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Abstract

This is a study of a technique for deriving the session type of a program written in a statically typed im-
perative language from its control flow. We impose on our unlabelled session type syntax a well-formedness
constraint based upon normalisation and explore the effects thereof. We present our inference algorithm
declaratively and in a form suitable for implementation, and illustrate it with examples. We then present
an implementation of the algorithm using a program analysis and transformation toolkit.
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1 Introduction

The session type [10] is a means of characterising dyadic interaction between pro-

cesses over a communication channel. A session type is a property of a session, a

communication link established over a channel. Process interactions are expressed as

a sequence of communication actions, and any communication taking place over the

session with which the type is associated must conform to the sequence of actions.

Although the roots of session typing can be traced to the π-calculus [15], it has also

been applied to a wide range of programming paradigms, including object-oriented

imperative programming [6].

A session type may take a number of forms, but let us presently consider a session

type consisting of a graph where a communicating process is associated with a single

node in a graph. A communication action must be conformant with an outgoing

1 Email: pcc03@doc.ic.ac.uk
2 Email: p.kelly@imperial.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Collingbourne

out α

in β

out α

in γ

s1

s2

s3

s4

s5

in α

out β

s1

s2

s3

in α

out γ

s1

s4

s5

(a) (b) (c)

Fig. 1. Three exemplary session type graphs.

arc at the process’s current node, and causes the appropriate arc of the session type

to be followed, based on the type of the communication action. Figure 1 shows

three session type graphs (a), (b) and (c), of which (a) and (b), and (a) and (c)

are purportedly compatible with each other (due to the common subgraph). Let

us consider two processes A and B with respective session type graphs (a) and (b).

Both processes start in state s1. Firstly process A sends a message of type α and

transitions to state s4. When process B receives this message it transitions to state

s2. Process B then sends a message of type β. However, process A cannot process

this message as, according to its session type graph, it may only receive messages

of type γ. A similar situation arises with interacting processes A and C of types (a)

and (c) where process A first transitions to state s2 upon receiving the message of

type α. We can thus conclude that it is impossible to construct a session type such

that processes with that session type may safely communicate with processes with

session type (a).

Note that process A makes an internal choice about which of its two branches

is taken before sending the value of type α. Notice further that no information was

passed from process A to its peer regarding its choice of branch. This is what we

expect in a session type system with implicit choice. In this paper we shall explore

how the above situation may arise in a session type inference system that produces

session types with implicit choice and how we may detect it.

We claim the following contributions:

• The first session type inference algorithm known to the authors for statically-

typed imperative languages with a session type syntax based on implicit choice;

2



Collingbourne

• A normalisation-based well-formedness constraint for session types with a syntax

based on implicit choice;

• A property that ensures session type safety for session types with a syntax based

on implicit choice which simultaneously permit both inputs and outputs, known

as the safe directionality property;

• An implementation of session type inference, based on a session-based communi-

cating process library for C++.

1.1 Background: implicit choice in session types

In most existing literature, session types are expressed as expressions with a spec-

ified syntax. Session type syntax is generally recursive. This allows for arbitrary

composition of communication actions in whichever form fits the structure of the

program. A session type may take a number of forms, whose semantics we shall

briefly describe. A session type may be an action. An action specifies a communi-

cation direction (in or out) and type (this may be a language-specific primitive type

or, in the case of delegation [6], another session type). An action represents, depen-

dent on the communication direction, the reception or transmission of a value (or

session) of the specified type. A session type may also be the sequential composition

of two or more session types. The session type that is the composition of one or

more session s1, s2...sn represents the actions in s1, followed sequentially by those

in s2 and so on up to sn. A session type may also be a choice between a number

of sessions s1, s2...sn. The process of making a decision between these choices is

described in the following paragraph. A session type may also be the terminating

session type. A session with the terminating session type may not perform any

communication actions or change its type. It may only close the communication

channel.

A process may commit to one of these choices either passively or actively, and

either implicitly or explicitly. If a process makes the choice actively, then the choice

was made by the process based on its choice of communication steps. If the process

makes the choice passively, then the choice was made based upon the active choice

made by its peer.

