
Profiling floating point value
ranges for reconfigurable
implementation
Ashley W Brown, Paul H J Kelly,
Wayne Luk

∗ Department of Computing, Imperial College London, United Kingdom

ABSTRACT

Reconfigurable architectures offer potential for performance enhancement by specializing the im-
plementation of floating-point arithmetic. This paper presents FloatWatch, a dynamic execution
profiling tool designed to identify where an application can benefit from reduced precision or re-
duced range in floating-point computations. FloatWatch operates on x86 binaries, and generates
a profile output file recording, for each instruction and line of source code, the overall range of
floating-point values, the bucketised sub-ranges of values, and the maximum difference between
64-bit and 32-bit executions.

We present results from the tool on a suite of four benchmark codes. Our tool indicates poten-
tial performance loss due to denormal values, and helps to identify opportunities for using dual
fixed-point arithmetic representation which has proved effective for reconfigurable designs. Our
results show that applications often have highly modal value distributions, offering promise for
aggressive floating-point arithmetic optimisations.

1 Introduction

Scientific applications often require high accuracy, high data throughput and high speed
calculations. Most commodity hardware sacrifices accuracy for speed, potentially limiting
its usefulness in the scientific arena. Single-instruction multiple-data (SIMD) architectures
and graphics cards provide high speed calculations on IEEE single precision floating point
only. Other architectures, such as IBM’s Cell [Hofs05] have also prioritised single precision
floating point to target the games market.

In the reconfigurable computing space, placing a full-featured floating point unit onto an
FPGA consumes vast amounts of on-chip resources for even single-precision floating point.
Re-using the same unit repeatedly is possible, but introduces an artificial bottleneck. Knowl-
edge of the likely value ranges which will reach a floating point unit allows us to refine both
the data representation and the functional units to reduce resources whilst still providing
performance. The BitSize [Gaff04] tool allows this type of refinement looking at source-code
alone and may be a useful companion to FloatWatch. Cheung et al [pub05] developed a

1

method for generating fixed-point versions of elementary functions, such as logarithm and
square root, while using IEEE floating point for input and output. The conversion between
IEEE floating point and fixed point is transparent to the user.

Conversion of scientific software to single-precision floating point would permit better
use of this commodity hardware, however with an associated loss of accuracy. With reconfig-
urable fabrics at our disposal custom floating point representations are possible. Moreover,
we are able to change the representation for different phases of an application if we are able
to identify both the phases and appropriate representations, as demonstrated by Styles and
Luk [Styl05].

2 Tool Structure

The FloatWatch tool operates on x86 binaries compiled with debugging information, under
the Valgrind [Neth03] dynamic instrumentation framework.

Output consists of a raw data file containing profiling information and a dynamic HTML
user interface to manipulate and explore the data. Alternatively the data may be exported
for plotting in GNUPlot or Excel.

FloatWatch provides the following information for each assembly instruction in the pro-
gram:

• Overall range of values

• Bucketised sub-ranges of values

• Maximum difference between 64-bit and 32-bit floating point executions

The information can be aggregated for each line, then on a line-by-line basis by the user.
Figure 1 shows the source display and value graph provided by the HTML user interface.

FloatWatch was conceived to provide an insight into the behaviour of scientific code,
which is often “dusty desk” software where the authors have long since left the organisation
concerned. During attempts to accelerate some scientific applications it was realised that we
had very little insight into the overall behaviour of the code, or characteristics of particular
frequently-executed sections. Valgrind provides a convenient base to build upon, although
performance is currently an issue.

FloatWatch operates as a tool in the Valgrind framework, much like Cachegrind and
Callgrind [Weid04]. Valgrind reads x86 and PowerPC binaries, converting them to an in-
termediate representation consisting of simple operations. Complicated x86 arithmetic with
memory operands is flattened to a sequence of loads, stores and arithmetic with temporaries.
Basic blocks are processed one at a time, with each block passed to an instrumentation tool
(FloatWatch in this case) which inserts, removes or modifies instructions as necessary. The
intermediate representation is then converted back to machine instructions, cached and ex-
ecuted.

The FloatWatch instrumentation tool adds instrumentation code to track the results of
floating point operations in the target application, optionally inserting single precision ver-
sions of double precision operands, then tracking the difference between single and double
results.

