

3. Optimal Pump Scheduling

The optimisation of pump schedules for WDS operation is
a difficult computational problem as the description of pump
states and flow in pipes involve binary variables and some of the
underlying fundamental system equations are non-linear. The
integer problem can be solved through heuristic optimisation
methods such as a genetic algorithm (GA) to optimise pump
scheduling, with a separate solver for the non-linear hydraulic
simulation problem [27, 54, 48, 50, 29]. Other heuristic pro-
cedures that have also been applied include simulated anneal-
ing [19, 45], ant colony optimisation [25] and particle swarm
optimisation [55].

In the mathematical optimisation framework, the schedul-
ing problem can be posed as an mixed integer problem (MIP),
solving the hydraulic model and scheduling simultaneously.

3



This can be solved using iterative linear programming for lo-
cal optima [47] or using dynamic optimisation for small prob-
lems [53]. The scheduling problem can also be solved us-
ing branch and bound methods [18, 6]. To improve the so-
lution speed, the hydraulic model can be simplified [3] or a
Lagrangian relaxation [17] can be applied. A detailed review
work on water distribution operation optimization is provided
by D’Ambrosio et al. [13].

To compare different operational conditions and the resulting
pump schedules, certifiable global optimality is required. This
can be achieved through a branch and bound method [44]. A
piecewise linear approach that approximates the problem such
that it can be solved to global optimality is presented by Morsi
et al. [32]. The optimal schedules are calculated using a piece-
wise linear approximation of the hydraulic constraints based on
methods outlined in Menke et al. [30]. By comparing the op-
erating cost and GHG emissions of a WDS participating in a
demand response scheme to one under normal operations, we
compute the optimal level of demand response capacity to pro-
vide, i.e. one that minimises the operating cost.

3.1. Optimization problem formulation
The optimisation problem for scheduling WDS pumps for

DR can be formulated as:

minimise: Pump operation cost − DR revenue.
subject to: Hydraulic constraints of pumps and pipes,

mass balance of the system,
additional constraints from DR provision.

(1)

In the following subsections, we describe the objective func-
tion and the physical, performance and DR constraints in more
detail. In this section, we use nomenclature that refers to the
network model in Figure 2 in order to explain WDS component
modelling.

3.2. Pump operation cost
The decision variable in scheduling the operation of a fixed

speed pump is the pump’s state, ON or OFF, here described by
Tip j ∈ {0, 1} for pump ip at time step j ∈ [0,N]. The energy
consumption by the pumps in a WDS during a 24h period and
the associated energy cost are calculated by a linear function:

f1(·) :=
ip=Np∑
ip=1

j=N∑
j=1

Tip, jCip, j (2)

where Cip, j is the cost of energy in having pump ip ON at time j.
Pump switching can have a negative effect on the maintenance
cost of a system due to the changing loads contributing to tran-
sient or fatigue related failures. Penalising pump switching is
often used to reduce this negative impact and account for main-
tenance cost [22, 50]. A penalty function that approximates the
switching cost can be added to the objective function to lower
the maintenance cost. When penalizing ON-to-OFF and OFF-
to-ON states equally it is given by:

f2(·) :=
ip=Np∑
ip=1

Cs

j=N∑
j=1

(
Tip, j − Tip, j−1

)2
(3)

where Cs is the penalty for a single pump switch. The value
of Cs is based on recommendations by Van Zyl et al. [54]. For
further discussion of pump switching constraints and the cost
associated with the dynamic response of a hydraulic system,
see Section 6.

3.3. Hydraulic balance

The pressure delivered by a pump (i.e. the piezometric head
difference across it) can be described by a set of linear con-
straints that define a convex set approximating the characteris-
tic curve of a pump. For a given time step, a fixed speed pump
ip connecting nodes J1 and J2 is constrained by:

hJ1 − hJ2 ≤



mp
ip,1

qip + cp
ip,1

Tip and

mp
ip,2

qip + cp
ip,2

Tip and
...

mp
ip,5

qip + cp
ip,5

Tip if: Tip = 1

∆hub, qip = 0 if: Tip = 0

(4)

where mip,1 . . .mip,5 and cip,1 . . . cip,5 are the linear coefficients
for the five hyperplanes describing the convex set. ∆hub is
an upper bound on the pressure head generated by the pump.
These constraints are enforced using a big-M method as de-
tailed in Menke et al. [30] and Gleixner et al. [18].

