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a b s t r a c t 

This paper analyzes the relation between different orders of the Lasserre hierarchy for polynomial opti- 

mization (POP). Although for some cases solving the semidefinite programming relaxation corresponding 

to the first order of the hierarchy is enough to solve the underlying POP, other problems require sequen- 

tially solving the second or higher orders until a solution is found. For these cases, and assuming that 

the lower order semidefinite programming relaxation has been solved, we develop prolongation operators 

that exploit the solutions already calculated to find initial approximations for the solution of the higher 

order relaxation. We can prove feasibility in the higher order of the hierarchy of the points obtained using 

the operators, as well as convergence to the optimal as the relaxation order increases. Furthermore, the 

operators are simple and inexpensive for problems where the projection over the feasible set is “easy” to 

calculate (for example integer {0, 1} and {−1 , 1 } POPs). Our numerical experiments show that it is possi- 

ble to extract useful information for real applications using the prolongation operators. In particular, we 

illustrate how the operators can be used to increase the efficiency of an infeasible interior point method 

by using them as an initial point. We use this technique to solve quadratic integer {0, 1} problems, as 

well as MAX-CUT and integer partition problems. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Tight convex relaxations are the most valuable tool in the opti-

mizer’s toolbox for the approximate solution of NP-hard problems

( Boukouvala, Misener, & Floudas, 2016 ). The Lasserre and other re-

lated hierarchies are one such incredibly powerful relaxation for

polynomial optimization problems (POPs). Unfortunately, these hi-

erarchies require solving Semidefinite Programming (SDP) prob-

lems that grow exponentially with the relaxation order, limiting

the use of interior point methods (IPM). To address this issue,

a great deal of research has gone into exploiting special mathe-

matical structure ( de Klerk, 2010 ) and developing different hier-

archies ( Ahmadi & Majumdar, 2017; Lasserre, Toh, & Yang, 2017;

Weisser, Lasserre, & Toh, 2017 ). The sparse relaxations proposed in

Waki, Kim, Kojima, and Muramatsu (2006) and further analyzed

in Lasserre (2006) , enabled an order of magnitude improvement

in terms of the dimensionality of problems that can be solved

with sum of squares (SOS) relaxations. Specialized algorithms such

as the low rank approximations developed in Burer and Monteiro

(2003) and the semi-smooth CG and alternating direction aug-

mented Lagrangian methods in Yang, Sun, and Toh (2015) and
∗ Corresponding author. 

E-mail addresses: jsc12@ic.ac.uk (J.S. Campos), r.misener@ic.ac.uk (R. Misener), 

panos.parpas@ic.ac.uk (P. Parpas). 

e  

t  

2

 

u  

https://doi.org/10.1016/j.ejor.2019.02.016 

0377-2217/© 2019 Elsevier B.V. All rights reserved. 
en, Goldfarb, and Yin (2010) , respectively, have also helped ad-

ress the computational issues associated with solving large-scale

roblems. 

Despite this progress, the issue of SDP relaxations whose size

ncreases exponentially with the order of the relaxation persists.

e take a step towards addressing this issue by developing lin-

ar operators called prolongation operators for the Lasserre hierar-

hy. These operators transfer information from a hierarchy of order

 to a hierarchy of order w + 1 . The prolongation operators allow

s to approximate both the primal and dual solutions of the re-

axation of order w + 1 , by only using information from the order

 relaxation. A crucial property of the proposed operators is that,

oncerning computational effort, they are virtually free and are

asy to implement. Campos and Parpas (2018) develop prolonga-

ion operators that are used to transfer information between differ-

nt optimization problems through a single Lasserre hierarchy. Be-

ides, their computation requires no parameters or any additional

ssumptions. The links between the solutions of relaxations at dif-

erent hierarchies are studied here for the first time. We develop

he proposed operators using the original Lasserre hierarchy, but

he results can easily be extended to the sparse hierarchy in Waki

t al. (2006) . We anticipate the proposed approach to be applicable

o the study of other SOS relaxations such as BSOS ( Lasserre et al.,

017 ), but this work focuses on the most widely used hierarchy. 

Although our numerical results show that the operators can be

sed to construct useful initial points for warm start strategies, it

https://doi.org/10.1016/j.ejor.2019.02.016
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s important to remark that our results are still bounded by the

imits of the SDP relaxations for POP: first, the number of vari-

bles in the polynomial space that we are able to handle is lim-

ted, and second, our method relies on an SDP algorithm that can

ake advantage of good initial points. In this paper we use interior

oint methods as our base algorithm. Unfortunately, exploiting ini-

ial points is a challenging and open problem for interior point al-

orithms, and this issue sets an upper bound on the performance

f the prolongation operators developed in this paper. 

We consider the following constrained polynomial optimization

roblem (POP): 

p � := min 

x ∈ R n 
f (x ) 

s.t. h i (x ) ≥ 0 , i = 1 , 2 , . . . , m, 
(1) 

here f and h i ( i = 1 , 2 , . . . , m ), are n-dimensional polynomial

unctions with degrees d and d 1 , d 2 , . . . , d m 

, respectively. In addi-

ion to the usual (and generally non-restrictive) assumptions for

he convergence of the Lasserre hierarchy to polynomial optimiza-

ion problems, we make the following assumption. 

ssumption 1.1. The feasible set K = { x ∈ R 

n : h i (x ) ≥ 0 , i =
 , 2 , . . . , m } is compact and such that the projection of any x ∈ R 

n 

nto the set K is tractable. 

Assumption 1.1 is not strictly necessary from a theoretical point

f view. But computing the prolongation operators requires a pro-

ection into the feasible set, and therefore Assumption 1 is needed

rom a practical point of view. We note that many open problems

atisfy Assumption 1, including MAX-CUT ( Caprara, 2008 ), parti-

ioning ( van Dam & Sotirov, 2015 ), and generic polynomial 0/1 pro-

rams ( Lasserre, 2016 ). 

The principal theoretical contribution of this work is to provide

nsight into the relationship between different relaxation orders.

n particular, Section 3 establishes connections between the input

ata of relaxations of different orders. We then develop our opera-

ors for both the primal and dual variables and establish the feasi-

ility characteristics of the prolongated variables. From a practical

oint of view, the proposed operators can be used to construct an

nitial point for an optimization algorithm. In Section 5 , we show

hat the calculation of initial points using our operators can im-

rove the solution times of interior point methods when they are

sed in combination with a warm start strategy. 

. Notation 

Given a real-valued polynomial function f : R 

n → R of degree d ,

et the monomial x 
α1 
1 

x 
α2 
2 

. . . x αn 
n be denoted by x α and its coefficient

y b α, where α ∈ N 

n . If �n 
d 

= { α ∈ N 

n : 
∑ 

i αi ≤ d} , then any poly-

omial of degree at most d can be written as f (x ) = 

∑ 

α∈ �n 
d 

b αx α.

he support of f is defined by supp ( f ) = { α ∈ �n 
d 

: b α � = 0 } . Let

 (x , �n 
d 
) , be a column vector with the monomials x α for α ∈ �n 

d 
.

he size of the vector u 
(
x , �n 

d 

)
is equal to

(
n + d 

d 

)
= 

(n + d)! 
n ! d! 

, and will

e denoted by g ( n , d ). We will assume without loss of generality

hat this vector has the following structure 

 (x , �n 
d ) = 

[
1 , x 1 , x 2 , . . . , x n , x 

2 
1 , x 1 x 2 , . . . , 

x 2 2 , x 2 x 3 , . . . , x 
2 
n , . . . , x 

d−1 
n , x d 1 , x 

d−1 
1 x 2 , . . . , x 

d 
n 

]� . 

emark 2.1. Note that u 
(
x , �n 

d 

)
can be written u 

(
x , �n 

d 

)� =
 u 
(
x , �n 

d−1 

)� 
, x d 

1 
, x d−1 

1 
x 2 , . . . , x 

d 
n ] . 

If Q ∈ R 

r 1 ×r 2 is a matrix, then the element in position ( i ,

 ) will be denoted by [ Q ] i , j (if r 1 = 1 or r 2 = 1 , the i th ele-

ent of the vector will be denoted by [ Q ] i ). Likewise, if Q 1 , Q 2 ∈
 

r 1 ×r 2 are two matrices we will use the usual inner prod- 

ct 〈 Q 1 , Q 2 〉 = 

∑ 

1 ≤i ≤r 

∑ 

1 ≤ j≤r [ Q 1 ] i, j [ Q 2 ] i, j and its induced norm

1 2 
 Q ‖ 2 = 〈 Q , Q 〉 . Diag (x 1 , x 2 , . . . , x n ) is the function returning a di-

gonal matrix of dimensions n × n with x i in the entry ( i , i )

or i = 1 , 2 , . . . , n . For any symmetric matrix Q ∈ R 

r×r , Q �0 ( 
0)

eans that Q is positive semidefinite (resp., definite). For any

ymmetric matrix Q ∈ R 

r×r define λi ( Q ) as the i th largest eigen-

alue of Q , i.e., λ1 (Q ) ≤ λ2 (Q ) ≤ · · · ≤ λr (Q ) . For any symmet-

ic matrix Q ∈ R 

r×r , denote �Q ∈ R 

r×r as the matrix such that

 = �Q Diag (λ1 (Q ) , λ2 (Q ) , . . . , λr (Q ))�� 
Q (eigenvalue decomposi-

ion). Finally, define �( Q , ε), as the number of eigenvalues of the

ymmetric matrix Q that are smaller than ε ∈ R . 