2

Figure 1: Exploring profile results using the FloatWatch user interface. Each highlighted
line of source code can be expanded to show assembly-level code. Each line’s floating-point
value distribution can be selected for graphical display.

After execution the tool creates a raw output file with the data it has collected, along with
the intermediate representation of basic blocks with floating point operations. The Float-
Watch post-processor takes this raw output and the application source files, producing an
HTML+JavaScript report which can be dynamically manipulated by the user to produce
graphs of value ranges for particular lines of code. The values may then be exported to
graphing software for use in reports.

The same technique may be used to track integer values if required, however scientific
applications are the focus here.

Valgrind

FloatWatch

FloatWatch

Post-

processorRaw

Output

Web

Browser

Graphing

Tools

User

Data

ManipulationCSV export

x86 binary

Source Files (C, FORTRAN)

HTML

Figure 2: Block Diagram of the FloatWatch Tool Chain.

3

3 Optimisation Opportunities

The data produced by FloatWatch helps guide the process of optimisation for targets with
a variety of floating point configurations. 32-bit vs 64-bit comparisons provide an intuition
as to the safety of execution on a GPU, for example. Analysis of data ranges may guide the
implementation of a custom floating point unit which is more efficient in the active ranges.

This section provides an overview of some possible modifications or optimised imple-
mentations.

3.1 Optimised Floating Point Unit

For some of our real-world applications, ranges are the same or similar across a wide variety
of real-world datasets. With knowledge of likely value ranges available it becomes possible
to design optimised floating point units, which have their highest performance within these
ranges. Outside the “standard” ranges a smaller, slower or software implementation could
be used instead. This is similar to the implementation of denormal floating point numbers
in many microprocessors, which resort to software emulation of floating point operations
when denormal numbers are seen.

The example program MORPHY [Pope96] illustrates one of the potential optimisations:
the results of most operations fall within the orders of magnitude of [±20, ±2−4]. Knowing
this allows the floating point unit to be simplified by reducing some of the most expensive
parts – the barrel shifters required for operand alignment and post-operation normalisation.
A shifter capable of 4-bit rather than 52-bit shifts may be used, reducing congestion and
resource usage. Values outside this range may be aligned via multi-cycle shifting or software
emulation, as they occur infrequently enough to prevent the penalty being significant.

3.2 Removal of Excessive Zero Values and Denormal Numbers

Our profiling of the SpecFP95 ’mgrid’ benchmark indicates a large number of zeroes or de-
normal values in the results. Calculating zeroes implies input of zeroes which is, in general, a
waste of computing resources. Calculations with denormal numbers have an adverse effect
on performance because typical processor designs implement it in software, whilst custom
hardware designs do not implement it at all.

Identifying use of denormal numbers allows optimised hardware to be produced for
such numbers, or the underlying code to be modified to avoid them, if possible.

3.3 Alternative Representations

A variety of alternative representations are available in custom hardware, including a wide
range of floating point formats, fixed point and variations such as dual fixed point.

3.3.1 IEEE 32-bit float (vector instructions)

At its simplest level, a program may be converted from 64-bit to 32-bit floating point, pro-
viding possibilities for vectorisation by hand or with a vectorising compiler. FloatWatch
provides information about the accumulated error should parts of the program be run in
single precision.

4

Gradual Underflow in Double Precision

0

2

4

6

8

10

12

25
00

00
0

9.5
36

74
32

7.
88

9E-2
4

7.
34

7E-3
3

4.
26

E-1
02

3.
2E

-1
38

1.
89

E-2
63

9.
33

E-2
95

4.
45

E-3
01

1.
11

E-3
01

2.
78

E-3
02

6.
95

E-3
03

Matrix Initial Value

E
xe

cu
ti

o
n

 T
im

e
(s

)

P4 3.2GHz

Apple G5

Opteron 250

Figure 3: The Effect of Gradual Underflow. Convolution with a kernel containing progres-
sively smaller values. Performance on Intel and AMD processors falls off dramatically as
values enter the subnormal range. On the Opteron, performance begins to fall off even be-
fore this range.

3.3.2 Fixed point

In applications where a very narrow range is required, fixed point arithmetic may be ap-
propriate. Using pure integer arithmetic provides a dramatic performance improvement or
decrease in cost when compared to floating point. FloatWatch is unable to guarantee that
values outside a particular range will not appear, so appropriate handling of exceptional
cases is required.