Under implicit choice, the process performs a communication action that is con-

sistent with only one of the choices. Note that the process’s role in committing to

the choice is either active or passive depending on the direction of the communi-

cation action. If the process transmits data, its role is active; if it receives data,

its role is passive and its choice depends on the type of the data received. [5] is an

example of a system which contains a form of implicit choice.

Under explicit choice, the process performs some action other than a commu-

nication action that has the effect of selecting a particular choice. The literature

includes a number of ways of expressing explicit choice. In [10], choice is represented

by the & and ⊕ binary operators. A process whose session type is of the form s1&s2

makes a passive choice between s1 and s2, whereas a process whose session type is

of the form s1⊕s2 makes an active choice via the inl and inr operators. In [8,9], each

choice is annotated with a label. The process making the active choice transmits

the label corresponding to its desired choice, and the process making the passive
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choice chooses the session type corresponding to the label it receives.

After performing a communication action, or in the case of explicit choice an-

other relevant action, the current type of the session mutates in order to reflect the

current state of the channel. If a choice has been made, the session type is replaced

with the type corresponding to the choice that has been made. If a communication

action has occurred, the type representing that communication action is removed

from the beginning of the current session type. The resultant session type is known

as the continuation type of that session type under the given action.

Compatibility [8] is a relation between session types that indicates whether two

programs with specified session types are guaranteed to communicate with each

other safely; that is, without any possible protocol incompatibilities at runtime.

The compatibility relation has in particular been useful in specifying and verifying

contracts between two parties: by verifying compatibility before a potential com-

munication takes place it is possible to check that no protocol incompatibilities may

possibly occur between the two parties – provided that both parties abide by their

session type contracts. It is clear that a necessary condition for a session type to

be compatible with another is that it must accept at least the data types which the

other may emit. We shall see a more formal definition of this concept later.

The goal of this work is to investigate means for inferring a session type using

program analysis techniques given an imperative program consisting of a sequence

of communication actions. In some process formalisms, such as the π-calculus as

described in [10], there is normally no need for an inference algorithm, as the con-

struction rules for a process implicitly perform typing. Here we adopt a language-

neutral approach better suited to the structure of imperative programs, using con-

trol flow and expression typing information provided by the host language to derive

an appropriate session type. In contrast to many other studies of session type in-

ference [10,6], our session types use implicit choice. Our rationale for this design

decision is that implicit choice provides a closer mapping between the behaviour

of the program and its session type. Additionally, it frees the programmer from

the burden of providing a tag name for each communication action in an untyped

program. We shall explore the consequences of this decision on our type inference

technique.

Our type inference tool allows us to decide interface compatibility between pro-

grams without the need for a formal protocol specification beyond that implied by

the programs’ typing and control flow structures. For example, a programmer can

write a server communication program to be used in a client/server architecture

and expect any clients with which it communicates to be constrained by its proto-

col without any extra work. There are two key steps in such a process: firstly, our

inference algorithm is employed to determine the session types governing those pro-

grams for which we wish to decide compatibility; secondly, compatibility is checked

via the host language’s type system, a necessary foundation of such compatibility

checking being the ability to augment, or simulate the augmentation of, the host

language’s type system to recognise the session type’s subtyping relation.

4



Collingbourne

while (1 ) {
int x ;

recv choice ( s ) {
case Req1 :

s . receive (Req1 (x ) ) ;

s . send ( x+1);

case Req2 :

s . receive (Req2 (x ) ) ;

s . send ( x+2);

case Quit :

s . receive ( Quit ( ) ) ;

s . c l o s e ( ) ;

return ; // e x i t sub rou t ine

}
}

Fig. 2. Simple pseudocode server process.

int x ;

s . send (Req1 ( 4 2 ) ) ;

s . receive ( x ) ;

s . send ( Quit ( ) ) ;

s . c l o s e ( ) ;

Fig. 3. Simple pseudocode client process.

