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Long-term planning for electric power systems, or capacity expansion, has traditionally been modeled
using simplified models or heuristics to approximate the short-term dynamics. However, current trends
such as increasing penetration of intermittent renewable generation and increased demand response
requires a coupling of both the long and short term dynamics. We present an efficient method for cou-
pling multiple temporal scales using the framework of singular perturbation theory for the control of
Markov processes in continuous time. We show that the uncertainties that exist in many energy planning
problems, in particular load demand uncertainty and uncertainties in generation availability, can be cap-
tured with a multiscale model. We then use a dimensionality reduction technique, which is valid if the
scale separation present in the model is large enough, to derive a computationally tractable model. We
show that both wind data and electricity demand data do exhibit sufficient scale separation. A numerical
example using real data and a finite difference approximation of the Hamilton-Jacobi-Bellman equation
is used to illustrate the proposed method. We compare the results of our approximate model with those
of the exact model. We also show that the proposed approximation outperforms a commonly used heu-
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1. Introduction

The general problem of capacity expansion under uncertainty
has been extensively studied both as a stochastic optimal control
problem as well as a multistage stochastic programming problem.
In many ways it is a prototypical example of an optimal control
problem; as a result, it has been studied since the late 1950s (Luss,
1982). For electric power systems, long-term investment (capacity
expansion) and short-term operations (generation dispatch and
unit commitment) were traditionally treated as decoupled deci-
sions, and numerical models of long-term planning used highly
simplified models and heuristics to represent the short-term
dynamics.

However, the environment in which generation capacity expan-
sion decisions are being made is becoming increasingly complex.
This complexity is driven in part by increasing pressure placed
on the electricity industry to address the problem of meeting the
projected growth in demand in a sustainable manner, including in-
creased reliance on intermittent renewable generation and in-
creased demand-response mechanisms. The variability on the
short time scale has important implications for the optimal
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portfolio of technologies that should be built in the long-run. For
example, more intermittent generation will require other dispatch-
able technologies such as natural gas generation that can ramp up
or down quickly. The conventional simplifications in long-term
models will not capture this effect and will lead to suboptimal
investment strategies (Palmintier & Webster, 2011). Moreover
the deregulation of the electricity industry means that utilities can-
not pass on the risks of investment decisions to customers. Conse-
quently advanced models are needed in order to capture the
complexities of the new decision making environment. The model
of the full system, explicitly resolving both short-term (e.g., hourly)
and long-term (e.g., annual or decadal) time scales along with the
stochastic processes associated with each, would be computation-
ally intractable for any system of realistic size.

In this paper, we present an efficient method for coupling the
multiple temporal scales in the capacity expansion problem using
the framework of singular perturbation theory for the control of
continuous time problems. We demonstrate that for power sys-
tems the relevant stochastic processes are highly structured in
ways that can be exploited. In particular load demand uncertainty
and uncertainties in generation availability can be accurately mod-
eled using weakly connected Markov processes. We take advan-
tage of the properties of weakly connected processes in order to
perform dimensionality reduction on the original model and there-
fore allows useful computation to be performed.
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To make operational the uncertainty structures present in this
class of problems we make use of the tools from singular perturba-
tion theory for Finite State Markov Processes (FSMPs) in continu-
ous time. In some respects some models already take advantage
of this structure. For example, the widely used MARKAL model
(Seebregts, Goldstein, & Smekens, 2001) uses the concept of a “load
block” to overcome the onerous requirement of optimizing over all
possible loads. Similarly (Palmintier & Webster, 2011) simplify an
integrated unit commitment and capacity expansion model by
aggregating different power generators together. These types of
aggregation approaches can be useful in practice. However, it is
also important to understand why heuristics work, when they fail,
and what can be done instead. For example, it is not clear how to
extend the concept of a “typical” load to handle wind intermit-
tency, or demand elasticity (a major objective of demand response
programs). Instead we use perturbation methods to derive an
“aggregate” model based on the assumption that the fast processes
in our system (e.g wind, demand uncertainty) follow their station-
ary distribution. The computational complexity of the aggregate
model is much less then the exact model and based on initial
numerical experiments the error associated with the solution is
much less then the existing heuristics used in MARKAL.

The contributions of this paper can be summarized as follows:

1. We formulate the problem of energy planning over multiple
scales as a stochastic optimal control problem with weakly
interacting FSMPs. We then extend and adapt some existing
results from the literature of singular perturbation theory to
derive an approximate problem that is computationally more
attractive than the original problem. We also establish the con-
ditions under which the approximate problem will yield the
same value function as the original problem.

2. We formalize the heuristics of widely used models such as
MARKAL. Existing models are based on the assumption that
the Markov processes that describe the stochastic intraday
dynamics of power systems are regularly perturbed. This
assumption is not supported by the data. We show how to relax
this assumption, using standard results from singular perturba-
tion theory.

3. We demonstrate the application of this approach using empiri-
cal observations. As our approach is based on perturbation the-
ory, we need to make assumptions about the existence of
sufficient scale separation. As will be shown in this paper, there
is sufficient evidence to suggest that such scale separation is
present in the data. We expect some of the statistical tech-
niques we use to be useful in other problem classes as well.

The rest of this paper is structured as follows: in the next sec-
tion we discuss related literature and outline in more detail the
contributions of this paper. In Section 3 we introduce our capacity
expansion model and discuss some of its properties. In Section 3.1
we reinforce the arguments that motivated this paper by looking at
some real data. In Section 3.2 we review perturbation theory in the
context of multiscale Markov processes and link our assumptions
with the empirical observations of Section 3.1. We also show that
existing models do not capture the correct asymptotic behavior of
the uncertainties present in the intraday scale. In Section 4 we
introduce an aggregate problem, and show that asymptotically
the value function of the approximate problem converges to the
value function of the original problem. We also establish the same
result for the approximate optimal control. In Section 5 we illus-
trate how the proposed approach could be implemented in prac-
tice. We compare the results of the approximate model with
those of the exact model. We also show that the proposed approx-
imation outperforms a commonly used heuristic used in large
models.

2. Related literature and contributions

Capacity expansion problems have generated a large amount of
literature. This is mainly because expansion problems are applica-
ble to many areas and also because they are a good testbed for new
modeling ideas. We will only discuss models that address the ef-
fect of the different time scales. Even though some of the work dis-
cussed below does not address capacity expansion directly, we
believe that the most relevant papers to this work are the ones that
address multiple scales since their ideas could be used in a capacity
planning problem.

In Sen, Yu, and Genc (2006) the problem of incorporating differ-
ent scales for addressing risk management problems such as buy-
ing and selling forward contracts for fuel are addressed in
conjunction with the intraday unit commitment problem. Their
model does not address intraday effects from intermittent sources.
They formulate the problem as a multistage stochastic program-
ming problem. The resulting large scale mixed integer linear pro-
gramming problem is solved wusing a nested column
decomposition algorithm. In Epe et al. (2009) the authors do ad-
dress the problem of dealing with the intermittency of wind. Again
a multistage stochastic programming approach is taken and the
resulting large scale optimization problem is solved using a recom-
bining tree methodology. In Pritchard, Philpott, and Neame (2005)
the operation of a hydro-electric reservoir is addressed. Their prob-
lem also has multiple scales since the supply of power occurs intra-
day, in hourly intervals, but the management of the reservoir
occurs over monthly scales. The problem is formulated as a dy-
namic programming problem. By approximating the decision to
have some desirable properties the different scales can be decom-
posed. In Powell, George, Lamont, and Stewart (2009) the intermit-
tency of wind and solar are addressed by approximate dynamic
programming. We refer to the review article in Wallace and Fleten
(2003, chap. 10) and the recent book (Weber, 2005) for a more
complete overview of stochastic programming approaches as well
as approaches based on dynamic programming. What all these pa-
pers have in common is that they address the existence of multiple
scales using some sort of algorithmic framework. They either use a
decomposition algorithm, approximate dynamic programming, or
find some way to relax the non-anticipativity constraints in order
to make the problem tractable. In this paper we take a different ap-
proach from the work described above. We posit that the uncer-
tainties that exist in energy planning problems, in particular load
demand uncertainty and uncertainties due to the power source,
are highly structured. This structure can be exploited to a great
advantage that provides insight into the nature of the problem. It
also allows us to construct a reduced order model that is based
on model primitives. The main aim of this paper is not to produce
more accurate numbers by incorporating intraday variations, but
rather define the representational structures that will allow quali-
tative and quantitative reasoning about the effects of different time
scales.