Many of the test runs we have performed show symmetry around 0, allowing the sign
of a fixed-point number to be represented in the standard way for a processor or custom
design. For those with asymmetric value ranges a solution such as Dual Fixed-point may be
suitable.

3.3.3 Dual fixed-point

Dual fixed-point (DFX) [Ewe04] is a variation on standard fixed point arithmetic, used where
two distinct ranges of values must be represented. It occupies the middle ground between
the flexibility of floating point and the efficiency of fixed-point.

Fixed-point, by definition, has the decimal point in a fixed place determined by the im-
plementation. In DFX a single bit is reserved as selector, allowing one of two positions for
the decimal point to be selected. Figure 4 compares 64-bit floating point against 64-bit DFX.

5

s exp (11) mantissa (52)

r value (63)

Effective Maximum

Precision

Most significant

bits like exponent

s – sign bit

exp – exponent: 11 bits in IEEE double precision

mantissa – fractional part, 52 bits in IEEE double

precision

r – flag bit to switch between fixed point representations

value – fixed point value of the appropriate representation. The

maximum effective precision is the maximum precision

achievable with a given value range. If the range is 26 wide, this

would lead to a maximum effective precision of 57 for a 64-bit

dual-format fixed point solution.

Increased Precision, Decreased Range

IEEE 64-bit ‘double’ Floating Point

Dual Fixed Point (64-bit)

Figure 4: Double precision floating-point and dual fixed point representations.

3.4 Dynamic Representations

Custom floating point units and a variety of alternative representations require a custom
hardware implementation. The profiling results shown in the next section also reveal the
possibility of dynamic representations, where the representation could change at each phase
in the program or even for each line. Implementing a new ASIC for each possibility would
be prohibitively expensive, consuming vast amounts of time and resources. Reconfigurable
architectures provide a solution to this problem, allowing the generation of custom hard-
ware designs at compile time, to be loaded in sequence at run-time.

One of the biggest advantages with reconfigurable architectures is the ability to gener-
ate a complete pipeline for a block of code, converting between representations within the
pipeline itself to preserve the maximum accuracy possible. Different pipelines can be also be
loaded onto a reconfigurable device as the program progresses, or as the execution context
changes. The line-by-line refinement possible with FloatWatch allows this characteristic to
be identified.

4 Results

We have profiled a sample of applications from different sources, including both “real-
world” applications and benchmarks. This section describes the applications and their pro-
filing results.

4.1 MORPHY

MORPHY [Pope96] is a commercial application under development at the University of
Manchester which performs an automated topological analysis of a molecular electron den-

6

sity. It has two modes, fully analytical and semi-automatic, with the semi-automatic method
running faster but not always able to produce a result.

The application was run with data for water, peroxide and methane molecules. Figure 7
show the value ranges for this application, using the semi-automatic method. The y-axis
shows the fraction of values falling within the range shown – the number of calculations
performed varies widely between the datasets.

Examination of the results reveals some interesting features. Firstly, the graph has two
distinct ranges, one either side of zero. These ranges are slightly asymmetric but very nar-
row, indicating the possibility of a 64-bit fixed point or DFX implementation. Finally, the
ranges are similar across the three datasets tested so far. Further work is being carried out to
determine why this should be the case.

4.2 “ydl_pij” (Molecular Mechanics)

“ydl_pij” is an iterative solver for computational chemistry, using the Molecular Mechanics -
Valence Bond [BM03] method. The code has many uses, including modelling magnetism and
other electromagnetic properties and is currently being used in the Department of Chemistry
at Imperial College. Figure 8 show the key sections of the graph of value ranges on a variety
of datasets. The number of each test indicates the number of electrons.

This small graph does not adequately illustrate one of the key features of this application:
while values concentrate in ranges that are not excessively wide, there are a large number of
values spread across a much wider range. This makes them almost unnoticeable on a full-
size graph, however this long tail indicates that a specialised implementation for a narrow
range of values would not be appropriate - the application would spend a large proportion
of its time executing with out-of-range data, which would most likely be implemented using
a slow but cheap method.

Viewing the graph develop over time may reveal that the low-level wide range of values
disappears after the first few iterations, allowing an alternative representation to be used
later in the program.