1.2 Example

Consider the server program shown in Figure 2, which we wish to interface with the

client program shown in Figure 3. We verify by inspection that these two programs

will interface with each other correctly, and so does our system by means of session

type inference and compatibility checking.

Our system can infer the types of both processes. The inferred type for session

s in Figure 2 is

µt.(in Req1.out int.t|in Req2.out int.t|in Quit.end)

and the inferred type of session s in Figure 3 is

out Req1.in int.out Quit.end

Using these types the augmented type system of the host language will verify com-

patibility.

1.3 Definitions

Our inference system is specified in two distinct ways. Firstly we shall provide a set

of inference rules and a methodology for applying them in order to derive a session

type. Secondly we shall describe a graph-based implementation technique for the
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D ::= "in" | "out"

ST ::= "µ" t "." ST (Mu)

| "end" (End)

| t (TV)

| "(" ST "|" ST ")" (Choice)

| "(" ST "." ST ")" (Seq)

| D V T (Action)

Fig. 4. Syntax for a Ninja session type.

algorithm. The graphs used by this technique are based on finite automata [18]

and thus we employ a number of techniques from this field, including the subset

construction [18].

Ninja is a specification for a component-based imperative language extension.

Ninja can be considered an implementation of common component models such as

architecture description languages as shall be described in Section 2. It may extend

most imperative languages, however our implementation is for the C++ language

and is known as Ninja-C++. We describe the implementation of Ninja-C++ and of

a type inference tool for it.

Figure 4 shows the syntax for session types in the Ninja language. Note that

in informal discussions we use the associativity of “|” and “.” to elide parenthe-

ses wherever possible. Most of the semantics is clear with reference to Section 1,

however note the syntax elements (Mu) and (TV). These are standard [17] syn-

tax elements used for recursive type definitions. (Mu) declares a type variable t of

arbitrary name for use. Corresponding (TV) elements are found within the (Mu)

element and are equivalent to the whole of the corresponding outer (Mu).

Ninja is a component based language; components are active and are known as

participants. Participants communicate with each other over channels of specified

session types, which means their session types must be compatible. We proceed to

introduce our notion of compatibility as initially defined by [8] and extended by,

among others, [20]. In order to determine compatibility we must first define equiva-

lence, continuation, subtyping and duality for our session type syntax. Equivalence

(≡) is the smallest relation that satisfies the rules given in Figure 5. The contin-

uation type of a session type under a given communication action may be derived

using the rules given in Figure 6.

Many of the equivalence and continuation rules are self explanatory, however

we feel it necessary to give a justification of rule (|Dist ←). This will be done in

Section 3.1 after the necessary background has been described.
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Definition 1.1 Free names over session types.

FN(µn.s) = FN(s) \ n

FN(end) = ∅

FN(n) = {n}, n a type variable

FN((t1|t2)) = FN(t1) ∪ FN(t2)

FN((t1.t2)) = FN(t1) ∪ FN(t2)

FN(a) = ∅

Definition 1.2 Input and output domains.

idom(µn.s) = idom(s) odom(µn.s) = odom(s)

idom(end) = ∅ odom(end) = ∅

idom(n) = ∅, n a type variable odom(n) = ∅, n a type variable

idom((t1|t2)) = idom(t1) ∪ idom(t2) odom((t1|t2)) = odom(t1) ∪ odom(t2)

idom((t1.t2)) = idom(t1) odom((t1.t2)) = odom(t1)

idom(in t) = {t} odom(in t) = ∅

idom(out t) = ∅ odom(out t) = {t}

Definition 1.3 Type simulation [8]. A type simulation is a relation R that satisfies

the following property.

(S1, S2) ∈ R ⇒ idom(S1) ⊆ idom(S2)

∧ odom(S1) ⊇ odom(S2)

∧ ∀t ∈ idom(S1)∃S
′
1, S

′
2 : (S1

in t
−→ S′

1 ∧ S2
in t
−→ S′

2 ∧ (S′
1, S

′
2) ∈ R)

∧ ∀t ∈ odom(S2)∃S
′
1, S

′
2 : (S1

out t
−→ S′

1 ∧ S2
out t
−→ S′

2 ∧ (S′
1, S

′
2) ∈ R)

Definition 1.4 Subtyping 3 . S1 ≤ S2 iff there exists a type simulation R such that

(S1, S2) ∈ R.

