
A Simple Abstraction for Complex Concurrent Indexes

Pedro da Rocha Pinto
Imperial College London
pmd09@doc.ic.ac.uk

Thomas Dinsdale-Young
Imperial College London

td202@doc.ic.ac.uk

Mike Dodds
University of Cambridge
mike.dodds@cl.cam.ac.uk

Philippa Gardner
Imperial College London

pg@doc.ic.ac.uk

Mark Wheelhouse
Imperial College London
mjw03@doc.ic.ac.uk

Abstract
Indexes are ubiquitous. Examples include associative arrays,
dictionaries, maps and hashes used in applications such as
databases, file systems and dynamic languages. Abstractly, a
sequential index can be viewed as a partial function from
keys to values. Values can be queried by their keys, and
the index can be mutated by adding or removing mappings.
Whilst appealingly simple, this abstract specification is in-
sufficient for reasoning about indexes that are accessed con-
currently.

We present an abstract specification for concurrent in-
dexes. We verify several representative concurrent client ap-
plications using our specification, demonstrating that clients
can reason abstractly without having to consider specific
underlying implementations. Our specification would, how-
ever, mean nothing if it were not satisfied by standard imple-
mentations of concurrent indexes. We verify that our speci-
fication is satisfied by algorithms based on linked lists, hash
tables and BLink trees. The complexity of these algorithms, in
particular the BLink tree algorithm, can be completely hidden
from the client’s view by our abstract specification.

General Terms Algorithms, Concurrency, Theory, Verifi-
cation.

Keywords B-Trees, Concurrent Abstract Predicates, Sepa-
ration Logic.

1. Introduction
An index is a data structure where data is associated with
identifying keys, through which the data can be efficiently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

retrieved. Indexes are ubiquitous in computer systems: they
are integral to databases, caches, file systems, and even the
objects of dynamic languages such as JavaScript. Concurrent
systems use indexes for: database sanitation – to concur-
rently remove patients who have been cured or transferred;
graphics rendering – to clip all objects outside horizontal or
vertical bounds; garbage collection – to concurrently mark
reachable objects; and web applications – to allow multiple
clients to add and remove pictures and comments, for in-
stance. A variety of implementations of indexes exist, such
as skip lists, hash tables and B-trees. Different implementa-
tions offer different performance characteristics, but all ex-
hibit the same abstract behaviour.

To a sequential client, an index can be viewed abstractly
as a partial function from keys to values. A client can query
or mutate the index without having to take into account the
complexities of its underlying implementation. This simple,
yet powerful, abstract specification largely accounts for the
popularity of indexes. However, this abstraction breaks down
if an index is accessed concurrently. When several threads
insert, remove and query keys, clients can no longer model
the whole index by a single partial function. Each client must
take account of potential interference from other threads.

In this paper, we present a novel abstract specification for
concurrent indexes, and use it to verify a number of client
programs. Crucially, clients can reason abstractly using our
specification without having to consider specific underlying
implementations. However, we can also verify our specifica-
tion against complex concurrent index implementations.

Our approach is based on concurrent abstract predi-
cates [7], recently introduced to reason about concurrent
modules. With this technology, we can view the index as
divisible: keys are a resource which can be divided between
the threads. When threads operate on disjoint keys, they can
do so independently of each other. When threads operate on
shared keys, concurrent abstract predicates can account for
the interference caused by other threads.

Intuitive description of the approach. First, consider the
disjoint case, where each key is manipulated by a single
thread. In this case, we can verify each thread in terms of
the keys it uses, and combine the results to understand the
composed system. In our specification, we have the predi-
cates in(h, k, v) and out(h, k): in(h, k, v) declares that the
key k is mapped to value v in index h; out(h, k) declares
that there is no mapping of k. A thread must hold one of
these predicates in order to modify k. A disjointness axiom
enforces that only one thread can hold such a predicate on
k at any one time. We describe these predicates as abstract,
because they do not reveal how they are implemented.

Given these predicates, we can give the following speci-
fication to remove:{

in(h, k, v)
}

remove(h, k)
{
out(h, k)

}
With this specification, we can prove the following property
of a simple client program performing parallel removes (our
proof assumes that k1 6= k2):{

in(h, k1, v1) ∗ in(h, k2, v2)
}{

in(h, k1, v1)
}

remove(h, k1){
out(h, k1)

}
{
in(h, k2, v2)

}
remove(h, k2){
out(h, k2)

}{
out(h, k1) ∗ out(h, k2)

}
In this proof, we reason about the parallel threads individ-
ually. We then join the disjoint pre- and postconditions to
form the overall proof. Disjointness is expressed by the sep-
arating conjunction, ∗, of concurrent separation logic [16].
The disjointness axiom requires that k1 6= k2.

Now consider the shared case, where threads can inter-
fere with each other: for example, when k1 = k2 in the
parallel removes. We introduce the more refined predicates
indef(h, k, v)i, outdef(h, k)i, inrem(h, k, v)i and outrem(h, k)i.
These predicates are extended in two ways:

1. def and rem are restrictions on the type of interference
that is allowed on the key: def prohibits any interference,
while rem only permits removal of the key. All threads
must agree on the type of interference for a given key.

2. The interference permissions i ∈ (0, 1] determine whether
a thread has shared (0 < i < 1) or exclusive (i = 1) ac-
cess to a key. If a thread holds shared permission, it can
only perform operations that respect the interference re-
strictions.

Using the rem predicates, we can give the following specifi-
cation for remove:{

inrem(h, k, v)i
}

remove(h, k)
{
outrem(h, k)i

}
Predicates can be split and joined by permission, so for
example we have the axiom:

inrem(h, k, v)i+j ⇐⇒ inrem(h, k, v)i ∗ inrem(h, k, v)j ,

where the sum of permissions held by all threads cannot ex-
ceed 1. In addition, if the current thread holds exclusive per-
mission, we have axioms to change the type of the interfer-
ence restriction without violating the expectations of other
threads, such as:

indef(h, k, v)1 ⇔ inrem(h, k, v)1.

Using our specification and these axioms, we can prove a
natural specification for parallel remove on a shared key:{

indef(h, k, v)1
}{

inrem(h, k, v)1
}{

inrem(h, k, v) 1
2
∗ inrem(h, k, v) 1

2

}{
inrem(h, k, v) 1

2

}
remove(h, k){
outrem(h, k) 1

2

}
{
inrem(h, k, v) 1

2

}
remove(h, k){
outrem(h, k) 1

2

}{
outrem(h, k) 1

2
∗ outrem(h, k) 1

2

}{
outdef(h, k)1

}
This specifies the strong property that, if we definitely know
that key k has a value then, after the parallel remove, we
definitely know that the value has been removed. We do not
know which thread has performed the remove, but this fact
is irrelevant to correctness.

Verifying clients and index implementations. Our concur-
rent index specification allows us to present a single abstract
interface to clients, irrespective of the choice of underly-
ing implementation. We demonstrate that our specification
is useful by verifying several representative client programs
such as function memoization, a prime number sieve and a
mapping of a function onto an index.

We also verify that several concurrent index algorithms
satisfy our specification: in particular, a naı̈ve linked list
algorithm with coarse-grained locking for expository pur-
poses; a simple algorithm using a hash table linked to a set of
(abstract) secondary indexes, to demonstrate the verification
of a more complex implementation; and Sagiv’s substantial
BLink tree algorithm [20] to demonstrate the scalability of our
techniques to a real-world algorithm. During verification, we
found a subtle bug in the BLink tree algorithm.

We use the concurrent abstract predicate methodol-
ogy [7] to hide low-level sharing in the implementations
from clients. In particular, the underlying sharing mecha-
nism used by the BLink tree algorithm to permit non-blocking
reads is exceedingly complex. This complexity is completely
hidden from the client’s view by our abstract specification.

Related work. We build directly on concurrent abstract
predicates (CAP) [7], which provides a logic for verifying
concurrent modules based on separation logic. CAP devel-
oped from three lines of work: racy concurrent variants of
separation logic such as RGSep [9, 10, 23]; sequential mod-
ular reasoning based on abstract predicates [17]; and fine-
grained modular reasoning based on context logic [3, 8]. We

originally used RGSep [23] to verify concurrent B-trees [4].
However, RGSep and similar approaches depend on global
conditions; consequently, they cannot verify abstract spec-
ifications such as our index specification. This observation
formed part of our original motivation for CAP.

Our concurrent index specification descends from the set
specification verified in [7]. In that paper, we focussed on
building a sound logic, and verified only simple, disjoint
specifications against small implementations. As far as we
are aware, our specification is the first in separation logic
to allow thread-local reasoning combined with races over
elements of a shared structure. We have verified our index
specification against Sagiv’s real-world concurrent BLink tree
algorithm [20]1, a substantial jump in the complexity of the
verification compared with [7]. Our work is beginning to
develop the idioms necessary to scale to large examples.

Others have worked on reasoning abstractly about index-
like data structures for sequential clients. For example, Dillig
et al. propose a static analysis for C-like programs which
represents the abstract content of containers [6]. Kuncak et
al. propose an analysis that represents various kinds of data
by abstract sets, while proving these abstractions [14].

One of the most challenging parts of our work was veri-
fying that the concurrent BLink tree implementation satisfies
our specification. Some prior work exists on verifying se-
quential B-trees. In [21], B-tree search and insert operations
are verified as fault-free in a simplified sequential setting. In
[15], a sequential B-tree implementation is verified in Coq
as part of a relational database management system. The au-
thors comment that the proof was difficult and in need of ab-
straction. They go on to state that ‘verifying the correctness
of high-performance, concurrent B+ trees will be a particu-
larly challenging problem’.

The only prior verification of a concurrent B-tree we are
aware of is a highly-abstracted version of the algorithm mod-
elled in process algebra [18]. It verifies a global specifica-
tion, rather than allowing elements to be divided between
threads. We believe that our work provides the first direct,
formal verification of Sagiv’s widely-used algorithm [20].

Paper structure. §2 gives technical background. §3 give
the disjoint index specification, and §4 extends it to sharing.
§5 discusses iteration over indexes. §6 describes verifying
our specification against index implementations. §3-5 can
be understood from the simple summary in §2. A complete
understanding of the technicalities in §6 requires knowledge
of the original CAP paper [7].

2. Separation Logic & Abstraction
This paper is based on separation logic [19], a Hoare-style
program logic for reasoning locally about programs that ma-
nipulate resource: for example, C programs that manipulate
the heap. Local reasoning focusses on the specific part of

1 Without compression, which is beyond the scope of this paper.

the resource that is relevant at each point in the program.
This supports scalable and compositional reasoning, since
disjoint resource neither impinges upon nor is affected by
the behaviour of the program at that point.

Separation logic specifications have a fault-avoiding
partial-correctness interpretation. Consider the following
specification for a command C (here P , Q are assertions):

{P} C {Q}

The interpretation of this specification is that (1) executing
C in a state satisfying assertion P will result in a state
satisfying assertion Q, if the command terminates; and (2)
the resources represented by P are the only resources needed
for C to execute successfully.

Other resources can be conjoined with such a specifica-
tion without affecting its validity. This is expressed by the
following proof rule:

FRAME
{P} C {Q}

{P ∗ F} C {Q ∗ F}
〈side-condition〉

This rule allows us to extend a specification on a small re-
source with an unmodified frame assertion F , giving a larger
resource. Here, ‘∗’ is the so-called separating conjunction.
Combining two assertions P and F into a separating con-
junction P ∗F asserts that both resources are independent of
each other. The side-condition simply states that no variable
occurring free in F is modified by the program C.