Similarly, the energy balance for flows in pipes is modelled
using a piecewise linear approximation of the head loss formu-
lae given by either the Hazen-William or the flow dependent
Darcy-Weisbach equations [1]. For a given time step, the head
loss across pipe P2 connecting nodes J3 and J4, for example,
can be approximated using a set of piece wise linear equations
given by:

hJ3 − hJ4 =


qP2mc

P2,1 + cc
P2,1, if qlim1 ≤ qP2 ≤ qlim2

qP2mc
P2,2 + cc

P2,2, if qlim2 ≤ qP2 ≤ qlim3
...

qP2mc
P2,5 + cc

P2,5, if qlim5 ≤ qP2 ≤ qlim6

(5)

where the five linear sections are given by mP2,1qP2 +

cP2,1 . . .mP2,5qP2 + cP2,5. Note that we have chosen to use five
pieces after simulations showed that it was a sufficiently high
order approximation for our purpose; see [30] for detailed anal-
ysis. In the optimization algorithm, these formulae are imple-
mented using linear big-M constraints.

3.4. Mass balance at network nodes

Since steady-state approximations of the hydraulic condi-
tions are used, compressibility effects are neglected and the
mass flow is equal to the volume flow. For a network node
joining components P1, P2, . . . Pn, the mass flow must balance
at each time step j. This is given by:

qP1, j + qP2, j + · · · + qPn, j = 0 (6)

Demand at a node is considered in the mass balance and must
always be met in feasible solutions. To ensure feasibility with
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respect to regulatory requirements to supply demand at suffi-
cient pressures, a minimum hydraulic head constraints are en-
forced at demand nodes.

Tanks provide storage capacity in the networks providing wa-
ter supply when the supply from the pumps is less than the de-
mand. For a tank J with flows qin and qout the mass balance for
time steps j = 1 . . .N − 1 is given by:

qin, j + qout, j =
(
hJ, j+1 − hJ, j

)
× AJ , (7)

where the surface area of the tank is given by AJ . Since demand
patterns are similar from day to day, we ensure that schedules
are repeatable (reasonably similar) by enforcing the constraint
that final levels in tanks do not differ much from their initial
conditions:(

hJ,1 − hJ,N
)
× AJ ≤ δV ,(

hJ,1 − hJ,N
)
× AJ ≥ δV ,

(8)

where δV defines the volumetric difference. This relaxes the ap-
proach where the final or initial tank levels would be input data,
which would limit the feasible search space and potentially lead
to a sub-optimal final solution. A similar initial and final con-
straint relaxation is used in [47], while [11] includes a penalty
for final water levels below the initial level or for ones away
from a specified target at the end of the operating period.

3.5. Demand response cost function and constraints
The revenue from providing demand response is proportional

to the power committed to the scheme. This is represented by:

f3(·) := −Pdr × R (9)

where Pdr is the power committed to DR and R is the expected
revenue per MW committed as summarised in Table 1. How-
ever, to be able to provide this power as demand response, the
WDS must certify that it would always consume this offered
power unless it answers a DR call. The power consumed by the
pumps is given by:

j=np∑
j=1

Pi, jTi, j ≥ Pdr (10)

When providing demand response, the WDS must be able to
satisfy the expected water demand from consumers for the max-
imum possible duration of the DR event. This is enforced in
the optimization model by specifying a minimum fill level for
tanks, which depends on the maximum DR time offered. This
increases the lower bound in the tank dependent on the demand
level by:

hminDR J,i = hminnorm J,i +
Vd J,i

AJ
(11)

where hminnorm J,i is the lower bound of the tank level range and
Vd J,i is the volume deficit caused in tank J by operating the net-
work without pumps for the maximum DR call duration at time
step i. Vd J,i is calculated using a hydraulic simulation before
the optimisation and ensures the WDS can provide its water de-
mand requirements during the demand response event.