Definition 1.5 Duality.

in t = out t out t = in t

S1.S2 = S1.S2 S1|S2 = S1|S2

µv.S = µv.S v = v, v a type variable

end = end

3 This is an extension of the host language’s subtyping relation to provide subtyping over session types.
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S ≡ S
(Refl)

S1 ≡ S2

S2 ≡ S1

(Sym)

S1 ≡ S2 S2 ≡ S3

S1 ≡ S3

(Trans)

w /∈ FN(S)

µv.S ≡ µw.(S[w/v])
(µRen)

µv.S ≡ S[µv.S/v]
(µExp)

(S|S) ≡ S
(|Idem)

(S1|S2) ≡ (S2|S1)
(|Comm)

((S1|S2)|S3) ≡ (S1|(S2|S3))
(|Assoc)

((S1.S2).S3) ≡ (S1.(S2.S3))
(.Assoc)

idom(S1) = idom(S2)

((S.S1)|(S.S2)) ≡ (S.(S1|S2))
(|Dist←)

((S1.S)|(S2.S)) ≡ ((S1|S2).S)
(|Dist→)

S1 ≡ S′
1

(S1|S2) ≡ (S′
1|S2)

(|Cong)

S1 ≡ S′
1

(S1.S2) ≡ (S′
1.S2)

(.Cong←)

S2 ≡ S′
2

(S1.S2) ≡ (S1.S
′
2)

(.Cong→)

S ≡ S′

µv.S ≡ µv.S′

(µCong)

v /∈ FN(S1)

µv.(S1.S2) ≡ (S1.µv.(S2[(S1.v)/v]))
(.Rot→)

v /∈ FN(S2)

µv.(S1.S2) ≡ (µv.(S1[(v.S2)/v]).S2)
(.Rot←)

Fig. 5. Rules for equivalence

S ≡ (a.S′)

S
a
−→ S′

(Cont)
S1

a
−→ S′

1

(S1|S2)
a
−→ S′

1

(|Elim←)
S2

a
−→ S′

2

(S1|S2)
a
−→ S′

2

(|Elim→)

Fig. 6. Rules for continuation

Definition 1.6 Compatibility.

T ⊲⊳ S ⇐⇒ T ≤ S

i.e. T is defined as compatible with S iff its complement is a subtype of S.

In order to preserve compatibility between two peers in states where both inputs

and outputs are permitted, we impose the safe directionality property on all valid
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sessions. The safe directionality property is justified in Appendix A.

Definition 1.7 Safe directionality. A session S is safe-directional iff

(idom(S) 6= ∅ ∧ odom(S) 6= ∅)→

∀to ∈ odom(S)∃S′ : S
out to−→ S′ ∧ S ≤ S′

∧ ∀ti ∈ idom(S)∃S′ : S
in ti−→ S′ ∧ S′ ≤ S

1.4 Type Mutation and Linearity

Throughout this paper, we assume a statically typed language. However, session

type theory [10] states that after a session has performed a communication action,

its type must automatically mutate to the session’s continuation type relative to

the action that has taken place. Most statically typed languages do not permit

a variable’s type to mutate under any circumstances, although some do allow for

a variable to be overridden by one with the same name but a more restrictive

scope. This seems to be the only practical way to simulate type ‘mutation’, but

the requirement to create a new scope after every communication operation would

severely restrict the structure of a program. So we adopt the strategy of introducing

a new session variable after each communication action.

After we have used a session variable (i.e. by sending or receiving over it), it

becomes invalid. This means that any further use of the variable is an error and

would violate our typing system. A variable with such a constraint imposed upon

it is known as [22] a linear variable, and any program that satisfies this property

is said to satisfy the linearity constraint. We have developed a prototype tool to

check linear usage of session values [3].

