The Journal of Computational Finance (91-115) Volume 12/Number 4, Summer 2009

Dynamic mean-variance portfolio analysis
under model risk

Daniel Kuhn
Department of Computing, Imperial College of Science, Technology, and Medicine,
180 Queen’s Gate, London SW7 2AZ, UK; email: dkuhn@doc.ic.ac.uk

Panos Parpas

Department of Computing, Imperial College of Science, Technology, and Medicine,
180 Queen’s Gate, London SW7 2AZ, UK; email: pp500@doc.ic.ac.uk

Ber¢ Rustem

Department of Computing, Imperial College of Science, Technology, and Medicine,
180 Queen’s Gate, London SW7 2AZ, UK; email: br@doc.ic.ac.uk

Raquel Fonseca

Department of Computing, Imperial College of Science, Technology, and Medicine,
180 Queen’s Gate, London SW7 2AZ, UK; email: rfonseca@doc.ic.ac.uk

The classical Markowitz approach to portfolio selection is compromised
by two major shortcomings. First, there is considerable model risk with
respect to the distribution of asset returns. Particularly, mean returns are
notoriously difficult to estimate. Moreover, the Markowitz approach is static
in that it does not account for the possibility of portfolio rebalancing
within the investment horizon. We propose a robust dynamic portfolio
optimization model to overcome both shortcomings. The model arises from
an infinite-dimensional min—max framework. The objective is to minimize
the worst-case portfolio variance over a family of dynamic investment
strategies subject to a return target constraint. The worst-case variance
is evaluated with respect to a set of conceivable return distributions. We
develop a quantitative approach to approximate this intractable problem
by a tractable one and report on numerical experiments.

1 INTRODUCTION

Let us consider a market consisting of N investment opportunities or assets.
A vector of price relatives & = (¢4, ..., &) is a vector of non-negative valued
random variables. The nth component &, expresses the ratio of the terminal and
initial prices of asset n over a given time interval [0, T]. Put differently, &, is
the factor by which capital invested in asset n grows from time O up to time 7.
All random objects appearing in this paper are defined on a measurable space
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(22, 5). By convention, random objects (that is, random variables, random vectors,
or stochastic processes) appear in boldface, while their realizations are denoted by
the same symbolsin normal face.

An investor can diversify his or her capital at the beginning of the planning
horizon by choosing a portfolio vector w = (w1, ..., wy). The component w,,
of w denotes the amount of money invested in asset n. In his Nobel Prize-
winning work, Markowitz (1952) recognized that any such investor faces two
conflicting objectives: portfolio “risk” should be minimized while, at the same
time, “performance” should be maximized. Using a benchmark-relative approach,
we measure portfolio risk and performance as the variance and expectation of
the portfolio excess return (w — ) ' &, respectively. Here, the fixed non-negative
vector w characterizes a benchmark portfolio we seek to outperform. As with
any multi-criterion optimization problem, the Markowitz problem does not have
a unigue solution. Instead, it has a family of Pareto-optimal solutions, which are
found by solving the parametric risk minimization problem:

minimize Varg((w — )" §)
st. Eg((w—)"§)>p

P
(w—w)Te=0 (P

w>0

for different values of the return target p. Note that Q stands for a probability
measure on (2, §) which “objectively” describes the distribution of the asset
returns, Eo () and Vary denote the expectation and variance operators under Q,
respectively, and e represents the element of RV with all components equal to 1.
The set of Pareto-optimal portfolios gives rise to the efficient frontier, which is
defined as the graph of the mapping p > min Py in the risk—return plane. It is easy
to see that the probability measure Q impacts problem P; only through the mean
value u and the covariance matrix X of the asset return vector &.

Instead of solving P71, we can determine the efficient frontier also by solving the
parametric return maximization problem:

maximize (w—w)' pu
st. (w—0)"Z(w—1) <o
(w—w)Te=0

(P2)

w>0

for different values of the risk target o2. Sometimes, this alternative model
formulation is more convenient. The Markowitz model in a single period setting
and with alternative risk measures is described in Markowitz (1959, Section XI11).

Unfortunately, the original Markowitz approach to portfolio selection suffers
from two major shortcomings. Firstly, the resulting efficient frontier is not robust
with respect to errorsin the estimation of i and . Secondly, the approach is static
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and does not account for the possibility of portfolio adjustments in response to
changing market conditions. While the lack of robustness leads to an overestimate,
neglecting the dynamic nature of the investment process leads to an underestimate
of the achievable portfolio performance. Recently, several worst-case optimization
approaches have been suggested to immunize Markowitz-type models against
estimation errorsin the distributional input parameters, see, for example, Ceriaand
Stubbs (2006), EI Ghaoui et al (2003), Goldfarb and lyengar (2002) or Rustem
et al (2000). A comprehensive survey of this line of research is provided in
Fabozzi et al (2007). Notice that worst-case robust portfolio models are usually
formulated for a single investment period. Multiperiod extensions of the mean-
variance portfolio problem have been studied, for example, by Frauendorfer
and Siede (2000), Gllpinar et al (2004) and Steinbach (2001) in a stochastic
programming framework, by Li and Ng (2000) and Leippold et al (2004) in a
dynamic programming setting, and by Zhou and Li (2000) and Bielecki et al
(2005) from a stochastic calculus perspective. The robustification of dynamic mean-
variance portfolio problems has received little attention so far; preliminary results
are presented in Gllpinar and Rustem (2007).

The main contribution of this paper is to propose a framework for the com-
putation of investment strategies that are dynamic as well as robust with respect
to uncertain input parameters. Our agorithmic procedure provides provable error
bounds and a dynamic portfolio strategy which is implementable with probability
one (without the necessity to reoptimize the problem at later stages).

Section 2 further highlights the problems associated with estimation errors in
the input parameters and reviews the concept of robust portfolio optimization. This
modeling paradigm has been designed to counter the adverse effects of estimation
errors. However, robust portfolio optimization is usually cast in a single-period
framework. A generalized robust model involving several rebalancing periods
is elaborated in Section 3. This model can be seen as a specia instance of a
multistage stochastic program under model risk, that is, amin—-max problem where
minimization is over a set of dynamic trading strategies and maximization is over a
family of rival return distributions within agiven ambiguity set. Min—max problems
of this type are extremely difficult to solve. They represent functional optimiza-
tion problems since investment decisions are functions of the past asset returns.
Even worse, the distribution of the asset returns is partially unknown because of
estimation errors, and finding the worst-case distribution is part of the problem.
The approximation of functional min—max problems by finite-dimensional tractable
models proceeds in two steps. In Section 4 the constrained min—max problem is
reformulated as an unconstrained problem by dualizing the explicit constraints.
Section 5 exploits the favorable structural properties of the reformulated model
to discretize al rival return distributions simultaneously. We will show that the
approximate problem in which the true return distributions are replaced by their
discretizations provides an upper bound on the original problem. Moreover, we
will establish a transformation that maps any optimal solution of the approximate
problem to anear-optimal solution of the original problem. The mathematical tools
developed in Sections 4 and 5 will then be used in Section 6 to study a particular
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investment situation. We will compare Markowitz efficient frontiers obtained under
different assumptions about the underlying return distributions and under different
rebalancing schemes.