The constraints for demand response provision are only en-
forced for time steps within the times for which demand re-
sponse capability should be provided depending on the type of
service being FFR where it is continuous or for STOR when it
is during the first or both of the availability windows.

3.6. Problem summary

The variables of the optimisation problem are the binary vari-
able T for the ON – OFF status of the pumps and the contin-
uous variables h for the hydraulic head at a node and q for the
volumetric flow rate in a connection. Although not described
here, a set of binary indicator variables are used to enforce the
piecewise linear approximations for headloss across pipes [30].
The power committed to demand response is given by Pdr.
The pump schedule optimisation problem for a fixed electric-
ity price tariff giving the normal operation schedule is given by:

min: f1 (·) + f2 (·)

s.t.: (4), (5), (6), (7)
(12)

For the demand response case where the provide level of de-
mand response power is left to be found by the solver the above
formulations are modified as:

min: f1 (·) + f2 (·) + f3 (·)

s.t.: (4), (5), (6), (7), (10), (11)
(13)

The mixed integer quadratic program formulated in MAT-
LAB and solved with CPLEX [9]. Since tighter bounds on vari-
ables can improve the computational speed of the branch and
bound algorithm in CPLEX and we want to reduce the compu-
tational effort required to solve the problem to an adequate op-
timality, the bounds on the variables and the value of the big-M
are chosen as tight as possible while including all hydraulically
feasible solutions [30].

main1

main2

booster P8

J4

J5
J6

P2
P1

P5

J7

P4

P3

J1 J2
J3

Figure 2: Van zyl network adapted from Van Zyl et al. [54]

To demonstrate demand response from water distribution
systems, the Van Zyl benchmark network shown in Figure 2
is used as a case study. It is analysed under a range of pump
utilisation rates, a range of overall rewards for the provision
of DR and varying cost of energy through a selection of real
electricity price tariffs. To enable these comparisons, the water
demand is described in terms of the pump capacity of the net-
work. In general, water demand at a node is modelled as the
product of a time dependent term (the demand pattern) and a
constant term (the base demand) [54]. The network model has
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Figure 3: Water demand multiplication factor pattern at the demand node
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Figure 4: Weekday electricity tariff of a UK water utility (top) and STOR win-
dows for 2015 (bottom) – 17 [38]. Red highlights indicate the window times
used here.

only one source reservoir and all water demand consumed in the
network must flow through the pump station containing pumps
main1 and main2. We express the pump utilisation of the net-
work as a function of the best efficiency point (BEP) flow rate
of one of these identical parallel pumps. To achieve this, the
water demand was modified from the version available in Van
Zyl et al. [54] by changing the base water demand (do) to the
BEP flow rate of main1 and modifying the pattern such that it
had a mean of one. In simulating different levels of consump-
tion compared to the capacity of each pump, the demand rate is
modified, to a value ds, and ds

do
is defined as the pump utilisa-

tion rate. A low pump utilisation factor can be interpreted as a
large pump supplying a network, while a higher factor indicates
several smaller pumps supplying the network.

Larger commercial electricity consumers often utilise elec-
tricity tariffs with a range of prices across the day, with high
peak prices during peak power consumption times. The elec-
tricity tariff used for this analysis is one used by a UK water
utility and is shown in Figure 4. The peak price makes pump
operations in this period particularly expensive. The changes in
the electricity supply, due to the introduction of renewables, are
expected to lead to a change in peak prices. However, the ex-
periences and estimates from Australia and Germany [12, 46]
show that the direction and scale of change in peak prices can
vary significantly. To analyse the effect of peak price on the
schedules and the financial viability of demand response ser-
vices, we scale the tariff in Figure 4 by altering the minimum
and maximum prices over a large range, while maintaining the

same mean price for the tariffs to allow a fair comparison be-
tween different tariffs. Each electricity tariff used in our op-
timisation is thus referred to using the ratio of the maximum
and minimum prices, Pricemax

Pricemin
. The tariff used by the utility in

Figure 4 has a ratio of 3.2.