Separation logic provides straightforward reasoning about
sequential programs. It also handles concurrency [16], using
the following rule:

PAR
{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖C2 {Q1 ∗Q2}

In a concurrent setting, the precondition and postcondition
are interpreted as resources owned exclusively by the thread.
Reasoning using PAR is thread-local. We reason about each
thread purely using the resources that are mentioned in its
precondition, without requiring global reasoning about in-
terleaving. As with sequential reasoning, locality is the key
to compositional reasoning about threads.

Abstraction. Abstract specifications are a mechanism for
specifying the external behaviour of a module’s functions,
while hiding their implementation details from clients. Re-
sources are represented by abstract predicates [17]. Clients
do not need to know the concrete definitions of these predi-
cates; they can reason purely in terms of the module’s oper-
ations. For example, insert in a set module might be spec-
ified as:{

set(x, S)
}

insert(x, v)
{
set(x, S ∪ {v})

}
insert updates the abstract contents of the set at address x
from S to S ∪ {v}. A client can reason about the high-level

behaviour of insert without knowing about the concrete
definition of the set predicate.

Abstract predicates, however, can only represent the set as
a single entity, because implementation details disrupt finer-
grained abstractions. Concurrent abstract predicates [7], on
the other hand, can achieve finer abstractions. We can break
the set down into predicates representing individual ele-
ments: in(x, v) if v belongs to the set x; out(x, v) if it does
not. Different threads can hold access to different set el-
ements. When element v is not in the set, the command
insert can be specified by:{

out(x, v)
}

insert(x, v)
{
in(x, v)

}
Concurrent abstract predicates provide a finer granularity of
local reasoning, whilst still hiding implementation details
from clients. We follow the concurrent abstract predicate
approach in our reasoning about concurrent indexes.

3. Index Specification: Disjointness
We start by giving a simple specification which divides an
index up into its constituent keys. Our specification ensures
that each key is accessed by at most one thread (in §4 we
discuss a refined specification that supports sharing). Our
specification hides the fact that each key is part of an under-
lying shared data structure, allowing straightforward high-
level reasoning about keys and values.

Abstractly, the state of an index can be seen as a partial
function mapping keys to values2:

H : Keys ⇀ Vals

There are three basic operations on an index – search,
insert and remove – which operate on index h (with cur-
rent state H) as follows:

• search(h, k) looks for the key k in the index. It returns
H(k) if it is defined, and nil otherwise.
• insert(h, k, v) tries to modify H to associate the key k

with value v. If k ∈ dom(H) then insert does nothing.
Otherwise it modifies the shared index to H] {k 7→ v}.
• remove(h, k) tries to remove the value of the key k from

the index. If k /∈ dom(H) then remove does nothing.
Otherwise it rewrites the index to H \ {k}.

This view of operations on the index is appealingly simple,
but cannot be used for practical concurrent reasoning. This
is because it depends on global knowledge of the underlying
index H . To reason in this way, a thread would require
perfect knowledge of the behaviour of other threads.

To avoid this, we give a specification that breaks the
index up by key value. Our specification allows threads to

2 Where possible, we treat the key and value sets abstractly. Implementa-
tions require certain properties of these sets, however: all require keys to be
comparable for equality, hash tables require the ability to compute hashes
of keys, and B-trees require a linear ordering on keys.

hold the exclusive ownership of an individual key. Each key
in the index is represented by a predicate, either in or out
depending on whether the key is associated with a value or
not. The predicates have this intuitive interpretation:

in(h, k, v) : there is a mapping in the index h from k to v,
and only the thread holding the predicate can
modify k.

out(h, k) : there is no mapping in the index h from k,
and only the thread holding the predicate can
modify k.

These predicates combine knowledge about state – whether
a key is in the index – with knowledge about ownership
– whether the thread is allowed to alter that key. A thread
holding the predicate for a given key knows the value of
the key, and can be sure that no other thread will modify
it. This entangling of state with ownership is essential to our
approach: each predicate is invariant under the behaviour of
other threads, meaning its implementation can be abstracted.

The index operations have the following specifications
with respect to these predicates:{

in(h, k, v)
}

r := search(h, k)
{
in(h, k, v) ∧ r = v

}{
out(h, k)

}
r := search(h, k)

{
out(h, k) ∧ r = nil

}{
in(h, k, v′)

}
insert(h, k, v)

{
in(h, k, v′)

}{
out(h, k)

}
insert(h, k, v)

{
in(h, k, v)

}{
in(h, k, v)

}
remove(h, k)

{
out(h, k)

}{
out(h, k)

}
remove(h, k)

{
out(h, k)

}
Predicates can be composed using the separating conjunc-
tion ∗, indicating that they hold independently of each other.
Note that our specification allows us to reason about an in-
dex as a collection of disjoint, independent elements, despite
the fact that indexes are generally implemented as a single
shared data structure.

Each predicate represents exclusive ownership of a par-
ticular key. Our specification represents this fact by exposing
the following axiom:(

(in(h, k, v) ∨ out(h, k)) ∗
(in(h, k, v′) ∨ out(h, k))

)
=⇒ false

Given the above specifications, we can reason locally
about programs that use concurrent indexes. Consider for
example the following simple program:

r := search(h, k2);
insert(h, k1, r) ‖ remove(h, k2)

This program retrieves the value v associated with the key
k2. It then concurrently associates v with the key k1 and
removes the key k2. When the program completes, k1 will
be associated with v, and k2 will have been removed from
the index. This specification can be expressed as:{

out(h, k1) ∗ in(h, k2, v)
}
−
{
in(h, k1, v) ∗ out(h, k2)

}

We can prove this specification as follows:{
out(h, k1) ∗ in(h, k2, v)

}
r := search(h, k2);{

out(h, k1) ∗ in(h, k2, v) ∧ r = v
}{

out(h, k1) ∧ r = v
}

insert(h, k1, r){
in(h, k1, v)

}
{
in(h, k2, v)

}
remove(h, k2){
out(h, k2)

}{
in(h, k1, v) ∗ out(h, k2)

}
In this proof, the search operation first uses the predicate
in(h, k2, v) to retrieve the value v. Then, the parallel rule
hands insert and remove the out(h, k1) and in(h, k2, v)
predicates respectively. The postcondition of the program
consists of the separating conjunction of the two thread
postconditions.

3.1 Example: Map
A common operation on a concurrent index is applying a
particular function to every value held in the index: mapping
the function onto the index. We consider a simple algorithm
rangeMap that maps function f (implemented by f) onto
keys within a specified range. We implement rangeMap with
a divide-and-conquer approach, which splits the key range
into sub-intervals on which the map operation is recursively
applied in parallel.

rangeMap(h, k1, k2) {

if (k1 = k2) {

r := search(h, k1);

if (r 6= nil) {

remove(h, k1);

r := f(r);

insert(h, k1, r);

}

} else {

rangeMap(h, k1, k1+((k2-k1)/2))

|| rangeMap(h, k1+((k2-k1)/2)+1, k2)

}}

We specify rangeMap as follows, where S is a set of key-
value pairs:{�k1≤i≤k2 . (out(h, i) ∧ i /∈ keys(S)) ∨

(∃v. in(h, i, v) ∧ (i, v) ∈ S)

}
rangeMap(h, k1, k2){�k1≤i≤k2 . (out(h, i) ∧ i /∈ keys(S)) ∨

(∃v. in(h, i, f(v)) ∧ (i, v) ∈ S)

}
(Here, � is the iterated separating conjunction. That is,
�x∈{1,2,3}. P is equivalent to P [1/x] ∗ P [2/x] ∗ P [3/x].
The set keys(S) is the set of keys associated with values in
S.)

In the specification, the logical variable S describes the
initial state of the index (in the key range [k1, k2]). Assuming
that S contains at most one key-value pair for each key, the
key i (for k1 ≤ i ≤ k2) initially has value v if and only if

{�k1≤i≤k2 . (out(h, i) ∧ i /∈ keys(S)) ∨
(∃v. in(h, i, v) ∧ (i, v) ∈ S)

}
rangeMap(h, k1, k2) {

if (k1 = k2) {{
k1 = k2 ∧ ((out(h, k1) ∧ k1 /∈ keys(S)) ∨
(∃v. in(h, k1, v) ∧ (k1, v) ∈ S))

}
r := search(h, k1);{
((out(h, k1) ∧ k1 /∈ keys(S) ∧ r = nil) ∨
(in(h, k1, r) ∧ (k1, r) ∈ S)) ∧ k1 = k2

}
if (r 6= nil) {{

in(h, k1, r) ∧ (k1, r) ∈ S ∧ k1 = k2
}

remove(h, k1);{
out(h, k1) ∧ (k1, r) ∈ S ∧ k1 = k2

}
r := f(r);{
∃v. out(h, k1) ∧ (k1, v) ∈ S ∧ r = f(v) ∧ k1 = k2

}
insert(h, k1, r);{
∃v. in(h, k1, f(v)) ∧ (k1, v) ∈ S ∧ k1 = k2

}
}{
k1 = k2 ∧ ((out(h, k1) ∧ k1 /∈ keys(S)) ∨
(∃v. in(h, k1, f(v)) ∧ (k1, v) ∈ S))

}
} else {

�
k1≤i≤

⌊
k1+k2

2

⌋.
(
(out(h, i) ∧ i /∈ keys(S)) ∨
(∃v. in(h, i, v) ∧ (i, v) ∈ S)

)
∗

�⌊
k1+k2

2

⌋
<i≤ k2

.

(
(out(h, i) ∧ i /∈ keys(S)) ∨
(∃v. in(h, i, v) ∧ (i, v) ∈ S)

)


// Apply the PAR rule.

rangeMap(h, k1, k1+((k2-k1)/2))

|| rangeMap(h, k1+((k2-k1)/2)+1, k2)
�

k1≤i≤
⌊
k1+k2

2

⌋.
(
(out(h, i) ∧ i /∈ keys(S)) ∨
(∃v. in(h, i, f(v)) ∧ (i, v) ∈ S)

)
∗

�⌊
k1+k2

2

⌋
<i≤ k2

.

(
(out(h, i) ∧ i /∈ keys(S)) ∨
(∃v. in(h, i, f(v)) ∧ (i, v) ∈ S)

)


}}{�k1≤i≤k2 . (out(h, i) ∧ i /∈ keys(S)) ∨
(∃v. in(h, i, f(v)) ∧ (i, v) ∈ S)

}
Figure 1. Proof for rangeMap.

(i, v) ∈ S. After execution of rangeMap, the postcondition
ensures that if the key i had and initial value v, then it now
has value f(v), and if it had no value then it still has no
value. A proof that rangeMap conforms to this specification
is given in Figure 1.

rangeMap might not be considered truly typical of map
operations, as it maps over a range of keys rather than the
entire index. In §5, we introduce a specification for iterators,
allowing all keys in an index to be enumerated. Using an
iterator, we implement and verify a map function over all
values in the index.

4. Index Specification: Sharing
The specification we defined in the previous section requires
that each key in the index is accessed by at most one thread.
However, often threads read and write to keys at the same
time. In this section, we define a refined specification that
allows for concurrent access to keys. As before, our speci-

fication hides implementation details and allows threads to
reason locally.