2 ROBUST PORTFOLIO OPTIMIZATION

Several authors have observed that the efficient frontier obtained from the classical
Markowitz model is extremely sensitive to the input parameters © and X: see,
for example, Black and Litterman (1990), Broadie (1993) or Chopra and Ziemba
(1993). Thisimplies that a small estimation error in i or X can have a substantial
effect on the efficient frontier. In an influential article, Michaud argues that the
Markowitz approach to portfolio selection essentially amplifies the impact of the
estimation errors (Michaud (1989)). While the entries of the covariance matrix
> can be determined quite accurately, it is virtually impossible to measure u to
within workable precision. Thereason for thisisthat return fluctuations over agiven
time period scale with the square root of period length, which generates a “mean
blur” effect (Luenberger (1998, Section 8.5)). Hence, the main impediment for the
Markowitz approach to produce reasonable results is that the expected returns are
flawed with an estimation error, while the efficient frontier is very sensitive to such
errors.

To shed light on Michaud's error maximization property, we assume that the
covariance matrix X is perfectly known, while the expected return vector is
affected by an estimation error. We denote by vo(u) the optimal value of Ps.
This representation emphasizes the dependence on the return vector . Next, we
assume that g is an unbiased estimator for w, that is, it is a random variable with
Eo(ft) = n. By using a simple result about the interchange of expectation and
maximization operators, we then conclude that v, (ft) isan upward biased estimator
for va(w), the best portfolio return that can be achieved when . is perfectly known:

Eo(v2(f1)) = Eg(max{(w — ) " fi| constraints of P,})
> max{(w — ) "Ep(f1)| constraints of P}
= v2() (2.1)

Thus, using the (unbiased) sample average estimator to approximate ., for instance,
leads to a systematic overestimation of the optimal portfolio return and to an upshift
of the Markowitz efficient frontier in the risk—return plane.

The notorious mean blur effect is a special case of model risk. In more general
terms, one could argue that the objective probability measure Q, that is, the “true’
probabilistic model underlying the Markowitz problem, is unknown to the decision
maker. Infact, it is questionable whether atrue model exists at all. Different experts
may have different views about the prospects of different investments, and there
may be no objective method (eg, a statistical test) to decide which model is the
best. Thiskind of non-probabilistic model uncertainty isreferred to as ambiguity in
the decision theory literature.
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The classical Markowitz approach to portfolio selection completely disregards
model risk. Put differently, no information about the reliability or the accuracy
of the input parameters is passed to the optimization model. To overcome this
deficiency, the paradigm of robust portfolio optimization was proposed; a recent
survey of thefield isprovided by Fabozzi et al (2007). The basicideaisto introduce
an ambiguity set .4 which contains several probabilistic models or rival probability
measures. |n order to avoid uninteresting technical complications, we assume that
every two measures P1, P> € A are mutually equivalent, that is, P, has a density
with respect to P1 and vice versa. For the time being, however, we make no
additional assumptions about the structure of A. If each P € A is interpreted as
amodel suggested by an independent expert, then a robust version of the portfolio
problem can be formulated as:

minimize {sup Varp ((w — zb)Ts)}
weRM PeA
st. Ep(w—0)T&)>p VPeA
(P3)

(w—w)Te=0

w>0

Thismodel isrobust with respect to all expert opinions. The objectiveisto minimize
the worst-case variance while satisfying the return target constraint under each
rival probability measure. We are not so much interested in the optimal value of
prablem Ps, but rather in its optimal solution. The latter exhibits a non-inferiority
property in the following sense: unless the most pessimistic model turns out to be
the true one, implementing a strategy from arg min Pz leads to a portfolio variance
that is smaller (ie, better) than the predicted variance min Ps.

It is easy to imagine that the solution quality strongly depends on the specifica-
tion of the ambiguity set. If A is large enough to also cover remotely conceivable
models, then the resulting robust portfolio strategy may be extremely conservative.
On the other hand, if A collapsesto asingleton, we recover the classical Markowitz
model P71 with its well-known shortcomings.

Rustem et al (2000) consider situations in which the ambiguity set is finite.
They assume, for instance, that .4 contains models obtained from different esti-
mation methods (eg, by using implied versus historical information). A specialized
algorithm is employed to solve the arising discrete min—max problem. ElI Ghaoui
et al (2003) as well as Goldfarb and lyengar (2002) specify the ambiguity set
in terms of confidence intervals for certain moments of the return distribution.
They reformulate the resulting robust optimization problem as a second-order cone
program, which can be solved efficiently. A similar approach is pursued by Ceria
and Stubbs (2006), who also report on extensive numerical experiments. Pflug
and Wozabal (2007) determine a “most likely” reference measure P and define
A as some e-neighborhood of P. Distances of probability measures are computed
by using the Wasserstein metric, and the arising continuous min—max problem is
addressed by a semi-infinite programming-type algorithm.

Research Paper www.thejournalofcomputationalfinance.com

95



96 D.Kuhnetal

3 DYNAMIC PORTFOLIO OPTIMIZATION

So far we have assumed that a portfolio selected at time 0 may not be restructured
or “rebalanced” at any time within the planning horizon. In redlity, however, an
investor will readjust the portfolio allocation whenever significant price changes
are observed. In order to capture the dynamic nature of the investment process,
we choose a set of ordered time points1 O=1n<-- <ty =T and assume that
portfolio rebalancing is restricted to these discrete dates.

A dynamic extension of the single-period portfolio models studied so far
involves intertemporal return vectors. By convention, &, characterizes the asset
returns over the rebalancing interval from 7,1 to ;. Below, we will aways
assume that the &, are serially independent.? We define 7, =o' (&4, ..., &) to
be the o-algebra induced by the first i return vectors and set 7 = Fp. Moreover,
we introduce the shorthand notation & = (&4, . . ., &) to describe the stochastic
return process.