Table 3: Cumulative probabilities of STOR DR event durations [37].
Event (min.) <30 30–60 60–90 90–120 120–150 >150
Share (%) 12.3 26.6 24.0 16.7 9.1 11.2

The time of the availability windows used for STOR services
by National Grid vary from year to year and across seasons of
the year; Figure 4 shows the STOR windows that are considered
for this analysis highlighted in red, representing an aggregation
of the window times offered by National Grid. In this analy-
sis the availability window descriptions were simplified to the
constraints that STOR service providers must be available to
provide STOR services in both STOR windows or in just the
first STOR window. A DR event can start only inside an avail-
ability window but may continue to outside of the window [35];
we model this explicitly. After participating in an event, there is
a recovery period in which the STOR provider does not need to
be available to provide another response. The likelihood of an
event occurring at a specific time in the STOR window is con-
sidered uniform since the usage of historic statistics provided
by National Grid [37] shows that there is no clear trend. The
duration of STOR responses as well as their relative likelihood
from historic STOR data are summarised in Table 3.

FFR services are provided throughout the day. However, a
water utility can specify in its bid that it cannot provide the
service at certain periods; this, however, reduces the benefit of
the offer to National Grid. The requirement for FFR services in
2015 [41] shows a pattern with highest demand in the summer
months and lowest in winter, while data of STOR services from
2014 shows no such clear pattern [37].

4. DR events

4.1. Simulating a DR event
The operation during and in the 24 hours after the begin of

the event is investigated to provide an indication of the cost and
GHG emissions that arise due to such an event. Compared to
the original problem, which yielded To,ho the original pump
settings and tank levels, the event optimisation problem is fur-
ther constrained, by the power consumption requirements of
the event and the resulting changes in tank levels and devia-
tion from the originally optimal path resulting from the optimal
schedule.

Given the original operating schedule and the required power
consumption reduction during an event the operating schedule
during the event is computed a priori and together with the ini-
tial tank levels further constrain the optimisation problem. The
initial and final tank levels areconstrained by:

h j,1 = ho
j,1, h j,N ≥ ho

j,N ∀ j ∈ JTanks (14)

where JTanks is the set of tanks in the network.
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The increased minimum tank levels as described by (11) can-
not be enforced during the event and in the following recovery
period. For a tank J during the event and the allowed recovery
period the Vd J,i

AJ
term is dropped and the minimum tank level is

given by:

hminDR J,i = hminnorm J,i ∀i ∈ TEvent+recovery (15)

where TEvent+recovery is the time steps of the event and the recov-
ery period after the event in which the WDS will not be asked
to provide demand response again.

To verify how the tank levels and water provision of the WDS
are affected by a DR event, these are modelled in a quasi steady
state model. The optimal scheduling problem is formulated as:

min: f1(·) + f2(·)
s.t.: (4), (5), (6), (7), (10), (11), (14), (15)

(16)

Further optimisation methods for a DR event are discussed
in section 6.

4.2. Monte Carlo simulation of demand response events

Figure 5: GHG emissions for the UK grid for 2014 [15]. The emissions profile
of each day is described by a trace with the mean highlighted in red. The
emission intensity descriptions are discretised to 48 time steps as G.

The cost and GHG emissions from response energy provision
depend on a range of factors. The electricity tariff used here is
the same for all work days of the year, which are the only days
considered for DR. The cost of a DR event, therefore, is depen-
dent only on the duration and start time of the event and not
the date. The range of daily GHG emission variations can in-
fluence the overall emissions [31]. To ensure this is captured in
the estimate of the GHG emissions from events, the date of the
simulated events is also varied and the corresponding historic
GHG emission data used to compute the associated emissions.
The traces of the date specific emission levels are shown in Fig-
ure 5.