Consider the following program:

remove(h, k) ‖ r := search(h, k) (1)

If we know at the start of the program that key k maps to
some value v, we should be able to establish that there will
not be a mapping from the key k at the end. However, we
will not know the value of r, because we do not know at
which point during the remove operation that the search

operation will read the value associated with k.
Implementations have many different ways of handling

the sharing of keys (for example using mutual exclusion
locks or transactions), but at the abstract level they all behave
in the same way. If a thread reads a key multiple times, the
reads all return the same result, unless another thread also
writes to that key.

Our refined specification is based on abstract predicates
that express three facts about a given key:

1. whether there is a mapping from the key to some value in
a set;

2. whether the thread holding the predicate can add or re-
move the value of the key in the index;

3. whether any other concurrently running threads (the en-
vironment) can add or remove the value of the key in the
index.

These facts are related. If a key maps to a value in the index,
but other threads are allowed to remove the value of the key,
the current thread cannot assume the value will remain in
the index. Our predicates therefore reflect the uncertainty
generated by sharing in a local way.

We define the following set of predicates, parametric on
key k and index h:

indef(h, k, v)i : there is a mapping from key k to value v
and a thread can only modify this key if it has exclusive
permission (i = 1).

outdef(h, k)i : there is no mapping from key k and a thread
can only modify this key if it has exclusive permission
(i = 1).

inins(h, k, S)i : there is a mapping from key k to a value in
set S and threads can only insert values in set S at this
key.

outins(h, k, S)i : there may be a mapping from key k to a
value in set S, threads can only insert values in set S
at this key, and the current thread has not made such an
insertion so far.

inrem(h, k, v)i : there may be a mapping from key k to value
v, threads can only remove the value at this key, and the
current thread has not done this so far.

outrem(h, k)i : there is no mapping from key k and threads
can only remove the value at this key.

unk(h, k, S)i : there may be a mapping from key k to a value
v in set S and threads can search, remove and insert any
value in set S at this key.

read(h, k) : there may be a mapping from key k to some
value, the current thread may not change it, but other
threads can make any modification.

The subscripts def, ins and rem and the fractional compo-
nents i ∈ (0, 1] record the behaviours allowed by the current
thread and its environment on key k.

Access to keys can be shared between threads. We rep-
resent this in our specification by splitting predicates. Our
specification includes axioms which define the ways that
predicates can be split and joined. For example:

inrem(h, k, v)i+j ⇐⇒ inrem(h, k, v)i ∗ inrem(h, k, v)j
if i+ j ≤ 1

As in Boyland [2], fractional permissions are used to record
splittings. A permission i ∈ (0, 1) records that a key is
shared with other threads, while i = 1 records it is held
exclusively by the current thread.

When a thread holds exclusive access to a key (i = 1),
the thread can add or remove the key freely. When a thread
shares access to the key (i ∈ (0, 1)), the subscripts def, ins
and rem restrict what the thread and its environment are
able to do. Subscript def specifies that no thread is able to
modify the key. Subscript ins specifies that both thread and
environment can insert on the key, but not remove the key,
while subscript rem specifies the converse.

Modifying keys concurrently can result in different threads
holding different predicates for the same key. For example,
suppose a thread holds the inrem(h, k, v)1 predicate, which
denotes that the key k has value v in the index. Since the
permission is 1, this knowledge is assured. However, we
can split this predicate into two halves, inrem(h, k, v) 1

2
and

inrem(h, k, v) 1
2

, and give each half to two sub-threads. As-
sume the first thread does not modify the key, but the second
calls remove(h, k), which has the following specification:

{inrem(h, k, v)i} remove(h, k) {outrem(h, k)i}

The result is uncertainty: one thread holds the outrem(h, k) 1
2

predicate, stating that k is not in the index, while the other
holds the inrem(h, k, v) 1

2
predicate, stating that k may have

associated value v. We define joining axioms that resolve
this uncertainty. Since rem allows removal but not insertion,
we know that once the key has been removed from the
index, it stays removed. So outrem dominates inrem, which
is reflected in the following axiom:

inrem(h, k, v)i ∗ outrem(h, k)j =⇒ outrem(h, k)i+j

if i+ j ≤ 1

Some predicates take sets of value arguments, while oth-
ers take singleton values. We use singleton values when we

Thread Env.
Predicate Perm. Ins. Rem. Ins. Rem.

indef / outdef 1 Yes Yes No No
indef / outdef i No No No No
inins / outins 1 Yes No No No
inins / outins i Yes No Yes No
inrem / outrem 1 No Yes No No
inrem / outrem i No Yes No Yes

unk i Yes Yes Yes Yes
read - No No Yes Yes

Figure 2. Predicates and their interference.

know a key has that value. We use a set of values when con-
current inserts are possible (that is, in the ins and unk cases),
because we cannot know which thread will be the first to
insert. However, if a value is inserted, it will be one of the
values in the set S.

Our full specification is given in Figure 3. The choice of
predicates is not arbitrary; each represents a stable combina-
tion of facts about the key k and the behaviours permitted
by the thread and environment. Figure 2 shows how various
combinations of fractional permissions and subscripts cor-
respond to various behaviours. Our predicates give almost
complete coverage of all possible combinations. The miss-
ing combinations are either cases where the current thread
has no access to a key, or where it is only safe to conclude
that a key has an unknown value, in which case we can use
one of the read or unk predicates. We do not claim that our
specification is definitive, just one natural choice. We ex-
pect to adapt our specification when looking at real-world
applications such as the POSIX file system, the concurrent
database algorithm ARIES, and java.util.concurrent.
We believe that our specification is robust enough to be able
to support such applications with minor modification.

4.1 Proving Simple Examples
Recall the program labelled (1) with which we began this
section. This program satisfies the following specifications:{

indef(h, k, v)1
}
−
{
outdef(h, k)1

}{
outdef(h, k)1

}
−
{
outdef(h, k)1

}
Using our abstract specifications, we can prove the first of
these specifications as follows:{

indef(h, k, v)1
}{

indef(h, k, v)1 ∗ read(h, k)
}{

indef(h, k, v)1
}

remove(h, k){
outdef(h, k)1

}
{
read(h, k)

}
r := search(h, k){

read(h, k)
}{

outdef(h, k)1 ∗ read(h, k)
}{

outdef(h, k)1
}

The proof starts with the predicate indef(h, k, v)1, which
specifies that there is a mapping from key k to a value v in
the index. The def subscript asserts that no other thread can
modify the value mapped by this key. We use the following
axiom to create a read(h, k) predicate:

Xi ⇐⇒ Xi ∗ read(h, k)

This allows the right-hand thread to perform a simple
search operation, although the postcondition establishes
nothing about the result. This captures the fact that we
do not know at which point during the remove opera-
tion the search operation will read the key’s value. The
indef(h, k, v)1 predicate allows the left-hand thread to re-
move the value successfully, as we know that it is the only
thread changing the shared state for the key k. When both
threads finish their execution we use the same axiom to
merge read(h, k) back into the outdef(h, k)1. We can prove
the second specification in a similar fashion.

We can establish natural specifications for all the various
combinations of insert, remove and search. For example,
consider the parallel composition of two removes on the
same key k:

remove(h, k) ‖ remove(h, k)

Regardless of whether k is in the index, we definitely know
that there will be no mapping from key k afterwards. By
splitting the predicates, we can share this knowledge be-
tween the threads. {

indef(h, k, v)1
}{

inrem(h, k, v)1
}{

inrem(h, k, v) 1
2
∗ inrem(h, k, v) 1

2

}{
inrem(h, k, v) 1

2

}
remove(h, k){

outrem(h, k) 1
2

}
{
inrem(h, k, v) 1

2

}
remove(h, k){
outrem(h, k) 1

2

}{
outrem(h, k) 1

2
∗ outrem(h, k) 1

2

}{
outdef(h, k)1

}
We cannot always establish the exact state of an index at

all points during a program, but our specification will always
allow us to be as precise as possible. For example, consider
the following program:

remove(h, k) ‖ insert(h, k, v)
remove(h, k)

When run in a state where key k is initially unassigned, we
will not know if there is a mapping from key k in the index at
the end of the parallel call. However, after the final remove

SPECIFICATIONS: {
indef(h, k, v)i

}
r := search(h, k)

{
indef(h, k, v)i ∧ r = v

}{
outdef(h, k)i

}
r := search(h, k)

{
outdef(h, k)i ∧ r = nil

}{
inins(h, k, S)i

}
r := search(h, k)

{
inins(h, k, S)i ∧ r ∈ S

}{
outins(h, k, S)i

}
r := search(h, k)

{
(outins(h, k, S)i ∧ r = nil) ∨ (inins(h, k, S)i ∧ r ∈ S)

}{
inrem(h, k, v)i

}
r := search(h, k)

{
(inrem(h, k, v)i ∧ r = v) ∨ (outrem(h, k)i ∧ r = nil)

}{
outrem(h, k)i

}
r := search(h, k)

{
outrem(h, k)i ∧ r = nil

}{
unk(h, k, S)i

}
r := search(h, k)

{
unk(h, k, S)i ∧ (r ∈ S ∨ r = nil)

}{
read(h, k)

}
r := search(h, k)

{
read(h, k)

}{
indef(h, k, v)i

}
insert(h, k, v′)

{
indef(h, k, v)i

}{
outdef(h, k)1

}
insert(h, k, v)

{
indef(h, k, v)1

}{
(inins(h, k, S)i ∨ outins(h, k, S)i) ∧ v ∈ S

}
insert(h, k, v)

{
inins(h, k, S)i

}{
unk(h, k, S)i ∧ v ∈ S

}
insert(h, k, v)

{
unk(h, k, S)i

}{
indef(h, k, v)1

}
remove(h, k)

{
outdef(h, k)1

}{
outdef(h, k)i

}
remove(h, k)

{
outdef(h, k)i

}{
inrem(h, k, v)i ∨ outrem(h, k)i

}
remove(h, k)

{
outrem(h, k)i

}{
unk(h, k, S)i

}
remove(h, k)

{
unk(h, k, S)i

}
AXIOMS:

Xi ∗Xj ⇔ Xi+j if i+ j ≤ 1

inins(h, k, S)i ∗ outins(h, k, S)j ⇒ inins(h, k, S)i+j if i+ j ≤ 1

inrem(h, k, v)i ∗ outrem(h, k)j ⇒ outrem(h, k)i+j if i+ j ≤ 1

indef(h, k, v)1 ⇔ inrem(h, k, v)1

∃v ∈ S. indef(h, k, v)1 ⇔ inins(h, k, S)1

outdef(h, k)1 ⇔ outrem(h, k)1 ⇔ outins(h, k, S)1

Xi ⇔ Xi ∗ read(h, k)
read(h, k) ⇔ read(h, k) ∗ read(h, k)

unk(h, k, S)1 ⇔ outdef(h, k)1 ∨ ∃v ∈ S. indef(h, k, v)1

CONTRADICTION AXIOMS:

Xi ∗Xj ⇒ false if i+ j > 1

indef(h, k, v)i ∗Xj ⇒ false if X 6= indef(h, k, v)

outdef(h, k)i ∗Xj ⇒ false if X 6= outdef(h, k)

(inins(h, k, S)i ∨ outins(h, k, S)i) ∗Xj ⇒ false if X 6= inins(h, k, S) ∧X 6= outins(h, k, S)

(inrem(h, k, v)i ∨ outrem(h, k)i) ∗Xj ⇒ false if X 6= inrem(h, k, v) ∧X 6= outrem(h, k)

(inins(h, k, S)i ∗ inins(h, k, S′)j) ∨ (outins(h, k, S)i ∗ outins(h, k, S′)j) ⇒ false if S 6= S′

unk(h, k, S)i ∗Xj ⇒ false if X 6= unk(h, k, S)

Figure 3. Full specification for concurrent indexes. X denotes indef(h, k, v), outdef(h, k), inins(h, k, S), outins(h, k, S),
inrem(h, k, v), outrem(h, k) or unk(h, k, S) in the axioms.