Let us now specify the decision variables needed to formulate adynamic version
of the portfolio problem. First, we set w;,” = (wy ,...., wy ,), where w,~,
denotes the capital invested in asset n at time ¢, before realocation of funds.
Similarly, we define w;" = (th, e w;,h), where w;f , isthe capital invested
inasset n at time;, after portfolio rebalancing. Notice that these decisions represent
random variables since they may depend on past stock price observations. We
denote by b, , and s, 5 the amount of money used at time 7, to buy and sell assets
of type n, respectively. As for the asset holdings, we combine these variables to
decision vectors b, = (b1 p, ..., by, p) @dsy = (1, ny - - -, SN 1)-

Inanalogy to w), and w)’, the random vectors i), and #;~ specify the asset hold-
ingsin the benchmark portfolio at time#;, before and after rebalancing, respectively.
However, %, and %, are not decision variables. Instead, they constitute prescribed
functions of the past asset returns &4, . . ., &,,. Real investors frequently choose an
exchange-traded stock index as their benchmark portfolio. Without much loss of
generality, we may assume that this stock index is given by the Nth asset within
our market. In this case, the N — 1 first components of the initial portfolio vector
w; vanish, while we have:

Wi =w, ad W, =W &y g fOor 1<h<H (3.1)

Moreover, it is reasonable to normalize the benchmark portfolio in such away that
itsinitial value corresponds to our investor’sinitial endowment, that is:®

(w] —H7)Te=0

LFor notational convenience, we sometimes make reference to an additional time point 7 = 0.
2Serial independence is assumed to hold with respect to all measures P € A.
3Observe that w; isan input parameter to our model and not a decision variable.
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Using the above terminology, we can introduce a dynamic version of the robust
portfolio optimization problem Pa:

minimize {sup Varp((wy, ; — ﬁ)H_l)TEH)}

w—,wt, b, s PeA
st. Ep((w),_;— w1 ép) >0 VP e A
w,T:w;—kbh—sh 1<h<H

(Pa)
A+ecp)e'by=L—c5)e'sy "

- _ +
w, 1 =§,10w,

w;, w;[, by, s, >0, JFj,-measurable "

As in the single-period case, the objective is to minimize the worst-case variance
of terminal wealth, while satisfying a return target constraint for each rival model
P € A. The second constraint plays the role of an asset-wise balance equation.
Notice that proportional transaction costs are incurred whenever the portfolio is
rebalanced. We denote by ¢, and ¢; the transaction costs per unit of currency for
sales and purchases of the assets, respectively. The third constraint thus captures
the idea that only a certain percentage of the money received from selling assets
can be spent on new purchases. The evolution of money (on a per-asset basis)
between the rebalancing dates is described by the fourth constraint. It is the only
dynamic constraint coupling successive decision stages. Note that the symbol “©”
stands for the element-wise multiplication operator. Finally, all decision variables
must be non-negative* and non-anticipative. The latter requirement means that
decisionstaken at time ¢, must be JFj,-measurable, that is, they may only depend on
information about return vectors observed in the past. All constraints are assumed
to hold almost surely with respect to some probability measure P € A. The choice
of P isirrelevant since the measuresin A are pairwise equivalent.

The standard approach to address multi-period portfolio problemsisviadynamic
programming, see, for example, Ingersoll (1987). However, there are three major
obstacles that complicate the use of dynamic programming for solving the robust
mean-variance portfolio problem under consideration. First, P4 is not separable in
the sense of dynamic programming due to the variance objective. Indeed, unlike
conditional expectations, conditional variances fail to satisfy a tower property that
could be used to set up sensible dynamic programming recursions. The return
target constraint is problematic as well since it is associated with the first stage
but involves (expected) decisions of the last stage. Methods to circumvent these
difficulties have been explored in Leippold et al (2004) and Li and Ng (2000). Next,
standard dynamic programming breaks down under ambiguity of the probability

4The no-short-sales constraints prevent the investor from exploiting potential arbitrage oppor-
tunities. In an arbitrage-free market, however, these constraints are not necessary to ensure the
boundedness of problem P,.
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measure. A possible remedy to overcome this obstacle would be to employ
robust dynamic programming as suggested in lyengar (2005). However, robust
dynamic programming is applicable only if the ambiguity set exhibits a stagewise
separability or rectangularity property that isunlikely to hold in the current context.
Finally, dynamic programming is very inefficient if the state space has a high
dimension (eg, = 4). In the presence of transaction costs, however, we have to
maintain a separate state variable for each asset. Hence, dynamic programming
becomes computationally unmanageable if there are more than about four assets.

If the ambiguity set .4 contains only one probability measure, then P4 reduces
to a standard dynamic mean-variance portfolio selection problem, which has
been extensively studied in several modeling frameworks. Frauendorfer and Siede
(2000), Steinbach (2001) and Gulpinar et al (2004) address this problem by
using stochastic programming techniques. Their approach is very flexible in that
it allows the modeler to incorporate portfolio constraints and market frictions
with relative ease. However, it is computationally expensive if the number of
rebalancing periods becomes large. Li and Ng (2000) as well as Leippold et al
(2004) study mean-variance problemsin a dynamic programming framework. They
reduce the multi-period mean-variance problem to a stochastic linear quadratic
regulator problem, whose analytical solution is well understood. Zhou and Li
(2000) use a similar approach to address mean-variance problems in continuous
time. A further generalization based on martingale techniques is due to Bielecki
et al (2005). Applicability of these analytical approachesis limited to situationsin
which portfolio constraints, transaction costs, and other complicating factors are of
minor importance.

Cases in which the ambiguity set .4 contains more than one model have hardly
been addressed in the literature. A first approach to tackle such problems is
presented in Gilpinar and Rustem (2007). In that work, A is assumed to be afinite
set of finitely supported models. The present work goes one step further by allowing
A to contain probability measures with an infinite support. As in stochastic pro-
gramming, these models need to be approximated by finitely-supported probability
measures, which are representabl e as scenario trees. Thisamounts to approximating
the original min—max problem P4 with infinite-dimensional functional decisions by
asimpler min—max problem with finite-dimensional vectorial decisions. Stochastic
programming research has explored a vast number of agorithms for scenario tree
construction or scenario generation, see, for example, the survey of Dupacova et al
(2000). Different scenario generation methods apply to problems with different
structural properties; they provide different error estimates and asymptotic guaran-
tees. The scenario generation method to be used here has the following properties,
which make it attractive for portfolio optimization problems of the type Pa:

* Implementability: The solution of the discretized approximate problem
alows us to construct a trading strategy that is implementable in each con-
ceivable return scenario and not only in the (relatively few) scenarios of the
underlying scenario trees. We can thus use Monte Carlo sampling to obtain
an unbiased a posteriori estimate of this trading strategy’s performance.
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» Conservatism: The approximation overestimates the worst-case portfolio risk
under the optimal trading strategy, that is, the solution of the discretized
approximate problem provides an upper bound on the solution of the orig-
inal problem P4. This form of conservatism is desirable since exaggerated
optimism can be disastrous in financial decision making.

e Asymptotic consistency: If the number of scenarios in the scenario trees is
increased, the solution of the discretized approximate problem converges to
the solution of the original problem.