. SDP relaxations for POP 

We use the relaxations formulated in Lasserre (2001) to find an

pproximate solution for problem (2) . This section briefly describes

uch relaxations for constrained polynomial problems and studies

ome of their properties. 

.1. Lasserre hierarchy 

Consider the POP 

p � := min 

x ∈ R n 
f (x ) 

s.t. h i (x ) ≥ 0 , i = 1 , 2 , . . . , m, 
(2) 

here f and h i ( i = 1 , 2 , . . . , m ), are n -dimensional polynomial func-

ions with degrees d, d 1 , d 2 , . . . , d m 

, respectively. Writing f (x ) =
 

α b αx α and since zz � is always positive semidefinite for any real

ector, we can obtain the following equivalent problem, 

p � : = min 

x ∈ R n 
∑ 

α∈F w 
b αx 

α

s.t. u (x , �n 
w 

) u (x , �n 
w 

) � � 0 , 

u (x , �n 

w − ˜ d i 
) u (x , �n 

w − ˜ d i 
) � h i (x ) � 0 , i = 1 , 2 , . . . , m, (3) 

here F 

w = �n 
2 w 

\ { [0 , 0 , . . . , 0] � } , ˜ d = � d/ 2 � , ˜ d i = � d i / 2 � ( i =
 , 2 , . . . , m ), and w a positive integer such that w ≥ w min with

 min = max { ̃  d , ˜ d 1 , ˜ d 2 , . . . , ˜ d m 

} . Replacing the monomial x α by the

eal variable y α we obtain the Lasserre w th order relaxation 

w 

: = inf 
y 

∑ 

α∈F w 
b αy α

s.t. M w 

(y ) � 0 , 

M 

w − ˜ d i 
(h i y ) � 0 , i = 1 , 2 , . . . , m, (4) 

here M w 

(y ) and M 

w − ˜ d i 
(h i y ) ( i = 1 , 2 , . . . , m ) are the square matri-

es obtained by replacing all the monomials x α by the real variable

 α in u (x , �n 
w 

) u (x , �n 
w 

) � and u (x , �n 

w − ˜ d i 
) u (x , �n 

w − ˜ d i 
) � h i (x ) , respec-

ively. The matrices M w 

(y ) and M 

w − ˜ d i 
(h i y ) are called the moment

atrix of order w and the localizing matrix, respectively. 

The dual of this problem can be written as 

d 
w 

: = sup 

X,Z i 

−[ X ] 1 , 1 −
m ∑ 

i =1 

h i (0)[ Z i ] 1 , 1 

s.t. 〈 A 

w 

α , X 〉 + 

m ∑ 

i =1 

〈
B 

w 

i, α, Z i 
〉
= b α, α ∈ F 

w , 

X, Z i � 0 , i = 1 , 2 , . . . , m, (5) 

here h i (0) is the monomial of degree zero in the polynomial

unction h i , i.e., the constant term, and the matrices A 

w 

α and B w 

i, α are

uch that M w 

(y ) = 

∑ 

α∈ �n 
2 w 

A 

w 

α y α, and M 

w − ˜ d i 
(h i y ) = 

∑ 

α∈ �n 
2 w 

B w 

i, αy α,

ith y α = 1 for α = [0 , 0 , . . . , 0] � . 
It is possible to prove that under some assumptions over the

easible set { x ∈ R 

n : h i (x ) ≥ 0 , i = 1 , 2 , . . . , m } , the difference be-

ween the optimal value p � and σw 

tends to zero as the level of

he relaxation w increases. The next theorem formalizes this idea. 
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Theorem 3.1. Assume that K = { x ∈ R 

n : h i (x ) ≥ 0 , i = 1 , 2 , . . . , m } is
compact and there exits a real-valued polynomial v (x ) : R 

n �→ R such

that { x : v (x ) ≥ 0 } is compact, and 

v (x ) = v 0 (x ) + 

m ∑ 

i =1 

h i (x ) v i (x ) for all x ∈ R 

n , 

where the polynomials v i (x ) are all sum of squares, i = 0 , 1 , 2 , . . . , m .

Then, 

(a) Lasserre (2001) As w → ∞ one has that σw 

→ p � . Moreover,

for w sufficiently large, there is no duality gap between prob-

lems (4) and (5) if K has a non-empty interior. 

(b) Schweighofer (2005) If the POP (2) has a unique minimizer

x � = [ x � 
1 
, x � 

2 
, . . . , x � n ] 

� and y w = { y w 

α } α∈F w is a solution of the

primal SDP relaxation (4) , then as w → ∞ one has that y w 

e j 
→

x � 
j 
, where e j ∈ R 

n is the unit vector with 1 in position j. 

Proof. 

(a) See Theorem 4.2 in Lasserre (2001) . 

(b) See Corollary 3.5 in Schweighofer (2005) . �

Remark 3.1. Although the result above guarantees convergence as

w tends to infinity, in practice it is very common to get the solu-

tion of the POP using a small value of w and in some cases finite

convergence can be proved (see for example Lasserre, 2002 for fi-

nite convergence in {0, 1} POPs, Lasserre, 2009 and De Klerk &

Laurent, 2011 for finite convergence in the convex case, and Nie,

2014 for the general non-linear case). 

3.2. Properties of the SDP relaxations 

This section studies the properties of the SDP relaxations

(4) and (5) . In particular, we want to relate the parameters A 

w −1 
α

and B w −1 
i, α

( i = 1 , 2 , . . . , m ) for different values of w . To understand

the relation between two levels in the hierarchy consider the fol-

lowing example. 

Example 3.1. Let f (x ) = 4 x 2 − 2 x and h 1 (x ) = 3 − x 2 . In this case

d = d 1 = 2 . The moment and localizing moment matrices for w = 1

and w = 2 are: 

• M w 

: M 1 (y ) = 

[ 
1 y [1] 

y [1] y [2] 

] 
, M 2 (y ) = 

[
1 y [1] y [2] 

y [1] y [2] y [3] 

y [2] y [3] y [4] 

]
. 

• M w −1 (h 1 y ) : 

M 0 (h 1 y ) = [3 − y [2] ] , M 1 (h 1 y ) = 

[ 
3 − y [2] 3 y [1] − y [3] 

3 y [1] − y [3] 3 y [2] − y [4] 

] 
. 

Then, it is easy to see that the first and second order SDP re-

laxations are given by the following parameters: 

• b α: b [1] = −2 , b [2] = 4 , b α = 0 if α �∈ {[1], [2]}. 

• A 

1 
α: A 

1 
[0] 

= 

[ 
1 0 
0 0 

] 
, A 

1 
[1] 

= 

[ 
0 1 
1 0 

] 
, A 

1 
[2] 

= 

[ 
0 0 
0 1 

] 
. 

• A 

2 
α: A 

2 
[0] 

= 

[
1 0 0 
0 0 0 
0 0 0 

]
, A 

2 
[1] 

= 

[
0 1 0 
1 0 0 
0 0 0 

]
, A 

2 
[2] 

= 

[
0 0 1 
0 1 0 
1 0 0 

]
,

A 

2 
[3] 

= 

[
0 0 0 
0 0 1 
0 1 0 

]
, A 

2 
[4] 

= 

[
0 0 0 
0 0 0 
0 0 1 

]
. 

• B 1 α: B 1 
1 , [0] 

= 

[
3 
]
, B 1 

1 , [1] 
= 

[
0 
]
, B 1 

1 , [2] 
= 

[
−1 

]
. 

u (x , �n 
w +1 ) u (x , �n 

w +1 ) 
� 

= 

[
u (x , �n 

w 

) u (x , �n 
w 

[ x w +1 
1 

, . . . , x w +1 
n ] 

�

• B 2 α: B 2 
1 , [0] 

= 

[ 
3 0 
0 0 

] 
, B 2 

1 , [1] 
= 

[ 
0 3 
3 0 

] 
, B 2 

1 , [2] 
= 

[ −1 0 
0 3 

] 
, 

B 2 
1 , [3] 

= 

[ 
0 −1 

−1 0 

] 
, B 2 

1 , [4] 
= 

[ 
0 0 
0 −1 

] 
. 