{
∃i ∈ (0, 1].�v′ . unk(memo, v′, {f(v′)})i

}
memoized_f(v) {{�v′ . unk(memo, v′, {f(v′)})i

}
// frame the irrelevant values off{
unk(memo, v, {f(v)})i

}
r := search(memo, v);{
unk(memo, v, {f(v)})i ∧ (r = f(v) ∨ r = nil)

}
if (r = nil) {{

unk(memo, v, {f(v)})i
}

r := f(v);{
unk(memo, v, {f(v)})i ∧ r = f(v)

}
insert(memo, v, r);{
unk(memo, v, {f(v)})i ∧ r = f(v)

}
}{
unk(memo, v, {f(v)})i ∧ r = f(v)

}
// frame the values back on{
r = f(v) ∧�v′ . unk(memo, v′, {f(v′)})i

}
return r;

}{
ret = f(v) ∧ ∃i ∈ (0, 1].�v′ . unk(memo, v′, {f(v′)})i

}
Figure 4. Proof outline for memoized f.

operation we know that the key k will be unassigned.{
outdef(h, k)1

}{
outdef(h, k)1 ∨ indef(h, k, v)1

}{
unk(h, k, {v})1

}{
unk(h, k, {v}) 1

2
∗ unk(h, k, {v}) 1

2

}{
unk(h, k, {v}) 1

2

}
remove(h, k){

unk(h, k, {v}) 1
2

}
{
unk(h, k, {v}) 1

2

}
insert(h, k, v){
unk(h, k, {v}) 1

2

}{
unk(h, k, {v}) 1

2
∗ unk(h, k, {v}) 1

2

}{
unk(h, k, {v})1

}{
outdef(h, k)1 ∨ indef(h, k, v)1

}
remove(h, k){
outdef(h, k)1

}
The key step in this proof is the use of the final axiom
from Figure 3 to convert a complete unk predicate into the
disjunction of an in and out predicate. In both cases, the
remove operation results in an index where the key k is
definitely unassigned.

4.2 Example: Memoization
A common client application of indexes is memoization:
storing the results of expensive computations to avoid having
to recompute them. Our specification can verify that a mem-
oized function gives the same result as the original function.

Suppose that f is a side-effect free procedure implement-
ing the (mathematical) function f . A memoized version of
f, memoized f, can be implemented using the index memo

as follows:

{
∃i ∈ (0, 1].�v′ . unk(memo, v′, {f(v′)})i

}
evict_f() {

while (...) {{�v′ . unk(memo, v′, {f(v′)})i
}

k := nondet();

// frame the irrelevant values off{
unk(memo, k, {f(k)})i

}
remove(memo,k);{
unk(memo, k, {f(k)})i

}
} }{
∃i ∈ (0, 1].�v′ . unk(memo, v′, {f(v′)})i

}
Figure 5. Proof outline for evict f.

memoized_f(v) {

r := search(memo, v);

if (r = nil) {

r := f(v);

insert(memo, v, r);

}

return r;

}

We give memoized f the following specification:{
memo

}
r := memoized f(v)

{
r = f(v) ∧memo

}
where the abstract predicate memo is

memo
∆
= ∃i ∈ (0, 1].�v′ . unk(memo, v′, {f(v′)})i

The definition of memo states that, for each value v′, we do
not know if v′ is in the index. The predicate is splittable: that
is, memo⇔ memo ∗memo. The memoized f specification
therefore allows calls to f to be replaced with memoized f,
even in parallel. A proof of the specification for memoized f

is shown in Figure 4.

Evicting memoised values. We may want to periodically
evict memoised values from the index, for example to ensure
that the number of stored values does not grow indefinitely.
Using our index specification, we can show that values can
be evicted in parallel with memoised_f().

We model eviction by the function evict_f, which non-
deterministically removes keys from the index:

evict_f() {

while (...) {

k := nondet();

remove(memo,k);

} }

where nondet() returns an arbitrary key value and the
Boolean assertion for while is not given. (A more nuanced
eviction function might store timestamps along with the
memoised values, and evict only old values. For simplic-
ity, we choose not to model this.)

We give evict_f the following specification:{
memo

}
evict f()

{
memo

}
A proof of this specification is given in Figure 5. Because we
can split and join memo arbitrarily, we can reason as follows:{

memo
}{

memo ∗memo
}{

memo
}

evict f(){
memo

}
{
memo

}
r := memoised f(v){
memo ∧ r = f(v)

}{
memo ∗ (memo ∧ r = f(v))

}{
memo ∧ r = f(v)

}
Consequently, it is safe to run the memoised version of f in
parallel with eviction from the index.

4.3 Example: The Sieve of Eratosthenes
Let us consider an example where many threads require
write access to the same shared value in a concurrent in-
dex. We choose the Sieve of Eratosthenes [1, 13], an algo-
rithm for generating all of the prime numbers up to a given
maximum value max. The sieve is a simple algorithm, but it
is representative of a class of algorithms where threads co-
operatively race to delete elements of shared data. Similar
behaviour occurs in databases when deleting stale records,
and in rendering when removing objects outside of a clipped
region.

The algorithm starts by constructing a set of integers from
2 (since 1 is not a prime number) to max. We use an index
to represent the set of (candidate) prime numbers. A set
can be viewed as an instance of an index where the set of
values is a singleton (in this example, we use {0}). A key
is either present, representing that it is in the set, or not: the
value itself conveys no information. We assume a function
idxrange that creates an index with mappings for keys in a
specified range.

For each integer in the range 2 .. b
√
maxc, a thread is

created that removes multiples of that integer from the set.
Once all threads have completed, the remaining elements
of the set are exactly those with no factors in the range
2 .. b

√
maxc (excluding themselves), and hence exactly the

prime numbers less than or equal to max.
The code for the implementation is given in Figure 6. The

procedure sieve is the main sieve function, which uses the
recursive parwork procedure to run each worker thread in
parallel. The procedure worker is the implementation of the
worker threads.

The specification for sieve is{
emp ∧ max > 1

}
x := sieve(max){
�i∈[2..max]. isPrime(i)⇒ indef(x, i, 0)1

∧ ¬isPrime(i)⇒ outdef(x, i)1

}

sieve(max) {

idx := idxrange(2, max);

parwork(2, max, idx);

return idx;

}

parwork(v, max, idx) {

if (v ≤ sqrt(max)) {

worker(v, max, idx)

||

parwork(v+1, max, idx)

} }

worker(v, max, idx) {

c := v + v;

while (c ≤ max)

remove(idx, c);

c := c + v;

} }

Figure 6. Prime sieve functions.

where the predicate ‘emp’ denotes no resource at all, and
the predicate ‘isPrime(i)’ holds exactly when i is prime. We
also define the predicate ‘fac(i, v, v′)’, which holds when i
has a factor (distinct from itself) in the range [v .. v′]:

fac(i, v, v′)
∆
= ∃j. v ≤ j ≤ v′ ∧ j 6= i ∧ (imod j) = 0

The proof that sieve meets its specification is given in
Figure 7. This proof requires we establish the following
specification for worker:{

2 ≤ v ∧�i∈[2..max]. inrem(idx, i, 0)t
}

worker(v, max, idx){�i∈[2..max]. fac(i, v, v)⇒ outrem(idx, i)t ∧
¬fac(i, v, v)⇒ inrem(idx, i, 0)t

}
This specification expresses that the worker removes all mul-
tiples of v from the set; any other elements will still be
present unless they are removed by another thread. The fact
that (for v ≤ v′)

fac(i, v, v) ∨ fac(i, v + 1, v′) ⇐⇒ fac(i, v, v′)

allows us to conclude that the parwork procedure eliminates
exactly the set elements with factors different from them-
selves in the range v .. max. Since p > 1 is prime if and only
if it has no factor in the range 2 ..

⌊√
p
⌋
, for i ∈ [2 .. max]

¬fac(i, 2,
⌊√

max
⌋
) ⇐⇒ isPrime(i).

Together with the index axioms that allow rem predicates to
be switched to def predicates when full permission is held,
this lets us establish the postcondition of sieve.

5. Iterating an Index
The high-level specification discussed so far does not allow
us to explore the contents of an arbitrary index. To use
search, we must know which keys we seek. If we do not
(and the set of keys is infinite), we cannot write a program
that examines all the values stored in the index. To handle
this case, we add imperative iterators, based loosely on those
in Java. Iterators have three operations:

{
emp ∧ max > 1

}
sieve(max) {

idx := idxrange(2, max);{�i∈[2..max]. inrem(idx, i, 0)1
}

parwork(2, max, idx);{�i∈[2..max]. fac(i, 2, b
√
maxc)⇒ outrem(idx, i)1 ∧

¬fac(i, 2, b
√
maxc)⇒ inrem(idx, i, 0)1

}
// By properties of prime numbers and

// index axioms{
�i∈[2..max]. isPrime(i)⇒ indef(idx, i, 0)1

∧ ¬isPrime(i)⇒ outdef(idx, i)1

}
return idx;

}{
ret = idx ∧�i∈[2..max]. isPrime(i)⇒ indef(idx, i, 0)1

∧ ¬isPrime(i)⇒ outdef(idx, i)1

}

{
2 ≤ v ∧�i∈[2..max]. inrem(idx, i, 0)t

}
parwork(v, max, idx) {

if (v ≤ sqrt(max)) {
(
2 ≤ v ∧�i∈[2..max]. inrem(idx, i, 0) t

2

)
∗(

2 ≤ v+ 1 ∧�i∈[2..max]. inrem(idx, i, 0) t
2

)
worker(v, max, idx) ‖ parwork(v+1, max, idx)

(�i∈[2..max]. fac(i, v, v)⇒ outrem(idx, i) t
2
∧

¬fac(i, v, v)⇒ inrem(idx, i, 0) t
2

)
∗

�i∈[2..max]. fac(i, v+1, b
√
maxc)⇒ outrem(idx, i) t

2

∧ ¬fac(i, v+1, b
√
maxc)⇒ inrem(idx, i, 0) t

2


// Using permission combination axioms{�i∈[2..max]. fac(i, v, b

√
maxc)⇒ outrem(idx, i)t ∧

¬fac(i, v, b
√
maxc)⇒ inrem(idx, i, 0)t

}
} }{�i∈[2..max]. fac(i, v, b

√
maxc)⇒ outrem(idx, i)t ∧

¬fac(i, v, b
√
maxc)⇒ inrem(idx, i, 0)t

}

{
2 ≤ v ∧�i∈[2..max]. inrem(idx, i, 0)t

}
worker(v, max, idx) {

c := v + v;

while (c ≤ max) {
�i∈[2..(c−1)]. fac(i, v, v)⇒ outrem(idx, i)t ∧

¬fac(i, v, v)⇒ inrem(idx, i, 0)t

∗�j∈[c..max]. inrem(idx, j, 0)t


remove(idx, c);

c := c + v;

}}{�i∈[2..max]. fac(i, v, v)⇒ outrem(idx, i)t ∧

¬fac(i, v, v)⇒ inrem(idx, i, 0)t

}

Figure 7. Proofs for the sieve and worker programs.