4 LAGRANGIAN REFORMULATION

Our ultimate goal is to devise a portfolio strategy which is near-optimal and, a
fortiori, feasible in 4. The objective value of this strategy will provide a tight
upper bound on the minimum of problem P4. In order to facilitate the derivation
of a quantitative approximation scheme in Section 5, we now slightly increase the
level of abstraction and reformulate P4 asageneral stochastic optimization problem
under model risk. To thisend, weintroduce the decision processx = (x1, ..., Xpg)
which is defined through:®

xj, = vec(w;, , ), iy, , W, by, sp) (4.1)

The operator “vec” returns the concatenation of its arguments. Thus, x, has
dimension n;, = 6N . Asthe constraintsin P4 preclude negative x,, the state space
of the process x can be identified with the non-negative orthant of R6V# In
standard terminology, such decision processes are also referred to as strategies,
policies, or decision rules. We define the set of admissible decision processes as:

X(F) =[x € xfL LR, Fi. PrR™) | x >0 P-as) (4.2)
PeA

Note that the strategiesin X (IF) are essentially bounded with respect to all models
P € A and adapted to the filtration F = {]-'h};:’:l, that is, they are non-anticipative
with respect to the underlying return process. Next, we let £ denote the state space
of the return process, while X denotes the state space of the (class of admissible)
decision processes. Using a suitable cost function ¢: X x X — R as well as a
sequence of suitable constraint functions f,: X x & — R4, the dynamic portfolio
problem P4 is representable as an abstract multistage stochastic program under
model risk:

minimize { sup Ep(c(x, Ep(x)))}
xeX(F) PeA

st. Ep(fu(x, &) |F,) <0 asVPecA h=1 ..., H

(P)

SFor technical reasons, it is useful to consider w, and ﬁ;; as (degenerate) decision variables.
Note, however, that their values are known a priori for each scenario, since they represent
unambiguous functions of &.
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Here, the rules for updating the benchmark portfolio vectors (see, for exam-
ple, (3.1)) are incorporated as additional constraints. It should be highlighted
that the generalized problem P accommodates expected value constraints. The
corresponding constraint functions are required to be nonpositive in expectation
(instead of almost everywhere), while expectation is conditional on the stagewise
information sets. As for problem Py, it is easy to see that the cost and constraint
functions can be chosen in such away that the following regularity conditions hold:

(C1) cisconvex and continuousinitsfirst argument; )
(C2) fi is representable as fi,(x, &) = fr((1, x) ® (1, §)), where f), is convex,
continuous, and constant inx; ® &§; foral 1< j<i<H,1<h<H.

The operator “®” stands for the usual dyadic product of vectors. Note that
condition (C2) follows from the fact that our dynamic portfolio problem has fixed
recourse (Birge and L ouveaux (1997)). Besides the above, we impose an additional
regularity condition on the return process:

(C3) the process ¢ is serially independent with respect to all models P € A, and
its state space 2 isacompact polyhedron.

The compactness requirement in (C3) can always be enforced by truncating certain
extreme scenarios of the return process that have a negligible effect on the solution
of P. Serial independence of returns, on the other hand, is a widely used standard
assumption in finance literature. Apart from that, we impose no further restrictions
on thereturn distribution. The conditions (C1)—C3) are assumed to hold throughout
the rest of this paper.

REMARK 4.1 If the stagewise decision vectors are of the form (4.1), we can set:
c(x, Ep(x) =[e" (wy; — d )] — [ Ep(wy) — e "Ep(@p))]?
to obtain the desired variance objective:
Ep(c(x, Ep(x)) =Varp(e  (wy — y) = Varp(wf;_; —%5_1) &p)

Note that, in accordance with condition (C1), the cost function ¢ is indeed convex
and continuous in its first argument.

In complete analogy to the set X (IF) of primal decision processes, we introduce
aset of dual decision processes:

Y(F)= () {y e x4 LNQ, Fy. Py R™) | y > 0 P-as) (4.3)
PeA

By construction, astrategy y € Y (IF) constitutes a non-negative [F-adapted stochas-
tic process that is P-integrable with respect to all models P ¢ A. Furthermore, we
denote by Y the state space of the (class of admissible) dual decision processes
and define the Lagrangian density L: X x X x Y x E — R associated with the
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problem data through:

H
L(x, %, y, &) =c(x, D)+ Y ¥, fulx, &)

h=1

Using the above terminology, we can prove that the stochastic program P under
model risk has an equivalent reformulation in terms of the Lagrangian density.

LEMMA 4.2 By dualizing the explicit constraints, problem P can be rewritten as
the following unconstrained min—max problem:

minimize sup sup Ep(L(x, Ep(x), y, &))
xeX(F)  yey(F) PeA

PrRoOOF We generalize an argument due to Wright (1994, Section 4), which applies
when A is a singleton while the cost and constraint functions are linear. The claim
follows if we can show that the two functionals:

SUppc 4 Ep(c(x, Ep(x)) if Ep(fu(x, &) | Fy) <0as.
glx)= VPeA, h=1,...,H
400 else

and:

g(x)= sup sup Ep(L(x,Ep(x),y,8§))
yeY(F) PeA

are equal on their common domain X (IF). Thus, we fix an arbitrary x € X (IF).
Employing standard manipulations, we find:

H
g(x)= sup sup EP(C(x,Ep(x))+2y;fh(x,§))

H
=sup sup Ep (c(x, Ep(x) + Y ¥y Ep(fa(x. &) | ﬂ))
PeA yeY(F) h=1

H
< sup Ep (e(x, Ep(x)+ ) sup y Ep(fu(x, &) |fh))
PeA h—1 ¥=0
=g(x)

The inequality in the third line reflects the relaxation of the measurability con-
straints which require y;, to be Fj,-measurable foreschh =1, ..., H. To prove
the converseinequality, we consider a sequence of dual decision strategies { 5;(’)}19'21
defined through:

~@) 0 IfEp(fu(x,&) |Fy) <0as VPecA
=) else
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By construction, we have 3 € Y (F) for all i € N, which implies that:

H
g(x) > sup sup Ep(c(x, Er)+ > Gp) fix, §>> =g(x)

ieN PeA h=1

This observation completes the proof. O

5 APPROXIMATION

The stochastic optimization problem 7 under model risk represents a large-scale
min—max problem. Minimization is over a set of measurable functions x € X (IF),
while maximization is over a set of rival models P € A. In the remainder, we
will focus on situations in which the ambiguity set A is finite. However, even
in this favorable case, problem P remains computationally intractable unless
the stochastic return process is discrete (ie, finitely supported), implying that P
reduces to a finite-dimensional min—max problem. If the return process fails to be
discrete, we must approximate it by a suitable discrete process in order to obtain a
computationally tractable problem.

