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Abstract
In this work we focus on the convergence properties of interacting stochastic mirror descent (ISMD) in
a distributed setting. Our analysis exploits the continuous-time dynamics and explicitly accounts for the
noise through additive Brownian motion. We present an overview of necessary conditions for achieving
convergence for the ISMD scheme, and show that approximate convergence can be achieved by increas-
ing the interaction strength or decreasing the learning rate. We then present a gradient-tracking ISMD
scheme and show that it can converge to the optimal solution without the need of a small learning rate
or high interaction strength. We validate our results numerically in a constrained and an unconstrained
system and show the potential of the methodology in a federated learning-like scenario using a neural
network.

1. Introduction

Using the recently increased computation and storage capabilities of personal devices, machine learning
models can be run on-device. This removes the need of transferring data to a central location, reduc-
ing infrastructure costs and privacy risks but requires distributed optimization. The goal of distributed
optimization is to optimize a sum of different objective functions. Each node the users device will
have access to its local objective function and information. A similar setting arises when training a
model in a distributed manner and spreading the available data over multiple processors which could
be computationally beneficial when having a very large dataset. In such problems the communication
or gradient computation may be corrupted, resulting in additional noise being present in the algorithm.
These challenges motivate the development of distributed optimization algorithms that are robust to noise
and converge quickly.

Distributed optimization is a well-studied problem. Using first-order methods to optimize the global
objective by exploiting local communications has been addressed in many works: [16], [5], [3], [10],
[17], [15] in discrete time and [4], [6], [19], [8], [20] in continuous time. Typically convergence to a
stationary point is shown under the assumption of a vanishing learning rate, which comes at the cost of
slowing down convergence. A well-known problem when using a fixed learning rate is that of inexact
convergence (see e.g. [18]), i.e. the inability to converge exactly to the stationary point. This can be
addressed by including ‘higher-order’ terms in the dynamics [13], [18], [19].

The aim of this work is to study distributed optimization when the objective function is given by

min
x∈X

N∑
i=1

fi(x), (1)

where i = 1, ..., N are indexing the nodes in the system and X is a convex constraint set. Let x∗

be a minimizer of the objective. Each node has access to its local objective function fi defined over
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xi ∈ X ⊂ Rd. The communication structure is defined through the underlying communication graph
G := (V,E), where V and E are the vertices and edges, respectively and each node i can communicate
only with his direct neighbors j ∈ {j ∈ V |(i, j) ∈ E}.

In this note we discuss the convergence using the general framework of Mirror Descent [12] in a
distributed setting using algorithms in continuous time with additive Brownian noise. Our results for
ISMD extend earlier work in [14][2] to the distributed setting. We furthermore sketch extensions for
using gradient-tracking ISMD dynamics and show how this can promote consensus in both the loss
and the gradients leading to faster convergence to the stationary point. Our analysis allows to obtain
quantitative insights into the role of different parameters. We furthermore present numerical experiments
that back the analysis as well as experimental evidence that the presented algorithms work well in the
non-convex case as encountered in federated learning.

2. The framework

Optimizing the objective in (1) amounts to finding a solution x̂ such that the following two conditions
are satisfied: 1) consensus: x̂i = x̂j ; 2) optimality:

∑N
i=1∇fi(x̂i) = 0. The matrix A = {Aij}Ni,j=1

represents the doubly-stochastic communication matrix, with Aij > 0 if (i, j) ∈ E. We define the graph
Laplacian as L := Diag(A1N ) − A, and let L := L ⊗ Id, where ⊗ is the Kronecker product. We will
use a mirror map Φ : X → Rd to convert the constrained optimization problem to an unconstrained one
and adopt the following standard assumptions (e.g. [1, Assumption 9.3]) that Φ : X → Rd is α-strongly
convex and continuously differentiable. We furthermore assume that∇Φ∗(x) = ∇Φ−1(x).

2.1. Interacting stochastic mirror descent

Define ∇Vi(zit) := ∇fi ◦ ∇Φ∗(zit). Consider the following dynamics for interacting stochastic mirror
descent (ISMD),

dzt = (−η∇V(zt)− εLzt) dt+ σdBt, (2)

where Bt := ((B1
t )T , ..., (BN

t )T )T and ∇V(zt) = (∇V1(z1
t )T , ...,∇VN (zNt )T )T . Then ∇Φ∗ maps z

to the primal space so that xt = ∇Φ∗(zt). Note that L represents the interaction structure between the
nodes. The parameters η, ε and σ affect the relative influence of the gradient, interaction and noise,
respectively.