The cumulative probabilities of STOR event durations are
summarised in Table 3. For each 24-hour day, the modelled
event durations are discretised into 30 minute intervals. The
starting time of the events are modelled with a uniform proba-
bility within the STOR window and the probability of a STOR
event occurring on a particular day is modelled as described
in National Grid [37]. The simulation of FFR events was per-
formed with similar considerations, however the event duration

was always only one time step of 30 minutes. For a demand re-
sponse event the operating schedule is computed following the
procedure given below:

1. For a normal day operation (i.e. operation optimised for
DR provision), solve (13) to get schedule T0, and record
the initial fill levels of the tanks h0.

2. Solve the DR event simulation problem, which has addi-
tional constraints as described in (16).

3. The optimal schedule (TEvent) for the operation with the
event is computed

4. Compute the operation cost and GHG emissions of the
event and compare to the original cost and GHG emissions
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Figure 6: Variation of the normalised mean and standard deviation of cost and
GHG emissions of the Monte Carlo simulation for STOR events, showing their
convergence well within 1000 simulated events

The number of events to model was chosen large enough to
ensure convergence of the mean and standard deviation of the
results. For example, Figure 6 shows the convergence of the
standard deviation and mean cost and GHG emissions com-
puted indicating that the analysis ha been performed on a suffi-
ciently large sample [49]. These results of the simulations are
are discussed in Section 5 and summarised in Table 4.

5. Results and Discussion

We investigate three aspects of demand response from WDS,
how optimal pump operations change to enable the provision of
demand response before and during a DR event, requirements
needed for the provision of DR through pump scheduling to be
financially viable and the environmental aspects of DR from
WDS and how it compares to other alternative response energy
provision technologies.

The results and discussion are separated into sections fo-
cussing on the financial viability of providing DR from WDS
in Section 5.1, the GHG emissions associated with the provi-
sion of DR in Section 5.2, and the optimal scheduling for DR
provision and DR events in Section 5.3, .
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Figure 7: Reward and pump utilisation required for a given price pattern ratio
for permanently committed demand response from FFR or FCDM.

5.1. Financial viability

Figure 7 shows the volume formed by the combinations of
price ratios, reward size and pump utilisation rate that are fi-
nancially viable to provide a FFR or FCDM service from the
Van Zyl Network when assuming a maximum event duration
of 30 minutes. It shows that a high pump utilisation rate, high
reward and low price ratio benefit the financial viability of the
fast response schemes. It also demonstrates that the ratio of
the maximum and minimum prices of the electricity pattern as
well as the pump utilisation rate have the strongest effect on the
financial viability of the DR service. The reward level on the
other hand has a lower impact on the financial viability. De-
mand response through FFR provides the highest amount of
yearly revenue for committed power while requiring the least
amount of energy provision. The revenue primarily stems from
the availability payments for the power capacity provided and
to a lesser extend from the energy provision. Assuming a WDS
can fulfil the technical requirements with regards to size and
pump switching speeds, it could provide a good opportunity for
a profitable committed demand response provision if the pump
utilisation rate and the electricity tariffs are moderately high.
Otherwise, a bespoke FCDM agreement where the peak hours
of the contract are spared out could provide a viable alternative.

The financial viability of STOR services is explored with
an annual reward of £25000/MW, which represents the lower
bound estimate of the revenue from availability payments alone,
based on approximately 3500h of availability per year and £7-
9/MW availability payments as detailed in Table 1. The opti-
mal power level to commit to be available for STOR provision
in both availability windows is shown in Figure 8. Figure 9
shows the same for provision in the first availability window
only. The two figures show that for lower pump utilisation rates

Figure 8: Financially viable provision in both STOR windows for a reward of
£25000 / a

Figure 9: Financially viable provision in only the first STOR window for a
reward of £30000 / a.

no STOR service is viable as the optimum power is 0kW. For a
small range of pump utilisation rates and electricity peak price
ratios, STOR provision from the booster pump with 89kW is
the optimal power for DR while for a large range of pump util-
isation rates ≥ 1 a pump from the main pump station with
178kW can be committed to STOR provision. With a reward
of £25000/MW, the additional revenue from DR provision, if
viable, can be up to 4.6% of the normal operating cost.