Note that the matrices A 

1 
[1] 

and A 

1 
[2] 

are the 2nd order leading

rincipal sub-matrices of the matrices A 

2 
[1] 

and A 

2 
[2] 

, respectively.

imilarly, B 1 
1 , [0] 

, B 1 
1 , [1] 

and B 1 
1 , [2] 

are the 1st order leading principal

ub-matrices of the matrices B 2 
1 , [0] 

, B 2 
1 , [1] 

and B 2 
1 , [2] 

, respectively.

lso, the entries of the 2nd and 1st order leading principal sub-

atrices of A 

2 
[3] 

, A 

2 
[4] 

, and B 2 
1 , [3] 

, B 2 
1 , [4] 

, respectively, are all zero. Fi-

ally, notice that b α = 0 for any α such that 
∑ n 

i =1 αi > 2 . The next

emma formalizes the observations made above. 

emma 3.1. If ˜ w ≥ w min , then the SDP relaxations (4) and (5) of or-

er w = ˜ w and w = ˜ w + 1 satisfy: 

(a) b α = 0 for any α such that 
∑ n 

i =1 αi > 2 w min . 

(b) For any α ∈ �n 
2 ̃ w 

the g(n, ˜ w ) th order leading principal sub-

matrix of A 

˜ w +1 
α is equal to A ̃

 w 

α , and the g(n, ˜ w − ˜ d i ) 
th order

leading principal sub-matrix of B ˜ w +1 
i, α

is equal to B ̃ w 

i, α for i =
1 , 2 , . . . , m . 

(c) For any α ∈ �n 
2 ̃ w +1 

\ �n 
2 ̃ w 

, the entries of the g(n, ˜ w ) th order

leading principal sub-matrix of A 

˜ w +1 
α and the g(n, ˜ w − ˜ d i ) th or-

der leading principal sub-matrix of B ˜ w +1 
i, α

( i = 1 , 2 , . . . , m ), are

equal to zero. 

roof. 

(a) Given that the degree of f is d and 2 w min ≥ d, any monomial

of degree greater than 2 w min must have a zero coefficient. 

To prove (b) and (c), first note that according to

Remark 2.1 we have 

 ( x , �n 
w 

) � , x w +1 
1 , . . . , x w +1 

n ] 
� 

[ u ( x , �n 
w 

) � , x w +1 
1 , . . . , x w +1 

n ] 

u (x , �n 
w 

) [ x w +1 
1 

, . . . , x w +1 
n ] 

 �n 
w 

) � [ x w +1 
1 

, . . . , x w +1 
n ] � [ x w +1 

1 
, . . . , x w +1 

n ] 

]
(6)

Also, we constructed M w 

(y ) and M 

w − ˜ d i 
(h i y ) by replac-

ing every monomial x α for the real variable y α in

u (x , �n 
w +1 

) u (x , �n 
w +1 

) � and u (x , �n 

w − ˜ d i 
) u (x , �n 

w − ˜ d i 
) � h i (x ) , re-

spectively; and that A 

w 

α , B w 

i, α are such that M w 

(y ) =∑ 

α∈ �n 
2 w 

A 

w 

α y α and M 

w − ˜ d i 
(h i y ) = 

∑ 

α∈ �n 
2 w 

B w 

i, αy α. Using these

facts and Eq. (6) we have that, 

M ˜ w +1 (y ) = 

∑ 

α∈ �n 
2( ̃ w +1) 

A 

˜ w +1 
α y α = 

[
M ˜ w 

(y ) Q 1 (y ) 
Q 1 (y ) � Q 2 (y ) 

]

= 

[∑ 

α∈ �n 
2 ̃ w 

A 

˜ w 

α y α Q 1 (y ) 

Q 1 (y ) � Q 2 (y ) 

]
, (7)

where Q 1 ( y ) and Q 2 ( y ) are the matrices obtained by

replacing the monomials x α for the real variable y α
in the matrices [ x w +1 

1 
, . . . , x w +1 

n ] � u (x , �n 
w 

) � and [ x w +1 
1 

, . . . ,

x w +1 
n ] � [ x w +1 

1 
, . . . , x w +1 

n ] , respectively. Using the same reason-

ing, we obtain 

M 

(w +1) − ˜ d i 
(h i y ) = 

∑ 

α∈ �n 
2( ̃ w +1) 

B 

˜ w +1 
i, α y α = 

[∑ 

α∈ �n 
2 ̃ w 

B 

˜ w 

i, αy α ˜ Q 1 (y ) 

˜ Q 1 (y ) � ˜ Q 2 (y ) 

]
, 

(8)

where again the matrices ˜ Q 1 (y ) and 

˜ Q 2 (y ) are obtained

by replacing the monomials x α by the real variable

y α in the matrix [ x 
( ̃ w +1) − ˜ d i 
1 

, . . . , x 
( ̃ w +1) − ˜ d i 
n ] � u (x , �n 

˜ w − ˜ d i 
) � h i (x )

and the matrix [ x 
( ̃ w +1) − ˜ d i 
1 

, . . . , x 
( ̃ w +1) − ˜ d i 
n ] � [ x ( ̃ w +1) − ˜ d i 

1 
, . . . ,

x 
( ̃ w +1) − ˜ d i 
n ] h i (x ) , respectively. 
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c  
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L  
(b) Using Eqs. (7) , (8) , is easy to see that 
∑ 

α∈ �n 
2 ̃ w 

A ̃

 w 

α y α and∑ 

α∈ �n 
2 ̃ w 

B ̃ w 

i, αy α correspond to the g(n, ˜ w ) th and g(n, ˜ w − ˜ d i ) th

order leading principal sub-matrices of 
∑ 

α∈ �n 
2( ̃ w +1) 

A 

˜ w +1 
α y α

and 

∑ 

α∈ �n 
2( ̃ w +1) 

B ˜ w +1 
i, α

y α, respectively, from where statement

(b) follows. 

(c) Notice that 
∑ 

α∈ �n 
2 ̃ w 

A ̃

 w 

α y α does not contain any y α for α :∑ 

α j > 2 ̃  w + 1 (or equivalently, any y α for α ∈ �n 
2 ̃ w +1 

\ �n 
2 ̃ w 

is multiplied by a zero matrix). Given statement (b), we can

conclude then that the g(n, ˜ w ) th order leading principal sub-

matrix of A 

˜ w +1 
α is zero for any α ∈ �n 

2 ̃ w +1 
\ �n 

2 ̃ w 

. A similar

argument can be made for the g(n, ˜ w − ˜ d i ) th order leading

principal sub-matrix of B ˜ w +1 
i, α

y α for α ∈ �n 
2 ̃ w +1 

\ �n 
2 ̃ w 

. �

. Prolongation operators 

Given ˜ w ≥ w min = max { ̃  d , ˜ d 1 , ˜ d 2 , . . . , ˜ d m 

} , we will define prolon-

ation operators to relate any point in the SDP relaxations (4) and

5) of order w = ˜ w , to the SDP relaxation of order w = ˜ w + 1 . We

ill refer to the ˜ w th SDP space relaxation problem and variables

s the coarse problem (or coarse relaxation) and coarse variables.

imilarly, we will refer to the ( ̃  w + 1) th SDP space relaxation prob-

em and variables as the fine problem (or fine relaxation) and fine

ariables. 

For any order w ≥ w min , we will denote the primal variables

or the w th order relaxation (4) as y w ∈ R 

|F w | with y w = { y w 

α } α∈F w ,
nd the dual variables of the relaxation (5) as X w ∈ R 

g(n,w ) ×g(n,w ) ,

nd Z w ∈ R 

g(n,w − ˜ d 1 ) ×g(n,w − ˜ d 1 ) × · · · × R 

g(n,w − ˜ d m ) ×g(n,w − ˜ d m ) with Z w =
Z w 

1 
, Z w 

2 
, . . . , Z w 

m 

)
. 

For ( y w , X w , Z w ) we define the dual residuals at the point

(X w , Z w ) ( r w 

α (X w , Z w ) ) as 

 

w 

α (X 

w , Z w ) := 〈 A 

w 

α , X 

w 〉 + 

m ∑ 

i =1 

〈
B 

w 

i, α, Z w 

i 

〉
− b α, (9)

or α ∈ F 

w . 

.1. Primal prolongation operator 

By inspecting the hierarchy, we notice that the number of pri-

al and dual matrices do not change from the coarse to the fine

elaxations. Instead the matrix dimensions increase from one level

o the next. For the primal variables we will define a non-linear

perator. 

Let proj K ( x ) be the projection operator onto the set K = { x ∈
 

n : h i (x ) ≥ 0 , i = 1 , 2 , . . . , m } , i.e., 

roj K (x ) := arg min z ∈ K ‖ x − z ‖ 

2 , (10)

nd define 
w : R 

n �→ R 

|F w +1 | as 


w (x )] α := x α1 

1 
x α2 

2 
. . . x αn 

n , α ∈ F 

w +1 , (11)

or any x ∈ R 

n . 