1.5 Closing a Session

In order to ensure the correct behaviour of the program, we impose the follow-

ing constraints on the operation of closing a session. Sessions of type end must

close their session by performing the close operation on the session. Furthermore,

sessions of any other type may not close. The second constraint is trivial to en-

force, but we may enforce the first constraint by asserting that for each statement

a that assign to a session s of type end, there must exist a statement c of the form

s.close() such that

c pdom a

i.e. c postdominates [1] a. Intuitively this means that all sessions that are scheduled

to close (by a communication operation resulting in a session of type end) are

guaranteed to close by the control flow of the program, provided the program is not

interrupted, e.g. by the operating system.

The definite termination property states that only sessions of type end may be

closed. This property ensures synchrony between the communicating processes.
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component f i l t e r {
provide output<stream char>;

require input<stream char>;

}

Fig. 7. An example of a Darwin component type (courtesy [14])

SS ::= S := S.send(EX) (Send)

| S := S.receive(EX) (Recv)

| S .close() (Close)

| λ ( S (,S)∗ ) := S (Lambda)

Fig. 8. Syntax of session statements. Greyed out syntax is not present in the input data.

2 Related Work

This work’s main underpinning, session typing, was first introduced by Honda [10].

This work also introduced session type inference for the π-calculus. Dezani-Cianca-

glini et al [6] brought session types to the imperative world with the language

Moose. They [5] later expanded upon this work with a notion of compatibility [8].

Other means of specifying and verifying protocols for compatibility include finite

state automata (including interface automata [4] and choreography [7]), channel

contracts [11] and component interfaces [2].

Ninja provides a component model similar to that of the Unified Modeling Lan-

guage [16] or architecture description languages such as Darwin [14]. While the UML

component model largely deals in the abstract, permitting any form of communi-

cation such as a streaming model, shared memory model or procedure calls, Ninja’s

model, similar to Darwin’s, restricts communication to a streaming model using the

provided communication channels. Darwin’s communication channels have a simple

notion of typing as shown in the example component type of Figure 7, however the

session typed nature of Ninja’s channels affords a greater deal of flexibility.

3 Derivation and Canonicity

This section provides a high level description of our inference algorithm’s derivation

steps. As our algorithm is language independent, the control structure is defined

by the language. In particular, the host language should define the following:

Stmts set of session program statements

⊢ type assignment for expressions

EX syntax for expressions

S syntax for session variables

The syntax for program statements that operate on sessions is, however, defined

by the syntax given in Figure 8. Our algorithm supports an unbounded number of
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concurrent sessions.

Definition 3.1 Choice composition. The choice composition operator
∣

∣

∣

is defined

nondeterministically as follows.

∣

∣

∣

T =







(t|
∣

∣

∣

(T \ {t})), |T | ≥ 2 ∧ t ∈ T

t, T = {t}

Definition 3.2 Canonicity. In the following, a is an action.

(i) (S1|S2) is canonical if sessions S1 and S2 are canonical, idom(S1)∩ idom(S2) =

odom(S1) ∩ odom(S2) = ∅, S1 6≡ end and S2 6≡ end.

(ii) (a.S) is canonical if S is canonical.

(iii) (S1.S2) is not canonical if S1 is not an action.

(iv) µv.S is canonical if S is canonical and v ∈ FV(S).

(v) end is canonical.

(vi) v is canonical.

(vii) a is not canonical.

We begin by rewriting all statements of form [[s.send(e)]] to [[s := s.send(e)]];

and all statements of form [[s.receive(e)]] to [[s := s.receive(e)]]. We proceed to

convert session statements to single static use [13] form. The rules given in Figure 9

are then applied to assign a type to each session variable by solving for ∆ = ∅ where

Γ contains language-specific typing information for the current context. Each well-

formed type must have a canonical form as described in Definition 3.2, which is

equivalent to the original derived type according to the equivalence rules given in

Figure 5. If any type is not well-formed, i.e. it does not have an equivalent canonical

form, the inference algorithm fails. After the canonical form for each session type

is derived, we eliminate λ statements by first globally replacing any session variable

appearing on the left hand side of a λ statement with the session variable named on

the right hand side, then removing the λ statements themselves. Note that session

variables retain the type assigned to them before λ statements were eliminated.