The aim of this section is to introduce an approximate return process £“ which
is supported on afinite subset of & and which relates to the original process & ina
guantitativeway. In fact, we strivefor finding a&" such that the following holds: the
optimal value of the min—max problem P*, which results from the original problem
‘P by substituting £“ for &, represents atight upper bound on the optimal value of P.
Our construction of £“ isinspired by Birge and Louveaux (1997, Section 11.1) and
Kuhn (2008, Section 4). In the sequel, we use the shorthand notation:

Eh=(&,,...,&,) and E“M=(g4, ... &Y, h=1...,H

to denote the outcome histories of the processes & and &“, respectively. Moreover,
wedenote by & the projection of E on the space spanned by therealizationsof &,
while 2" stands for the projection of Z on the space spanned by the realizations of
the return history &”.

In the following discussion we explicitly specify the sample space Q. It is
convenient to define Q=E x E and let S be the Borel field on E x E. By
definition, the stochastic processes & and & are functions from the sample space
to the state space E. In our setting, we let & and £ be coordinate projections:

EXE—E g Ex E— &
(,89—¢&

(§,8") —&"
For every measure P € A, we denote by P the marginal distribution of &. Since
the sample space is identified with E x E, the joint distribution Pg ¢« of & and &"
coincideswith P. In the following, we assume that only P is given apriori, while
the conditional distribution of " given &, ie, Pgu ¢, is selected at our discretion.
Thejoint distribution P ¢« isthen obtained by using the product measure theorem
(Ash (1972, Theorem 2.6.2)) to merge P and Pgx | ;. Although themeasures P € A

£

The Journal of Computational Finance Volume 12/Number 4, Summer 2009



Dynamic mean-variance portfolio analysis under model risk

are partly unknown before we specify the conditional distribution of &, thereisno
problem assuming that they were known aready at the outset.

We let the conditional distribution Pg«|, be model-independent, that is, we
require it to be equal for all models P € A. The construction of Pgu ¢ relies
on a decomposition into conditional probability distributions P}’ for 1<h < H.
By definition, P;' stands for the distribution of & conditional on § =& and
gh—1—guh=1 By using the product measure theorem (Ash (1972, Theo-
rem 2.6.2)), the building blocks P}’ can later be reassembled to yield Pgu | ¢.

Thus, instead of specifying Pgu, it is sufficient to prescribe the conditional
probability distributions P, for 1 < < H, which will be equal for al P € A. In
order to construct P;’, we select afamily of measurable multifunctions (Rockafellar
and Wets (1998, Section 14)):

(1]

h,ZZEh_lzkEh, I=1,...,L
such that the following conditions hold for all return histories £##~1 ¢ g1

(i) simpliciality: the set E;, ;(£* ") is either empty or represents a bounded
but not necessarily closed ssimplex for al /;
(ii) digointness: 8, (" YH N Ey (€Y =@ foral k #1;
(iii) exhaustiveness: U- | &) ;(£" 1) = &,

Suitable multifunctions with the postulated properties exist since &, isacoordinate
projection of E, thus representing a compact polyhedron; see (C3). In the sequel,
welet {&, 1 . (& "1} beasetof N + 1vectorsin E; which correspond to the
vertices of the simplex B, ; (€% "~1) if this set is nonempty, or to some arbitrary
constant vectors, otherwise. Each &, ; ,, can beinterpreted as a function from gh-1
to 8. Since Ej,, ; isameasurable multifunction, the vector-valued functions &, ;. ,
can be chosen measurably. Next, for any return vector &, € E;, we introduce a set
of N + 1real numbers {Ay 1, (&, | € "=}V which satisfy:

N N
Y a1 =1 and Y G Y 8 aEC D =8,

n:O n:O

Each A;, ;. , can beinterpreted as areal-valued function on &j, x Eh—1, Since the
vector-valued functionsé&y, ;. ,, aremeasurable, the v, ;. ,, can be chosen measurably
aswell. We are now prepared to specify the conditional distribution P;'. For & € &
and g% "1 e 21 we set:

L N
PECIEEYP D =D g iy ED Y An i aEn 169" 8, iy ()

=1 n=0
(5.2)
where 1. denotes the characteristic function of a set E, while 5§ denotes the

Dirac measure concentrated at a point . The distribution Pg ¢« Obtained by
combining the marginal distribution of £ and the conditional distributions P, inthe
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appropriate way has several intriguing properties. Some of these will be explored
in Lemmas 5.1 through 5.3.

From now on we denote by [F* the filtration generated by &%, that is, " =
{FIyH_| where ' = (6 "), and we use the convention F* = F% . Moreover,
we introduce spaces of approximate primal and dua strategies X (F*) and Y (F"),
respectively. These are defined in the obvious way by replacing the original
filtration IF by the approximate filtration F* in (4.2) and (4.3).

LEMMA 5.1 The following relations hold for suitable versions of the conditional
expectations and for all P € A, respectively:

Ep(x | F) e X(F) forall x e X(F") (5.22)
Ep(y| F*) e Y(F*) forall y e Y(F) (5.2b)
Ep(E"|F)=§& (5.2c)

PROOF Let us fix a probability measure P € A. The inclusion (5.2a) is related to
the fact that the random vectors {§}'};<; and {£;},~, are conditionally independent
given {&,};<; for al stage indices i. Conditional independence, in turn, follows
from the serial independence of & and the recursive construction of &“. A rigorous
proof of the preceding qualitative argumentsis provided in Kuhn (2008, Section 4).
Theinclusion (5.2b), on the other hand, isrelated to thefact that {£;}; <, and {£}'}i =1
are conditionally independent given {£'};<; for al &, see Kuhn (2008, Section 4).
Next, the relation (5.2c) follows immediately from the definition of P’

Ep(&" | &, &M h

= | & Prdg g, Y
h

)
L

N
= g @iy ED Y Ay 1 EYY 8 a €Y

=1 n=0
- Eh P—a.S.

The law of iterated conditional expectations then allows us to conclude that:
Ep(§) 16 =Ep(Ep(§) 16,6 "8 =¢, Pas Vl<h<H
Thus, assertion (5.2c) is established. O

The relations (5.2) are crucia for our main result on the approximation of the
min—max problem P; see Theorem 5.4 below. It should be emphasized that there
is considerable flexibility in the construction of the joint distribution of & and &
sincethere are many different waysto specify the multifunctions E;,_ ;. In particular,
if the diameters of the simplices &), ;(£*"~1) become uniformly small over all
admissibletriples (4, I, £ *~1), then the approximate process &£ converges to the
original return process & with respect to the £°°-norm.
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Replacing the origina return process by £ and the original filtration by F* in
the min—-max problem P yields an approximate min—max problem, which will be
denoted by P*. Observe that changing the filtration affects not only the feasible set
X (IF) but also the information sets in the expected value constraints. Notice further
that Lemma 4.2 remains valid for problem P* with the approximate data process
and filtrations. In the remainder of this section we will prove that the optimal value
of P* constitutes an upper bound on the optimal value of the original problem P.
We first establish two technical lemmas, both of which were proved in Kuhn et al
(2008). The proofs are repeated herein order to keep this paper self-contained.