• it := createIter(h) creates a new iterator for index h.
• (k, v) := next(it) returns some key-value pair in the

index for which it is an iterator. The returned pair will be
one that has not been returned by a previous call to next

on it. When all key-value pairs have been returned, the
call returns (nil, nil).
• destroyIter(it) frees the iterator it.

To iterate an index, one creates a new iterator, calls next

until it returns (nil, nil), then frees the iterator. Notice that
the next procedure just returns some key-value pair, placing
no order on the iteration. This keeps the iterator specifica-
tion general, as many underlying implementations have no
natural ordering.

As in Java, we do not allow full mutability of an index be-
ing iterated. We allow partial mutability: keys can be safely
modified once they have been returned by next.

Iterator specification. An iterator is represented by the ab-
stract predicate iter(it, h, S,K, i), which describes an itera-
tor it, iterating over index h. The set S contains the key-
value pairs that are in the index and have not yet been re-
turned by next, while K is the set of keys that are not as-
signed in the index. The iterator has definite permission i for
every key in keys(S) ∪K.

Our specification for the three iterator operations is
shown in Figure 8. Creating an iterator for an index requires
definite information about the state of each key in that index,
in the form of indef and outdef predicates for all keys. It is not
sensible for two threads to share the same iterator, as each
thread will iterate over an unknown subset of the underlying
index. As such, the iter predicate cannot be split for sharing
between threads. However, notice that we can create multi-
ple iterators for a single index, as createIter requires only
fractional permission for each key.

The two specifications for next handle the case where
the client has not yet seen all key-value pairs in the iterator
(in which case, a pair is returned non-deterministically), and
when it has (in which case, nil is returned for both the key
and value). Destroying an iterator liberates all of the index
predicates that have not been returned by next, including
the outdef predicates.

5.1 Example: a more powerful map.
In §3.1, we verified rangeMap, an algorithm that mapped all
values in an index from a given key range through a function,
replacing the values with the result. Using an iterator, we
can define a concurrent map that does not require a key
range, and works over all entries in an index. To avoid having
to reason about function pointers, we assume the particular
function f is baked into the algorithm source.

{�(k,v)∈S indef(h, k, v)i ∗�k 6∈keys(S) outdef(h, k)i
}
it := createIter(h)

{
iter(it, h, S, keys(S), i)

}
{
iter(it, h, S,K, i) ∧ S 6= ∅

}
(k, v) := next(it)

{
(k, v) ∈ S ∧ iter(it, h, S \ {(k, v)},K, i) ∗

indef(h, k, v)i

}
{
iter(it, h, ∅,K, i)

}
(k, v) := next(it)

{
iter(it, h, ∅,K, i) ∧ k = nil ∧ v = nil

}{
iter(it, h, S,K, i)

}
destroyIter(it)

{�(k,v)∈S indef(h, k, v)i ∗�k∈K outdef(h, k)i
}

Figure 8. Specification for iterators. For createIter, set S denotes the key-value pairs of h, keys(S) denotes the assigned
keys of h, and keys(S) denotes the unassigned keys.

{�(k,v)∈S indef(h, k, v)1 ∗ �k 6∈keys(S) outdef(h, k)1
}

map_f(h) {

it := createIter(h);{
iter(it, h, S, keys(S), 1)

}
map_worker(it, h);{
iter(it, h, ∅, keys(S), 1) ∗�(k,v)∈S indef(h, k, f(v))1

}
destroyIter(it);

}{�(k,v)∈S indef(h, k, f(v))1 ∗ �k 6∈keys(S) outdef(h, k)1
}

{
iter(it, h, S,K, 1)

}
map_worker(it, h) {

(k, v) := next(it);{
(k, v) ∈ S ∧ iter(it, h, S \ {(k, v)},K, 1) ∗ indef(h, k, v)1

∨ (iter(it, h, ∅,K, 1) ∧ k = nil ∧ v = nil)

}
if (k 6= nil) {{

(k, v) ∈ S ∧ iter(it, h, S \ {(k, v)},K, 1) ∗ indef(h, k, v)1
}

({
(k, v) ∈ S ∧ indef(h, k, v)1

}
remove(h, k); insert(h, k, f(v));{
(k, v) ∈ S ∧ indef(h, k, f(v))1

}
) ||{
iter(it, h, S \ (k, v),K, 1)

}
map_worker(it, h);{
iter(it, h, ∅,K, 1) ∗�(k′,v′)∈S\(k,v) indef(h, k

′, f(v′))1
}

} }{
iter(it, h, ∅,K, 1) ∗�(k,v)∈S indef(h, k, f(v))1

}
Figure 9. Proof outline for map f.

map_f(h) {

it := createIter(h);

map_worker(it, h);

destroyIter(it);

}

map_worker(it, h) {

(k,v) := next(it);

if (k 6= nil) {

(remove(h, k);

insert(h, k, f(v));)

|| map_worker(it, h);

}}

A proof of correctness for map f is given in Figure 9.

5.2 Example: counting distinct values.
We can use an index to store discovered information, and
then use iteration to summarise what has been discovered.
To illustrate this, we give an algorithm which counts the

number of distinct values stored in a tree. Both the tree and
the secondary store is used for recording distinct values are
implemented using our index specification.

Our algorithm is defined as follows:

count(it,k,is) {

fetch(it,k,is);

itr := createIter(is);

num := 0;

(k,v) := next(itr);

while(k 6= nil) {

num := num + 1;

remove(is,k);

(k,v) := next(itr);

}

destroyIter(itr);

return num;

}

fetch(it,k,is) {

if (k 6= nil) {

(k1,k2,v) :=

search(it,k);

insert(is,v,k);

(fetch(it,k1,is) ||

fetch(it,k2,is));

}

}

The function count calls fetch to construct the index is

from the values of the tree in the index it. Values can appear
at more than one tree node, but are only recorded once
in the is index. count then iterates the index is, counting
the number of distinct values discovered. We define a tree
predicate annotated with the set of values stored in the tree:

tree(h, k, vs)
∆
= ∃k1, k2, vs1, vs2, v.

(k = nil ∧ vs = ∅ ∧ emp) ∨tree(h, k1, vs1) ∗ tree(h, k2, vs2)
∗ indef(h, k, 〈k1, k2, v〉)1
∧ vs = vs1 ∪ vs2 ∪ {v}


fetch and count satisfy the following specifications:{

tree(it, k, vs) ∗�k′ . outins(is, k
′,Keys)i

}
fetch(it, k, is){
tree(it, k, vs) ∗�k′ /∈vs. outins(is, k

′,Keys)i
∗�k′∈vs. inins(is, k

′,Keys)i

}
{
tree(it, k, vs) ∗�k′ . outdef(is, k

′)1
}

count(it, k, is){
tree(it, k, vs) ∗�k′ . outdef(is, k

′)1 ∧ ret = |vs|
}

Figure 10 shows an outline proof of these specifications.
The part of the proof associated with searching the tree is
similar in structure to O’Hearn et al’s proof of tree disposal

{
tree(it, k, vs) ∗�k′ . outins(is, k

′, ItKeys)i
}

fetch(it,k,is) {

if (k 6= nil) {
∃k1, k2, vs1, vs2, v. tree(it, k1, vs1) ∗ tree(it, k2, vs2)
∗ indef(it, k, 〈k1, k2, v〉)1 ∗�k′ . outins(is, k

′, ItKeys)i
∧ vs = vs1 ∪ vs2 ∪ {v}


(k1,k2,v) := search(it,k);
∃vs1, vs2. tree(it, k1, vs1) ∗ tree(it, k2, vs2)
∗ indef(it, k, 〈k1, k2, v〉)1 ∗�k′ . outins(is, k

′, ItKeys)i
∧ vs = vs1 ∪ vs2 ∪ {v}


insert(is,v,k);
∃vs1, vs2. tree(it, k1, vs1) ∗ tree(it, k2, vs2)
∗ indef(it, k, 〈k1, k2, v〉)1 ∗ inins(is, v, ItKeys) i

2

∗�k′ 6=v. outins(is, k
′, ItKeys) i

2

∗�k′ . outins(is, k
′, ItKeys) i

2
∧ vs = vs1 ∪ vs2 ∪ {v}


(fetch(it,k1,is) || fetch(it,k2,is));

}

}{
tree(it, k, vs) ∗�k′ /∈vs. outins(is, k

′, ItKeys)i
∗�k′∈vs. inins(is, k

′, ItKeys)i

}
{
tree(it, k, vs) ∗�k′ . outdef(is, k

′)1
}

count(it,k,is) {

fetch(it,k,is);
tree(it, k, vs) ∗�k′ /∈vs. outdef(is, k

′)1 ∗
�k′∈vs. ∃v′ ∈ ItKeys. (k′, v′) ∈ S ∧ indef(is, k

′, v′)1
∧ vs = keys(S)


itr := createIter(is);

num := 0;{
tree(it, k, vs) ∗ iter(itr, is, S, vs, 1) ∧ vs=keys(S) ∧ num=0

}
(k,v) := next(itr);

while(k 6= nil) {

num := num + 1;

remove(is,k);
∃vs′, S′. tree(it, k, vs) ∗ iter(itr, is, S′, vs, 1) ∗
�k′∈vs\vs′ . outdef(is, k

′)1 ∧ |vs′|+ num = |vs|
∧ vs′ = keys(S′)


(k,v) := next(itr);

}{
tree(it, k, vs) ∗ iter(itr, is, ∅, vs, 1) ∗
�k′∈vs. outdef(is, k

′)1 ∧ num = |vs|

}
destroyIter(itr);

return num;

}{
tree(it, k, vs) ∗�k′ . outdef(is, k

′)1 ∧ ret = |vs|
}

Figure 10. Outline proofs of count and fetch.

using concurrent separation logic [16]. The difference is that
we are able to reason abstractly about concurrently inserting
into the is index.

6. Verifying Index Implementations
In this section, we verify three quite different concurrent in-
dex implementations against our abstract specification. Note

that proving implementations is an obligation on the writer
of the module – clients can reason using our specification
without any knowledge of such proofs. We first introduce a
simple list-based implementation and show that it satisfies
the disjoint specification of §3. This example is given to de-
velop our technical approach. We then prove that a hash ta-
ble implementation satisfies the sharing specification of §4.
Finally, we show that our approach scales to quite complex
implementations, by outlining our proof that the BLink tree
algorithm satisfies the sharing specification.

Approach: Concurrent Abstract Predicates. We use the
techniques developed in the work on concurrent abstract
predicates (CAP) [7] to prove that index implementations
satisfy our specification. This approach extends separation
logic with both explicit reasoning about sharing within mod-
ules, and a powerful abstraction mechanism that can hide
sharing from clients.

Sharing between threads is represented in CAP by shared
regions, denoted by boxed assertions of the form P

r

I
. The

assertion P describes the contents of the region, r is the
name of the region, and I is an interface environment spec-
ifying type of mutations threads can perform on P . Asser-
tions on shared regions behave additively under ∗, that is,

P
r

I
∗ Q

r

I

∆
= P ∧Q

r

I

A shared region can be mutated by the environment threads.
This means that assertions about shared regions must be
stable: that is, invariant under other threads’ interference.

Often, different threads can perform different operations
over a shared resource: for example, they may be able to
mutate different keys in a shared index. To represent this be-
haviour, CAP introduces capabilities. These are resources
giving a thread the ability to perform particular operations.
Threads can hold both non-exclusive and exclusive capabil-
ities. When an exclusive capability is held, no other thread
can perform the associated operation.