2.2. Exact interacting stochastic mirror descent

We define now the exact ISMD (EISMD) algorithm which exploits momentum in order to achieve exact
consensus and optimality without requiring a decreasing learning rate. Our algorithm bears similarities
to those in [13] and [7]; the novelty here being that we work in continuous time with additional Brownian
noise and allow for constraints. The EISMD algorithm is given by,

dvt = −Lvtdt+∇2f(xt)dxt + σdBt, (3)

dzt = −Lztdt− vtdt,

dxt = ∇2Φ−1(vt)dzt,

with initial conditions x0 = x, v0 = ∇f(x0) and z0 = ∇Φ(x0). Note that ∇2f(xt)dxt = d (∇f(xt)),
which when discretized yields the update ∇f(xt+1) − ∇f(xt). Since (3) involves a Hessian-vector
product it can be implemented at the same computational cost as a first-order method.
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3. A brief convergence analysis

Let z̄Nt := 1
N

∑N
i=1 z

i
t, y

N
t = ∇Φ∗(zNt ), z∗ = ∇Φ(x∗). Let || · || be an arbitrary norm. Suppose,

||L||2 ≤ λ. Assume furthermore that the functions f and V are β-smooth, L-Lipschitz and strongly
convex.

3.1. Conditions for exact convergence of ISMD

Consider the dynamics in (2) with σ = 0. Assume that
⋂N

i=1{∇fi(x) = 0} 6= ∅; specifically, let x∗ be
such that ∇fi(x∗) = 0 for all i = 1, ..., N . Then limt→∞ x

i
t = x∗. This result states that the algorithm

in (2) can converge exactly if σ = 0 and an x∗ exists which simultaneously minimizes all fi’s. If this
is not the case then only approximate convergence and consensus can be achieved with the first-order
dynamics. The proof will appear elsewhere and relies on the analysis of the candidate Lyapunov function
Vt = maxi=1,...,N V i

t with V i
t = DΦ(x∗, xit) (see eg. Theorem 1 in [18] for the Euclidean case).

3.2. Approximate convergence of ISMD

We now present a result for achieving approximate convergence of (2) by controlling the hyperparameters
of the algorithm. Under the assumptions of smoothness and convexity, for f(xt) =

∑N
i=1 fi(x

i
t) it holds,

1

T

∫ T

0
E
[
(f(xit)− f(x∗))

]
dt ≤ C1

2Tη
+
C2

η

σ2

2N
+
C3η

λε
+
C4σ√
λε
,

where Ci can depend on d, the Lipschitz constant of f and the choice of mirror map Φ. The proof of the
statement consists of the following steps (see also e.g. Prop. 14 and 17 in [2]): 1) bound f(xit)− f(x∗)
by a consensus term ||zit − z̄Nt || and an optimality term 1

N

∑N
i=1(yNt − x∗)T∇fi(xit); 2) the consensus

term can be bounded by using a Lyapunov function of the form Vt = (zit− z̄Nt )T (zit− z̄Nt ) and using the
boundedness of the gradients of f ; 3) the optimality term can be bounded by using a Lyapunov function
of the form V (z̄Nt ) = DΦ(z̄Nt , z

∗) in combination with the dynamics of z̄Nt .
From the above result we observe that: 1) imposing a small learning rate slows down convergence

significantly, but allows to converge closer to the optimum; 2) imposing a high interaction strength
allows to converge closer to the optimum, however in the discretized version of the algorithm a too high
interaction strength can result in divergence.

3.3. An analysis of convergence of EISMD

The statement in Section 3.2 used the boundedness of the gradients. The motivation for the exact ISMD
(3) is to additionally use the smoothness in combination with gradient-tracking to obtain fast convergence
[13]. The proof is based on a coupling between consensus and optimality; this differs from the bound
in the previous section where consensus and optimality were bounded separately. One possible way to
analyze the dynamics in (3) is to rewrite the algorithm as an Augmented Lagrangian method. We note that
this connection is possible when the Laplacian matrix is symmetric and static. In the standard gradient
descent setting (i.e. when Φ(x) = 1/2‖x‖2) this connection is well known (see e.g. [11], [4]). Here we
extend it to the mirror descent setting; consider the following Dual Augmented Lagrangian, L(z,λ) =

f(∇Φ∗(z)) + (Lz,λ)H
∗

z + ‖L
1
2 z‖2z , where (u, v)H

∗
Z = 〈∇2Φ∗(z)u, v〉 and ‖u‖2z = 〈∇2Φ∗(z)u, u〉.

Augmented Lagrangian methods proceed by a descent step in z and an ascent step in λ. It can be shown
that this primal-dual algorithm is equivalent to the dynamics in (3). Convergence of the algorithm can
then be shown using a Lyapunov function of the form Vt = ||zt − z∗||22 + ||λ− λ∗||22. The full analysis
will appear elsewhere.
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4. Numerical results

We will highlight the numerical differences between 1) ISMD with increased interaction strength, 2)
ISMD with small learning rate, and 3) EISMD. In all settings we consider 10 nodes and the connectivity
graph is set to a cyclic graph with each node connected to the previous and next node. The mirror map
is set to be the negative entropy function Φ(x) =

∑d
j=1[x]j log([x]j).We use the Euler discretization of

the algorithms in (2) and (3).