4.3 SpecFP95 ‘mgrid’

The SpecFP95 ‘mgrid’ benchmark is simplified multigrid solver which calculates a 3D po-
tential field. As with MORPHY, it has two primary ranges. In this case the ranges are evenly
spread with the exception of a spike at each end. A pronounced spike in the centre, indi-
cating zero or denormal numbers points to possible unneccessary performance problems
which could be reduced.

4.4 SpecFP95 ‘swim’

The SpecFP95 ‘swim’ benchmark is a weather predictor based on shallow-water equations,
using finite difference approximations. It is the only single precision benchmark in SpecFP95,
however on x86 most calculations occur in double precision, with the result converted to
single for storage only. It has several interesting features not seen on previous (pure double-
precision) test applications.

The graph shows two primary ranges of results, one either side of the centre. A saw-
tooth form is seen, with 4 “teeth”, indicating four separate sub-ranges. Work is currently

7

taking place to analyse this trend over time – it may be that each sub-range corresponds
to a different iteration of the algorithm, in which case some dynamic modification of the
representation used may be possible.

4.5 Summary of Results

Table 1 summarises the potential optimisation techniques which could be used on each ap-
plication.

Application Optimisation
MORPHY Conversion to dual-fixed point format
ydl_pij Few likely candidates – temporal profiling may reveal options
mgrid Potential to remove zero or denormal numbers
swim Phase-dependent customisation of floating point units/representation

Table 1: Optimisation Options for Floating Point Applications

5 Current and Future Work

FloatWatch is currently able to return useful results, however they can only act as an insight
so far. Many additions are planned to improve the decisions which can be made on the
results.

5.1 Improved Verification

The data generated by FloatWatch over multiple runs is only able to give an intuition about
the general behaviour of a piece of code with multiple datasets. No verification is possible at
present, so "fall-back" options must always be provided in the case that previously observed
behaviour is not repeated with a new dataset.

One of the most useful possible extensions is to provide a verification framework, im-
plementing techniques such as search-based testing to produce more rigourous results. The
goal here is to look at real-world behaviour rather than theoretical behaviour, however any
improvement in the confidence one can have in the results is desirable. The BitSize [Gaff04]
tool provides similar functionality to this.

5.2 Extended Simulation

At present FloatWatch is only able to track the error for 32-bit vs 64-bit floating point, rather
than for the vast array of floating- and fixed-point point formats available when creating cus-
tom hardware. A planned future extension is to allow plug-in modules for custom floating-
point formats, providing a method of experimentation without resorting to RTL-simulation.

The proposed solution would allow the user to add a custom simulation object into the
FloatWatch system, with results presented in the same way as at present. The option of
testing several different custom formats at once would also prove useful.

Related to this is the ability to dynamically swap data formats as the profiled application
progresses, simulating the possibility of dynamic reconfiguration on an FPGA for example.

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-25
6

-32 -4 -0.
5

-0
.06

25

-0.
00

78
12

5

-0.
00

09
76

6

0.001
95

31
3

0.015
62

5
0.125 1 8 64

Value Magnitude

C
um

ul
at

iv
e

%

Methane

Water

Peroxide

Figure 5: Profile Results for ’Morphy’,
showing core range. Values sporadically
fall out of this range.

0%

20%

40%

60%

80%

100%

120%

-2

-0.
12

5

-0
.00

78
12

5

-0
.00

04
88

3

-3
.05

2E
-0

5

-1
.90

7E
-0

6

-1
.19

2E
-0

7

2.384
2E

-0
7

3.814
7E

-0
6

6.103
5E

-0
5

0.000
97

65
6

0.015
62

5
0.25

Value Magnitude

C
um

ul
at

iv
e

%

9a 7 6D2 12_2 13_d3h

Figure 6: Profile results for MMVB code
(“ydl_pij”). This graph represents the
range with the highest concentration of
values.

0

500

1000

1500

2000

2500

3000

3500

4000

-1
x2

^1
8

-1
x2

^-
9

-1
x2

^-
36

-1
x2

^-
63

-1
x2

^-
90

-1
x2

^-
11

7

-1
x2

^-
14

4

1x
2^

-1
51

1x
2^

-1
24

1x
2^

-9
7

1x
2^

-7
0

1x
2^

-4
3

1x
2^

-1
6

1x
2^

11

Value Magnitude

V
al

ue
 O

cc
ur

re
nc

e
(m

ill
io

ns
)

Figure 7: Profile Results for ’mgrid’,
showing the full range of values – the ob-
vious key ranges at either side are very
wide given the scale.

