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Abstract

In the mid eighties, the System Architecture Research Centre at City University
developed a message-passing, UNIX compliant micro kernel (Meshiz) for our own
scalable distributed memory architecture (Topsy). Over the last two years we have
been engaged in a research programme aimed at learning from this experience, and
developing a new operating system based on these lessons. The result is the Angel
microkernel. This paper sets out the lessons we have learnt from Meshiz, how this has
influenced the design of Angel and outlines our current design of Angel and its C++
implementation. We will also describe our future plans and hopes for Angel, and the
lessons that we have learnt from the design and implementation process.

1 Introduction

Almost all modern operating systems are being designed using microkernels [1, 2]. The microkernel
architecture can be said to encompass good software engineering practice: small code “units” that are
insulated from each other together with a minimal amount of critical code (the microkernel). They
also introduce an “open system architecture” due to the ease with which additional services can be
provided and used.

Virtually without exception, however, microkernel architectures use message passing as the basis
of communication, implementing the client-server paradigm upon this using remote procedure call
techniques (RPC). Message passing offers an apparently ideal structuring mechanism — it isolates one
“unit” from another, requires only a minimal microkernel (message passing and process control), and
allows extra services to be provided simply by registering the service which then receives and processes
the messages.

Meshiz 1s typical of such microkernel based, message passing operating systems and was developed
several years ago [3]. Over the last few years we have been looking at its structure and performance in
a very critical manner to decide how to improve upon it — in essence we are trying to evaluate whether
or not the message passing microkernel is as good as 1t seems. This has shown there are a number of
issues that have not yet been addressed by most current message passing microkernel architectures, or
which have only been addressed with limited success or requiring complex restructuring of the system.
It 1s to tackle these issues that Angel has been designed.

This paper will outline the issues behind the the design of Angel in addition to the actual design
and implementation of Angel. Although Angel moves away from a message passing structure, we will
show how its most important use — RPC — can be very efficiently implemented in Angel using LRPC
techniques, and how it maintains the essential isolation of the systems into protected “units”. We will
also mention some of the other work that we are applying to Angel, principally in the areas of fault
tolerance and scalable /O systems.



2 Shortcomings of Meshix

The original goal of Meshiz and the Topsy architecture was to produce a scalable, parallel multipro-
cessorl. To help achieve this goal a dedicated point to point network with custom, virtual cut-through
routing chips were developed which supported a raw bandwidth of 10 Mbytes/sec. To a reasonable
extent the scalability goal has been achieved. Unfortunately its communications performance is only
about 100 K/sec, as seen by a user process, and there is limited support for parallel programming. The
reason is largely to do with two factors: the nature of microkernels, and the adoption of UNIX. The
adoption of System Vr3 UNIX as the primary interface to Meshiz means there is no support for parallel
programs, forces the use of UNIX heavyweight processes and limits the IPC mechanisms.

2.1 Microkernel

In a microkernel architecture, there is an inherent performance loss caused by information exchange
between services and clients. Typically a client collects the information it needs in its own private
address space, independently of the server. When it wishes to exchange information with a server
(probably to obtain some service), it first creates a message containing this information and then
requests the microkernel to convey this to the server. Usually this involves several context switches
and some data copying, remapping or cross-machine transferral, all of which are known to be costly
actions.

The Chorus group [4] (among others), has done much work to overcome this. The methods used
include replacing context-dependent addresses with unique addresses, so speeding up message delivery
whilst reducing security, combining mutually trusted servers into a single address space (and hence
protection domain), so reducing context switches, and by placing all of the TPC management into the
microkernel. In addition they use the lightweight RPC optimisation developed for the DEC Firefly
system [5] to improve the speed of RPCs. All of these modifications have required non-trivial alterations
to the operating system’s structure and increased the complexity of the system. It is our belief that
communication (or more generally co-operation), despite the above optimisations, is still slower than
desirable and more complex an operation than need be.

We performed a set of detailed measurements of the speed of the Meshiz communication system [6,
7] to help identify the causes of communications costs, to better understand these costs, to find ways
to reduce or eliminate them and to help develop a simpler mechanism. This study concluded that
many, though not all, of the costs are an inherent fact of using message passing in multiple protection
domains and the numerous context switches and data copying or remapping that this caused. During
this study, it also became apparent that much, often unmeasured, time was spent in preparing the data
for transfer.

As a comparison, we modelled the behaviour of a very simple distributed shared memory (DSM [8])
scheme with an amount of hardware assistance comparable with the current Meshiz message passing
system. The conclusion was that this would easily outperform the current message passing system,
used in Meshiz. This lead us to believe that the shared memory paradigm should be at the base of
future parallel operating systems, replacing the message passing that is currently in use. This is in
agreement with several other researchers and manufacturers [9, 10, 11].