3.1 Justification

This section gives reasoning behind parts of our derivation process given above.

Canonicity rule (i) ensures that no two alternatives in a choice construct may

present the same choices. This rule ensures the deferment of such choices to the

last possible moment. This reflects the restrictions imposed on the communicating

process, namely that a process may only choose which branch it takes on the basis

of the type of the variable it sends or receives, and not any other information.

In the process of applying equivalence rules to a session type in order for it to

conform with canonicity rule (i), equivalence rule (|Dist←) will be most frequently

employed. This rule prevents the situation shown in Section 1 where two distinct

branches of a session type are initially distinguished by the types of their inputs.

There is no need to impose such a rule on branches which are initially distinguished
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[[s.close()]] ∈ Stmts

Γ,∆ ⊢ s : end
(Close)

[[s′:=s.send(v)]] ∈ Stmts Γ ⊢ v : tv ϕ fresh

Γ,∆[s 7→ ϕ] ⊢ s′ : ts′ s /∈ dom ∆

Γ,∆ ⊢ s : µϕ.(out tv.ts′)

(Send)

[[s′:=s.receive(v)]] ∈ Stmts Γ ⊢ v : tv ϕ fresh

Γ,∆[s 7→ ϕ] ⊢ s′ : ts′ s /∈ dom ∆

Γ,∆ ⊢ s : µϕ.(in tv.ts′)

(Recv)

[[λ(s1, s2, . . . , sn):=s]] ∈ Stmts ϕ fresh

∀1 ≤ i ≤ n : Γ,∆[s 7→ ϕ] ⊢ si : ti

Γ,∆ ⊢ s : µϕ.(
∣

∣

∣
{ti : 1 ≤ i ≤ n})

(Lambda)

∆(s) = ϕ

Γ,∆ ⊢ s : ϕ
(Abbrv)

Fig. 9. Type inference rules

by the types of their outputs, as a communicating process may simply accept both

value types at this point.

4 Algorithm

This section supplies a concrete description of our type inference algorithm suitable

for implementation. Our algorithm is implemented in three stages. For the purpose

of illustration we shall use a simplified version of Ninja-C++ called LN whose syntax

contains only if, while and session communication statements with the symbol ∗
substituted for boolean expressions and expression types substituted for all other

expressions and whose control flow is defined in the obvious way. It is possible to

translate a Ninja-C++ program written in C++ into LN by converting for loops

into while loops in the usual way, removing all variable declarations, removing all

statements without a counterpart in LN and replacing all primitive values with their

types. Note that LN does not include invocations because we are not inferring the

type of the channel; it may have any type less specific than the participant’s dual

and more specific than the invoker’s, and compatibility between participants and

invokers is achieved by upcasting the return value from the invoke method into

the appropriate type. Our language supports an unbounded number of concurrent

sessions.
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i f (∗ ) {
s1 := s1. send ( int ) ;

s1 := s1. receive ( int )

} else {
s1 := s1. send ( long ) ;

s1 := s1. receive ( long )

} ;

s1 := s1. send (bool )

Fig. 10. Simple LN program.

λ(s2 , s3) := s1 ;

i f (∗ ) {
s4 := s2. send ( int ) ;

s6 := s4. receive ( int )

} else {
s5 := s3. send ( long ) ;

s6 := s5. receive ( long )

} ;

s7 := s6. send (bool )

Fig. 11. Simple LN program after SSU applied.

4.1 Stage 1: Static Single Use

The first step is to ensure that no session variable is reused more than is necessary.