Shared regions and capabilities can be abstracted using
predicates in the manner described in §2. Each predicate rep-
resents both some information about a shared region, and
some ability held by the thread to modify the shared re-
gion. If the combination of capabilities held ensures that the
shared assertion is invariant, then stability need not be con-
sidered by clients, and the predicate can be treated abstractly.

In the discussion below, we assume the proof system and
semantics given in [7], and only give details necessary for
understanding the proof structure. The interested reader is
referred to [7] for other technical details, including a proof
of soundness for the CAP logic.

6.1 Linked List Implementation
To illustrate our approach, we consider a very simple index
implementation which uses a linked list with a single lock
protecting the entire list3. The code for this implementation

3 This example is quite similar to the coarse-grained set example from [7].

search(h, k) {

lock(h.lk);

e := h.nxt;

while (e 6= nil) {

if (e.key = k) {

unlock(h.lk);

return e.val;

}

e := e.nxt;

}

unlock(h.lk);

return nil;

}

insert(h, k, v) {

lock(h.lk);

e := h.nxt;

while (e 6= nil) {

if (e.key = k) {

unlock(h.lk);

return;

}

e := e.nxt;

}

e := makeNode(k,v,h.nxt);

h.nxt := e;

unlock(h.lk);

}

remove(h, k) {

lock(h.lk);

e := h.nxt;

prev := h;

while (e 6= nil) {

if(e.key = k) {

prev.nxt := e.nxt;

disposeNode(e);

unlock(h.lk);

return;

}

prev := e;

e := e.nxt;

}

unlock(h.lk);

}

Figure 11. Linked list operations.

is given in Figure 11. In order to simplify the presentation,
we only consider the disjoint specification of §3 in this
section. Additional technicalities are required to handle the
full sharing specification of §4. We give these technicalities
in §6.3, when we verify the BLink tree implementation against
the sharing specification.

Before performing any operation on the list, the thread
first acquires the lock. The search operation traverses the
list checking if an element matches the key; if so, it returns
the corresponding value. The insert operation is similar
to search. However, if it cannot find the key, it creates a
new node and adds it to the head of the list. The remove

operation searches for the key to be removed. If it finds the
key, it updates the previous node in the list to point to the
following node. The node, having been thus removed from
the list, is then deleted.

Interpretation of abstract predicates. In order to prove
that the operations of the implementation are correct with
respect to our specification, we first give concrete interpreta-
tions to the abstract predicates.

We begin by defining a predicate ls(a,H), corresponding
to list with address a and representing the index state H :
Keys ⇀ Vals. This is defined in terms of the inductive
predicate lseg(a, b,H), which represents a list segment with
address a and final pointer b, having key-value elements

given by H . A list segment is either empty, in which case
a = b and H = ∅, or it consists of a node at address a
whose key and value are taken from H , and whose nxt field
points to a list segment of the rest of the keys and values. The
definition of lseg is, in turn, defined in terms of the predicate
node(a, k, v, n), which simply represents a node at address
a whose key, val and nxt fields are k, v, and n respectively.
The formal definitions of these predicates are as follows:

node(a, k, v, n)
∆
= a.key 7→ k ∗ a.val 7→ v ∗ a.nxt 7→ n

lseg(a, b,H)
∆
= (a = b ∧H = ∅) ∨
∃k, v, n,H ′. H = H ′] {k 7→ v} ∧
node(a, k, v, n) ∗ lseg(n, b,H ′)

ls(a,H)
∆
= lseg(a, nil, H)

Using the ls predicate, we can give a concrete interpreta-
tion to our index predicates for the linked list implementa-
tion of an index, as follows:

in(h, k, v)
∆
= ∃r, l,H.H(k) = v ∧ [LOCK(k)]r1 ∗
lock(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)

r

I(r,h)

out(h, k)
∆
= ∃r, l,H. k /∈ dom(H) ∧ [LOCK(k)]r1 ∗
lock(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)

r

I(r,h)

Here, the boxed assertion describes the region r shared
between all the threads that can access the list. This boxed
assertion says that region r contains a lock at h.lk (we
define the predicate lock below) and a pointer h.nxt to a list
representing the contents of the index. The index state H is
existentially quantified; the assertions only specify whether
the key k is in the index, and its value, if any.

Both predicates also include the (unshared) capability re-
source [LOCK(k)]r1. A thread with such a capability in its lo-
cal state is able to update the contents of the corresponding
region r by performing the LOCK(k) action that is defined in
the interference environment I(r, h) associated with the re-
gion. We will give the formal definition of I(r, h) presently;
intuitively, the LOCK(k) action allows a thread to acquire
the lock in order to subsequently add or remove the key k.
The subscript 1 in the capability denotes that it is an exclu-
sive capability: no other thread can perform the action. The
exclusivity of the permission ensures that the predicates are
stable, since the state of key k in the index cannot be changed
by any other thread.

We define the predicate lock(x, r, k) as follows:

unlocked(x, r)
∆
= x 7→ 0 ∗ �

i∈Keys
[MOD(i)]r1

locked(x, r, j)
∆
= x 7→ 1 ∗ �

i∈Keys\{j}
[MOD(i)]r1

lock(x, r, k)
∆
= unlocked(x, r) ∨ ∃j 6= k. locked(x, r, j)

This lock predicate contains a shared lock bit and a collec-
tion of capabilities. Each capability [MOD(k)]r1 controls the

ability to add or remove a particular key k from the shared
list in region r. When these capabilities are in the shared re-
gion, no thread is able to modify the list; such is the case
when the lock is unlocked. When the lock is locked, a sin-
gle [MOD(j)]r1 capability is held by some thread, allowing it
to perform the necessary update, but only to the key j. The
lock(h.lk, r, k) predicate ensures, that no other thread can
have the [MOD(k)]r1 capability, and hence update key k.

Describing Interference. The meaning of the capabilities
[LOCK(k)]r1 and [MOD(k)]r1 is determined by the interfer-
ence environment associated with the region r: I(r, h). This
defines the possible state mutations that can occur over a
given shared region. The environment defines the meaning
of capabilities in terms of actions, written P Q. When a
thread holds a capability mapped to an action P Q, it is
permitted to replace a part of the region matching P with a
part matching Q. To perform the action, a thread may trans-
fer resource between the region and its own local state, and
may mutate it in an atomic operation.

For the linked list implementation, the interference envi-
ronment I(r, h) is defined as follows:

MOD(k) :


h.nxt 7→ l ∗ ls(l,H)

 h.nxt 7→ l′ ∗ ls(l′, H] {k 7→ v})
h.nxt 7→ l ∗ ls(l,H)

 h.nxt 7→ l′ ∗ ls(l′, H \ {k})

LOCK(k) :

{
h.lk 7→ 0 ∗ [MOD(k)]r1 h.lk 7→ 1

h.lk 7→ 1 h.lk 7→ 0 ∗ [MOD(k)]r1

The definition of MOD(k) says that a thread holding a ca-
pability [MOD(k)]r1 is allowed to update the list by adding
or removing the key k. The definition of LOCK(k) says that
the thread is allowed to set or unset the lock bit. Recall that
actions replace part of the shared state, so the definition of
LOCK(k) implies that a thread acquiring the lock also ac-
quires the capability [MOD(k)]r1, which leaves the shared
state. Similarly, when releasing the lock it must give up the
capability [MOD(k)]r1. In this way, acquiring the lock gives
a thread the ability to modify the contents of the list.

Verifying the operations. Having given concrete defini-
tions to the index predicates, we can verify that the mod-
ule’s implementations of add, remove and search match
our high-level specification. Figure 12 shows one such proof,
establishing that the implementation of insert matches the
following abstract specification:{

out(h, k)
}

insert(h, k, v)
{
in(h, k, v)

}
In the proof, mutations of the shared state require that the
thread holds a capability permitting the mutation. These
points in insert are annotated by program comments.
For example, towards the end of insert, the assignment

{
out(h, k)

}
insert(h, k, v) {{
∃r, l,H. k /∈ dom(H) ∧ [LOCK(k)]r1 ∗
lock(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)

r

I(r,h)

}
lock(h.lk); // use the capability [LOCK(k)]r1.{
∃r, l,H. k /∈ dom(H) ∧ [MOD(k)]r1 ∗ [LOCK(k)]r1 ∗

locked(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)
r

I(r,h)

}
e := h.nxt;

while (e 6= nil) {

∃r, l,H,H1, H2, k
′, v′, n. k /∈ dom(H) ∧

[MOD(k)]r1 ∗ [LOCK(k)]r1 ∗
locked(h.lk, r, k) ∗ h.nxt 7→ l ∗
lseg(l, e, H1) ∗ node(e, k′, v′, n) ∗ ls(n,H2)

∧H1]H2] {k′ 7→ v′} = H

r

I(r,h)


if (e.key = k) {{

false
}

// this branch is for k in the set

unlock(h.lk);

return;

}

e := e.nxt;
∃r, l,H,H1, H2. k /∈ dom(H) ∧

[MOD(k)]r1 ∗ [LOCK(k)]r1 ∗
locked(h.lk, r, k) ∗ h.nxt 7→ l ∗
lseg(l, e, H1) ∗ ls(e, H2) ∧H1]H2 = H

r

I(r,h)


}{
∃r, l,H. k /∈ dom(H) ∧ [MOD(k)]r1 ∗ [LOCK(k)]r1 ∗

locked(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)
r

I(r,h)

}
e := makeNode(k,v,h.nxt);
∃r, l,H. k /∈ dom(H) ∧ node(e, k, v, l) ∗

[MOD(k)]r1 ∗ [LOCK(k)]r1 ∗
locked(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)

r

I(r,h)


h.nxt := e; // use the capability [MOD(k)]r1.
∃r, l,H. k /∈ dom(H) ∧ [MOD(k)]r1 ∗ [LOCK(k)]r1 ∗

locked(h.lk, r, k) ∗ h.nxt 7→ e ∗
node(e, k, v, l) ∗ ls(l,H)

r

I(r,h)


unlock(h.lk); // use the capability [LOCK(k)]r1.{
∃r, l,H.H(k) = v ∧ [LOCK(k)]r1 ∗
lock(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)

r

I(r,h)

}
}{
in(h, k, v)

}
Figure 12. Proof outline for linked list insert.

h.nxt:=e assigns to the shared location h.nxt. This mu-
tation corresponds to performing the first of the actions as-
sociated with the [MOD(k)]r1 capability, held in the local
state. The action requires that initially h.nxt should point
to a list representing some index state H , and that after the
assignment it should point to a list representing the state
H] {k 7→ v} for some v. By considering the predicate
definitions, this is clearly the case.

It is necessary to check that the all assertions in the proof
are stable. In fact, once the lock has been acquired, the only

actions which can affect the shared state are MOD(k) and
LOCK(k). Since full permission to both is held in local state,
no interference can happen, and so the assertions are stable.

For the pre- and postconditions, the list may be locked
or unlocked, but it can only be modified with respect to
keys other than k. Since no information about such keys is
contained in these assertions, they are also stable.