2.2 UNIX

The UNIX process model provides every process with the illusion of a complete computer for itself. But
whenever the process tries to access anything other than the processor or the data currently residing in
memory, it may suffer a context switch as another process is given the chance to run. A context switch
involves the exchange of a large amount of information beyond the processor’s context including the
memory map and extensive operating system information. This is called a heavyweight process model.

. It should be noted that this is a somewhat different goal from some other systems which seek to produce a
distributed computing systems.



Since Meshiz provides a UNIX programming model, the process model it implements is that of UNIX:
distinct heavyweight processes. The heavyweight process model is costly [12] due to its extensive
amounts of state, and this reduces the benefits of writing programs in parallel, although this may
be overcome to some extent using threads packages. Unfortunately, these threads are not real first
class objects in the operating system and certain system operations for one thread affect others (eg.
blocking). Even then it is still nearly impossible to share these threads between processes, unlike such
systems as Psyche [13], to achieve the required flexibility (such as cost effective load balancing). For
efficient parallel programming a lightweight, flexible and extensible process model is needed. This is
one where changing from one thread to another is exceptionally cheap, where the actions of one thread
do not necessarily affect another and where exchanging processes should also be cheap.

2.3 Support for Parallel Programs

Meshiz provides no synchronisation primitives other than those implicit in message passing. Any others
are built using messages. This means that if co-operating processes need to use synchronisation other
than messaging, it is slow and limited by the characteristics of the messaging system. In a scalable
parallel machine, real parallel programs will require efficient and varied synchronisation mechanisms
(e.g. barrier synchronisation) and better support for them must be provided.

Additionally, much work has been done on load balancing in many systems and support for this is
important to parallel programs since it is necessary for them to distribute their work over the machine
efficiently. With a general purpose computer, the load on various parts of the system can change, and
to maintain the efficiency of the applications running on such a system, it is necessary to re-allocate
work between available processors. This is at the heart of load balancing, and naturally in a scalable
parallel system 1t is important that, at the very least, there 1s support to allow this to be done.

3 The Angel Design and Single Address Space Architectures

From our experience with Meshiz, and as a result of our studies both of Meshiz and other systems, it
was decided that Angelshould have the following characteristics:

» It should not support message passing, but use shared memory to support a single address space.
This decision was taken to tackle two problems: the lack of speed of the message passing model,
as outlined above, and to improve the context switch time by removing the need to flush various
caches, which has been noted as the most costly part of the context switch operation.

» It should provide a protection mechanism which is not part of the process. This decision was taken
to allow a far greater flexibility in protection scheme, and allow more than one process to operate
within the same domain to increase speed when necessary. It is also a logical step following the
above point in which we had divested address translation from the process.

» It should allow processes to be informed of the actions of the operating system on their behalf. This
decision 1s aimed at allowing threads within a process to become first class citizens of the operating
system and to allow the process to partake in scheduling decisions that may affect it.

» It should use a minimal microkernel. None of our studies of Meshiz showed a flaw in the microkernel
design; in fact many of our experiences with Meshiz have shown how vital the microkernel design
is. The problems identified have been tackled by the above alterations to the architecture, so Angel
remains a microkernel. However, as the implementation section will show, there is even less in the
Angel kernel than in many other microkernels.

The following sections will outline the main characteristics of the Angel design.

3.1 SASA

Most importantly, Angelis a Single Address Space Architecture (SASA), like such systems as Mul-
tics [14], Psyche [15], and Opal [16]. A SASA is one in which there is only one address space shared by



the entire system (all the processes, servers and the kernel). This is in contrast to the UNIX approach
whereby every process has its own unique address space. This has several benefits: it improves and
simplifies data sharing, helps cache performance, and blurs the distinction between shared memory
and distributed memory machines. The SASA is maintained between multiple processors using shared
memory techniques. The SASA has become feasible with the appearance of large address space pro-
cessors [17], enabling many processes to consume addresses from the same range without exhausting
the supply.

This address space is managed as persistent objects (contiguous groups of pages). Not only does this
remove the need for an explicit “file system” interface (with a different namespace and explicit system
calls) but greatly simplifies the storage of complex structures, databases, etc.