LEMMA 5.2 The following relation holds for suitable versions of the conditional
expectationsandforall 1<i < j < H, P € A:

Ep(x; ®E& | F)=Ep(x; | F)®§; forallx e X(F)

PROOF Select a probability measure P € A. Next, fix two stage indices i and ;
suchthatl <i < j < H, andlet x bean element of X (F*). By applying elementary
manipulations, we find that P-almost surely:

Ep(xi ® &% &) =EpEp(x; @& 1§68
=Ep(x; ®Ep(§% | &, £/ &)
=Ep(xi®§;18)
=Ep(x; [§) ®E;
where the third equality follows from the proof of Lemma5.1. O

LEMMA 5.3 The following relation holds for suitable versions of the conditional
expectationsandforall L<h < H, P € A:

Ep(fi(x, &) | F) = fu(Ep(x | F), §) forall x € X (F*)

PROOF Select a probability measure P € A and choose a strategy x € X (F%).
Then, condition (C2) and the conditional Jensen inequality imply that:

Ep(fi(x, £ | F) =Ep(fr((L x) ® (1, ) | F)
> fuEp((L,x) @ (1, &) | F))
= fEp((L,x)| F) ® (1, §)
= fuEp(x | F), &)

amost surely with respect to P. The equality in the third line follows from
Lemma 5.2 and independence of f, inall of itsargumentsx; ® &; withi > j. [

Thetechnical Lemmas 5.1 and 5.3 constitute important ingredients for the proof
of the following main result.
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THEOREM 5.4 Assume problemP* to be solvable with finite minimum. If x* solves
P, thenx = Ep(x" | F) isindependent of P € A, feasiblein P and satisfies:
inf P < sup Ep(c(x, Ep(x))) < inf P*
PeA

PROOF Our argumentation relies on ideas from the proofs of Theorem 1 in Kuhn
(2008) and Theorem 5.1 in Kuhn (2009). We use the fact that x* is an element of
X (F*), implying via (5.2a) that the conditional expectation Ep(x* | F) represents
the same element of X (IF) for all P ¢ A:

inf P

H
< sp sup Ep (c(EP<x” | F) Ep(x™) + Y y) fu(Ep(x" | F), §>>
yeY (F) PeA 1

H
< sup sup Ep (Ep(c<x", Er(x) | F)+ Y yiEp(fulx", €| f))

H
= sup sup Ep (c(x“, Ep(x) + ) yj fu(x", E”)) (5.3)

The second inequality in (5.3) uses Lemma 5.3 and the conditional Jensen inequal-
ity, while the equality relies on the law of iterated conditional expectations. Another
application of the conditional Jensen inequality yields:

H
infP< sup sup Ep (e(x“, Ep(x") + Y Ep(yy | F ' fu(x", §">)

H
< sup sup Ep (c(x“, Ep(x) + > yj falx", E”))

yeY (F«) Pe A h=1

H
= inf  sup supEp (c(x, Ep(x))+ Y _ ¥y fulx, &“))
xeX (") yey(F*) PeA h=1
Here, the second inequality holds by the relation (5.2b), entailing a relaxation
of the dua feasible set. The last line of the above expression corresponds to
inf P*, which is finite by assumption. This implies that the supremum over Y (IF)
in the first line of (5.3) is aso finite, and y =0 is an optima solution. Thus,
x =Ep(x" | F) isfeasiblein P, and the corresponding worst-case objective value
suppe 4 Ep(c(x, Ep(X))) satisfies the postulated inequalities. O

REMARK 5.5 It is possible to relax the serial independence assumption (C3)
at the cost of strengthening condition (C2). In fact, Theorem 5.4 remains valid
if £ constitutes an autoregressive moving average process® and if the constraint

6By this we mean that & is representable as a honanticipative affine transformation of a serialy
independent noise process which satisfies (C3), see Kuhn (2008, Section 4.4).
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functions are restricted to be convex and continuous. Since the wealth dynamics
in the portfolio problem P, involves products of decision variables and random
parameters, however, we cannot assume convexity of the constraint functions.
As a consequence, (C3) cannot be relaxed to alow for autoregressive moving
average processes without impairing the validity of Theorem 5.4. Indeed, note that
Lemmab5.2 failsif £ is of autoregressive moving average type. We conjecture that
this is no serious limitation of our approach. Although asset returns are known
to exhibit weak serial dependence, given the inherent ambiguity of the return
distribution, it is unlikely that such dependencies could be exploited in an active
trading strategy. Thus, it isjustifiable to assume serial independence.

Note that the marginal distribution of the approximate return process £ is dis-
crete. Sincethedistribution of £ conditional on & isthe same under all rival models
P € A, thesupport of £“ represents afinite set independent of P. Only the probabil-
ities associated with specific discretization points may be model-dependent. Con-
sequently, the approximate problem P* constitutes a finite-dimensional min—max
problem, which is principally amenable to numerical solution. By Theorem 5.4,
the optimal value of the approximate problem provides an a priori upper bound on
the minimal (worst-case) expected cost. However, an optimal strategy of P* only
prescribes the decisions corresponding to return scenariosin the support of £“. Such
astrategy may fail to beimplementableif ageneric return scenario from the support
of & materializes. Put differently, it is a priori unclear how an optimal strategy for
the approximate problem can be transformed to a near-optimal strategy for the
origina problem. Theorem 5.4 provides a particularly satisfactory answer to this
question by proposing apolicy x which isimplementablein every possible scenario
of the original return process and whose worst-case expected cost is bracketed by
inf P and inf P*. Note that Ep (c(x, Ep(X))) represents an a posteriori estimate of
the expected cost associated with an optimal strategy of problem P under the model
P € A. This cost can conveniently be calculated by Monte Carlo simulation. Since
x" isfinitely supported, evaluation of x for an arbitrary realization of & reduces to
the evaluation of afinite sum and poses no computational challenges.

6 COMPUTATIONAL RESULTS

The mathematical tools developed in Section 5 will now be used to address
portfolio problems of the type P (standard Markowitz), P3 (robust Markowitz),
and P, (multistage robust Markowitz). Our computational experiments are based
on an asset universe consisting of N =5 major stock indices. DAX, CAC 40,
NASDAQ, SMI, and S&P 500. For estimating the asset return distributions, we
use historical monthly time series in US dollars from October 1998 to September
2008. The means, standard deviations, and correlations of the total monthly returns
are obtained via sample-average and sample-(co)variance estimators, see Table 1
(see page 108).

Our first numerical experiments are based on simulated data. In these tests,
the asset prices are assumed to follow a multivariate geometric Brownian motion.
The total returns over non-overlapping monthly time intervals are thus mutually
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TABLE 1 Distributional parameters of monthly asset returns in US dollars (estima-
tion period: October 1998 — September 2008).