The cost of scheduling for STOR relative to normal opera-
tions not only depends on the pump utilisation ratio and maxi-
mum price of the electricity tariff, but also on which availability
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windows STOR is offered in. If only the first STOR window is
used, a wider range of conditions and a larger capacity of pump
power can be committed to the provision of demand response.
On the other hand, also providing STOR services in the second
STOR window as well reduces the range of financially viable
options as the peak electricity price becomes more relevant.
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Figure 10: Distribution of the cost GHG emissions of energy provision from a
Monte Carlo simulation of STOR DR events for ds/do = 1.

Table 4: Summary of Monte Carlo simulation results, showing mean and 95th

percentile of the cost and carbon intensity of the simulated energy provision
results.

DR service Cost (p/kWh) GHG (gCO2e/kWh)
type x̄ z0.05 x̄ z0.05

FFR 7.4 20.2 137 295
STOR 4.2 11.1 88 202

The cost of providing response energy in a STOR event are
estimated by modelling a wide range of events in a Monte Carlo
simulation, as shown in Figure 10. Table 4 shows that the cost
of energy when rescheduling due to an event reduces the in-
come generated through demand response event on average by
4.2 p/kWh and 95% of the events cost less than 11.1 p/kWh.
This represents 25 – 50 % of the income generated from par-
ticipating in the event. Thus, the cost associated with an event
are shown to be well below the payments received for reserve
energy provision.

For National Grid, STOR from a WDS would be very attrac-
tive since a water utility would not require a minimum guaran-
teed STOR provision to provide demand response; this is be-
cause, unlike for the competing technologies, STOR is only an
additional revenue stream and not the sole purpose for a water
utility [34].

5.2. Environmental analysis

The GHG emissions for the UK grid in 2014 are shown in
Figure 5 and the carbon intensities of the competing technolo-
gies are summarised in Table 5. For the competing technologies
providing STOR services, to be displaced by demand response
from WDS, we consider the three most important technologies:
Open Cycle Gas Turbines (OCGT), Pumped Hydro Storage

Table 5: Summary of carbon intensities of competing STOR provision tech-
nologies. Given in ( gCO2e/kWh)

Technology best worst
Open cycle gas turbine (OCGT) 480 575
Pumped hydro storage (PHS) 470 571
Internal Combustion Diesel (ICD) 520 700

(PHS) and Internal Combustion Diesel (ICD) engines, which
together account for 82% of the STOR market [36]. When com-
paring the emissions of technologies, only the operational emis-
sions are considered. For an OCGT plant these are provided by
Seebregts et al. [51]. The PHS plant is assumed to fill its reser-
voirs in the early hours of the morning or at night, when average
emissions are approximately 400 gCO2 / kWh, this is based on
data from [15]. The GHG emissions due to the consumption of
electricity from pumped hydro storage is computed assuming
an efficiency in the range of 70 – 85 % and neglecting life cy-
cle related emissions, because the infrastructure is considered
to be already in place [8]. The GHG emissions from operat-
ing an internal combustion diesel (ICD) engine and generator
unit are computed by considering full load operation emissions
only and neglecting emissions other than CO2 [33]. The carbon
intensity range used here is more generous towards the compet-
ing technologies than the figures given by National Grid [39],
but as performance of power plants varies this range will give
a better insight into the potential for GHG emission abatement
through their displacement by DR from WDS.
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Figure 11: Frequency and range of GHG emission levels for DR from STOR
for the range of pump utilisation and price ratio investigated in Figure 8 and
Figure 9. The carbon intensity is calculated assuming the maximum (i.e. 137
kWh/kW/a) from the range of energy provisions in Table 2.