Using Eqs. (10) and (11) , we define a non-linear operator P w 

y :

 

|F w | �→ R 

|F w +1 | for any primal point y w ∈ R 

|F w | by 

 

w 

y (y w ) := 
w 

(
proj K 

([
y w 

e 1 
, y w 

e 2 
, . . . , y w 

e n 

]� ))
(12) 

here e j ∈ R 

n is a unit vector with 1 in position j . 

heorem 4.1. Let ˜ w ≥ w min and y ̃ w a point (not necessarily feasible)

f the SDP relaxation of order w = ˜ w defined in (4) . If y ̃ w +1 = P ̃  w 

y (y ̃ w )

s defined according to prolongation operator (12) for w = ˜ w , then

 ̃

 w +1 is feasible for the primal SDP relaxation (4) of order w = ˜ w + 1 .

roof. To prove that M ˜ w +1 (P ̃  w 

y (y ̃ w )) is positive semidefinite,

otice that for any x ∈ R 

n we have that M ˜ w +1 (

˜ w (x )) =
 ([ x , �n 
2( ̃ w +1) 

]) u ([ x , �n 
2( ̃ w +1) 

]) � , we can conclude that M ˜ w +1 

(P ̃  w 

y (y ̃ w )) = M ˜ w +1 (

˜ w ( proj K ([ y w 

e 1 
, y w 

e 2 
, . . . , y w 

e n 
] � ))) � 0 by using the

act that zz � is positive semidefinite for any real vector z . 

Similarly, to prove the positive semidefiniteness of the

ocalizing matrices notice that for any x ∈ R 

n we have

 

( ̃ w +1) − ˜ d i 
(h i 


˜ w (x )) = M 

( ̃ w +1) − ˜ d i 
(
 ˜ w (x )) h i (x ) . Therefore, given

hat M 

( ̃ w +1) − ˜ d i 
(P ̃  w 

y (y ̃ w )) is positive semidefinite (we can write

t as u ([ x , �n 
2( ̃ w +1) 

]) u ([ x , �n 
2( ̃ w +1) 

]) � with x = proj K ([ y w 

e 1 
, y w 

e 2 
, . . . ,

 

w 

e n 
] � ) ), and h i ( proj K ([ y w 

e 1 
, y w 

e 2 
, . . . , y w 

e n 
] � )) ≥ 0 (the projection

ver K guarantees this), we can conclude that M 

( ̃ w +1) − ˜ d i 

(h i 

˜ w ( proj K ([ y w 

e 1 
, y w 

e 2 
, . . . , y w 

e n 
] � )) is positive semidefinite. �

.2. Dual prolongation operator 

As already mentioned, the number of dual matrices in the

oarse and fine relaxations is m , i.e., the number constraints

n the dual relaxation, but the size of the matrices is larger in

he fine problem. In this case, the prolongation will be con-

tructed by using the coarse matrices as the leading principal

ub-matrices of the fine matrices. In particular, for any w ≥ w min =
ax { ̃  d , ˜ d 1 , ˜ d 2 , . . . , ˜ d m 

} let P w 

X 
: R 

g(n,w ) ×g(n,w ) �→ R 

g(n,w +1) ×g(n,w +1) 

e the prolongation operator for the coarse variable X w ,

nd P w 

Z : R 

g(n,w − ˜ d 1 ) ×g(n,w − ˜ d 1 ) × · · · × R 

g(n,w − ˜ d m ) ×g(n,w − ˜ d m ) �→ 

 

g(n, (w +1) − ˜ d 1 ) ×g(n, (w +1) − ˜ d 1 ) × · · · × R 

g(n, (w +1) − ˜ d m ) ×g(n, (w +1) − ˜ d m ) be 

he prolongation operator for the coarse variable Z w . If

 

w +1 = P w 

X (X w ) and Z w +1 = (Z w +1 
1 

, Z w +1 
2 

, . . . , Z w +1 
m 

) = P w 

Z (Z w )

hen 

 

w +1 = P w 

X (X 

w ) = 

[
X 

w 0 

0 0 

]
, (13)

 

w +1 
i 

= [ P w 

Z (Z w )] i = 

[
Z w 

i 
0 

0 0 

]
, i = 1 , 2 , . . . , m, (14)

here 0 ’s are zero matrices of appropriate size. The next theorems

haracterize the feasibility of any prolongated coarse dual point

(X w , Z w ) . 

heorem 4.2. Let ˜ w ≥ w min and (X ̃  w , Z ̃  w ) a point (not necessarily

easible) of the dual SDP relaxation (5) of order w = ˜ w . If X ̃  w +1 =
 ̃

 w 

X 
(X ̃  w ) and Z ̃  w +1 = P ̃  w 

Z 
(Z ̃  w ) are defined according to Eqs. (13) and

14) with w = ˜ w respectively, then for any α ∈ F ̃

 w +1 we have 

 

˜ w +1 
α (X 

˜ w +1 , Z ˜ w +1 ) = 

{
r ˜ w 

α (X 

˜ w , Z ˜ w ) , if α ∈ F 

˜ w , 

0 , otherwise, 
(15)

here r ̃  w 

α (X ̃  w , Z ̃  w ) is the dual residual defined in Eq. (9) . 

roof. Note that 

A 

˜ w +1 
α , X 

˜ w +1 
〉
= 

∑ 

1 ≤i, j≤g(n, ̃ w +1) 

[ A 

˜ w +1 
α ] i, j [ X 

˜ w +1 ] i, j 

= 

∑ 

1 ≤i, j≤g(n, ̃ w +1) 

[ A 

˜ w +1 
α ] i, j [ P 

˜ w 

X (X 

˜ w )] i, j 

= 

∑ 

1 ≤i, j≤g(n, ̃ w ) 

[ A 

˜ w +1 
α ] i, j [ X 

˜ w ] i, j 

= 

∑ 

1 ≤i, j≤g(n, ̃ w ) 

[ A 

˜ w 

α ] i, j [ X 

˜ w ] i, j = 

〈
A 

˜ w 

α , X 

˜ w 

〉
, 

here we used the fact that according to Eq. (13) , [ X ˜ w +1 
k 

] i, j =
 P ̃  w 

X 
(X ̃  w )] i, j = 0 for any i, j > g(n, ˜ w ) , and Lemma 3.1 (b) to re-

lace A 

˜ w +1 
α by A ̃

 w 

α . Similarly, using Eq. (14) and the second part of

emma 3.1 (b) we can deduce that 
〈
B ˜ w +1 

i, α
, Z ˜ w +1 

i 

〉
= 

〈
B ̃ w 

i, α, Z ̃  w 

i 

〉
. Then,
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if α ∈ F ̃

 w , we can write r ˜ w +1 
α as 

r ˜ w +1 
α (X 

˜ w +1 , Z ˜ w +1 ) = 

〈
A 

˜ w +1 
α , X 

˜ w +1 
〉
+ 

m ∑ 

i =1 

〈
B 

˜ w +1 
i, α , Z ˜ w +1 

i 

〉
− b α

= 

〈
A 

˜ w 

α , X 

˜ w 

〉
+ 

m ∑ 

i =1 

〈
B 

˜ w 

i, α, Z ˜ w 

i 

〉
− b α = r ˜ w 

α (X 

˜ w , Z ˜ w ) . 

Likewise, if α / ∈ F ̃

 w , then b α = 0 as 
∑ 

i αi > 2 w min ( Lemma 3.1

(a)), and 

〈
A 

˜ w +1 
α , X ̃  w +1 

〉
= 0 and 

〈
B ˜ w +1 

i, α
, Z ˜ w +1 

i 

〉
= 0 for any i =

1 , 2 , . . . , m ( Lemma 3.1 (c)). Hence, 

r ˜ w +1 
α (X 

˜ w +1 , Z ˜ w +1 ) 

= 

〈
A 

˜ w +1 
α , X 

˜ w +1 
〉
+ 

m ∑ 

i =1 

〈
A 

˜ w +1 
i, α , Z ˜ w +1 

i 

〉
− b α = 0 − b α = 0 . 

�

Lemma 4.1. Under the assumptions of Theorem 4.2 , if (X ̃  w , Z ̃  w ) is

also a feasible point of the dual SDP relaxation of order w = ˜ w defined

in (5) , then 

(a) X ̃  w +1 , Z ˜ w +1 
i 

� 0 , for i = 1 , 2 , . . . , m . 

(b) r ˜ w +1 
α (X ̃  w +1 , Z ̃  w +1 ) = 0 for any α ∈ F ̃

 w +1 . 

Proof. 

(a) Using the fact that X w is feasible, we have that X ̃  w � 0 and

therefore if z ∈ R 

g(n, ̃ w +1) we have that 

z � X 

˜ w +1 z = z � 
[

X 

˜ w 0 

0 0 

]
z 

= [ z 1 , z 2 , . . . , z g(n, ̃ w ) ] X 

˜ w [ z 1 , z 2 , . . . , z g(n, ̃ w ) ] 
� 

≥ 0 . 