3.2 Protection Issues

In Unix one process is protected from another by the use of separate address spaces. In a SASA all
processes share the same address space, so separating protection from address translation, and hence a
new scheme is needed to provide protection. This has also caused some researchers to propose alterations
to the traditional memory and protection hardware with the addition of new hardware support [18].
The protection scheme must define two areas within which it works: the unit of protection, and the
method used to specify and meet access requirements.
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Figure 1: The structure of ACDs and biscuits
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In Angel protection is provided on objects which consist of one or more pages. Objects cannot overlap,
nor may they be contained within other objects. A critical server in Angelis the object manager which
is responsible for allocating addresses to objects and for validating access to objects. For every object,
the object manager associated with it one or more Access Control Descriptors (ACD) which describe
the other objects that must be accessible before this object may be accessed.

An example of this structure is shown in figure 1 in which one object has three ACDs associated with



it; one of them has part of its permissions tree show. In this example, to gain write access to the object,
the process must already have read and write access to objects A, B and C.

When an object is created, or when a new ACD is associated with an object, the object manager
gives out a biscuit from which it can reliably identify the valid corresponding ACD. Conceptually
there is only one biscuit per ACD despite processes being free to duplicate this as frequently as they
like. When a process wishes to access an object, it presents this biscuit to the object manager. The
biscuit 1s then used to determine if the process possesses the necessary objects to resolve the requested
object. Consequently, the system does not have the concept of user identifiers. However, 1t is trivial to
implement such a system by creating an object whose sole purpose is to act as a “user id” for access
checking.

3.3 Support for Parallel Programs

Angel supports first class threads and uses upcalls for inter-process and kernel-process signalling (see
section 4.2). Their purpose is to allow process to be informed external events in which they have
declared an interest, eg. the release of locks, the arrival of new work, a page fault or a pending time
slice. By passing such information onto the process, the process is able to make its own decisions on
what to run and to take remedial action (e.g. release a lock) when decisions are imposed upon it.

The DSM supported by Angel allows the construction of locks such as spin locks with reasonable
efficiency. When combined with the upcall mechanism, it is simple for a thread to “sleep” and be
“woken” at some later date. This provides asynchronous systems, not possible with shared memory
alone.

The SASA that lies at the heart of Angel makes implementing load balancing trivial. As all processes
and threads on all processors exist within a single address space that also contains all the necessary
kernel information, moving a process or thread from one physical processor to another simply involves
loading the processor context for the thread into the new processor. The DSM that implements the
SASA will then move any necessary data as it is accessed. The design of Angel as it stands will not
automatically load balance work for a process, but this can easily be provided through library routines.

3.4 The Angel Model

Figure 2: The Angel Process Model




Figure 2 shows how the above points are combined into the process model that Angelsupports. Within
any process there may be one or more threads. Threads may run in their own domain, as is the case
with thread 1 in the diagram. This allows several threads in the same process to be protected from
each other. Alternatively several threads may share a protection domain, potentially between different
processes, as is the case with threads 2 to 4. Where threads do not wish to share a protection domain
for security or trust reasons, they may have some mutually shared objects, as is the case with the

remaining threads.

3.5 Fault tolerance

It is possible to build a scalable, efficient fault tolerance scheme in a SASA based operating system. This
relies on the unification of resources to simplify the implementation, and the augmentation of the DSM
system in order to capture the data interactions necessary to make distributed checkpoints. Unlike
other schemes [19, 20] where excessive DSM activity can result in large number of checkpoints being
made, we allow general data sharing without checkpoints, instead utilising the DSM state information
to determine which data depends on which. This allows distributed checkpoints to be made which
will only effect processes which are interacting, and also allows the DSM mechanism to be reused for
checkpointing data to other machines’ memories. Experiments indicate this costs only an additional
10% on an applications execution time. A full description can be found in [21].

4 The Angel implementation
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Figure 3 depicts the general structure of the Angel operating system. This structure has few differences



from more conventional, message passing microkernel designs. However, the use of a single address
space and shared memory for communications has significantly simplified the microkernel. Currently,
the implementation consists of 2 500 lines of C4++ code and 1,000 lines of include files. This constitutes
the virtual memory, the distributed shared memory and the device management systems but not the
device drivers themselves.

At time of writing, we have completed initial work on the microkernel and client/server communication
system. The microkernel provides two major services:

1. Persistent virtual memory, and
2. Virtual processor management.

The client/server communications are implemented using “lightweight” RPCs.

4.1 Persistent virtual memory
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Figure 4: Object orientated VM system




The virtual memory (VM) system is the heart of Angelsince it supports the persistent single address
space. The single address space nature of the VM enables some simplifications of the structure to be
made but the persistence introduces other complications.