The main results for multiscale FSMPs are summarized in two
excellent books (Sethi & Zhang, 1994; Yin & Zhang, 1998). There-
fore we only comment on the relations between the analysis here
and the literature. In Jiang and Sethi (1991) a similar model to ours
is proposed. The model is motivated by a manufacturing system
with machines that have failure events that occur on different time
scales. However, their model does not address the issue of capacity
expansion and demand is deterministic. In Zhang, Yin, and Boukas
(1997) another model similar to ours is proposed and is again stud-
ied in the context of manufacturing systems. Their model also has
fixed capacity and deterministic demand. Even though the problem
of capacity expansion with multiple scales has been studied (see
chap. 10 in Yin & Zhang (1998)) we address capacity expansion
for Markov Chains with weak interactions and multiple scales. This
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key difference means that the approximate capacity expansion
model described in chap. 10 of Sethi and Zhang (1994) is determin-
istic, whereas the dimensionality reduction method applied in this
paper leads to a stochastic problem. Moreover, all the papers de-
scribed above are concerned mainly with manufacturing systems,
and in order to carry the results over to the power system sector
we had to devise a new framework. This is because in order to cap-
ture some of the basic features of the energy planning models we
need a model that can handle a Markov chain with weak interac-
tions both on capacity (to model wind intermittency for example)
as well as on the demand dynamics (to model the demand load
dynamics). We also need to handle uncertainties that are not
changing fast, such as the long term demand growth for electricity.
Finally we extend some of the existing results to the case where
general convex constraints are present. These constraints are
needed in order to model startup costs, minimum uptimes, and
so on. The technical extensions that are needed in order to extend
the existing results are discussed in more detail in the beginning of
Section 3.3.1. Apart from the theoretical contributions we also dis-
cuss the practical implementation of the theory together with the
necessary statistical methodology in order for the theory to be
implementable in practice.

3. A capacity expansion model

Before we delve into the details of the model, we first motivate
our construction by looking at the characteristics of hourly electric-
ity demand data (Section 3.1). In Section 5.1 we show that wind
speed time series have the same structure, and thus are amenable
to the same techniques. To keep the paper short we will only dis-
cuss demand data. In Section 3.2 we show that the assumptions
made by existing power systems models can be explained in terms
of perturbation theory. The exact, but computationally intractable,
model is introduced in Section 3.3. The mathematical theory of per-
turbation theory, motivated in Section 3.2, will be used as the basis
for the approximate, but tractable, model introduced in Section 4.

3.1. Load demand characteristics

Hourly electricity load data time series are driven by strong
deterministic cyclical patterns (e.g., time of day, seasonal effects,
etc.). By far the most widely used method to analyze such data sets
is a two step process. The first step involves identifying the deter-
ministic component of the data series. By subtracting the deter-
ministic component from the original time series, any purely
temporal components can be removed. The second step is to fit
some stochastic process to the remaining component (we call this
the stochastic component). There are a number of ways to perform
each of these steps, and the exact method we used, together with
our data sources are described in Section 5.1. Fig. 1(a) illustrates
the transition matrix associated with the Markov chain of the sto-
chastic component. The transition probabilities were obtained by
identifying the maximum likelihood Markov Chain of de-trended
hourly load data. The states in the Markov Chain represent the
amount by which the hourly load is above or below the determin-
istic periodic component (for ease of exposition the axis shows the
state number rather than the actual state). What is immediately
obvious from this figure is that apart from a few cases the Markov
Chain will tend to stay around the same state. Of course the varia-
tions around the state, as well as far away from the diagonal are
important since they will influence the amount of reserves.
Fig. 1(b) shows the result of the same process but with using a
Markov Chain with only twenty states. Using typical states, opti-
mizing over these and summing the results, essentially assumes
a transition matrix as in Fig. 1(c). Note that there is no possibility

of transition between clusters of states. These clusters of states
are called typical states. However using typical states will always
underestimate the costs of running such a system (this follows
from Jensen'’s inequality and will be true for convex models, such
as the one studied in this paper). This means that a certain amount
of guesswork will always be required in order to find the level of
reserves, or any other quantity of interest. Therefore, it seems that
assuming the problem to be reducible to a few typical states over-
simplifies the problem.

At the same time it is obvious from the figure that the data does
not completely lack structure. To see the difference, a process with
no structure is shown in Fig. 1(d). Therefore assuming a completely
general structure is also not appropriate. Methods that do not take
advantage of this highly specialized feature of the problem are
implicitly assuming a structure such as the one shown in
Fig. 1(d). The aim of this paper is to show how to take advantage
of the approximate block diagonal structure of Fig. 1(b) without
oversimplifying to a structure like that in 1(c). This provides an in-
sight both into the characteristics of the problem but also leads to a
tractable problem. It is worth pointing out that these conclusions
are fairly consistent in electricity demand data and have been
known for a long time. For example, it was shown in Pirrong and
Jermakyan (2008), that electricity loads have a very fast mean
reverting component. Most of the literature in this direction uses
mean reverting diffusion processes to capture the fast load dynam-
ics. However, it turns out that diffusion processes do not fit our
wind data very well. For this reason we use FSMPs. A further pos-
sibility is to use diffusions with regime switching (Yin, 2009). Such
an approach will be more general than the setup of this paper and
itis a promising direction for future work. A review of load demand
modeling in the context of multiple scales, is discussed in Ilic and
Liu (1996). Any stochastic process can be used to capture this spe-
cific structure in energy data. The aim of this paper is to make ex-
plicit the implications of this structure to coupled models for
capacity expansion and unit commitment.

3.2. Perturbation theory for the long term planning of power systems

The purpose of this section is twofold. The first aim is to estab-
lish some notation and terminology that will be used in the rest of
the paper. The second aim is to show that the assumptions made
by existing power systems models can be explained in terms of
perturbation theory. We will argue that existing models assume
that the Markov Processes representing the short term uncertain-
ties in the system have generators that are regularly perturbed.
However, the regular perturbation assumption is not supported
by the data. More importantly the regular perturbation assumption
gives results that are qualitatively wrong. Of course this result
about the generators of Markov Processes has been known for dec-
ades, see for example (Phillips & Kokotovic, 1981). Our aim is to
show how the theory of perturbed Markov Processes can be used
to capture the assumptions of existing models, highlight the limi-
tations of these assumptions, and propose a solution. The solution
is based on the standard technique of singularly perturbing the
ODE that governs the time evolution of the Markov generator by
a changing the units of time. Finally, note that we are focusing
on long term planning models (e.g. capacity expansion models).
We will not discuss the literature of how perturbation theory is ap-
plied in other power system models. We refer the interested reader
to Kokotovi¢, Khalil, and O'reilly (1999) for a review of that
literature.

The stochastic processes we consider are continuous time Mar-
kov Processes that have a finite number of states. This class of pro-
cesses are also known as piecewise deterministic. We adopt the
terminology of Sethi and Zhang (1994) and call a process that is ex-
pected to change a few times (if at all) per unit time a slow process.
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(d) A structure free transition matrix

Fig. 1. Markov transition matrices. For ease of exposition the labels refer to the index of the state and not its numerical value. (a) and (b) are obtained from a maximum
likelihood fit to hourly time series. (¢) is the structure implicitly assumed when considering typical states. (d) was obtained by a maximum likelihood fit to a white noise

process.

A fast process is one that is expected to make many transitions per
unit time. We will use 7(t,€) to denote the fast process, and &(t) for
the slow process. The € in the notation above is the perturbation
parameter whose meaning will be explained next.

One way to capture the structure of the probability transition
matrices in Fig. 1(a and b) is by assuming that the Markov gener-
ator of the fast process has a block diagonal structure. Under the
latter assumption the probability transition matrix of the fast pro-
cess will satisfy the following equation,

Ul
& P+ ew, -
P(0) =1,

where Q = diag(Q,. . .,Q.). The block diagonal component Q will be
used to model the variation within aggregate states, and W will be
used to model the transition between aggregate states. Each matrix
{Q;},, will be assumed to satisfy the standard conditions for a
Markov generator matrix. We will further assume that each Q; is
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irreducible. The parameter € >0 is used to capture the empirical
observation that transitions inside clusters of states happen more
frequently than transitions between clusters. To see this, compare
Fig. 1(a and b) with Fig. 1(d). In this paper we use the terms aggre-
gate states and clusters of states interchangeably. We note that we
have not made any assumptions so far. We finish this section by
illustrating how (3.1) is approximated in existing power systems
models.