Hence, X ˜ w +1 
l 

is positive semidefinite. The same argument ap-

plies to Z ˜ w +1 
i 

for i = 1 , 2 , . . . , m . 

(b) This statement follows by using Theorem 4.2 and noticing

that r ̃  w 

α (X ̃  w , Z ̃  w ) = 0 for any α ∈ F ̃

 w because (X ̃  w , Z ̃  w ) is fea-

sible for the coarse problem. �

4.3. Duality gap of prolongated variables 

This section assumes the conditions of Theorem 3.1 are satisfied

by the POP in (2) . The next result guarantees that the duality gap

of the prolongated coarse solutions tends to zero as the order of

the relaxation goes to infinity. 

Theorem 4.3. Assume that the POP (2) has a compact feasible set

and a unique solution x � with global minimum p � = 

∑ 

α b α( x � ) α. Fur-

thermore, let w 0 ∈ N be such that for any w ≥ w 0 the w th order SDP

relaxations defined in problems (4) and (5) , are solvable and have

zero duality gap (note that w 0 exists according to Theorem 3.1 ). For

w ≥ w 0 , let y w and (X w , Z w ) be a primal and a dual optimal solu-

tion for the SDP relaxations of order w respectively. If the operators

defined in Eqs. (12) –(14) are used to prolongate these solutions to the

level w + 1 , then the duality gap of the prolongated points tends to

zero as w tends to infinity, i.e., 

∑ 

α∈F w +1 

b α[ P w 

y (y w )] α −
( 

−[ P w 

X (X 

w )] 1 , 1 −
m ∑ 

i =1 

h i (0)[ P w 

Z (Z w ) i ] 1 , 1 

) 

→ 0 as w → ∞ . 

Proof. Using the prolongation operators defined in Eqs. (13) and

(14) , the objective function of the dual relaxation can be written

as 
[ P w 

X (X 

w )] 1 , 1 −
m ∑ 

i =1 

h i (0)[ P w 

Z (Z w ) i ] 1 , 1 

= −[ X 

w ] 1 , 1 −
m ∑ 

i =1 

h i (0)[ Z w 

i ] 1 , 1 . (16)

ence, using the fact that 
∑ 

α∈F w b w 

αy w → p � as w → ∞
 Theorem 3.1 (a)), the zero duality gap of the relaxation, and

q. (16) , we can deduce that 

[ P w 

X (X 

w )] 1 , 1 −
m ∑ 

i =1 

h i (0)[ P w 

Z (Z w ) i ] 1 , 1 → p � as w → ∞ . (17)

Now, notice that proj K ([ y w 

e 1 
, . . . , y w 

e n 
] � ) → x � as w → ∞ be-

ause proj K (x � ) = x � and y w 

e i 
→ x � 

i 
as w → ∞ for i = 1 , 2 , . . . , n

 Theorem 3.1 (b)). Therefore, using Theorem 3.1 (a), Lemma 3.1 (a)

nd Eq. (11) , we have that ∑ 

∈F w +1 

b α[ P w 

y (y w )] α = 

∑ 

α∈F w 
b α[
w ( proj K ([ y w 

e 1 
, . . . , y w 

e n 
] � )] α

→ 

∑ 

α∈F w 
b α(x 

� ) α = p � , as w → ∞ . (18)

Finally, using Eqs. (17) and (18) we notice that both the primal

nd dual objective functions evaluated on the prolongated points

onverges to p � as w → ∞ and therefore their difference conver-

ences to zero as w → ∞ . �

. Numerical experiments 

Section 4 results suggest that to solve the (w + 1) th relaxation

e can use the operators (12) –(14) , along with the solution of the

 th relaxation to provide an initial starting point. Like in the pre-

ious sections, we will call the relaxation of order w the coarse re-

axation or problem and its variables coarse variables. Similarly, the

(w + 1) th SDP relaxation will be referred to as the fine relaxation

r problem, with fine variables. According to Theorem 4.1 and

emma 4.1 , the prolongated points have zero infeasibility in the

ne level. Theorem 4.3 indicates that, for any ε > 0, we can find a

 such that the duality gap of the prolongated points is smaller

han ε. This section illustrates how the operators can be used with

n interior point method to solve the (w + 1) th SDP relaxation. 

As indicated in the introduction, our operators assume that the

easible set of the POP is such that calculating the projection of any

oint onto the set is “easy”. Here we consider numerical examples

here the only constraints are x ∈ {0, 1} n or x ∈ {−1 , 1 } n . These

onstraints can easily be written as polynomials and the projec-

ion of any point can be calculated in closed form. For example,

he constraint x ∈ {0, 1} n is equivalent to x 2 
i 

− x i = 0 , i = 1 , 2 , . . . n

note that these equalities can be replaced by double inequalities),

nd the projection from box bounds onto the feasible set can be

alculated as, 

proj { 0 , 1 } n (x ) 
]

i 
= 

{
0 , if x i ≤ 0 . 5 , 

1 , if x i > 0 . 5 . 

When the POP only has integer constraints {0, 1} (or {−1 , 1 } ),
he SDP relaxations can be transformed into an equivalent smaller

DP problem ( Lasserre, 2002 ). For {0, 1} POPs, the primal SDP re-

axation (4) can be reduced by first eliminating the constraints

 

w − ˜ d i 
(h i y ) � 0 ( i = 1 , 2 , . . . , m ), then replacing every variable y α

y the variable y β with βi = 1 if αi ≥ 1, and finally deleting the

 th column and row of the resulting moment matrix M w 

(y ) if

 M w 

(y )] 1 ,k = [ M w 

(y )] 1 ,l for some l < k (a similar reduction can be

one for the {−1 , 1 } case). Let ˜ b α and 

˜ M w 

(y ) ∈ γw 

× γw 

be the vec-

or and matrix obtained using the procedure described above. Then

he reduced relaxation is given by 



J.S. Campos, R. Misener and P. Parpas / European Journal of Operational Research 277 (2019) 32–41 37 

w

w

 

f  

L  

c  

α  

m  

γ
 

p  

fi  

t  

s

P

 

L  

p  

t  

c  

g

 

L  

P  

p  

o  

T  

t  

m  

l  

s  

p  

i  

d  

t

 

 

 

 

 

 

 

e  

a  

1  

f  

t  

l  

o  

l  

n  

t

 

K  

a  

a  

a  

[  

s  

F  

t  

s  

p  

e  

t  

S  

m  

v  

2  

w  

2  

w

 

[  

 

r  

s  

f  

l  

w  

m

1  

w  

a  

f  

1

 

r  

t  

m  

w  

l  
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1 We also used MAX-CUT problems with integer weights for the experiments but 

did not find any significant change in the results compared with the non-integer 

case. 
σw 

:= inf 
y 

∑ 

α∈F w 
˜ b αy α

s.t. ˜ M w 

(y ) � 0 , 

(19) 

ith the dual 

σ d 
w 

:= sup 

X 

−[ X ] 1 , 1 

s.t. 
〈

˜ A 

w 

α , X 

〉
= b α, α ∈ F 

w , 

X � 0 , 

(20) 

here ˜ M w 

(y ) = 

∑ 

α∈ �n 
2 w 

˜ A 

w 

α y α. 

The result obtained in Lemma 3.1 literal (a) is still valid

or these reduced SDP relaxations, and a similar property to

emma 3.1 literals (b) and (c) can also be proved for the matri-

es ˜ A 

w 

α . In particular, if ˜ A 

w 

α has dimensions γw 

× γw 

, then for any

∈ �n 
2 ̃ w 

we have that ˜ A 

w 

α is the γ th 
w 

order leading principal sub-

atrix of ˜ A 

w +1 
α ; and for any α ∈ �n 

2( ̃ w +1) 
\ �n 

2 ̃ w 

the entries of the

th 
w 

order leading sub-matrix of ˜ A 

w +1 
α are equal to zero. 

The prolongation operators can still be used for these new

roblems. For the primal relaxation, we use the prolongation de-

ned in Eq. (12) . The dual variable X w will be prolongated using

he same idea used in Eq. (13) , i.e., if the variable X w has dimen-

ions γw 

× γw 

then 

˜ P X : R 

γw ×γw �→ R 

γw +1 ×γw +1 is defined by 

˜ 
 X (X 

w ) := 

[
X 

w 0 

0 0 

]
. (21) 

Notice that all the results proved in Theorems 4.1 and 4.3 and

emma 4.1 , are still valid for the new hierarchy, and therefore, after

rolongating a feasible coarse point, the new point is feasible in

he fine SDP space, and the duality gap obtained for prolongated

oarse optimal points tends to zero as the order of the relaxation

ets larger. 