This is different from the linearity constraint mentioned in Section 1.4; what we

would like to do here is to detect legitimate, linear programs that reuse session vari-

ables instead of using a fresh variable wherever possible, meaning that our inference

algorithm would generate too general a session type. In the most extreme case,

only one session variable is used throughout an entire procedure (note that this is

the starting point of our derivation algorithm). Thus the program’s communication

statements are first converted to SSU [13] form. Figure 10 shows a program in LN

with liberal reuse of session types, and Figure 11 shows the same program after SSU

has been applied to it.

4.2 Stage 2: Graph Building

After obtaining the SSU form of the program, we then build a graph of the session

transitions contained within the program using its communication statements. The

function g that builds this graph is shown in Figure 12, assisted by the unification

mapper fG shown in Figure 13. The goal of this function is twofold:

• to extract all communication actions and collect them into a graph with arcs

between source and target session variables;

• for variable assignments, ensure that the source and target sessions receive the

same type (this is the purpose of the δ function built by fG). The helper function

ǫ (Figure 13) assists in this by providing a means for a given set of variables to
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g(p) = fG(G, δ)

where (G, δ) = fP (p)

fP (s′ := s .send(t)) =

(({{s}, {s′}}, {({s}, {s′}, out t)}, ∅), λx.x)

fP (s′ := s .receive(t)) =

(({{s}, {s′}}, {({s}, {s′}, in t)}, ∅), λx.x)

fP (s′ := s) = ((∅, ∅, ∅), ǫ({s, s′}))

fP (s .close()) = ((∅, ∅, {{s}}), λx.x}))

fP (if (*) { p1 } else { p2 }) = fP (p1 ; p2)

fP (while (*) { p }) = fP (p)

fP (s .recv choice { c }) = fC(c)

fP (λ ( s1 , ... , sn ) := s) = ((∅, ∅, ∅), ǫ({s, s1 , ..., sn}))

fP (p1 ; p2) =

((n1 ∪ n2, e1 ∪ e2, a1 ∪ a2), δ1 ◦ δ2 ◦ δ1)

where ((n1, e1, a1), δ1) = fP (p1)

((n2, e2, a2), δ2) = fP (p2)

fC(case t : p) = fP (p)

fC(c1 ; c2) =

((n1 ∪ n2, e1 ∪ e2, a1 ∪ a2), δ1 ◦ δ2 ◦ δ1)

where ((n1, e1, a1), δ1) = fC(c1)

((n2, e2, a2), δ2) = fC(c2)

Fig. 12. Graph building function g.

fG((N,E,A), δ) =

({δ(n)|n ∈ N},

{(δ(n), δ(n′), e)|(n, n′, e) ∈ E},

{δ(a)|a ∈ A})

ǫ(S)(x) =







x ∪ S, x ∩ S 6= ∅

x, otherwise

Fig. 13. Unification mapper and helper function ǫ.
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receive the same type.

After the graph is built, the definite termination property is checked. The defi-

nite termination property can be expressed as follows for a graph G = (N,E,A):

∀a ∈ A : ∄n2 ∈ N, e : (a, n2, e) ∈ E

Note that if multiple sessions are used concurrently, the graph will be composed of

disjoint subgraphs. These graphs are independent and will not affect one another

except possibly during safe merging operations in stage 3.

4.3 Stage 3: Graph Simplification and Translation

At this stage we must first process the graph in order to identify and merge nodes

such that semantics are preserved. Furthermore we wish to identify invalid graphs.

To begin with, let us define a notion of node equivalence within our graph.

Definition 4.1 Node equivalence within a graph.

eq(ns, c, (N,E,A)) ←→ ns ∈ c ∨ |ns| ≤ 1 ∨

(
∧

{eq({n′|n ∈ ns ∧ (n, n′, e) ∈ E},

c ∪ {ns}, (N,E,A))

|n ∈ ns ∧ (n,, e) ∈ E}

∧(ns ⊆ A ∨A ∩ ns = ∅))

n1 ≡G n2 ↔ eq({n1, n2}, ∅, G)

Definition 4.2 Applying a substitution function. To apply a substitution function

δ, we replace the current graph G with the result of unification mapper fG(G, δ),

where fG is defined in Figure 13.