Figure 4 demonstates the events in the VM system initiated by a page fault. Page faults are generated
by the mmuDeuvice, a processor dependent object responsible for collecting all necessary information
regarding the fault, and passed into the main, processor independent code, vmFault. This determines
whether the fault is legitimate (user attempts to access supervisor data are caught here) and requests
the relevant page from the t/bCache. The tlbCache first determines whether the access was to an
object accessible by the virtual processor (using the dd! which describes this relationship). If it was
not, a fault condition is returned. If it was, the accessed address is used to form a pagelD, an unique
identifier for data in time and space. These pagelDs are used to support data aliasing2 necessary for
the copy-on-write mechanism. The pagelD is then used by the coreMap to locate the relevant data.
The local coreMap memory is first searched for data corresponding to this ID. If found, the page is
returned for installation by the mmuDevice. If not found, the coreMap allocates an empty core page
and request the dataManager to find the data and install it. The dataManager does this by consulting
both the network (which provides the DSM system) and the disk.

Several point in this VM system are worth special mention. First, the dd/is held in the user environment,
so allowing it to be treated as any other object, sharable via the DSM and swappable onto disk. This
prevents consumption of valuable kernel resources and allows the user to easily determine attributes
of their envionment without the microkernel’s assistance3. Second, the devices (network and disk) are
accessed through an LRPC interface (see section 4.3). This allows them to be installed externally from
the microkernel if desired although the LRPC mechanism will automatically optimise this interface
when this is not the case. Currently, these devices are contained within the kernel but we are planning
to make them loadable kernel-level device drivers in order to improve modularity and flexibility without
compromising performance. Third, at various stages, the VM system may reach a point where it cannot
continue immediately. This may be the result of a fatal error (eg. an access is made to an object not
available to the user) or a temporary error (eg. the requested data must be fetched from disk). In these
cases, the error is reported back to the virtual processor by use of an upcall. This enables the virtual
processor to reschedule another thread.

4.2 Virtual processor management

The microkernel attempts to impose little process structure on the application or programmer. Unlike
POSIX therefore, it does not implicitly provide such services as file descriptors, “death of child” signals
or other heavyweight features. Consequently the process structure, termed a virtual processor (VP),
leaves much of the general management work to the application. This presents no additional problem
since it can be encapsulated in libraries.

A virtual processor operates around two general data structures; its domain descriptor list (dd/) and its
upcall list. The ddl holds information about all object the virtual processor has access to. As already
mentioned, this object is used by the virtual memory system to determine the validity of memory
accesses. However, it also holds information for processor management; such as which objects may be
signalled using upcalls, and which object was initally executed.

The upcall list is the virtual processors’ interrupt mechanism and is used by both kernel and other VPs
for preempting each other when important events occurs. These events include:

» Alarms,
» Invalid memory accesses,
» Temporarily invalid memory accesses, and

» Lock releases.

2. This is where two or more virtual addresses reference the same physical data.

3. Natually, the user is prevented from direcly modifying the ddl.



The first three of these events are microkernel generated; the forth is generated by user level code
associated with the release of mutual exclusion locks or conditional variables.

Upcalls are a fixed sized structure, convey little information, and will not be delivered if the recipient
has insufficient resources to receive them. Each one identifies its sender, its type and two further type
specific pieces of information (eg. Invalid memory accesses report the failed address and reason for the
failure; lock releases report the address of the locking structure.). The VP can precisely control the
effect each upcall has when it delivered, determining whether a handler is invoked immediately, whether
the upcall is queued for later attention, or whether the upcall is ignored completely. By default, all
upcalls are ignored unless the VP specifies otherwise. This generally means that upcalls are simply
discarded without effect although “invalid memory accesses” will terminate the VP.

4.2.1 Threaded virtual processes

Angel does not explicitly support threaded processes, leaving this to user level code. However, through
the use of kernel and user level upcalls, it still provides facility for a “first class citizen” thread model.
For example, in the kernel, whenever a situation occurs where it should block, the VP is upcalled
to allow another threads to be scheduled. Similarly, user level locks can use this facility in parallel
programs or client/server relationships (we use this heavily in the LRPC mechanism). At the user
level, a POSIX thread model [22] is provided. The operation of POSIX threads is well documented,
but it is worth nothing how this model interfaces to Angels upcall system in order to provide “first
class citizens”.

All locks are implemented in shared objects. For mutual exclusion locks, if a lock is not obtained, the
failed thread inserts itself into the lock’s pending queue. The thread scheduler is then called to dispatch
another, the VP blocking if there are no others ready to run. When the lock is released, the releasing
thread examines the head of the pending queue and releases the top thread. If this thread is within
the same protection domain, the operation can be accomplished locally. If not, a lock release upcall is
dispatched to the appropriate VP. On receiving this, the thread is released locally. The mechanism used
for conditional variables 1s similar to this except that the thread release is delayed until the associated
lock 1s released. By placing locks in shared memory, the operations of obtaining and releasing locks is
greatly simplified and the need to consider whether a thread is local or remote is hidden.