The carbon intensity of providing the availability for demand
response services by a WDS varies significantly. They can in-
crease or decrease the overall emissions as they are not consid-
ered in the optimisation of the schedule and vary through out
the day. However, the histogram in Figure 11 shows, the addi-
tional GHG emissions from scheduling for DR are contained to
a range of -50 – 50 gCO2/kWh.

The GHG emissions caused by the provision of response en-
ergy from the DR event are summarised in Figure 12. The
mean GHG emissions as modelled in a Monte Carlo simula-
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Figure 12: Distribution of GHG emissions of energy provision from a Monte
Carlo simulation of STOR DR events for ds/do = 1

tion are 88.3 CO2/kWh and 95% of emissions are below 202.1
CO2/kWh. Table 4 shows that the 95th percentile of the Carbon
Intensity of the events are much less than the emissions from
competing frequency and reserve energy providers summarised
in Table 5. The total GHG emissions associated with the provi-
sion of response energy thus range from -50 – 250 gCO2/kWh
with a mean of 90 and 95% of the energy provided with less
than 240 gCO2/kWh. This performance is significantly better
than the next best conventional alternatives, an efficient OCGT
or pumped hydro storage.

The network configurations yielding higher GHG emissions
in Figure 5 are characterised by larger changes to operation
schedule to facilitate a higher capacity of DR provision. How-
ever, there is no clear trend with regards to pump utilsation rate
or electricity peak prices. Green house gas emissions from FFR
are not considered here due to the small amount of energy dis-
placement of the mechanism make the comparison to the val-
ues quoted in Table 5 misleading. However, it has been shown
that frequency response services from PHS can reduce the GHG
emissions compared to OCGT plants [23].

Generally the GHG emissions per unit of response energy
provided by a WDS linearly depends on the total yearly re-
sponse energy provided, in order to reduce the carbon intensity
a lower price in the offer tender is suitable while higher prices
may improve the profits at the expense of emission reductions.

5.3. Scheduling for demand response

Scheduling for DR divides into two problems: finding an op-
timal schedule to operate when providing the readiness to re-
duce energy usage at request and the scheduling during and af-
ter a DR event. The scheduling for the readiness requires the
guaranteed operation and consumption of the energy tendered
as demand response capacity. To schedule during and after a
DR event, more operational constraints need to be considered;
these include the initial tank fill levels, the minimum tank levels
and the desired final tank levels.

To enable a meaningful comparison between schedules gen-
erated for a range of operating conditions the use of an optimi-
sation method that can guarantee global optimality is necessary.

However, the difficulty in solving the MIPs can lead to conver-
gence issues with the solver not reaching the required level of
optimality in the given maximum solve time. In the rare cases
when the additional revenue from demand response is smaller
than the optimality gap of the solution, this can lead to small
variations of the results [30].
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Figure 13: Simulated change in tank levels after a 90 minute DR event from
13:30AM onwards, showing the change in operating schedule and the result-
ing differences in tank levels. The tank levels are computed using a hydraulic
simulation using a null-space algorithm [1].

Figure 13 exemplifies the development of the levels of the
storage tanks and the change in the 24h operating schedules af-
ter a 90 minute DR call at 13:30PM on the 21st January 2014.
The Figure highlights the resulting behaviour that occurs due to
a DR call and the following deviation from the optimal pump
schedule for normal operations without an event. The over-
all pump activity is increased with pumps operating in parallel
more often. As a result, the overall energy consumption is in-
creased.

Considering the minimisation of operating cost is only ever
the second priority of a water utility, second to the guaranteed
provision of water to the customers. This guarantee of sup-
ply needs to be also ensured in events and is verified through
hydraulic simulations with the schedules. To ensure this feasi-
bility, the approximation of the pump capacity underestimates
the flow rate while the approximation of the head loss overes-
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timates the head loss, ensuring the schedule provides sufficient
energy to the system and the tank levels stay within the required
bounds. For example, the capacity limit shown in red in Fig-
ure 7 is derived from hydraulic simulations; it shows that, in
the marginal cases, the approximations lead to an underestima-
tion of the pump capacity in the case of the upper end of the
capacity limit.