Existing models such as TIMES and MARKAL (e.g., Seebregts
et al., 2001) assume that € =0 in (3.1). This assumption is equiva-
lent to taking the limit € — O in (3.1). The consequence of this
assumption is to eliminate the effect of W. For very short term
models (e.g., the models used for intraday management of existing
generators) this is not a bad approximation. However, for long
term planning models this is not a good assumption. In particular,
as a consequence of this assumption the models assume that once
the process starts in a certain cluster of states it cannot escape
from that cluster. This significantly reduces the complexity of the
stochastic optimal control problem since it means that we can
optimize the system over different clusters and then add up the re-
sults. However, the regular perturbation assumption described
above does not produce the correct qualitative results. For exam-
ple, the equilibrium density of the Markov Process in Fig. 1(b) is gi-
ven in Fig. 2(a) (which is independent of €). As can be seen in this
figure the transitions between clusters can occur in equilibrium.
Whereas, if the process is assumed to be regularly perturbed, then
the equilibrium density shown in Fig. 2(b) does not allow for such
transitions.

In order to capture the correct asymptotic behavior one can
introduce a singularity by the change of variables t = ez (Phillips
& Kokotovic, 1981). With this change (3.1) becomes,

dp 1
3= PO {EQ+W}, 52)
P(0) =1.

13 14 15 16 17
| | | | |

12
|
0.10

0.05

20 18 16 14 12 10 9 8 7 6 5 4 3 2 1

(a) Equilibrium density of ML Markov Chain, for
any € > 0.

The effect of the change of variables is to “stretch” time. Events that
could be expected to happen after a long time interval e.g. after O(1/
€) units of time, will be expected to happen after O(1) units of time.
This means that fast processes become even faster. At the limit
€ — 0, the fast process jump an infinite number of times within a fi-
nite interval. We can therefore expect that the fast process has
made so many transitions (per unit time), that it would have
reached its equilibrium. The exact details are discussed in Section 4.

3.3. The exact model

In this section, we introduce the stochastic optimal control
problem that we will study in the rest of the paper. As was ex-
plained in Section 2, this class of models is solved with a large time
step (typically five years). However when a large amount of inter-
mittent power is available, a large time step will introduce signif-
icant errors. In order to address this issue, we couple the operation
and capacity decisions in the model described below. The model is,
in general, intractable. Section 4 uses the empirical observations of
the previous section and some of the mathematical properties of
the exact model discussed below to propose an approximation that
is accurate when € is small i.e. in the presence of both fast and slow
dynamics. The approximate model in Section 4 takes advantage of
the different time scales present in the model, and derives an
equivalent model that is tractable.

The Decision Maker (DM) can invest in each of the generating
facilities in order to increase capacity. To represent new plants,
some of the plants are allowed to have zero capacity to start with.
The cumulative investment in the ith plant is denoted by y; and gi-
ven by,

dy;(t) _

i = i(t) i=1,....N.

¥i(0) = yi,

where 7; is the rate of investment chosen by the DM. Once total
investment in plant i reaches a predetermined level K;, then new

e
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(b) Equilibrium density of ML Markov Chain as-
suming it is regularly perturbed.

Fig. 2. (a) The equilibrium density of the Maximum Likelihood (ML) Markov Chain is independent of €. (b) Assuming the process is regularly perturbed gives an incorrect

asymptotic behavior.
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capacity becomes available. By imposing appropriate upper bounds
on the rate of investment, 7t;, we can ensure that new capacity can-
not appear overnight. Each plant can be expanded once, and the le-
vel of investment required is assumed to be deterministic. Both of
these assumptions can be relaxed, but with some increase in the
complexity of the analysis.

The total available capacity in the ith plant is assumed to be a
Markov process, and it is given by,

. i < T
pien =1 Men s (3.3)
ny(e,t—1) t>71.
The stopping time 7; is given by,
T; = inf{t]y;(t) = Ki} AT, (34)

where T denotes the terminal time. We assume that the decision
maker can use any of the N generating plants to meet demand;
the state variable x(t) represents the amount of energy not served
up to time t and it is defined as follows,

N
%: Zui(t) +1°(t,€) —z(t) x(0) =x, (3.5)
i-
where u; represents the output from the ith plant, and is controlled
by the DM. The finite state Markov Process, #° is a fast process that
represents the intraday variations in hourly loads. The last term in
(3.5), z(t), represents the demand and it is assumed to have the fol-
lowing dynamics,

% =f(z(t),&1) z(0)=z

In (3.6) &% is assumed to be a finite state Markov process, but this
process changes at a slower rate. The latter process is used to rep-
resent uncertainties such as the long term demand trend for elec-
tricity. Information about long term demand arrives at slower
rate. It is not possible to model this class of uncertainties as fast pro-
cesses. Throughout the paper, we use the notation # and ¢, for the
fast, and slow, respectively, scale dynamics.

Motivated by the discussion in Section 3.2, the Markov process
n(t,€) =[n°te),...,nNt,€)] is assumed to have a generator given
by,

dP'(t)
dt

where Q = diag (Qy,...,Q). Furthermore both W and {Q,-}L1 are as-
sumed to be irreducible. The generator for the ¢ variables can be
more general since we will not perform any approximation on this
process. The dynamics of ¢ are given by,

dP-(t)
dt

A policy (u(t), n(t)) will be called admissible if it satisfies the dynam-
ics specified above (including the stochastic bounds on available
capacity). Moreover an admissible policy needs to be non-anticipa-
tive and therefore must be adapted to the filtration F,. The set of all
F-adapted processes is denoted by A;. In Section 5 we describe a
numerical method based on the finite difference approximation
technique described in Kushner and Dupuis (2001) to obtain admis-
sible policies.

In the exact model the DM chooses the generation u(t) and
investment 7(t) to minimize the discounted sum of operations
and investments costs G;(.) (of technology i) plus a terminal cost
@(X7), subject to system equations for unmet demand x(t), capacity
available y(t), and demand z(t) and constraints on maximum po-
tential capacity and maximum generation:

(3.6)

=P'(t) EQ+W}, (3.7)

= P*(t)R.

Jsw,n, Gu,m) = E{XNZ/T e P Gy(xg, Ti(S), Ui(s), £(5))ds +e P T d(X7) }
i=1YS

Z)S(Wv ’/Iv é) = min ]E(Wv ’/I*, é* u, TC)

% - Z”f(f) —z(t)+n°(t€) x(s)=x
dz(t)

T:f(z(t)7fo(t)) z(s) =z
YO _ 70, v =y oo
%) <K,

0 < uy(t) < ny(t,€)
(u(t), (b)) € ASNC(t)

For the purposes of this paper we will assume that the controls
need to satisfy additional convex constraints. These will be repre-
sented by the set C(t). These constraints can be used to model
startup costs, minimum operation times, reserves, etc. Using the
approximations described in Weber (2005), these features can be
incorporated within the proposed framework with a correspond-
ing increase in computational complexity.

The real valued function G; captures the operation and invest-
ment costs associated with technology i. We assume that G; is
also a function of x (i.e. the amount of energy not served). In or-
der to avoid uninteresting solutions we assume that a high pen-
alty is imposed for not meeting demand. This is captured by
having a terminal condition function &(x). This function penalizes
the total amount of energy not served during the planning period.
In order to simplify the notation in subsequent sections we will
use the following  notation = whenever  convenient:
w(t) = [x(t),y(t), 2(t)], c(t) = [u(t),n(t)] and B(t) = [n(t,€),&(t)]. Using
this notation, the dynamics of (#.) are given by,

% = g(w(t),c(t), B(1)),

where  g(w,c, ) £ g(x.y,z,u, 7,1,6) = [SNus — 2+ 1°.(2,6), 7).
Note that we are using capital G to denote one period instantaneous
costs, and lower case g to denote the state evolution equations of
our model. We use G(-) £ "N, Gi(-), when the distinction between
the different technologies is irrelevant.

(3.8)

3.3.1. Analysis of the value function

The aggregated problem is obtained asymptotically as € goes
to zero in (H.). Motivated by applications in manufacturing sys-
tems, capacity expansion models with fast and slow dynamics
have been considered before (see e.g. Sethi & Zhang, 1994 for
a review). As was mentioned in Section 2 the problem of capac-
ity expansion with Markov Chains that have weak interactions
over multiple scales has not been addressed before. Capacity
expansion models introduce a technical complication of having
to deal with the random time when the ith plant gets expanded
(see (3.4)). The advantage of solving this model with the weakly
interacting Markov Chain assumption is that the reduced order
model is still stochastic, whereas the dimensionality reduction
methods used in other capacity expansion models (see chap.
10 of Sethi & Zhang (1994)) lead to a deterministic approxima-
tion. Moreover for the application we consider in this paper,
we wish to handle the case where the controls need to satisfy
additional convex constraints. In order to deal with the addi-
tional technical complications we study the dynamics of our
model using the results from Arnold (1998). The approach devel-
oped in Section 2.2 of Arnold (1998) allows us to study the
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dynamics of (3.8) pathwise. This means that for each fixed path
w € Q, (3.8) can be analyzed as a generalized deterministic or-
dinary differential equation. This approach allows an easy way
to construct various estimates about the value function, and
the optimal controls. The theory of viscosity solutions is used
in order to establish the connection between the value function
and the Hamilton-Jacobi-Bellman (HJB) equation. The results
concerning the properties of the value function, and its limiting
properties are extensions to the results from Zhang et al. (1997)
and Sethi and Zhang (1994) in the sense described above.