As mentioned in Remark 3.1 , it is possible to prove that the

asserre hierarchy has finite convergence for the {0, 1} and {−1 , 1 }
OP (see Theorem 3.2 in Lasserre, 2002 ). Furthermore, for all the

roblems we find the underlying POP solution using relaxation

rders w ≥ w min smaller than the ones predicted by the theory.

herefore, to solve the original POP we can solve in a sequen-

ial manner the sparse SDP relaxations starting with w = w min =
ax { ̃  d , ˜ d 1 , . . . , ˜ d m 

} and increasing the relaxation order until a so-

ution or approximate solution is found. If a solution is found by

olving the SDP relaxation of order w > w min , this procedure im-

lies solving the relaxation of order w min , w min + 1 , . . . , w . The idea

s to exploit the information calculated when solving the lower or-

er relaxations to solve the relaxation of order w using the opera-

ors defined in the previous section. 

Consider the following benchmark test problems: 

• Quadratic optimization {0, 1}: given l i ∈ R ( i = 1 , 2 , . . . , n ) and

k i, j ∈ R (1 ≤ i , j ≤ n ) the problem is 

min 

x ∈ R n 

n ∑ 

i =1 

l i x 
2 
i + 

∑ 

i< j 

k i, j x i x j 

s.t.x 2 i − x i = 0 , i = 1 , 2 , . . . , n. 

• MAX-CUT: given a graph G ( V , E ) with nodes V = { V 1 , V 2 , . . . , V n } ,
a set of edges E = { (i, j) : 1 ≤ i, j, ≤ n, if i is connected to j} ,
and a symmetric matrix W with [ W ] i , j � = 0 if ( i , j ) ∈ E and zero

otherwise, this problem can be written as 

max 
x ∈ R n 

x 

� L x 

s.t.x 2 i = 1 , i = 1 , 2 , . . . , n, 

where L = Diag ([ W 1 n ] 1 , 1 , [ W 1 n ] 2 , 2 , . . . , [ W 1 n ] n,n ) − W, and 1 n ∈
R 

n is a vector of ones. 
• Partitioning an integer sequence: given an integer vector a ∈
N 

n , the problem consists in determining if there exists a vec- 

tor x ∈ {−1 , 1 } n such that a � x = 0 , i.e., 

min 

x ∈ R n 
(a � x ) 2 

s.t.x 2 i = 1 , i = 1 , 2 , . . . , n. 

We generate 100 quadratic {0, 1} POPs, by selecting the co-

fficients l i , k i , j uniformly from the interval [ −1 , 1] using n = 10

nd n = 20 , i.e., a total of 200 problems. Similarly, we generate

00 random MAX-CUT problems selecting the weights w i, j uni-

ormly from the interval [0,1] and another 100 with weights be-

ween [ −1 , 1] , using n = 10 and n = 20 , i.e., a total of 400 prob-

ems. 1 For the integer partitioning POP we generate 100 sequences

f the form a = [ a 1 , a 2 , . . . a n/ 2 , a 1 , a 2 , . . . , a n/ 2 ] , by uniformly se-

ecting each a 1 , a 2 , . . . , a n/ 2 , from the integer set { 1 , 2 , . . . , 100 } for

 = 10 and n = 14 (note that the structure of the vector a guaran-

ees that the problem always has a solution). 

We use the MATLAB code SparsePOP version 3.00 ( Waki, Kim,

ojima, Muramatsu, & Sugimoto, 2008 ) to generate the SDP relax-

tions as well as the MAX-CUT problems (we change the lines 22

nd 33 in the file genMAXCUT.m to obtain weights between [0,1]

nd [ −1 , 1] as the original code generates integer weights between

 −100 , 100] ). The POPs used in this work do not have a unique

olution and therefore the results of Theorem 4.3 do not apply.

ollowing Waki et al. (2006) , we perturbed the polynomial objec-

ive function by adding a small linear term to guarantee a unique

olution (see Section 5.1 Waki et al., 2006 for more details), in

articular we set the parameter param.perturbation in SparsePOP

qual to 10 −4 for the integer partitioning problem and 10 −6 for

he Quadratic and the MAX-CUT problems. To solve the resulting

DP relaxations we use the infeasible interior point method imple-

ented in SDPT3 version 4.0 ( Toh, Todd, & Tütüncü, 2012 ), SeDuMi

ersion 1.0 ( Sturm, 1999 ), and Mosek version 8.1.0 (we used CVX

.1 as interface to call Mosek). The tolerance for the three solvers

as set to 10 −7 . All the experiments are done in MATLAB version

017a in an Intel Core i7-6700 CPU @ 3.40 Gigahertz Ubuntu 16.04

orkstation with 16 gigabytes of RAM. 

Let y w be the primal relaxation solution of order w, y 1 
w =

 y w 

e 1 
, . . . , y w 

e n 
] ( e j ∈ R 

n is a unit vector with 1 in position j ), and

( y 1 
w ) α = (y w 

e 1 
) α1 , . . . , (y w 

e n 
) αn . Then, for each problem we solve the

elaxation of order w = 1 , 2 , . . . , until we find a relaxation that

olves the original POP, i.e., until σw 

= 

∑ 

α b α( y 1 
w ) α and y 1 

w is

easible for the POP. For the Quadratic and the MAX-CUT prob-

ems, we consider a POP solved by the SDP relaxation of order

 if | σw 

− ∑ 

α b α( y 1 
w ) α| / max { 1 , | ∑ 

α b α( y 1 
w ) α|} < 10 −5 , and if

ax i {| (y w 

e i 
) 2 − y w 

e i 
|} < 10 −2 for the Quadratic POP or max i {| (y w 

e i 
) 2 −

 |} < 10 −2 for the MAX-CUT. For the integer partitioning problem,

e scale the problem by using a / ‖ a ‖ instead of a , and considered

 POP solved when | ∑ 

α b α( y 1 
w ) α − 0 | < 10 −5 (here we use the

act that the minimum of the POP is zero) and max i {| (y w 

e i 
) 2 − 1 |} <

0 −2 . 

Table 1 shows that the Quadratic and the MAX-CUT problems

equired at most the second order relaxation to find a solution of

he original POP. The integer partitioning problem with 10 polyno-

ial variables needed the third order relaxation for 36 of the POPs,

hile for 72 of the problems with 14 variables we calculated at

east the fourth order relaxation to find a solution (unfortunately

or these relaxations the time needed to solve the SDP problem

as larger than 2.5 hours for SeDuMi and 18 hours for SDPT3 mak-

ng the calculation for all the POPs time consuming). Additionally,
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Table 1 

Number of POPs solved by level of the SDP relaxation (if (y w , X w ) ∈ (R m w , R γw ×γw ) 

then the dimensions of the SDP relaxation m w , γw are in parenthesis), POPs not 

solved by relaxation of order w but solved by proj K ([ y w e 1 
, . . . , y w e n 

]) . 

Number of polynomial variables n = 10 n = 20 

(a) Quadratic {0, 1}. 

Total POPs 100 100 

# POPs solved by relaxation order 

w = 1 

16 (55, 11) 0 (210, 21) 

# POPs solved by relaxation order 

w = 2 

84 (385, 56) 100 (6195, 211) 

# POPs solved by proj K ([ y 1 e 1 
, . . . , y 1 e n 

]) 75 48 

(b) MAX-CUT : weights in [0,1] interval. 

Total POPs 100 100 

# POPs solved by relaxation order 

w = 1 

0 (55, 11) 0 (210, 21) 

# POPs solved by relaxation order 

w = 2 

100 (385, 56) 100 (6195, 211) 

# POPs solved by proj K ([ y 1 e 1 
, . . . , y 1 e n 

]) 28 0 

(c) MAX-CUT : weights in [ −1 , 1] interval. 

Total POPs 100 100 

# POPs solved by relaxation order 

w = 1 

5 (55, 11) 0 (210, 21) 

# POPs solved by relaxation order 

w = 2 

95 (385, 56) 100 (6195, 211) 

# POPs solved by proj K ([ y 1 e 1 
, . . . , y 1 e n 

]) 58 22 

(d) Integer partition . 

Total POPs 100 100 

# POPs solved by relaxation order 

w = 1 

3 (55, 11) 2 (105, 15) 

# POPs solved by relaxation order 

w = 2 

61 (385, 53) 5 (1470, 106) 

# POPs solved by relaxation order 

w = 3 

36 (847, 176) 21 (6475, 470) 

# POPs solved by proj K ([ y 1 e 1 
, . . . , y 1 e n 

]) 0 0 

# POPs solved by proj K ([ y 2 e 1 
, . . . , y 2 e n 

]) 12 0 
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2 We also did preliminary experiments using SDPNAL + ( Yang et al., 2015 ) as our 

base algorithm. However, the use of the prolongated points did not show any sig- 

nificant improvement. One possible explanation for this result is the fact that al- 

though SDPNAL + and the ADMM algorithm developed in Wen et al. (2010) iter- 

ate in the boundary of the semidefinite cone, the points at every iteration satisfy 〈
X w +1 , S w +1 

〉
= 0 , which is not true for the prolongated points. 
if y w is the primal solution of the w th order relaxation, the ta-

ble also shows for how many of the problems that needed the

(w + 1) th order of the relaxation, the vector proj K ([ y w 

e 1 
, . . . , y w 

e n 
])

was a solution of the original POP. The results indicate for the

Quadratic and the MAX-CUT problems, if we are only concerned

about the POP solution or bound independent if we found the so-

lution of the relaxation that solves the POP, a good strategy before

solving higher order relaxations is to check first the projection of

the solution provided by coarser SDP relaxation levels. 