0

1000

2000

3000

4000

5000

6000

7000

-1
x2

^1
9

-1
x2

^0

-1
x2

^-
19

-1
x2

^-
38

-1
x2

^-
57

-1
x2

^-
76

-1
x2

^-
95

1x
2^

-8
9

1x
2^

-7
0

1x
2^

-5
1

1x
2^

-3
2

1x
2^

-1
3

1x
2^

6

1x
2^

25

1x
2^

44

Value Magnitude

V
al

ue
 O

cc
ur

en
ce

 (
m

ill
io

ns
)

Figure 8: Profile Results for ’swim’, show-
ing the full range of values.

9

5.3 Using the Data

We intend to use the data gathered from our test runs to generate custom FPGA designs
or GPU programs to accelerate our real-world applications and benchmarks. A number of
further test runs are required, followed by an implementation of the most likely candidate
applications.

6 Conclusion

The FloatWatch tool can provide a valuable insight into the floating point behaviour of a
variety of scientific applications, regardless of implementation language. At present all im-
plementation decisions based on the data generated by the tool would require a fallback, as
no conclusive proof of the value ranges used is offered. A number of future enhancements
will expand the capabilities of the system.

The behaviour of applications varies widely, with some using a very narrow range of val-
ues for all tested datasets, whilst others had a wide range of values, or narrow ranges which
were dataset-dependent. All tests so far have revealed near-symmetric behaviour around
zero, with approximately balanced numbers of positive and negative values. The FloatWatch
tool has helped identify promising candidates for implementation with optimised floating-
point formats, and various reconfigurable designs are currently being developed.

References

[BM03] B. BEARPARK MJ. Excited states of conjugated hydrocarbon radicals using the
molecular mechanics - valence bond (MMVB) method. THEORETICAL CHEM-
ISTRY ACCOUNTS, pages 105–114, 2003.

[Ewe04] C. EWE, P. CHEUNG, AND G. CONSTANTINIDES. Dual Fixed-Point: An Efficient
Alternative to Floating-Point Computation. In Proceedings of International Confer-
ence on Field Programmable Logic 2004, pages 200–208. Springer-Verlag, 2004.

[Gaff04] A. GAFFAR, O. MENCER, W. LUK, AND P. CHEUNG. Unifying Bit-Width Optimi-
sation for Fixed-Point and Floating-Point Designs. In FCCM ’04: Proceedings of the
12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 79–88, Washington, DC, USA, 2004. IEEE Computer Society.

[Hofs05] H. HOFSTEE. Power Efficient Processor Architecture and The Cell Processor.
In HPCA ’05: Proceedings of the 11th International Symposium on High-Performance
Computer Architecture, pages 258–262, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[Neth03] N. NETHERCOTE AND J. SEWARD. Valgrind: A Program Supervision Framework.
Electronic Notes in Theoretical Computer Science, 89(2), 2003.

[Pope96] P. POPELIER. MORPHY, a program for an automated ”atoms in molecules” anal-
ysis. Computer Physics Communications, 93:212–240, Februari 1996.

[pub05] Automating Custom-Precision Function Evaluation for Embedded Processors, 2005.

10

[Styl05] H. STYLES AND W. LUK. Compilation and Management of Phase-Optimized
Reconfigurable Systems. In Proc. International Conference on Field Programmable
Logic, pages 311–316, 2005.

[Weid04] J. WEIDENDORFER, M. KOWARSCHIK, AND C. TRINITIS. A Tool Suite for Simu-
lation Based Analysis of Memory Access Behavior. In International Conference on
Computational Science, pages 440–447, 2004.

11

	Introduction
	Tool Structure
	Optimisation Opportunities
	Optimised Floating Point Unit
	Removal of Excessive Zero Values and Denormal Numbers
	Alternative Representations
	IEEE 32-bit float (vector instructions)
	Fixed point
	Dual fixed-point

	Dynamic Representations

	Results
	MORPHY
	``ydl_pij'' (Molecular Mechanics)
	SpecFP95 `mgrid'
	SpecFP95 `swim'
	Summary of Results

	Current and Future Work
	Improved Verification
	Extended Simulation
	Using the Data

	Conclusion