As € is cadlag the control c(t) = ¢(t, ) is also cadlag. The control
will be called admissible if:

e The process ¢(-) defined on 7 x Q is F,; progressively measur-
able; i.e., the map (t,w) — c(t,®) is B[0,t] ® F; measurable for
eachte 7.

e The process satisfies,

t2
E/ lc(s)[ds < oc.
t1

We will call the control feasible if, in addition to being admissi-
ble, it also satisfies the additional convex constraints given in ().
Note that we are only concerned with Markov controls. It can be
shown, using similar arguments as in @ksendal and Sulem
(2007), that Markov controls are sufficient for the problem studied
in this paper.

We will use the shift operator 0 (see e.g Arnold, 1998) to denote
the following:

W) gow(e).c(t), 00) = W), (6,00, (£,09)).

The w-dependance of g will be dropped whenever possible. Similar
notation is used for the control. The process (t) has, by construc-
tion, a finite number of discontinuities. Therefore the solution to
(3.8) should be considered in a generalized sense and not inter-
preted as a classical solution. If the following holds,

Y(t,c,m)(w) =w+ /Otg(z//sﬁsq Osm)ds, (3.9)

we say that s solves (3.8). Such a solution is also called a solution in
the sense of Caratheodory. If the solution happens to be differentia-
ble with respect to t, then the solution is also a classical solution. As
p€ is in general discontinuous, we have to deal with generalized
solutions. The significance of using the formalism of generalized
solutions is that we can show that the solutions of (3.8) satisfy a
co-cycle property (Arnold, 1998). In particular, it can be shown
that:

U(t+s,c,m) (W) = (L, 0sc, 0sm) o Y(s, ¢, ) (W). (3.10)

The usefulness of the co-cycle property is in studying properties of
the value function. For example, if T denotes the first jump time of
the process ¢ after time 0, then we can construct a solution y for
time 7 +s by using the deterministic solution of v up to time time
T and then “restarting” the stochastic solution at the post-jump
location and solving the equation forward up to time 7 + s. This type
of manipulations allows to very easily obtain bounds and establish
continuity properties of the value function. We make the following
assumptions concerning the dynamics of g.

Assumption 3.1. The function g is uniformly Lipschitz continuous,
and satisfies a linear growth condition in w.

Under conditions more general than the one given above, The-
orem 2.2.1 in Arnold (1998) can be used to establish the existence
and uniqueness of the solutions to (3.8).

Assumption 3.2. G and @ have a modulus of continuity given by
V¢ and y4 respectively. This means that the following holds,

\G(X,C7[ﬁ’)—G(y7C,[§)| <Vc(\X—3’|)7 VC,ﬁ
|P(x) — DY) < Vo (IX = YI).

Assumption 3.3. There exist constants Mg and Mg such that:

IG(x.c. )| < M,
|D(x)| < M.

Below we show that the value function is equi-continuous in w
(Theorem 3.4), and that, therefore, the Arzella-Ascolli theorem can
be used to establish the existence of the limit lim._o2* (Corollary
3.5). Then in Theorem 3.8 we show that this limit does not depend
on the particular state #, but rather the set of aggregate states # be-
longs to.

Theorem 3.4. For any fixed  and t € T, the value function v (w, ) is
equi-continuous, and equi-bounded in w.

Proof. The value function is equi-continuous in w fif,

sup |vE(w, B) — vE(W, )| — 0 as 6 — 0.
w—w|<

(3.11)

Note that Assumption 3.1 together with Gronwall’s inequality im-
plies that (3.9) satisfies,

(e, ¢, w)(x) = y(t,c.m)y) < elx -y,

where L is the Lipschitz constant. Using the observation above and
the co-cycle property in (3.10), it can be shown that (3.11) holds in
the same way as the estimates in the proof of Proposition 3.1 in Bar-
di and Capuzzo-Dolcetta (1997) are obtained.

To show that a function is equi-bounded we need to show that
for any € the following holds,

sup|vg(w, B)| < +oo. (3.12)

The above is a simple consequence of Assumption 3.3. O

Corollary 3.5. For any fixed t and <, the sequence { v{(w, )}, has

a convergent subsequence.

€0

Proof. This is a consequence of the Arzella-Ascoli Theorem, see c.f.
(Rudin, 1991). O

Capacity expansion models introduce the possibility of chang-
ing the states of the Markov Process. This property of the model
introduces additional technical complications in the analysis of
the value function. The following Lemma will be used to control
the stopping time in (3.4) i.e. the first time a particular plant gets
expanded.

Lemma 3.6. Let {t.} be a sequence of feasible stopping times defined
in (3.4). Suppose that,

limt, =t, Pas.. (3.13)
-0

Then for some feasible control c,

limE[| vz, (v (e, €, @) (We), B(Te)) = vp(We, ()| |[F1] = 0. (3.14)

Proof. This proof is similar to the argument given in the proof of
Theorem 3.4, only a sketch is given here. Given any €; >0 let ¢ be
a feasible control such that,
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vi(w.p) > E UT e PG (s,C, ) (W), Cs, B )ds +e P (D(y(T, ¢, ) (W)))| Fre
€1

-3
Then the limit defined in (3.14) can be bounded with standard argu-
ments, to show that if € is small enough then (3.13) is true. O

The HJB equation associated with the value function of (H,) is
given by,

pri(w, f) = H (v, Vwr),

3.15
Vi (w, ) = D(w), G.15)

where H(vf, V,, 2f) is defined as follows,

N N
min {ZGi(x, Ul &) 4 Oy v (Zu,— —z- 17°> + V0t n} + O f

i=1 i=1

+ 0, vif(z,&) + LVi[n, &.

The linear operator £ used above is defined as follows,
Lfn. & = Lyfn. & + Lefn. &,

where,

T\ oo
£ 1.8 = 30 (s, +21) (£R.0) - Fn. )

n#n

Lo flnd=3"r- (Fn.§ = f(1,9).

Above we made use of the standard convention of denoting the
(i,j)th entry of a matrix A with the notation a;. Note that the pres-
ence of £° is entirely due to the stochastic nature of the problem.
In deterministic optimal control problems this term does not
appear.

The value function defined above may not be sufficiently
smooth for the derivatives defined above to exist. The theory
of viscosity solutions has been developed in order to address
this situation. The link between (3.15) and (H.) is well known.
We refer to @ksendal and Sulem (2007) for a recent review
concerning the control of more general jump processes than
the ones considered here. The book (Yin & Zhang, 1998) also
contains an overview of viscosity solutions. We will need the
properties of viscosity solution later and so we define them
below.

Let D*v (D~ v) denote the superdifferential (subdifferential) of
v with respect to w. These two differentials are defined as
follows,

Dv= {p|1ilpsup we(W, ) - ”t‘(vlv”’_ﬁ‘),vjp W-w 0}.,

w—w

Dv= {q|liminf v(W.p) — oW, p) —q-(W—w) _ o}
w W\\/—W‘ = .

wWow
We will say that a continuous function u is a viscosity subsolution if,
puc(w, f) —H(u,p) <0 VpeD'u,

and a viscocity supersolution if,

pus(w, f) —H(u,q) >0 VYgeD u.

The solution will be called a viscosity solution if it is both a subso-
lution and supersolution. The following result can be proved using
standard techniques (see for example Yin & Zhang, 1998).

Theorem 3.7. Under Assumptions 3.1, 3.2, 3.3 the value function of
(He) is the unique viscosity solution of (3.15).

We next show that if € is small enough then the value function
does not depend on the exact state # but rather the cluster of states
n belongs to.

Theorem 3.8. Suppose that 1 belongs to the kth set of aggregate
states, § € MX. Then for any convergent subsequence of {vf}, we
must have.

ve(w,m, &) — ve(w,k, &) Vi € My (3.16)

Proof. Let 7; be defined as follows,

7; = inf{sly;(s) = Ki, s > t}.