6. Conclusion and future work

Through the use of a global optimisation technique we com-
pared the operating schedules of a WDS system minimising the
operating cost alone and minimising the operating cost while
participating in different demand response schemes in the UK.
Through this analysis we show that for a wide range of elec-
tricity tariffs and water demands there exist demand response
mechanisms which allow the WDS to provide demand response
and reduce its cost and provide response energy at low GHG
emissions

STOR when tendering only for the first window can be pro-
vided at little extra cost to the WDS compared to regular opti-
mal operation, as the highest price tariff times can be excluded
from the provision period. Due to the specific requirements this
poses, it may be necessary to provide STOR service through an
aggregator or combine the STOR provision with another energy
asset. When tendering to both windows the maximum price of
the electricity tariff, if charged during the operation window,
limits the financial viability of STOR provision.

The provision of response energy in an DR event is shown
to have limited additional cost and GHG emissions. The op-
eration scheduling during and after the event was performed
using the same optimal scheduling techniques used to obtain
the global optimal operating schedule. Through optimisation
with a receding time horizon considering the uncertainty of fu-
ture events occurring to allow repeated provision of demand
response could further reduce the cost of providing DR through
a better schedule.

The environmental impact is dependent on a range of factors,
but demand response from WDS can often be provided at very
low carbon intensity per unit of response energy provided. The
faster responding services – FFR and FCDM – provide small
amounts of energy potentially leading to worse carbon intensity
of the energy provided, however the custom nature of FCDM
may enable the inclusion of such services with small changes in
scheduling and thus small changes in GHG emissions. Shorter
response events have lower carbon intensities as the originally
optimal schedule is only perturbed a little.

Electrical power distribution losses and life cycle emissions
were ignored in this analysis since they are similar for the dif-
ferent technologies considered, for which we assume the infras-
tructure to be already in place. With the additional grid regu-
lation services that come with the introduction of more renew-
ables to the grid, the usage of already built WDS to regulate
demand could provide significant reductions in GHG emissions
compared to newly built infrastructure.

The WDS was modelled using quasi steady state modelling.
To consider the delivery speed constraints of a network, more

detailed modelling including the transient response of the net-
work is necessary [10]. Further work could consider the differ-
ent cost of surge protection devices to enable faster pump ramp
rates without causing pressure induced failures in the pipes.
Upgraded pump controls or battery systems to enable a gradual
shut down may also be considered [24, 21].While the general
notion of financial viability and GHG emissions from demand
response from WDS should hold for other networks and topolo-
gies, the effect of the different aspects of the network topology
are unclear and subject to further investigations.
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[25] López-Ibáñez, M., Prasad, T. D., Paechter, B., Jul. 2008. Ant Colony Op-
timization for Optimal Control of Pumps in Water Distribution Networks.
Journal of water resources planning and management 134 (4), 337–346.

[26] Ma, O., Alkadi, N., Cappers, P., Denholm, P., Dudley, J., Goli, S., Hum-
mon, M., Kiliccote, S., MacDonald, J., Matson, N., Olsen, D., Rose, C.,
Sohn, M. D., Starke, M., Kirby, B., O’Malley, M., Dec. 2013. Demand
Response for Ancillary Services. IEEE Transactions on Smart Grid 4 (4),
1988–1995.

[27] Mackle, G., 1995. Application of genetic algorithms to pump scheduling
for water supply. In: 1st International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications (GALESIA). Vol.
1995. IET, IEE, pp. 400–405.

[28] Macleod, L., 2012. Overview of National Grids Balancing Services.
Tech. rep., Ofgem.
URL https://www.ofgem.gov.uk/ofgem-publications/56997/

national-grid-presentation-demand-side-response-event-autumn-2012.
pdf
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