The next experiment uses the prolongation operators to provide

initial points to SDPT3 to solve the relaxation w > 1 for those prob-

lems where the first order relaxation does not provide a solution

for the original POP. If y w and X w are the solutions found by SDPT3

of the primal and dual w th order relaxation respectively for w > 1 ,

then we prolongate these coarse solutions using the operators de-

fined in Eqs. (12) and (21) , and use these new fine points as initial

guesses for SDPT3 to solve the relaxation of order w + 1 . We call

this method multilevel algorithm or approach, and we compare it

with default SDPT3, i.e., letting SDPT3 calculate the initial points,

SeDuMi, and Mosek. 

The formulation used by SDPT3 includes an additional primal

variable in the relaxation (19) by replacing the constraint ˜ M w 

(y ) �
0 by ˜ M w 

(y ) = S w and S w � 0 . Given that SDPT3 is an infeasible in-

terior point method, we need to provide positive definite matri-

ces as starting points, however, the matrices S w +1 = 

˜ M w 

(P w 

y (y w ))

and X w +1 = 

˜ P w 

X 
(X w ) are positive semidefinite but not positive defi-

nite. We perturb these matrices by using an eigenvalue decomposi-

tion and replacing the zero eigenvalues by a small positive number.

Preliminary experiments using the prolongated points to solve the

fine relaxation showed that even when the prolongated matrices

were positive definite, the closer the point was to the boundary
f the positive semidefinite cone, the smaller the step sizes cal-

ulated by SDPT3 for the initial iterations, making the entire al-

orithm very slow. We suspect that after the coarse solutions are

rolongated, the new feasible points are not close to the central

ath, which makes the algorithm take extra time getting closer to

he central path. This difficulty has been observed in the litera-

ure when interior point methods have been combined with warm

tart strategies, and some approaches to solve this issue has been

roposed (see for example Benson & Shanno, 2007 and Skajaa, An-

ersen, & Ye, 2013 ). More research is needed in this area to de-

ermine the relation between the prolongated points and the cen-

ral path. 2 We found that getting away of the boundary of the

ositive semidefinite cone by making all the eigenvalues smaller

han 10 −3 equal to 10 −3 , was a good trade-off between losing the

rolongated points’ information and getting larger step sizes in

he interior point method. Additionally, for the multilevel method,

e changed the early stops of SDPT3 given by the parameter OP-

IONS.stoplevel by setting it to zero and we increased the tolerance

f the early stop criteria for the infeasibility given in line 721 of

he code sqlpmain.m (we replaced 10 −4 tolerance for 10 −12 ). These

hanges in the code were done after observing that for some prob-

ems the initial step was very small when using the prolongated

oints, which combined with the small infeasibilities made SDPT3

nd prematurely (the same approach is taken in Campos & Parpas,

018 ). 

Algorithm 1 provides a pseudo-code describing the multi-

evel method to solve the relaxation of order w + 1 . We de-

ne IP M 

({ ̃  A 

w +1 
α , b α} α∈F w +1 , y 

w +1 
0 

, X w +1 
0 

, S w +1 
0 

, ε
)

as the function

hat uses an infeasible interior point method to solve the SDP

roblem with parameters { ̃  A 

w +1 
α , b α} α∈F w +1 and initial points

 

w +1 
0 

, X w +1 
0 

, S w +1 
0 

, to a tolerance ε > 0. 

lgorithm 1 Multilevel method to solve the (w + 1) th order

DP relaxations (19) and (20) for POPs with {0, 1} or {−1 , 1 }
onstraints. 

nput: Prolongation operators P w 

y and 

˜ P w 

X defined in Equations (12)

and (21), solutions y w and X w of the w 

th order SDP relaxations

(19) and (20), parameters { ̃  A 

w +1 
α , b α} α∈F w +1 , and ε > 0 . 

rocedure: 

1: y w +1 
0 

← P w 

y (y w ) 

2: X w +1 
0 

← 

˜ P w 

X 
(X w ) 

3: S w +1 
0 

← 

˜ M w 

(y w +1 
0 

) 

4: t X ← �(X w +1 
0 

, 10 −3 ) 

5: t S ← �(S w +1 
0 

, 10 −3 ) 

6: if t X > 0 then 

7: X w +1 
0 

← �
X w +1 

0 
Diag (10 −3 , 10 −3 , . . . , 10 −3 , λt X +1 (X w +1 

0 
) , . . . , 

λγw +1 
(X w +1 

0 
))�� 

X w +1 
0 

8: end if 

9: if t S > 0 then 

10: S w +1 
0 

← �
S w +1 

0 
Diag (10 −3 , 10 −3 , . . . , 10 −3 , λt S +1 (S w +1 

0 
) , . . . , 

λγw +1 
(S w +1 

0 
))�� 

S w +1 
0 

11: end if 

12: (y w +1 , X w +1 ) ← IP M 

({ ̃  A 

w +1 
α , b α} α∈F w +1 , y 

w +1 
0 

, X w +1 
0 

, S w +1 
0 

, ε
)

In our case we use SDPT3 as the infeasible IPM, and set

he tolerance epsilon equal to 10 −7 . For those problems where
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Table 2 

Average primal-dual infeasibilities, and duality gap for the (w + 1) th order SDP relaxation using: (1) original 

prolongated points and (2) the prolongated points after perturbing the eigenvalues of the matrices X w +1 and 

S w +1 . 

POP/optimality measures Original Perturbed 

d w +1 
infeas 

gap w +1 p w +1 
infeas 

d w +1 
infeas 

gap w +1 

Quadratic: n = 10 , w + 1 = 2 1.2e −11 2.8e −02 3.7e −02 1.2e −02 6.3e −02 

Quadratic: n = 20 , w + 1 = 2 1.6e −11 2.9e −02 7.2e −02 1.3e −02 7.1e −02 

MAX-CUT ([0,1]): n = 10 , w + 1 = 2 7.7e −12 3.0e −01 8.7e −03 4.4e −03 3.5e −01 

MAX-CUT ([0,1]): n = 20 , w + 1 = 2 1.3e −11 5.2e −01 9.3e −03 4.6e −03 6.1e −01 

MAX-CUT ( [ −1 , 1] ): n = 10 , w + 1 = 2 1.5e −11 5.0e −02 8.7e −03 4.1e −03 8.0e −02 

MAX-CUT ( [ −1 , 1] ): n = 20 , w + 1 = 2 1.3e −11 6.0e −02 9.3e −03 4.4e −03 1.2e −01 

Integer partition: n = 10 , w + 1 = 2 7.8e −09 2.6e −02 8.7e −03 3.3e −03 1.2e −01 

Integer partition: n = 10 , w + 1 = 3 9.3e −09 4.3e −03 9.3e −03 2.4e −02 2.4e −01 

Integer partition: n = 14 , w + 1 = 2 3.4e −09 2.7e −02 9.1e −03 3.0e −03 1.8e −01 

Integer partition: n = 14 , w + 1 = 3 9.3e −10 2.3e −02 9.5e −03 4.0e −02 4.7e −01 
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Table 3 

Comparison between the times used by SeDuMi, SDPT3, Mosek and Multilevel 

to solve relaxations of order greater than 1 (accuracy 10 −7 ). 

Number of polynomial variables n = 10 n = 20 

(a) Quadratic {0, 1}. Relaxations of order w = 2 . 

Total POPs 84 100 

# Solved faster by Mosek 0 100 

# Solved faster by SeDuMi 2 0 

# Solved faster by SDPT3 0 0 

# Solved faster by Multi 82 0 

(b) MAX-CUT : weights in [0,1] interval. Relaxations of order w = 2 . 

Total POPs 100 100 

# Solved faster by Mosek 0 100 

# Solved faster by SeDuMi 56 0 

# Solved faster by SDPT3 2 0 

# Solved faster by Multilevel 42 0 

(c) MAX-CUT : weights in [ −1 , 1] interval. Relaxations of order w = 2 . 

Total POPs 95 100 

# Solved faster by Mosek 53 100 

# Solved faster by SeDuMi 13 0 

# Solved faster by SDPT3 1 0 

# Solved faster by Multilevel 28 0 

(d) Integer partition . Relaxations of order w = 2 . 

Total POPs 97 26 

# Solved faster by Mosek 0 26 

# Solved faster by SeDuMi 42 0 

# Solved faster by SDPT3 6 0 

# Solved faster by Multilevel 49 0 

(e) Integer partition . Relaxations of order w = 3 . 