Let 7 be defined as the stopping time when the first plant gets ex-
panded after time ¢,

7 = min{7;}.
1

Also let 7", and t“< denote the jump times of # and ¢ respectively.
We first show that if € is small enough then 7" < t¥ and 7" < 7¢¢
w.p 1. Let 6 > 0 be arbitrary. Then,

o ot+S
Pz —t €(0,0)|t,n(€,t) =n] = —/0 el: G+ %W,,_q)ds

=1- e(q”.tﬁ’%wn.n)‘s —1.

Therefore without loss of generality, we can assume that for € small
enough #(t,€) jumps before &(t) and before the next plant reaches
level K w.p. 1. The rest of the proof is a straightforward extension
of Lemma 9.6 from Yin and Zhang (1998) to the finite horizon
case. O

4. The aggregate model

In this section we derive the limiting problem for . as €/0. We
show that the asymptotic value function of #, corresponds to a va-
lue function of an aggregate model. We also show how to construct
asymptotically optimal controls from the aggregate model.

For the application considered in this paper, it is sufficient to as-
sume that each n(e,t),i=1,...,N, has the same generator both be-
fore and after it has been expanded. Thus only the states may be
different, the transition probabilities remain the same. It is possible
to handle the more general case with some additional increase in
the notation but the argument remains the same.

The unique stationary distribution associated with the kth
aggregate state satisfies the following system of linear equations,

)‘ka = 07
Z;gg -1, (4.1)

jemk

where M* denotes the states in the kth aggregate state. The gener-
ator Q is used to model the transition rates between the kth cluster
of states. The existence and uniqueness of the solution to (4.1) fol-
lows from our assumption that each Qy is irreducible.

The reduced order modeling framework adopted in this paper is
illustrated in Fig. 3(a). We start from the bottom layer that cap-
tures all the intraday variations (e.g., the possibility of changing
wind speeds every 5 minutes). This information is combined into
aggregate states (the middle layer of Fig. 3(a)). Finally, some other
probabilities are devised that control the transition between aggre-
gate states. Our next task is to define the dynamics of this aggre-
gate probability transition function. This can be done rigorously
(see c.f. chap. 7 in Yin & Zhang (1998)). Since these dynamics play
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s
Paielsis

(a) Information structure of the aggregate
model

(b) Equilibrium density of the aggregated
Markov Chain

Fig. 3. The aggregated model depicted in (b) gives the correct long term behavior (compare (b) with Fig. 2(a)).

a central role in our analysis we sketch below how this derivation
can be performed. To this end, let T = diag(1 o). .-, 1,4). Where
|M¥| denotes the number of states in the kth aggregate state, and
1, is a vector of ones of dimension n. The generator associated with
the aggregated states dynamics is given by,

A =diag(2', ..., hwl,

where W is associated with the transitions between aggregate sets
of states in (3.2). Let # be the Markov process generated by A. Its
transition matrix satisfies the following,
dP(t) =, .—
——~=P(t)A. 4.2
= PO (42)
The preceding equation specifies the probability transition function
of moving from one set of aggregate states to another. Next we give
a heuristic argument of how (4.2) can be derived as the limit of
(3.7). Let P,(k) denote the probability of being at the kth cluster of
aggregate states at time t. If € > 0 is small enough then,

Pi(j) = P(k)if, je ME,

where P, is given by (3.7). Using the equation above and (4.1) we
obtain,

dﬁt(l) dPt akyask1
(Tz‘,..., ZPt W

zljpt(k);.kw’“’) ,
k=1
(4.3)

where W' are the sub-matrices of dimension R*'**| gbtained
from (3.7). The expression in (4.3) can be further reorganized as
follows,

dP.(m) _ dP,(m)
dt — dt

2™ ) ZA"Pt (kyw

s T

1
> Pi(k)Akm,
k=1

where Akm = i"W""’"l‘Mm‘. Vectorizing the expression above, we ob-
tain (4.2). To relate this to the discussion of Section 3.2, Fig. 3(b)
plots the equilibrium density of P defined above. The intuition is
that some states become so fast that they become transient. This al-
lows us to aggregate the fast Markov Processes as depicted in
Fig. 3(a). As a result the Markov Chain has fewer states (allowing

reduction in computational complexity) but still has the same qual-
itative behavior. To see the latter point, compare Fig. 3(b) with the
exact result in Fig. 2(a), and the current approach used in long term
planning models Fig. 2(b). In the exact density, there is the possibil-
ity of transition between states. This possibility is assumed away in
current models in order to reduce computational complexity. The
approach proposed in this paper allows for the possibility of transi-
tion between clusters of states with a modest increase in computa-
tional complexity.

if ne(t) e M. 1t
97) that,

Remark 4.1. For later use we define, #°(t) =k,
was shown in Theorem 2.3 in Zhang and Yin (19

limd(7°(£).7(0)) = 0,

where d(-,-) denotes a distance metric on the Skorokhod topology.
Suppose that at time s the system is in the kth aggregate state.
The objective function of the aggregate problem is given by,

Js(wk,&u,m) 2 E{/ Z ;nm(zeprs

S jemi®

):(s), u}’(t”(s)yé(s)) ds

+e PT9o(Xr)

The aggregate optimal control problem is as follows.

Us(w, k, &) =min  J,(w,k,&u, )
dx(t) m(f)( 10 ¢ n(t)J)
gL i i ) + 3
dt je%;(“/hj El: n
X(s) =x
dz(t
‘;—(t) =120, 2(0), 29)=7
=Y 9w, ys)=y H
]EMY’(t
yi(t) <Ki,
1770 € aime).g),
17(5) =k.
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Note that the value function is no longer a function of the fast pro-
cess #, but rather of the current aggregate state k the fast process
belongs to. The set C(i,j) is the feasible set associated with the ith
state inside the jth aggregate set of states for the kth plant. In the
case with no startup costs then this will be simply given by:

0 <u/™(e) <

For later use we denote the state equations above as follows:
dw(t _ _

WO — gw & mw), wis) = w 44)

The constraints on the controls of the aggregate problem will be de-
noted by C.

4.1. Asymptotic analysis of the value function

The main results of this Section are given in this and the next
subsection. A similar analysis that covers infinite horizon models,
and when the states of the Markov Processes remain constant
(i.e., no possibility of capacity expansion) appeared in Zhang et al.
(1997), Yin and Zhang (1998), Sethi and Zhang (1994). As noted
in the end of Section 2 and the beginning of Section 3.3.1 we extend
the aforementioned results to deal with the finite horizon case, the
possibility of expanding capacity, and we allow for both weakly
interacting processes (1) and slow processes (¢) in the same model.

The convergence proof of 2§ to 7, is given below. As the proof is
somewhat technical, we first provide a conceptual explanation of
how the exact and aggregate model are related in order to build
intuition. We know from the theory of stochastic optimal control
that the optimal controls of (H.) are functions of w, ¢ and #°. Sup-
pose that we replaced the full distribution of # with the aggregate
distribution given by (4.2). The states of the “new” approximate
distribution are no longer the states of #° but the cluster of states
that 7€ belongs to. Thus the value function will no longer be a func-
tion of ¢, but it will be a function of the cluster of states that n*
belongs to. The exact state of #° can therefore be integrated out
from the value function. Since we are optimizing over the set of
closed feedback controls, we also need to integrate out the exact
state from the controls. The rest of this Section provides the proof
of how “integrating out” the exact state works in theory. In Sec-
tion 5 we put the theory into practice.

The value function of (*) can be shown to be the unique viscos-
ity solution of the following HJB equation,

ACAS) mm{ Sk <ZG, L8+ 0,7 <Zu{ —z—r,’gj) +vy17r.n> }

jemk
+ 0, 0:f(2,8) + 0: Ve + LV [k, ],

(4.5)
where
L:0e[k, &) = Levelk, & + L, e[k, &,
and,
Lok, &) = ZrA v(w, k, &) — ve(w, k, ©)),
Tt
Ly ik, &) = (0w, 1, &) = ve(w, k, ©)).

ik
The main result concerning the asymptotic behavior of the value
function is given below.

Theorem 4.2. Suppose that n € M,, then

leirrg vi(w,n, &) = v(w, k, &) Ve My

Where v:(w, k, &) is the viscosity solution of (H).

Proof. It was shown in Corollary 3.5 that there exists a subse-
quence of {v¢} that converges. For such a converging subsequence
we know, from Theorem 3.8, that v¢(w, 7, &) — v (w, k, &). The basic
idea behind this proof is to show that z(w,k,¢) is a viscosity solu-
tion to the aggregated HJB Eq. (4.5). The uniqueness of the viscosity
solution will then imply the result, v, (w, k, &) = 7, (w, k, &).