4.3 Client/Server Communications

Like many commercial and research operating systems, Angel uses the notion of clients and servers in
order to improve the functional modularity of the system. However, unlike many of its predecessors,
message passing is not used to implement RPC communication, instead this is done through shared
memory regions. This approach enables a more “lighweight” RPC mechanism to be implemented

(based on work by Bershad et al [5]).

Angels LRPC mechanism operates by the sharing of C++ objects in sections of shared memory.
These objects are passed between client and server by manipulation of shared lists and the release of
the associated locks. However, optimisations in this mechanism are possible if both client and server
operate in the same protection domain. In such cases a direct subroutine call can be made from client
to server so avoiding the need for locking altogether. This optimisation can be determined when the
LRPC channel is established rather than at compile time so providing greater flexibility.

4.3.1 LRPC example

Figure 5 illustates a simple client /server interaction using a shared memory object for communication.
This object constitues a private channel between parties, available in their protection domains only
(although one-to-many channels are no more difficult to arrange).
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Figure 5: Lightweight RPC object shared between a client and server

In conventional RPC, a client makes a request of the server by packaging data to be transfered and
then informing the server of its intentions. The server then unpackages the request, performs the work,
and replies to the client using a similar RPC mechanism. LRPC in Angel benefits over such a system in
two ways; first, the use of shared memory reduces the need to package data, in some cases removing it
altogether; and second, implict encapsulation of the client/server relationship in C++ classes simplifies
and hides access to the interface.

For example, the server in figure 5 maintains the private database holding users’ information. A
client wishing to search this database (such as /bin/1s -1) must make requests via an LRPC channel.
However, rather than constructing and copying requests to the server, a passwdEntry object can be
allocated which is already shared with the server using the C++ placement operators (eg. overloading
of operator new()). This object can then be used as normal within the client, the interaction with the
server happening transparently and without extra copying by either party.

4.4 Current status

The majority of development work has been done by operating the microkernel as an emulation under
SunOS UNIX. However, in order to validate the system and determine whether our efforts to keep
the dependent and independent code seperate have been successful, we recently ported the kernel to a
Tadpole M88K system. This work took a week to complete despite the need to write a new two-level
MMU system and although some restructuring has resulted, no major problems were encountered.

However, neither of these systems are appropriate to Angel’s needs due to the restricted address space.
Currently we are investigating a port to either an SGI Indigo or DEC Alpha PC either of which is more



appropriate.

5 Lessons and Further Work

The most “politically difficult” decision to make regarding Angel was to forego UNIX compatibility. It
is acknowledged that if an SASA style operating system is to accepted, then it must provide support
for UNIX and its existing software base. As a first step we have investigated modifying compilers to
generate code that gave the appearance of UNIX memory semantics. This resulted in a performance
penalty of only a few percent [23]. We are now investigating a full UNIX service under Angel Tt
appears that a reasonable degree of compatibility can be provided at low cost, without altering the
SASA to provide a region of memory addresses with UNIX characteristics.

The fault tolerance mechanism described above has been designed, implemented and analysed on a
simulator, rather than in the current Angel/ implementation. One, relatively simple, task is therefore
to implement this scheme in the current microkernel. Once this has been done we hope to study the
performance of the system and see if it can be further improved.

The main area of future work lies in dealing with the projected large I/O requirements that a parallel
computer will generate. Many current parallel computers are badly I/O limited, and overcoming this
bottleneck is extremely important in opening up new markets for parallel machines. There are several
schemes we are currently investigated to perform this, the most hopeful is to make use of the algorithms
from the fault tolerance scheme which generates a distributed log stream of data for storage on disk.

6 Conclusions

This research was conceived as an exercise in learning from Meshiz (and other message passing micro-
kernels); the result is the Angel operating system, which is still a micro-kernel, but is based around a
SASA supported by DSM, and not around message passing. The current implementation is small, and
has been easy to write, which leads us to believe that we have constructed a good design, and that a
SASA is the way to build systems. There are other benefits from this approach which are important to
scalability, for example in the areas of fault tolerance, data sharing and load balancing. Although we
have not developed the system with UNIX support it mind, it appears that we can provide a simple
version of this at very low overheads. All these points lead us to believe that SASAs are an important
way of constructing operating systems, especially for scalable, parallel machines.
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