Total POPs 36 21 

# Solved faster by Mosek 36 21 

# Solved faster by SeDuMi 0 0 

# Solved faster by SDPT3 0 0 

# Solved faster by Multilevel 0 0 
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he first order relaxation did not find the solution of the POP,

e calculated measures for primal infeasibility, dual infeasibil-

ty and the duality gap of the prolongated points before and

fter the eigenvalue perturbation, i.e., we use SDPT3 to find a

olution to an accuracy of 10 −7 for the SDP relaxation of or-

er w and then calculate the optimality measures for the points

(y w +1 , S w +1 , X w +1 ) in Algorithm 1 lines 1–3, and then again but

sing the matrices calculated in Algorithm 1 lines 7 and 10. Given

 point (y w +1 , S w +1 , X w +1 ) for the (w + 1) th order SDP relaxations

19) and (20) (not necessarily feasible but satisfying the positive

emidefinite constraints), we use the following measures: 

• Primal infeasibility: 

p w +1 
infeas 

:= 

‖ 

˜ M w +1 (y w +1 ) − S w +1 ‖ 

(1 + γ 0 . 5 
w +1 

) 
, (22) 

where γw +1 is the dimension of the matrix ˜ M w +1 (y w +1 ) . 
• Dual infeasibility: 

d w +1 
infeas 

:= 

(∑ 

α∈F w +1 

(〈
˜ A 

w +1 
α , X 

w +1 
〉
− b α

)2 
)0 . 5 

(
1 + 

(∑ 

α∈F w +1 b 2 α
)0 . 5 

) . (23) 

• Duality gap: 

gap 

w +1 := 

〈
X 

w +1 , S w +1 
〉(

1 + 

∑ 

α∈F w +1 
˜ b αy w +1 

α − [ X 

w +1 ] 1 , 1 
) . (24) 

For a tolerance ε > 0, SDPT3 will stop when it has found a point

(y w +1 , S w +1 , X w +1 ) such that max { p w +1 
infeas 

, d w +1 
infeas 

, gap 

w +1 } ≤ ε. 

The average of the optimality measures for every SDP relax-

tion of order w > 1 are shown in Table 2 . The primal infeasibil-

ty is always zero and therefore we do not report it in the table

 Theorem 4.1 ). As expected, the dual infeasibility using the orig-

nal prolongation points for the fine relaxation is lower than the

0 −7 tolerance required for the coarse relaxation ( Theorem 4.2 and

emma 4.1 ). We observed that the magnitude of the duality gap is

f the order of 10 −2 to 10 −1 . Although these values are not close

o the 10 −7 accuracy required for our experiments, they are smaller

han the observed values achieved by the automatic initial points

enerated by SDPT3, which for some problems can be of the 10 5 

rder. When the matrices of the prolongated points are perturbed,

he optimality measures for the primal and dual infeasibilities are

ncreased considerably, but they were still lower or at the same

evels of the duality gap values. However, as mentioned before, we

ound that it was necessary to sacrifice these optimality measures

o achieve better results when the prolongation points are com-

ined with SDPT3. 

Table 3 shows which of the four algorithms solved faster the

 th order relaxation for those problems where the (w − 1) th or-

er relaxation did not providea solution for the POP (the accuracy
n every algorithm was set to 10 −7 ). As we are interested in solv-

ng the SDP relaxations, we include in these results those problems

rom where the projection onto the feasible set of the (w − 1) th

rder relaxation provided a solution for the POP. In general, Mosek

s the fastest algorithm among all the options for large size prob-

ems, i.e., problems with more than 10 polynomial variables and/or

igh order of relaxation. For smaller problems, we can start to see

he advantages for the multilevel approach, where for some of the

nstances, e.g., the Quadratic {0, 1}. 

The previous experiment shows in absolute terms which algo-

ithm is faster to achieve an accuracy of 10 −7 (is important to note

hat the stopping criteria of the algorithms is different, but all the

lgorithms achieved an accuracy in terms of Eqs. (22) –(24) close

o 10 −7 ). However, these results do not show if in general, given a

ase interior point method, the warm start strategy is useful, e.g.,

f Mosek is twice as fast as SDPT3 is very unlikely that a warm
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Table 4 

Time ratios between the Multilevel approach and SDPT3, SeDuMi and Mosek to 

solve the relaxations of order greater than 1. 

Number of polynomial variables n = 10 n = 20 

(a) Quadratic {0, 1}. Relaxations of order w = 2 . 

Total POPs 84 100 

Mean t SDPT 3 / t Multi 1.68 1.76 

Mean t Mosek / t Multi 2.10 0.51 

Mean t SeDuMi / t Multi 1.14 16.83 

(b) MAX-CUT : weights in [0,1] interval. Relaxations of order w = 2 . 

Total POPs 100 100 

Mean t SDPT 3 / t Multi 1.17 1.04 

Mean t Mosek / t Multi 1.27 0.45 

Mean t SeDuMi / t Multi 0.96 12.39 

(c) MAX-CUT : weights in [ −1 , 1] interval. Relaxations of order w = 2 . 

Total POPs 95 100 

Mean t SDPT 3 / t Multi 1.27 1.14 

Mean t Mosek / t Multi 0.87 0.50 

Mean t SeDuMi / t Multi 1.04 13.70 

(d) Integer partition . Relaxations of order w = 2 . 

Total POPs 97 26 

Mean t SDPT 3 / t Multi 1.10 1.02 

Mean t Mosek / t Multi 1.53 0.52 

Mean t SeDuMi / t Multi 1.01 1.96 

(e) Integer partition . Relaxations of order w = 3 . 

Total POPs 33 21 

Mean t SDPT 3 / t Multi 1.13 1.08 

Mean t Mosek / t Multi 0.27 0.13 

Mean t SeDuMi / t Multi 0.54 1.35 
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start strategy with SDPT3 as the base algorithm will be faster than

Mosek. It is more interesting to see relative results between the

algorithms, in particular, between SDPT3 and the multilevel ap-

proach. Table 4 compares times for the same problems presented

in Table 3 . Given that SDPT3, SeDuMi and Mosek have different

stopping criteria, for this experiment we normalize the criteria to

decide when an SDP relaxation is solved. To this end, we use the

solution found by SeDuMi, SDPT3 and Mosek, to calculate the pri-

mal infeasibility, dual infeasibility and duality gap measures used

in SDPT3. Then, for any particular instance, we use the multilevel

method to solve three times the SDP relaxation with three differ-

ent tolerances corresponding to the three other algorithms. We cal-

culate the mean of the ratios of the solution times between each

of the three algorithms (SeDuMi, SDPT3 and Multilevel) and the

multilevel method. For example, t SDPT 3 / t Multi for n = 10 is equal to

1.68 in Table 4 part (a), which indicates that the mean of the ra-

tio between the time used by SDPT3 and the multilevel method

for the 84 problems not solved by the first order relaxation is 1.68.

The results give more insight about the speed of the algorithms,

of particular interest the relative times between SDPT3 and the

multilevel approach. In this case we can see that the multilevel

method improves in average the base interior point method for all

the problems from a conservative 1.02 for the Integer Partition up

to 1.76 for the 20 variables Quadratic problems. The rest of the ta-

ble shows that Mosek can be up to 10 times faster than the multi-

level, nevertheless, this means that in general Mosek can be more

than 10 times faster than SDPT3. It would be interesting to use the

warm start with Mosek, however, to the best of our knowledge the

starting point capability is not offered by this solver. 

6. Conclusions 

Using SDP relaxations for polynomial optimization problems

has been proved to be a powerful tool to solve other-wise hard

non-convex problems. This paper proposes a new approach to ex-

ploit the usually unused information contained in the lower levels

of the Lasserre hierarchy. The new prolongation operators relating
he lower and higher levels are simple and easy to implement, and

ur numerical experiments show that they can be useful as an ap-

roximate solution by themselves, or as an initial point to be used

long with an interior point method. When the latter version is

mplemented, we do not claim that the warm start method (which

e have referred as the multilevel approach) is better than any

ther IPM or any other alternative to solve POPs (like the algo-

ithm Biq Mac for MAX-CUT problems developed in Rendl, Rinaldi,

 Wiegele, 2010 ). In fact, depending on the particular POP that we

re trying to solve and its size, other solvers can perform better

han SDPT3 and our multilevel version. However, we can improve

he efficiency of the underlying IPM, in our case SDPT3, and given

he inexpensive cost of calculating the prolongation points once

he solution of a lower relaxation has been found, it is worth to

se them as initial points when no more information is available.

ecently, new and promising SDP relaxations have been proposed

 Lasserre et al., 2017 ). These new hierarchies have shown good nu-

erical results when compared with the classical Lasserre hierar-

hy, and therefore it will be interesting to implement the multi-

evel ideas in that framework. 
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