For the given fixed k, and for any w, of appropriate dimension,
let

_ - 1 _
Pu(W.k, &) = 0 (WK, &) +7 - (W= W) 5w — W], (4.6)

where y € D" v(w, k, ¢). Then

ve(w, k, &) — @ (W, k,

&) = mvjnz/t(w, k, &) — @ (w,k, ).

Due to the definition of ¢ in (4.6) the above minimum is strict. Next,

choose wf,, so that for each #; € M, the following holds,

Uf(V\Gfkvﬂyf) (pt( jk k f) m}nyi(w»%f)—%(w»kﬁf) v”jEMk'

It follows that,

llm wet =w.

Jk —

As of is a viscosity supersolution to (3.15), we have for any feasible

(u,7),
vE(WE ) =) Gilx] LU E) + By, (WE, 11, €)

PV jk7 7 ka x Pt j,lnn '

x (Zuz—z 11(%]) +Vyp (Wi 11, €) 7

+ 0,0, (W 1M, Ef (2,6) + LVE (WY, &) ¢

It follows that,
POV W8 = Zﬁk<zc Xy U & +0x¢t<2u,—z—nﬁ'f>

jemk jemk

+Vy@ T+ 00, (2,8) + L v; [1/] L 7@])_
Note that,
SOAE UL = Y A+ Y ALt
jEMk jex\Ak je./Mk

The last term in the preceding equation can be decomposed as
follows,

S UL v = 3 kz(wm quk))(U( WE ™) (ijﬁj’gv))

jemk jemk  m#j
= 3> Wi (VW™ 8) - v (W ) )
jemk  m#j
YY) - ot (win.2))
jemk  m#j

Let I1(€) and I,(€) denote the first and second term, respectively, in
the preceding equation. Then it follows that,

imn(e) =Y 4 > (ke -vwhkot -

jEMk m#] {wne./\/lk)
m ¢ M*
= szk(yt(ﬂﬂ m7 é) - yt(W7 k7 é)) = Zf/[[k./ é] (47)
m#k

Using the fact that,

yt( fkv’lkjf) (/)t( J.ko £)<”t( ,k7'7‘j>f)*

e MK,

O (Wi, k, &) Vi
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The second term, I5(€), can be bounded as follows,

ISy (v (Wi, €) — o (wi.€))

jemk  m#j

J;kik;qm,((v (Wi m,€) = @ (Wi k.€))
J(E (Wi .€)) — oWk, O)
()~ (k)

~o(Wiik£))

772 (( mkn ) (Pt mkkc>2} qm177) 7/[ jk ”IkJ C))

> LSSy ((v

jE MK m#j

- (Z/t(wj‘k'rnk‘]-,f))

mek jem*
- (pr ) Z qm_;
memk
Therefore,
P> A vEWEN 6 ZA"(ZG X UL &) + 0, 0f <Zu1 zfn’a'j>
jemk jemk

+O vV vE -+ 0,0 (2,6 + > A LevE i g+ 1 (e)) .

je.\/lk

Taking the limit in the preceding equation we find,

P> Hvw e = Yo <ZG X, 70U E) + 0, (Zui—z—r1’[jj>

jemk jemk

+0Vy @, T+ 0:0,f(2,6)+ Y ML, &+ L, u[[kﬁg’]> .
jeMk
Which shows that , is a viscosity supersolution of (4.5).
The proof can be completed by showing that ¢, is also viscosity
subsolution of (4.5). This argument is symmetric to the one given
above so we omit the details. O

4.2. Asymptotic analysis of the optimal controls

We conclude this section by showing that if € is small enough
then the optimal control of the aggregate model can be used to
construct an optimal control for the original problem.

Consider the following approximate control,

(7, u )eargmm“{Z} (ZG X, 7t )+0er<2u”)+vyv[-n)}.

jemk
(4.8)

Using the above consider the following dynamics,
dw B ;

Zzﬂ{ﬂ( ”kj}g 7@7177 nk7uk‘j) we= Wo,

k=1 ek

K=1jeM' (49)

ZZH (e A 8(WE, Em, Tk ukd) W = w.

k=1jepk

For the definition of #°(t) see Remark 4.1. As in Section 3.3.1 we use
the concept of a generalized solution for the two ODEs above. Using
the same notation as before . and . will be used to denote the
solutions (in the sense of Caratheodory) of the two equations above.
As before, Assumption 3.3 and Theorem 2.2.1 in Arnold (1998) can
be used to establish the existence and uniqueness of the solutions of
(4.9).

Theorem 4.3. Let (1*,u¥) be defined as in (4.8), then

(a)

NmE[Ye — Yye[] = 0
(b)

HmE[ly, — Yuel] = 0
(c)

LT&U?(W n, &u, TC) - Ug(W, n, 6)' =0

Proof.
(a) Let,
10(5) = EHlpr (57 év 717 T, 0))(W) - l/’w* (Sv f? 1/’7 T, CU)(W)H

g(lpwf (Sv év ’77 T, CO)(W), 67 1/’7 Tckv uk‘j) - g(%ﬁ (57 57 ']7 T, CU)

x (W), &, T8, ukd).

Il (Sv kvj) =

Then,

ZZ/ Li(S. ko)1 e iy dS

=T jeak

i

Using Theorem 2.11 in Arnold (1998) the following estimate can be
used for the second term above,

L(et)= {

d;
+/0 %(A (ﬂ(’l y,kj)fﬂ(,m k) )df)dt

It follows from Theorem 2.2 in Zhang and Yin (1997) that as € - 0
we must have,

EH (ﬂ{mr):nm - ﬂ(ﬁ(t):k))vl‘{) H -0

The result above together with the boundedness assumptions on g
imply that I5(¢,t) — 0. Using the assumption that g is Lipschitz on w
then we have,

e

|

>N / (Ve (5,81, w)(w)ié,n,n",u’”)(1]{,,@:,,“} —ﬂm(s),k;)y’-‘)ds

=1 jepgk

} |

(4.10)

S g (5,607 ) (W), &1, T, kf)/ Y~ Lo ) ds

k=1 jerk

4.11)

- t
Io(t) < L(€,t) + Kg/ Ip(s)ds
0
Then Gronwall’s inequality implies,
N t S d
Io(t) < L(e,t) + K, / L(e,s)eda 80 ds.
0
from which (a) follows.
(b) is an easy consequence of Remark 4.1.

(c) Given (a) and (b) above, the result can be proved in the same
way as Theorem 9.11 in Yin and Zhang (1998).
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5. Numerical experiments

In this section we describe a numerical implementation of the
theory presented above. Our aim is to compare the aggregate with
the exact model. For this reason we will only consider a small
problem so that the exact problem is tractable. The problem we
consider requires the solution of a five dimensional non-linear
PDE, still a non-trivial problem by any means. We do however
show that using the aggregate model we can reduce the computa-
tion time without introducing any significant deterioration in the
accuracy of the solution. In fact, the solution times are comparable
to those of a three dimensional problem. Thus a significant gain in
computational time is achieved. We also compare the obtained
solution with the simple heuristic commonly used in energy plan-
ning models in order to deal with uncertainty.

5.1. Data

We consider a model where the decision maker has access to
three generating technologies: a coal fired plant, a gas fired plant,
and a wind farm. For simplicity, in this illustration, we assume that
expansion is only possible for the wind farm. Moreover, the only
sources of uncertainty are in hourly load demand and in wind
speeds. These assumptions lead to a five dimensional HJB in the
form of (3.15) for the exact model, and (4.5) for the approximate
model. A numerical scheme based on a finite difference approxi-
mation is described in Section 5.2 below. The five dimensions
are: cumulative level of energy nonserved (x), deterministic de-
mand level (z), cumulative investment in wind capacity (y), load
uncertainty (#°), and wind speed uncertainty (#'). This stylized
model is not sufficient to draw any conclusions regarding the po-
tential for each technology in the energy mix. However, the model
is sufficient for the goals of this paper; i.e., to propose suitable
structural representations of the fast scale dynamics that lead to
a tractable model. In this example we start with a five dimensional
problem, and show how to compute the optimal value function
using a formulation of reduced dimensionality.