Index Mean SDev Correlations

DAX 1.0048 0.0663 1.0000

CAC 40 1.0036 0.0536 0.9251 1.0000

NASDAQ 1.0056 0.0793 0.7346 0.7448 1.0000

SMI 1.0023 0.0426 0.7584 0.8093 0.5012 1.0000

S&P 500  1.0026 0.0406 0.8034 0.8329 0.8052 0.7602 1.0000

FIGURE 1 Mean-variance frontiers under different probabilistic models.
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The estimated and actual frontiers (both robust and non-robust) are averaged over 1,000 sample sets.

independent and identically lognormally distributed. We assume that the “true”’
means, standard deviations, and correlations of these monthly returns are given
by the values in Table 1. This parameter choice uniquely specifies the objective
model Q, that is, the “true” joint probability distribution of the asset returns. An
investor who has precise knowledge of Q can solve the single-stage Markowitz
problem’ Py for different return targets to obtain the true efficient frontier, see
Figure 1.

7Throughout this section, we set the asset holdings in the benchmark portfolio to zero. This
implies that the portfolio’s performance and risk are measured in absolute terms.
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As discussed in Section 2, however, investors are not aware of the true model.
The standard deviations and correl ations can be estimated with reasonabl e accuracy,
and therefore it is acceptable to suppose that these parameters are known. Estima-
tion of the means, however, is complicated by the mean blur effect (Luenberger
(1998)). One can simulate the situation faced by areal investor who estimates the
means based on ten years of monthly data: use the true model Q to sample 120
monthly returns for all five assets and determine “ estimated” means by calculating
the sample averages. The resulting vector ji of estimated mean returns is then
combined with the true standard deviations and correlations from Table 1 to
construct an “estimated” lognormal return distribution Q. Solving model PP; under
O for different return targets yields an estimated efficient frontier. Note that the
estimate /i, the model O, and the corresponding estimated frontier are random
objects as they depend on the random samples. Figure 1 displays the expected
estimated frontier obtained from averaging 1,000 estimated frontiers (each of which
is based on a different sample of 120 returns).

By Michaud’s error maximization property, the expected estimated frontier must
lie above the true frontier, see Equation (2.1). However, no portfolio on the true
frontier can possibly be dominated by any other portfolio under the true model Q.
Hence, evaluating the investment strategy corresponding to any portfolio on agiven
estimated frontier generates a random terminal wealth whose mean and variance
(under Q) describe a point below the true frontier. The collection of al mean-
variance points obtained in this manner gives rise to a random actual frontier (see,
for example, Broadie (1993)). By construction, the actual frontier necessarily lies
beneath the true frontier. Figure 1 shows the expected actual frontier which is
obtained by averaging 1,000 actual frontiers corresponding to different sample sets.

Only the estimated frontier is observable in reality. The true and actual frontiers
are not observable since their construction is based on the unknown model Q.
Loosely speaking, the estimated frontier describes what the investor believes to
happen, whereas the actual frontier describes what really happens. As becomes
apparent from Figure 1, these two perspectives may be in severe conflict.

As pointed out by Ceria and Stubbs (2006), robust portfolio optimization may
help to reduce the gap between the estimated and actual frontiers. A sophisticated
investor may therefore want to solve the robust Markowitz problem P3 using
a suitable ambiguity set A. In this paper, we study a two-parametric family of
ambiguity sets that account for the estimation error associated with fi. In order
to construct .4, we first introduce a set of conceivable mean return vectors which
are within reasonable proximity to ji:

< 5]

Here, o; represents the standard deviation of the return of asset i. An ambiguity
set corresponding to M g, p can now be defined as follows. For every u € M3, p,
we construct a lognormal return distribution P () which has mean value n and
whose standard deviations and correlations coincide with the true valuesin Table 1.

Mp p= {MERH

n
wi = fli +o;D A, A; € {0, £1}, ‘ Z)»i
i=1
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Then, we define Ag, p = {P(n) | © € Mp, p}. Note that an investor using model
‘P3 believes that the true return distribution belongsto Ag. p or, equivalently, that
the true mean return vector iscontained in Mz p 8 Observethat every 1 € M B. D
isuniquely determined by aset of integers {1;}_,, which areinterpreted asfollows:

+1 = f; underestimatesthe mean return of asset i
Ai=10 = [, correctly estimates the mean return of asset i
—1 = f[; overestimatesthe mean return of asset i

The estimated mean return vector i representsthe center of M. p, whilethe scale
parameter D determines its size (or diameter), and B has the interpretation of an
uncertainty budget. A budget of zero, for instance, expresses the investor’s belief
that there are roughly equally as many mean returns above their estimates as there
are below. Uncertainty budgets of thistype have been discussed in Ceriaand Stubbs
(2006). By increasing either of the two parameters B or D, the investor assigns
more uncertainty to the estimate ft, thereby increasing the robustness of model Ps.

Solving the parametric problem Pz under some ambiguity set .Ap, p yields a
family of robust portfolio strategies — one for each return target. Each arising
investment strategy results in a random terminal wealth, whose distribution can
be evaluated under any given probabilistic model. The means and variances with
respect to the estimated and true models O and Q give rise to an estimated
robust and an actual robust frontier, respectively. Robust frontiers of this type were
first proposed by Ceria and Stubbs (2006). Recall that the estimate ji is random,
and therefore M. p, Ap. p, as well as the estimated and actual robust frontiers
represent random objects, as well. Figure 1 displays the expected estimated and
actual robust frontiers, which are obtained by averaging 1,000 estimated and actual
robust frontiers corresponding to different sample sets, respectively. The parameters
specifying the ambiguity set areset to B=0and D = 0.8.

The estimated robust frontier describes what the investor believes to happen,
whereas the actual robust frontier describeswhat really happens. The estimated and
actual robust frontiers are much better aligned than their non-robust counterparts.
Moreover, they are also closer to the true Markowitz frontier. Thus, using a robust
approach may be beneficial in two respects: the investor is more realistic about
the achievable outcomes than a naive Markowitz investor, and the robust portfolio
typically performs better in reality (that is, under Q) than a non-robust Markowitz
portfolio.

From the above preliminary tests we conjecture that robust Markowitz portfolios
outperform classical Markowitz portfolios in the majority of cases. In order to
verify this hypothesis and to analyze the impact of different parameter choices,
we run a sequence of simulated backtests inspired by Ceria and Stubbs (2006).
Our numerical experiments are designed as follows. We simulate a time series of

8The solution of model P5 does not change if Ap. p isreplaced by its convex hull. Hence, we
may make the stronger statement that the true mean return vector is believed to lie within the
convex hull of Mp p.
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TABLE 2 Simulated backtest of one-stage robust Markowitz models.