Verifying the axioms. As well as proving the specifica-
tions for the operations, our other obligation is establishing
that implementation satisfies the axioms of the abstract spec-
ification. To do this, we use the concrete definitions for the
abstract predicates. For example, we prove the following ax-
iom from the disjoint specification:

in(h, k, v) ∗ out(h, k) =⇒ false

If we expand the predicate definitions on the left-hand side
of this implication, we end up with the following assertion:

∃r, l,H.H(k) = v ∧ [LOCK(k)]r1 ∗
lock(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)

r

I(r,h)
∗

∃r, l,H. k /∈ dom(H) ∧ [LOCK(k)]r1 ∗
lock(h.lk, r, k) ∗ h.nxt 7→ l ∗ ls(l,H)

r

I(r,h)

The memory location h.nxt cannot belong to more than
one region at once, so we can infer that both existentially-
quantified rs must refer to the same shared region. The ca-
pability [LOCK(k)]r1 is exclusive, denoted by the 1 subscript.
Now

[LOCK(k)]r1 ∗ [LOCK(k)]r1 =⇒ false

and so the axiom holds.

6.2 Hash Table Implementation
We now consider a second index implementation which uses
a hash table. The hash table algorithm consists of a fixed-
size array and a hashing function mapping from keys to
offsets in the array. Each element of the array is a pointer
to a secondary index storing the key-value pairs that hash to
the associated array offset.

Secondary indexes are often implemented as linked lists,
but in fact any kind of index implementation can be used.
In this section, we assume that secondary indexes are imple-
mented by some module matching our abstract specification,
but do not specify which. (To avoid naming conflicts, we
rename the methods and predicates of the secondary index
to search′, insert′, remove′, in′def , in

′
rem, etc..) We then

show that the resulting hash table module also matches our
abstract specification. That is, we show that we can build a
concurrent index using a (different) index module.

The hash table implementations of search, insert and
remove are given in Figure 13. This code assumes a pure
hashing function hash which takes a key k and returns an
integer hash(k) between 0 and max − 1, where max is the
size of the hash table array.

search(h, k) {

w := hash(k);

a := [h+w];

return (search′(a, k));

}

insert(h, k, v) {

w := hash(k);

a := [h+w];

insert′(a, k, v);

}

remove(h, k) {

w := hash(k);

a := [h+w];

remove′(a, k);

}

Figure 13. Hash table operations.

Although the implementation we consider here is very
simple, it captures the essence of more complicated im-
plementation’s such as Java’s ConcurrentHashMap, which
uses resizable hash tables as a secondary index. It would be
invaluable to consider such real-world implementations in
detail, but this is beyond the scope of the present work.

Interpretation of abstract predicates. All of our index
predicates – inins, outins, inrem, and so on – consist of a shared
region containing a hash table pointer, and a local predicate
representing the associated secondary index. Picking an ar-
bitrary example, we define inrem(h, k, v)i as follows:

inrem(h, k, v)i
∆
= ∃r, h′. h+ hash(k) 7→ h′ ∗ true r

∗ in′rem(h′, k, v)i
(The predicates have exactly the same form. Only the predi-
cate pertaining to the secondary index changes.)

The shared region contains a pointer from h+ hash(k) to
the address of the secondary index, h′. The rest of the hash
table array also belongs to the shared region; it is represented
in the assertion by true. The array of pointers representing
the hash table is read only, so the interference environment
for the shared region is empty.

The secondary index is represented by the predicate
in′rem(h

′, k, v)i. Note that this definition hides completely
the implementation of the secondary index. The hash table
simply knows that this element of the index can be queried
according to the abstract index specification. State mutations
on the secondary index are already captured by the predicate
representing it, meaning that they need not be considered
when verifying the hash table implementation.

Verifying the operations. A sketch-proof for the hash table
implementation of search is given in Figure 14. Notice
that this proof appeals to the specification of search′ when
retrieving a value from the appropriate secondary index.
Since there are no actions defined for the shared region,
stability of our assertions is trivial.

Verifying the axioms. The axioms follow from the axioms
of the secondary index. In particular, two predicates involv-
ing the same key will be defined in terms of predicates which
must be on the same secondary index.

{
indef(h, k, v)i

}
search(h, k) {{
∃r, h′. (h+ hash(k)) 7→ h′ ∗ true r ∗ in′def(h′, k, v)i

}
w := hash(k);

a := [h+w];{
∃r. (h+ hash(k)) 7→ a ∗ true r ∗ in′def(a, k, v)i

}
return (search′(a, k)); // search′ specification{
∃r, h′. h+ hash(k) 7→ h′ ∗ true r ∗ in′def(h′, k, v)i

∧ ret = v

}
}{
indef(h, k, v)i ∧ ret = v

}
Figure 14. Proof outline for hash table search.

6.3 BLink Tree Implementation
Our final index implementation is Sagiv’s BLink tree algo-
rithm [20]. (Note that we only consider the algorithm with-
out compression here.) A BLink tree is a balanced search tree.
An example is shown in Figure 15. The leaves of the tree
contain they key-value pairs stored in the index in order.
Non-leaf (or inner) nodes associate keys with pointers to
nodes at the next level down, which direct the traversal of the
tree. In addition, the final pointer in each node’s list, the link
pointer, points to the next node at that level (if it exists). The
tree is accessed through a prime block which holds pointers
to the first node at each level in the tree.

During inserts, nodes of the tree that are at full capacity
may be split by creating a new right sibling and transferring
half of the keys to the new node. This new node must then
be attached to the level above, which might require further
splittings. However, other operations may still need to tra-
verse the tree before this operation is completed. A traversal
in progress may therefore have to use link pointers to find
the correct leaf. Since the minimum values of nodes are al-
ways preserved, and every leaf with a minimum value no less
than that of a given node is reachable from that node, such
traversals are always possible.

Search operations on a BLink tree are lock-free, and insert
and remove operations lock only one node (or two if they
are modifying the root node) at a time, making this a highly
concurrent implementation of an index. This index algorithm
is much more complex than the list or hash table, and is
therefore considerably more challenging to verify.

The full details of the BLink tree implementation are too
lengthy to describe in detail. We only consider search in
any depth here; for full details, see the technical report [5].

Node notation. We use the notation node(l, k, p,D, k′, p′)
to denote the contents of a node, where:

• l determines whether the node is locked (l = 1) or not
(l = 0),
• k is the minimum key for the node (less than or equal to

all keys that are reachable from it),

• p is the pointer to the left-most child for an inner node, or
nil for a leaf node,
• D is a list of pairs of keys and child pointers (for inner

nodes), or keys and stored values (for leaf nodes),
• k′ is the maximum key for the node,
• p′ is the pointer to the next sibling of the node (or nil if it

is the last).

We also use inner(l, k, p,D, k′, p′) to denote an inner node
with the given contents (requiring that p 6= nil) and leaf(l, k,
D, k′, p′) to denote a leaf node. In this notation, the contents
of node 3 in Figure 15 would be represented as

inner(0,−∞, 1, [(22, 2), (38, 7)], 44, 8).

Interpretation of abstract predicates. All of our index
predicates are defined as a shared region containing a BLink

tree and a collection of shared capabilities, as well as
some thread-local capabilities. For example, the predicate
indef(h, k, v) is defined as follows:

indef(h, k, v)i
∆
= ∃r. B∈(h, k, v)

r

I(r,h)
∗ dcaps(k, r, i)

The shared assertion B∈(h, k, v) denotes a BLink tree at ad-
dress h containing the key-value pair (k, v). We omit the for-
mal definition of this predicate here, which may be found in
the technical report [5]. The predicate dcaps(k, r, i), which
is defined in Figure 16, consists of capabilities associated
with the current thread.

The permission subscripts of the capabilities are more
complex than those we have seen so far: they are deny-
guarantee permissions [9]. A guarantee permission, indi-
cated by the subscript (g, i) for 0 < i ≤ 1 (or simply g when
we do not care about the exact value of i), allows a thread to
perform the associated action. If the permission is less than
1, other threads may have guarantee permissions to perform
the same action – it is a non-exclusive permission. A deny
permission, indicated by the subscript (d, i) (or, again, sim-
ply d), does not allow the thread to perform the associated
action, but precludes the possibility that any other thread will
either. Fractions of the same type may be combined by ad-
dition, and (g, 1) = 1 = (d, 1) represents exclusive permis-
sion; however, a deny permission and a guarantee permission
cannot be combined, since they are conflicting. (For further
details, see Dodds et al. [9].)

The intuitive meaning of the capabilities in the dcaps
predicate is as follows. The [LOCK]rg capability says that the
current thread is allowed to lock nodes in the region r. The
[SWAP]rg capability allows the indef predicate to be modified
to represent different behaviour (for example, by converting
it to inrem or unk) provided i = 1. The [REM(0, k)]r(d,i)
capability says that neither the current thread, nor any other
thread, is allowed to remove the key k from the BLink tree
in region r. However, if i = 1, then the current thread has
the exclusive capability to remove key k from the tree. The

1

-∞ 4 10 20 22 22

L

2

37 38 3822

L

7

38 40 42 44 44

L

4

44 52 62 66 66

L

6

68 71 7166

L

5

77 85 9371

L

∞

8

66 7144 ∞

3

38 4422-∞

9

44 ∞-∞

primeblock

Figure 15. A BLink tree.

dcaps(k, r, i)
∆
= [LOCK]rg ∗ [SWAP]rg ∗ [REM(0, k)]r(d,i) ∗ �

v∈Vals
[INS(0, k, v)]r(d,i)

niceNode(N, k, v, r, h)
∆
= ∃k0, p0, D, k′, p′.

(
k′ = +∞∨ p′ 7→ node(−, k′,−,−,−,−) ∗ true r

I(r,h)

)
∧((

N = inner(−, k0, p0, D, k′, p′) ∧ ∀(k, p) ∈ D.

p 7→ node(−, k,−,−,−,−) ∗ true r

I(r,h)

)
∨
(
N = leaf(−, k0, D, k′, p′) ∧
(k0 < k ≤ k′ ⇒ (k, v) ∈ D)

))

Figure 16. Predicates used in the BLink tree proofs.

[INS(0, k, v′)]r(d,i) capabilities similarly restrict the ability to
insert value v′ at key k.

The other index predicates are defined in a similar way to
indef . For example, the definition of the inrem(h, k, v)i pred-
icate will include a REM capability for k with permission
(g, i), so that any thread may remove the key from the tree,
as well as all INS capabilities for k with permission (d, i),
so that no thread may insert values for the key into the tree.
The full definitions of the predicates may be found in the
technical report [5].

Describing Interference. The interference environment,
I(r, h), for the BLink tree implementation is markedly more
complex than for the list or hash table. It involves a sub-
stantial amount of capability swapping to track changes to
the shared state and to thread behaviour. Figure 17 gives a
few examples of definitions in the interference environment.
These definitions can be read as follows:

• LOCK allows a thread to lock a node in the BLink tree.
When locking, the thread acquires the exclusive capabil-
ity [UNLOCK(x)]r1, allowing it to unlock the node again.
• REM(t, k) allows a thread to give up [REM(t, k)]r(g,i)

and [UNLOCK(x)]r1 and acquire the exclusive capability
[MODLR(t, x, k, i)]r1. This means that a thread which is
allowed to remove the key k from the tree and holds the
lock on a node x can acquire the right to remove the
key k from the leaf node x (the value t is used to track
capability transfer in some environments).

• MODLR(t, x, k, i) allows a thread to remove a key-value
pair (k,−) from a leaf node. In doing so, the thread gives
up the capability [MODLR(t, x, k, i)]r1 and reacquires the
capability [UNLOCK(x)]r1, and, if t = 0, the capability
[REM(k)]r(g,i). (We write “−” to indicate an unspecified,
existentially quantified value.)

Full details of the interference environment may be found in
the technical report [5].