1.0

0.8

0.6

0.4
|

20 18 16 14 12 10 9 8 7 6 5 4 3 2 1

(a) 20 states

For fuel prices (coal and natural gas) we used the data from the
EIA website (EIA, 2009). We obtained wind data from the NCDC
(NCDC, 2009) website. The wind data contain the wind speeds at
an hourly time interval over the years 2007-2008, in the Buzzard’s
bay area in south Massachusetts. We used typical efficiency rates
for the coal, and gas fired plants from the IEA study (IEA, 2005).
We used a typical wind generator based on the NEG Micon 1000/
54 (1000 kilowatt rated power, 54 meter diameter rotor), with a
cut wind speed of 4 meter/second, rated windspeed 14 meter/sec-
ond and furling wind speed 25 meter/second. The data for the wind
turbine are from Masters (2004). Finally, hourly load data for 2007
were used from the PJM midatlantic region (PJM.E). These are
available from the PJM website.

As was mentioned in Section 3.1, we used a two step process to
decompose the load demand data into a periodic deterministic
component, and a stochastic component. The continuous time load
demand data is modeled as:

H(t) = D(t) + n°(t), te0,T]. (5.1)

The deterministic component is given by,

N
D(t)=a+bt +Y cjeosmest +1) te[0,Tl. (5.2)

j=0

Thus the deterministic component accounts for a linear trend in de-
mand. The seasonal fluctuations are super imposed around this lin-
ear trend. In our numerical experiments we used N=5. The
deterministic harmonics of (5.2) are obtained from the peaks of
the Fourier transform of the hourly load data. In a more realistic
model the parameters of (5.2) could also be uncertain. The residual
component is given by,

r(t) = A(t) = D(0),

where A(t) represents the actual data (8760 points). We then fit a
maximum likelihood Markov Chain to the residual. The resulting
transition matrix of the Markov Chain is shown in Fig. 1(b). We fol-
lowed a similar procedure for the wind data. The resulting Markov

0.4 0.6 0.8 1.0

0.2

N
N
I A A A

0.0

47 44 41 38 35 32 29 26 23 20 17 14 11 8 6 4 2

(b) 50 states

Fig. 4. Markov transition matrices for wind uncertainty. (a) and (b) are obtained from a maximum likelihood fit to hourly time series.
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Chain for wind uncertainty is shown in Fig. 4. Again, we observe a
structure similar to that of the load demand data. At least at an intu-
itive level, one would expect that the approximations introduced in
this paper, based on weakly interacting Markov processes, should
perform well for this class of problems.

The next step is to construct the set of clustered states given
the transition matrices estimated above. A procedure to do this
is outlined in Phillips and Kokotovic (1981). However, for the
application considered here we need to identify the set of aggre-
gate states, and ensure the generator associated with each clus-
ter generates a Markov process with a unique stationary
distribution. Moreover, the off-diagonal matrix W must also be
a valid generator. The off-diagonal matrix need not admit a un-
ique stationary distribution. Our clustering procedure is based on
a variation of spectral clustering (Nadler, Lafon, Coifman, & Kev-
rekidis, 2005). We use spectral clustering because it tends to
cluster points that are on the same manifold (Nadler et al.,
2005). This is a desirable property for the class of problems con-
sidered here. We want to aggregate points that are likely to have
the same value function. This is not a standard application of
spectral clustering since we do not define a kernel function.
The reason we do not need to define a kernel function is that
the original data comes from a Markov Chain. In spectral cluster-
ing, the first step is to define a kernel and then define a stochas-
tic matrix given the kernel and the data.

Using the transition matrix estimated above, we calculate its
eigenvalues and eigenvectors. We used the standard transforma-
tion (P + PT)/2 to make it symmetric. We found no changes in the
cluster composition by making this transformation. The sign of
the second largest eigenvalue can be used to decompose the set
of states into two clusters. Iterating this procedure gives us the
set of clusters.

Let P be the maximum likelihood transition matrix generated in
the way described above. We will denote the orthogonal set of
eigenvectors and eigenvalues of P by {Yk, b1, 24} so that,

Py = ;wkamum.

Then the maximum likelihood generator can be obtained from,

~ "1 . .
Qij = Zﬁ‘ﬁk(l)(/’k(l) log /.
k=1

where 6t is a small step size. We used ét = 1/8760 in our numerical
simulations. The method described above transforms the ML transi-
tion matrix into the ML generator. In some practical cases it is
known to pose numerical and theoretical issues (Crommelin & Van-
den-Eijnden, 2009). We found no numerical issues associated with
the procedure above. In the future this part of the proposed meth-
odology can be made more robust by using the quadratic model
proposed in Crommelin and Vanden-Eijnden (2009). For the data
set we used in our numerical experiments, the results would be
identical.

The final step in the estimation procedure is to enforce the
block diagonal assumption. This step is necessary because we
found that there are small numerical differences between the esti-
mated generators and the assumed block diagonal structures. The
effect of enforcing this structure can be easily quantified for the
example application considered in this paper by solving the exact
model with the original maximum likelihood generators. We found
that no significant discrepancies between the solutions obtained
with the two generators. In order to ensure that our assumptions
hold, we solve the following optimization problem.

—~ 2 ~ 2
min 3> (Wil - Q) - Y (whr- Q)

ko ij k#m ij

aQk=0, k=1,....1

of1=0, k=1,...,1
W1=0,
Hl1=1, 4 =0,

(5.3)

where Qf.‘_]:m represents the rate of transition from the ith state in the
kth cluster to the jth state in the mth cluster of the estimated max-
imum likelihood generator. Similar notation is used for W and Q.
The J, represents the stationary distribution of the kth cluster. In
(5.3), and throughout our numerical simulations with the “exact”
model we used €=0.1. We have empirically observed that this
parameter value is a good fit to the data. The objective ensures that
the estimated generator is as close as possible to the original gener-
ator. The constraints enforce the specific structure assumed in the
paper. We empirically found that the constraints in (5.3) make
the problem difficult to solve numerically. However, using our
assumption that the block diagonal matrices must be irreducible
and the change of variables given by:

k k
R =70},

where Q]’f is the jth column of Q¥ the problem is transformed into
the following well behaved optimization problem,

mp 3w iR Q) - 23w - 2

kij k#=m ij
R‘1=0, k=1,...,1

1Rk =0, k=1,...,1

W1=0,

H1=1, X =0

As mentioned earlier, we found that the procedure outlined above
gives good results. The matrices obtained are sufficiently close to
the original maximum likelihood generator. However, in the future
we plan to compare this method with other alternatives. For exam-
ple, one could perform the joint estimation of the maximum likeli-
hood generator and impose additional constraints on the structure
of the matrix.

5.2. Finite difference approximation

In order to solve both the exact and the aggregate model, an up-
wind finite difference was used. The theoretical properties of sim-
ilar schemes have been considered in Kushner and Dupuis (2001).
Similar arguments can be used for the analysis of the algorithm de-
scribed below. Here we just sketch out the necessary ingredients
for such an analysis. The algorithm is described using the aggregate
model in (4.5).

Let [At,Aw] = [At,Ax, Az, {Ay;}],] denote the finite difference
discretization intervals along each direction. The partial derivative
with respect to the state w will be approximated as follows:

M o(Aws) - f g(w) = 0
O Ve-aeW) = 9 4y
a4 0(Aw;)

Aw;

if g;(w) < 0.

where g is defined by (4.4). By w;", w; we mean that the ith dimen-
sion in w is shifted by a positive, respectively negative amount Aw;.
For simplicity an explicit time stepping scheme was used. Of course,
many other numerical algorithms can be used to solve the same
problem. However, for the purposes of this paper the scheme below
is sufficient.
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Using the approximations outlined above we obtain the
following,

prwm.o)= min > (zcmw,nf.,uf-m

(u.n.y)e(_l( v

(w;) Vgac(W)
+Z< cuac (W ﬂ{g >0+ Dhiae T g0y ——525— ) |g(w)|

Aw; Aw;

v (W)*V(W) _ >
+‘*“T‘ +Zr&vfw(w,m.g)

¢

+ im U a (WL, E) 4T U+ Do m U (W,m, €).
i

Py=(p—re—7 + 1 B
144 m.m At .

Then using the last two expressions we obtain the following,

B Dead] = mm IA(t {Z m (ZG (w, 7t ut &) +Z (U”A‘

jemm

{g(w)=0}

@A (wp) 7))
+ Hgtw Vigwy<0) = ”AA,;, lg(w +ZTA 2 (W,m, )

Ry vaA[(wﬁi,o}.
i
Thus the finite difference iteration can be written as,

DtA(Wv m, 5) = BA[@HA[(Wv m, é)]7 (54)

with the boundary condition specified in Section 4.1. The infinite
horizon finite difference approximation of (4.5) can be derived in
an identical manner. It can easily be shown that it has a unique
fixed point.