Robust Robust
Budget Diameter monthly Robust Budget Diameter monthly  Robust
(B) (D) return Win (%) (B) (D) return Win (%)
0 0.5 1.0063 71 3 0.5 1.0062 68
0 1 1.0065 75 3 1 1.0064 64
0 1.5 1.0066 77 3 1.5 1.0066 74
1 0.5 1.0063 69 4 0.5 1.0050 48
1 1 1.0064 69 4 1 1.0048 35
1 1.5 1.0064 72 4 1.5 1.0049 36
2 0.5 1.0063 61 5 0.5 1.0045 39
2 1 1.0065 73 5 1 1.0046 38
2 1.5 1.0065 73 5 1.5 1.0046 39

monthly asset returns from a multivariate lognormal distribution with the parame-
tersin Table 1. For each month, we estimate a vector of mean returns by calculating
the average return over the previous 12 months. This imprecise estimate as well
as the precise standard deviations and correlations from Table 1 constitute the
inputs for the classical and robust Markowitz models ;1 and Ps, which are used
to determine the estimated and estimated robust frontiers, respectively. Next, we
implement the portfolio decisions corresponding to a risk level of 20% on both
frontiers and evaluate the realized portfolio returns over the subsequent month.
Each backtest coversaperiod of 120 months, over which we cal cul ate the geometric
mean returns for both the Markowitz and robust Markowitz portfolios. In total, we
conduct 100 runs of the described backtest based on different simulated time series.
Table 2 reports the monthly return of the robust Markowitz portfolio averaged over
the 100 backtests for different choices of the uncertainty budget (B) and the size
parameter (D). The averaged monthly return of the ordinary Markowitz portfolio
amounts to 1.0054 (which is independent of B and D). The column “Robust
Win (%)” indicates the percentage of simulations in which the robust strategy
outperformed the normal Markowitz strategy.

The results in Table 2 suggest that the geometry of the ambiguity set has a
substantial impact on the performance of the robust strategy. It seems beneficial to
use asmall uncertainty budget B ~ 0, whereas a budget of the order of the number
of assets leads to an overly conservative ambiguity set and resultsin poor portfolio
performance. We further find that the portfolio performance is insensitive to the
size parameter D aslong asit exceeds a value of about 0.5 (note that for D | O we
recover the standard Markowitz mode!).

Multistage portfolio models that cover more than one rebalancing interval allow
the investor to anticipate long-term consequences of current decisions. Therefore,
dynamic strategies are expected to be less risky than myopic strategies when
subjected to equivalent return targets. To investigate the additional benefits of
using a multistage model, we compare portfolio strategies obtained from the static
and dynamic robust Markowitz models P3 and Py, respectively. In our numerical

Research Paper www.thejournalofcomputationalfinance.com

111



112

D. Kuhn et al

experiments we reuse the 100 time series of monthly asset returns generated
previously. However, each time series is now subdivided into quarters (ie, blocks
of three months), and the vector of mean returns fi is reestimated only at the
beginning of a new quarter (instead of every month). This provisional reduction
of the estimation frequency will facilitate the comparison of the static and dynamic
models. We also assume that there are no transaction costs.

At the beginning of each quarter, we determine a monthly estimated robust
frontier by solving several instances of problem Ps for afixed ambiguity set Ap. p,
and we denote by w the optimal static portfolio at risk level 20%. We a so construct
a quarterly estimated robust frontier by solving several instances of problem Py
with H = 4 rebalancing times and an ambiguity set Ag p» Which is defined in the
obvious way as a multistage extension of Ag p. Note that we are forced to resort
to the approximate problem P, because the original model P4 is not amenable to
numerical solution.

In order to establish a meaningful backtest, we must decide which portfolio on
the quarterly frontier should be benchmarked against the portfolio w on the monthly
frontier. Since the estimate ji is not recalibrated intermittently, @ remains optimal
for Pz in dl three months of the current quarter. The corresponding quarterly
portfolio return can therefore be expressed as ]"[f’l:2 g;uﬁ, while the associated
quarterly worst-case risk amounts to:

4
2 T
= max @D 430 S0 W)+ 30 Th( b
HEMB D

The above formula uses the fact that the monthly asset returns are independent and
identically distributed under each model P € A} ,. Recall also that the covariance
matrix £ = Cov(&,,) is determined by the data in Table 1, thus being equal for all
models. For our backtests we use the dynamic portfolio strategy at risk level oy
on the quarterly frontier. This strategy has the highest worst-case expected return
over all dynamic strategies subject to the same risk. Hence, it outperformsthe static
fixed-mix strategy given by w.

Next, we implement the described static and dynamic strategies,® which are
constructed to result in the same worst-case portfolio variance, and evaluate the
realized portfolio returns over the current quarter. Our backtest covers a period
of 120 months (40 quarters), over which we calculate the geometric mean of the
realized returns for both the static and dynamic robust Markowitz portfolios. This
backtest is repeated for each of the 100 simulated time series. Table 3 (see page 113)

9 et x denote the dynamic strategy (interpreted as in (4.1)), which solves an instance of
problem Py . Therefore, ¥ = Ep (x* | F) is independent of P € Ag’ p and is near-optimal in
the corresponding instance of P4, see Theorem 5.4. Note that x is implementable in reality as
it provides investment recommendations for all return scenarios and al rebalancing dates within
the current quarter. We use x in our backtests.
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Dynamic mean-variance portfolio analysis under model risk

Budget Diameter Stages Robust monthly  Robust
(B) (D) (H=1) return (%) Win (%)
0 1 3 1.0075 82
0 1 1 1.0065 72
FIGURE 2 Historical backtest.
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reports the monthly returns of the dynamic and static robust Markowitz portfolios
averaged over the 100 backtests and for an ambiguity set with B=0and D = 1.
We exclusively work with this specific parameter choice which proved to yield
good results in our previous tests. In the current setting with a reduced estimation
frequency, the averaged monthly return of the normal Markowitz portfolio amounts
to 1.0053. The column labeled “Robust Win (%)” indicates the percentage of
simulations in which the robust strategy outperformed the norma Markowitz
Strategy.

The results in Table 3 suggest that the dynamic robust model is superior to the
static robust model, while both the static and dynamic robust models outperform the
classical Markowitz model. However, this conjecture exclusively relies on backtests
with simulated return data. In order to strengthen its plausibility, we repeat the
previous backtest with historical returns between October 1998 and September
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2008, see Figure 2. Although the static robust model performs only marginally
better than the normal Markowitz model in this particular test, the resultsin Figure 2
are promising and seem to support the above conjecture.

Concluding remarks

In this paper, we elaborate arobust and dynamic approach to portfolio optimization
based on scenario trees. We consider rival probability measures describing the
future asset returns and propose a min—max model that predicts realistic portfolio
performance and avoids disappointing results. We develop a computational frame-
work for solving this problem approximately and propose methods to control the
approximation errors. Our initial numerical experiments show that there are tangi-
ble benefits of integrating robust and dynamic approachesin portfolio optimization.
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