4.1. Unconstrained linear system

Consider a linear system without constraints similar to [19]. Let N = 10 and d = 100. We first generate
a d-dimensional vector u ∼ N (10 × 1d, Id), and perturb it by wi ∼ N (0, Id) so that ui = u + wi for
i = 1, ..., N . Ai ∈ R20×100 is a random matrix with condition number 15, and bi ∈ R20 is defined as
bi = Aiui. Then the local functions are fi(x) = 1

2 ||Aix−bi||22 for i = 1, ..., N and f(x) = 1
2 ||Ax−b||

2
2.

Then x∗ = (ATA)−1AT b. We run the optimization algorithms in (2) and (3) with each xi0 a feasible
randomly generated vector. We set ∆t = 0.01 and let the number of iterations be 50,000. The full code is
given in a Google Colab notebook.1. We compare the performance of the algorithm for the deterministic
setting with σ = 0 and the stochastic one with σ = 0.1. In both the deterministic and stochastic case
ISMD with high interaction strength converges fast initially but is not able to converge to the optimum,
while EISMD is able to converge to optimality. A low learning rate and high interaction strength for
ISMD results in similar closeness to optimality as EISMD in the deterministic case, but in the presence
of noise EISMD outperforms the rest.

Figure 1: An unconstrained linear system. Comparison of ISMD for different learning rates (lr) and
interactions strengths (eps) and EISMD. (L) train loss for σ = 0, (C) train loss for σ = 0.1
and (R) the consensus error for σ = 0.1.

4.2. Simplex constrained linear system

Here we consider a linear setup as in Section 4.1 but set X = ∆d, the d-dimensional simplex. The
mapping onto the simplex is done using the normalization of the entropy mirror map. We set ∆t = 0.01
and let the number of iterations be 100,000. The left plot in Figure 2 shows the deterministic algorithm
with σ = 0. The EISMD algorithm converges the fastest and achieves the lowest loss value. The center
plot in Figure 2 shows the stochastic algorithm with σ = 0.01. The EISMD algorithm again converges
fast to a low loss value; it is noteworthy that the performance of the ISMD algorithm with low learning
rate and high interaction strength is similar to that of EISMD. The right plot shows the consensus error
which is lowest for a high interaction and low learning rate and EISMD.

1. https://colab.research.google.com/drive/1rvbM7alM5OAKJCgYvmCFaF0yqpGqLeF8?usp=
sharing
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Figure 2: A constrained linear system. Comparison of ISMD for different learning rates (lr) and inter-
actions strengths (eps) and EISMD. (L) train loss for σ = 0, (C) train loss for σ = 0.1, (R) the
consensus error for σ = 0.1.

4.3. Federated learning

In standard federated learning [9] applications the underlying model is a deep neural network, which
results in a nonconvex objective. In this example we study the performance of ISMD and EISMD in a
simple neural network to showcase the potential of the methods in non-trivial settings; this analysis forms
the basis for the methodology to be used in FL settings. The neural network architecture consists of one
hidden layer with 30 nodes per layer, with a sigmoid activation, a softmax output and the cross-entropy
loss. The train dataset is a subset (1000 samples) of the FashionMNIST data. Each node has access to
100 of these samples; the cross-entropy loss over this subset is then the local objective function. The full
code is given in a Google Colab notebook.2 We set ∆t = 0.05 and let the number of iterations be 5,000.

We compare the performance of the algorithms in the stochastic setting with σ = 0.01 in Figure 3,
with the left and center plots showing the average loss over all nodes with each individual loss computed
using the parameters xit at node i over the full train data, and the right plot showing the consensus error.
The EISMD algorithm converges at a similar speed as the algorithms with high learning rate (ISMD
with η = 0.1), however even in the noisy regime EISMD is able to converge to a lower cross-entropy
loss value. Similarly the consensus error is, as expected, lowest for high interaction strength or EISMD.
These results are especially remarkable since they show the potential of the methodologies – both ISMD
with high interaction strength and EISMD – in distributed optimization over non-convex loss surfaces.

Figure 3: A one-layer neural network with 30 hidden nodes. Comparison of stochastic ISMD for differ-
ent learning rates (lr) and interactions strengths (eps) and EISMD, both with σ = 0.01. (L) the
average loss on a linear scale, (C) a logarithmic scale and (R) the consensus error.

5. Conclusion

In this work we presented an analysis of distributed stochastic mirror descent using a first-order and
second-order optimization scheme and analyzed the convergence. Using numerical results we showed
the promising performance of the algorithms in both convex and non-convex objectives.

2. https://colab.research.google.com/drive/1RYLXbGB2zjXAIwy0ax4n17X2MR75Gx-Y?usp=
sharing
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[15] Srinivasan Sundhar Ram, Angelia Nedić, and Venugopal V Veeravalli. Distributed stochastic sub-
gradient projection algorithms for convex optimization. Journal of optimization theory and appli-
cations, 147(3):516–545, 2010.

6



FAST DISTRIBUTED STOCHASTIC MIRROR DESCENT
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