Note that both [REM(0, k)]r(g,i) and [REM(1, k)]r(g,i) ca-
pabilities allow a thread to remove the key k; however, the
latter requires the thread to leave a [REM(1, k)]r(g,i) capa-
bility behind in the shared state when it does so. This is
used to implement the inrem predicate: if none of the threads
with inrem(k, v) predicates remove k then between them they
must still be able to produce the full [REM(1, k)]r1 capability,
proving that none of them did so. Thus the inrem(k, v)1 can
be converted to indef(k, v)1.

Verifying the operations. We give a sketch proof in Fig-
ure 18, showing that the BLink tree implementation of search
matches the following specification:{
indef(h, k, v)i

}
r := search(h, k)

{
indef(h, k, v)i ∧ r = v

}
The search operation only mutates thread-local state, so
the thread does not require capabilities to perform actions.
However, by owning deny permissions (d, i) on all the REM
and INS capabilities for key k, the thread can establish that
no other thread can modify the value associated with k.

LOCK : x 7→ node(0, k0, p,D, k′, p′) ∗ [UNLOCK(x)]r1 x 7→ node(1, k0, p,D, k′, p′)

REM(t, k) : [MODLR(t, x, k, i)]r1 [REM(t, k)]r(g,i) ∗ [UNLOCK(x)]r1

MODLR(t, x, k, i) :

 x 7→ leaf(1, k0, D, k′, p′) ∗ [UNLOCK(x)]r1

∗
(
[REM(t, k)]r(g,i) ∧ t = 0 ∨ emp ∧ t = 1

)
∧ (k,−) ∈ D



 x 7→ leaf(1, k0, D
′, k′, p′)

∗ [MODLR(t, x, k, i)]r1
∧D = D′] (k,−)


Figure 17. Example actions from the BLink tree interference environment.

Thus, the assertion that the key-value pair (k, v) is contained
in the BLink tree is stable.

The proof uses the predicate niceNode(N, k, v, r, h), de-
fined in Figure 16. The definition of niceNode asserts that the
node descriptor N contains legitimate information about the
tree. If N is an inner node, then the children and link pointers
of N must all point to extant nodes in the tree, which have
the minimum values specified by N – this ensures that fol-
lowing a pointer reaches an appropriate node. If N is a leaf
node into whose range the key k falls, then the key-value
pair (k, v) must be stored in N – this ensures that the search
will return the correct value.

Assertions in the proof must be stable – that is, invari-
ant under interference from other threads. The stability of
niceNode is ensured by the fact that the capabilities held by
the thread do not allow nodes to be removed, the minimum
values of nodes to change, or key k to be changed.

A bug in the BLink tree algorithm. While verifying the al-
gorithm, we discovered a subtle bug in the original presen-
tation [20]. The bug can occur during an insert, when a
thread splits a tree node which itself was the result of another
thread splitting the tree root. In order to insert the new node
into the tree, the first thread will look in the prime block for
the node’s parent. However, the second thread might not yet
have written a pointer to the new root, resulting in an invalid
dereference. Our solution was to require that a thread split-
ting the current the root locks the new node. A thread trying
to insert must wait until the creation of the root is complete.
A detailed trace exhibiting this bug can be found in [5].

7. Conclusions
We have proposed a simple, abstract specification for reason-
ing about concurrent indexes. We have demonstrated the ver-
satility of our specification, verifying a representative range
of client applications ranging from common programming
patterns such as memoization and map, to algorithms such
as a prime number sieve. We have demonstrated that our par-
ticular choice of index specification is satisfied by three rad-
ically different concurrent implementations, based on sim-
ply linked lists, hash tables, and Sagiv’s complex and highly
concurrent BLink trees respectively.

Relationship to linearizability. Linearizability [12] is the
current de-facto correctness criterion for concurrent algo-

{
indef(h, k, v)i

}
search(h, k) {{

B∈(h, k, v)
r

I(r,h)
∗ dcaps(k, r, i)

}
PB := getPrimeBlock(h);

cur := root(PB);

N := get(cur);
B∈(h, k, v)

r

I(r,h)
∗ dcaps(k, r, i)

∗ niceNode(N, k, v, r, h)
∧ N = node(−, k0, p,D, k′, p′) ∧ k0 = −∞


while(isLeaf(N) = false) {

cur := next(N, k);

N := get(cur);

}
B∈(h, k, v)

r

I(r,h)
∗ dcaps(k, r, i)

∗ niceNode(N, k, v, r, h)
∧ N = leaf(−, k0, D, k′, p′) ∧ k0 < k


while(k > highValue(N)) {

cur := next(N, k);

N := get(cur);

}
B∈(h, k, v)

r

I(r,h)
∗ dcaps(k, r, i)

∗ niceNode(N, k, v, r, h)
∧ N = leaf(−, k′, D, k′′,−) ∧ k′ < k ≤ k′′


if(isIn(N, k)) {

B∈(h, k, v)
r

I(r,h)
∗ dcaps(k, r, i)

∗ niceNode(N, k, v, r, h)
∧ N = leaf(−, k′, D, k′′,−) ∧ (k, v) ∈ D


return(lookup(N, k));

} else {{
false

}
return nil;

}{
B∈(h, k, v)

r

I(r,h)
∗ dcaps(k, r, i) ∧ ret = v

}
}{
indef(h, k, v)i ∧ ret = v

}
Figure 18. Proof outline for the BLink tree search.

rithms. It requires that the methods of concurrent objects
behave as atomic operations, thus providing a proof tech-
nique for observational refinement [11]. We could employ
linearizability, or other atomicity refinement techniques such
as [22], as a proof technique for verifying that implementa-
tions meet our abstract specification: an implementation that
meets the sequential specification of an index and whose
operations behave atomically can easily be shown to meet
the concurrent specification. However, this simply shifts the
proof burden; our approach is able to verify clients and im-
plementations in a single coherent proof system.

While linearizability assures that index operations behave
atomically, our abstract specification makes no such guaran-
tee. Instead, our client proofs enforce abstract constraints on
the possible interactions between threads, such as only al-
lowing removals on a certain key. Consequently, while all
linearizable indexes can be shown to implement our speci-
fication, our specification also admits implementations that
are not linearizable. For instance, an index that implemented
removal by performing the operation twice in succession
could meet our specification, but would not be linearizable.
As a more realistic example, consider the program:

insert(k, 0) insert(k, 1)
x := search(k) y := search(k)

Linearizability ensures that, after executing the program, the
variables x and y will be equal (one or the other insert

must come first, and a second insert has no effect). How-
ever, our specification does not ensure this. An implemen-
tation in which writes are cached, for instance, may satisfy
our specification, but fail to provide this stronger guaran-
tee. In practice, the strength of specifications is often traded
against performance. We have shown how our approach can
provide weak (§3) and strong (§4) specifications of concur-
rent behaviour. Our approach could therefore be seen as a
flexible alternative to linearizability as a correctness crite-
rion for concurrent programs.

Acknowledgments. Special thanks to Moshe Vardi for
challenging us to verify Sagiv’s concurrent BLink tree algo-
rithm, and to Adam Wright for substantial contributions to
the section on iteration (§5), and invaluable discussions and
feedback overall. Thanks also to Bornat, Jones, Shapiro, and
many researchers at Cambridge, Imperial and Queen Mary
working on separation logic, for discussions and feedback.
We acknowledge funding from an EPSRC DTA (da Rocha
Pinto), EPSRC programme grant EP/H008373/1 (da Rocha
Pinto, Dinsdale-Young, Gardner and Wheelhouse) and EP-
SRC grant EP/H010815/1 (Dodds).

References
[1] BLELLOCH, G. E. Programming parallel algorithms. Com-

mun. ACM 39 (March 1996), 85–97.

[2] BOYLAND, J. Checking interference with fractional permis-
sions. In Static Analysis (2003).

[3] CALCAGNO, C., GARDNER, P., AND ZARFATY, U. Context
Logic and tree update. In POPL (2005), ACM.

[4] DA ROCHA PINTO, P. Reasoning about Concurrent Indexes.
Master’s thesis, Imperial College London, Sept. 2010.

[5] DA ROCHA PINTO, P., DINSDALE-YOUNG, T., DODDS, M.,
GARDNER, P., AND WHEELHOUSE, M. A simple abstraction
for complex concurrent indexes. Tech. rep., Imperial College
London, 2011.

[6] DILLIG, I., DILLIG, T., AND AIKEN, A. Precise reasoning
for programs using containers. SIGPLAN Not. 46 (2011).

[7] DINSDALE-YOUNG, T., DODDS, M., GARDNER, P.,
PARKINSON, M., AND VAFEIADIS, V. Concurrent abstract
predicates. In ECOOP (2010).

[8] DINSDALE-YOUNG, T., GARDNER, P., AND WHEEL-
HOUSE, M. Abstraction and Refinement for Local Reasoning.
In VSTTE (2010).

[9] DODDS, M., FENG, X., PARKINSON, M., AND VAFEIADIS,
V. Deny-guarantee reasoning. In ESOP (2009).

[10] FENG, X., FERREIRA, R., AND SHAO, Z. On the relationship
between concurrent separation logic and assume-guarantee
reasoning. In ESOP (2007).

[11] FILIPOVIC, I., O’HEARN, P., RINETZKY, N., AND YANG,
H. Abstraction for concurrent objects. In ESOP (2010).

[12] HERLIHY, M. P., AND WING, J. M. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans. Pro-
gram. Lang. Syst. 12 (July 1990), 463–492.

[13] HOARE, C. A. R. Proof of a structured program: ‘The sieve of
Eratosthenes’. The Computer Journal 15, 4 (1972), 321–325.

[14] KUNCAK, V., LAM, P., ZEE, K., AND RINARD, M. C. Mod-
ular pluggable analyses for data structure consistency. IEEE
Trans. Softw. Eng. 32 (December 2006), 988–1005.

[15] MALECHA, G., MORRISETT, G., SHINNAR, A., AND WIS-
NESKY, R. Toward a verified relational database management
system. In POPL (2010).

[16] O’HEARN, P. W. Resources, concurrency, and local reason-
ing. Theor. Comput. Sci. 375 (April 2007), 271–307.

[17] PARKINSON, M., AND BIERMAN, G. Separation logic and
abstraction. In POPL (2005).

[18] PHILIPPOU, A., AND WALKER, D. A process-calculus anal-
ysis of concurrent operations on b-trees. J. Comput. Syst. Sci.
62, 1 (2001), 73–122.

[19] REYNOLDS, J. Separation logic: a logic for shared mutable
data structures. In LICS (2002).

[20] SAGIV, Y. Concurrent operations on B*-trees with overtaking.
Journal of Computer and System Sciences 33 (October 1986).

[21] SEXTON, A., AND THIELECKE, H. Reasoning about B+ trees
with operational semantics and separation logic. ENTCS 218
(2008).

[22] TURON, A. J., AND WAND, M. A separation logic for
refining concurrent objects. In POPL (2011).

[23] VAFEIADIS, V., AND PARKINSON, M. A marriage of re-
ly/guarantee and separation logic. CONCUR (2007).

	Introduction
	Separation Logic & Abstraction
	Index Specification: Disjointness
	Example: Map

	Index Specification: Sharing
	Proving Simple Examples
	Example: Memoization
	Example: The Sieve of Eratosthenes

	Iterating an Index
	Example: a more powerful map.
	Example: counting distinct values.

	Verifying Index Implementations
	Linked List Implementation
	Hash Table Implementation
	BLink Tree Implementation

	Conclusions