5.3. Comparison of the different models

Below we report on some computational experience with the
numerical procedure outlined above. The algorithm was imple-
mented in C++, and run on a modern desktop computer. Motivated
by the contraction property above, our first numerical test is with
respect to the speed of convergence of this map. This test has the
advantage of eliminating any purely temporal effects. Both the ex-
act and the aggregate problem were started from the same point of
all zeros. Wind and load uncertainty were clustered into four
aggregate states using the procedure outlined above. The computa-
tion times are shown in Table 1, along with the total number of
iterations. In Table 2 the error is measured as follows:

(W) — v5(W)
ve(w)

The value function for the heuristic method was obtained by opti-
mizing for the set of points in the cluster and summing over the re-
sults. These preliminary results show that the error from the
aggregate model is much smaller than the simple heuristic. The
computational times for the aggregate and heuristic models are
identical. What is strikingly obvious from Table 1 is how much fas-
ter the aggregate model converges to the fixed point. The reason for
this is twofold. Firstly, we are only looping over aggregate states
and not the complete state space so each iteration is faster. Sec-
ondly, as it can be seen when the iterative scheme is applied to
the full model we observe what is sometimes referred to as the
smoothing property. This property means that at initial iterations
the high frequency component of the error is removed, while the
low frequency remains the same. As a result, at the first few itera-
tions we see a big drop in the error, but progress is much slower in
the following iterations. The aggregate model does not have this

oo

Table 1
Solution times.

Model Time (seconds) Iterations
Full 3717.26 77
Aggregate 5.63 2

Table 2

Error.
Model Error (%)
Aggregate 1.74
Heuristic 14.33

property, partly because it iterates over a coarser grid. Clearly there
exist links between multigrid methods Briggs and McCormick
(2000), and the methods introduced in this paper. In future work
we plan to investigate the implications of this connection.

As a second test we solved the finite horizon problem with four
hour steps for one year. Using the approximate problem the solu-
tion is obtained in about 90 minutes. We estimated that it would
take approximately 2200 minutes to solve the exact model.! Thus
for the simple model we tested in this paper, the proposed approach
is an order of magnitude faster than solving the exact model. Unfor-
tunately, the error is only guaranteed to be small if € is small enough.
It is currently not known how to derive useful error bounds given the
input data and a specific . However, for the specific class of prob-
lems we discussed in this paper the approximations seem to be good
enough, and they represent an improvement over the currently used
heuristics.

5.4. Case study: large scale integration of wind power into an existing
power system

The model we propose in this paper is particularly suited to ad-
dress questions regarding the integration of technologies with fast
dynamics (such as wind power) into an existing power system. An
additional advantage of our model is that we can easily investigate
the effect of lead times in capacity expansion decisions. This is
done by imposing the constraint in (3.3) so that capacity cannot
appear overnight. The aim of our case study is to investigate the
impact of large scale integration of wind power to capacity expan-
sion decisions of conventional thermal generators under the
assumptions that investment decisions are irreversible and with
realistic lead times.

In order to maximize the impact of wind power one possibility
is to dispatch it first and then meet the residual demand with con-
ventional power generators. This is not the only possibility, but it is
a policy that is widely used or seriously considered in many coun-
tries. Our aim in this section is to analyze the implications of this
policy to the capacity expansion decisions of other technologies
that will be used to meet residual demand. Our analysis is based
on two observations. Firstly residual demand will tend to have
higher variance than the original demand. For example, if demand
and wind power generation are independent then the variance of
the residual demand will equal the variance of the original demand
plus the variance of wind power availability. This observation is
backed up by the data we used to calibrate our model. Our second
observation is that the impact of this policy will be more signifi-
cant on thermal generators that have relatively low start-up costs
and high ramping rates. Based on these two observations we

! Due to the amount of CPU time required to solve the exact model we just solved
the model for a single day and extrapolated the solution times for the whole year.
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Fig. 5. The effect of increasing wind penetration (in our model this means increasing ).

consider a model where the objective of the decision maker is to
satisfy residual demand by expanding capacity in a gas generator.

There are three sources of uncertainty: fuel price, capital cost
and residual demand uncertainty. All sources of uncertainty were
modeled using the continuous time Markov chain approach and
dataset described in the previous sections. Residual demand (D,)
is derived by subtracting the two calibrated Markov processes:

Di(t) = H(t) - IW(t),

where H is the demand, / is a fixed scalar denoting the installed
capacity in wind, and W denotes the availability of wind power. Be-
low we report results with normalized values of 4. Each finite state
Markov Chain has 100 states. When / = 0 all the demand has to be
satisfied using gas, and when 4=1 the amount of installed wind
power capacity is equal to maximum demand (but not necessarily
available). The state variables of our model are given by: capacity
currently available, amount invested in new capacity, and the state
of the gas generator. We used a time step of four hours over twenty
years, and a discount rate of 5%. The value function associated with
this model has six dimensions, and cannot be solved using an exact
method. However the aggregate model described in Section 4 has
three state variables and can therefore still be solved using the ex-
act algorithm described in Section 5.2.

In our first experiment we did not impose the constraint in (3.3).
This means that capacity expansions have no lead time so that addi-
tional capacity can be constructed and be available in the next time
period. Note that the investment decisions are still non-anticipa-
tive, irreversible and lumpy (i.e. a certain amount of investment
needs to be reached before additional capacity becomes available).
As can be seen in Fig. 5(a) (the results labeled 'No lead time’) as
wind penetration increases the size of the gas generator installed
in Year 1 decreases. However after a certain critical threshold
(around 22% of peak demand with our parameters) construction
in year 1 does not take place. After Year 1 it is difficult to see what
capacity decisions are optimal. In order to get some idea of the opti-
mal policy after year 1 we use the following procedure. We first
construct the value function using the backward induction defined
in (5.2). Given the value function approximation, we then estimate
the optimal policy at every state. We then use a non-parametric
regression method described in Parpas and Webster (2013) to esti-
mate the control law. We then perform forward Monte Carlo simu-
lations using the optimal control law. During the simulations we
keep track of the first time construction starts. The results are

shown in Fig. 5(b). Note that the results in Fig. 5(b) are noisy due
to the forward simulation sampling and the approximate nature
of the methodology used to construct the optimal control law. De-
spite these approximations errors the trend is quite clear. As the
percentage of demand that can be met with wind is increased the
investment in gas is postponed. With respect to the size of each
plant we obtained a result similar to the Year 1 results shown in
Fig. 5(a). In summary, the effect of increasing wind penetration
seems to be delayed investment in gas technology and a smaller
gas plant is built. For the latter result it is clear that as the propor-
tion of demand that is satisfied from wind is increased then invest-
ment in gas falls. By increasing 4, the uncertainty of the residual
demand increases while the mean of the residual demand de-
creases. In our model, we impose a high penalty for unsatisfied de-
mand (50 $/kilowatt hour). But there is also a penalty for building
unused capacity since expansion costs are irreversible. These two
costs are competing. However, when there are no lead times, there
is an asymmetry since if demand is greater than expected then,
additional capacity can be quickly installed. This means that addi-
tional capacity can be delayed. This asymmetry is removed once
realistic lead times are included. In Fig. 5(a) the plots labeled 'With
lead time’ were constructed by imposing the constraint in (3.3).
With our choice of parameters the results with lead times required
a construction time of at least 5 years (by limiting the amount that
could be invested in each time period). We find that when lead
times are taken into consideration then construction starts earlier
but the size of the plant is smaller than in the case when no lead
times are modeled.

6. Conclusions

We introduced a stochastic multiscale model that can be used
for generation capacity expansion planning in the power systems
sector. This class of models has stochastic dynamics that evolve
over multiple temporal and spatial scales. Due to the computa-
tional challenges involved with simulating and optimizing inte-
grated multiscale models, energy system models have been
hitherto treated with each scale decoupled and interactions be-
tween scales ignored. However, with the introduction of new gen-
eration technologies (e.g., intermittent wind generation, dynamic
demand response management, plug-in hybrid vehicles etc.), com-
bined with the need for optimal utilization of existing and new
generation capacity, it is becoming more and more important to
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consider integrated models. We have empirically shown that some
key uncertainties in this area exhibit structures that are amenable
to multiscale mathematical techniques. We introduced a multi-
scale model and showed how the theory of singularly perturbed
Markov processes can be used in order to reduce the dimensional-
ity of the problem and therefore make it computationally tractable.
We also discussed the application of the theory using real data and
showed that the multiscale model can outperform heuristics that
are currently in use while requiring a comparable amount of com-
putational effort. Given the current need for advanced modeling
techniques, together with a multitude of challenging theoretical
and applied issues in this area, energy systems modeling can be-
come a fruitful application area for stochastic multiscale methods.
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