We may unify nodes provided that they are node equivalent, according to Defi-

nition 4.1. This allows us to simplify graphs with multiple convergent arcs with the

same label leading to a single node. For each pair of nodes n1 and n2 in our graph

G such that n1 ≡G n2, we apply the substitution function ǫ(n1 ∪ n2).

A second case we must deal with is divergence. Should a graph have many

divergent arcs with the same label leading to nodes n1, n2...nn, we must replace these

nodes and any dependent subgraph with a single node n and associated subgraph

such that ∀i ∈ {1...n}, τ(n) ≤ τ(ni), where τ is the session type building function

defined in Figure 14. The initial processing may be achieved by treating our session

graph as a NFA, converting it into a DFA using the subset construction and rejecting

any graph that does not satisfy this property. This transformation is sound as it has

been proven [18] that each NFA has an equivalent DFA (accepting the same language

or, in our case, sequence of communication actions) which translates directly to trace

soundness.

Before we check this property we must convert node labels in the DFA from sets

of sets to sets in order to make it consistent with the NFA. This is done by applying
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τ(n,G) = τS({n}, G, ∅)

τS(ns, (N,E,A), δ) =











































δ(n), n ∈ ns ∩ dom δ

µϕ.
∣

∣

∣

{(a.τS({n′ : n ∈ ns ∧ (n, n′, a) ∈ E},

(N,E,A), δ[n 7→ ϕ : n ∈ ns]))

: n ∈ ns ∧ (n, , a) ∈ E}

,
ns ∩A = ∅

ϕ fresh

end, otherwise

Fig. 14. Session type building function τ .

the substitution function

δ(x) =
⋃

x

A simple way of verifying the above property is to do so ‘superficially’ between

each node in the DFA graph and each corresponding component node in the original

graph, as formulated below.

Definition 4.3 Superficial subtyping. A type graph H = (NH , EH , AH) is a su-

perficial subtype of a type graph G = (NG, EG, AG) iff:

∀nh ∈ NH , ng ∈ NG : ng ⊆ nh =⇒ idom(sg) ⊆ idom(sh)

∧ odom(sg) ⊇ odom(sh)

where sg = τ(ng, G)

sh = τ(nh,H)

Note that in practice, the superficial subtyping property implies that each node

must have an identical set of input types, and there are no restrictions on output

types.

If the DFA nodes have overlapping subsets, which is entirely possible based on

the structure of our program, we will not be able to type those session variables

that appear in two or more nodes, as each session variable must have a single type.

Thus for each node in the original graph we must merge all nodes in the resultant

graph containing that node; i.e. for each original node n we apply the substitution

function

δ(nh) =







⋃

{m|m ∈ NH ∧ n ∈ m}, if n ∈ nh

nh, otherwise

If the new graph no longer satisfies the superficial subtyping, definite termination

or safe directionality property given above, we must reject it.

Note that the merging of overlapping subsets preserves trace soundness but not

trace completeness. This is a small concession, and because we applied SSU to the

program before simplifying the graph, it is also the smallest possible concession that

we can make.
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We may now extract the session types from our graph by employing the τ func-

tion shown in Figure 14 and using equivalence rules, in particular µExp and con-

gruence, in order to eliminate unnecessary µ operators.

5 Example

This section presents an example of how our algorithm is used to derive session

types. We start with the following communication procedure

void s e r v e r ( session s ) {
while (1 ) {

s = s . receive (Req1 (x ) ) ;

i f ( x%2) {
s = s . send ( x+1);

s = s . receive ( x ) ;

s = s . send ( ( char ) x%256);

} else {
s = s . send (x−1);

s = s . receive ( x ) ;

s = s . send ( ( long ) x<<16);

}
}

}

Firstly we convert this program to LN by removing statements and simplifying:

while (∗ ) {
s1 := s1. receive (Req1 ) ;

i f (∗ ) {
s1 := s1. send ( int ) ;

s1 := s1. receive ( int ) ;

s1 := s1. send (char )

} else {
s1 := s1. send ( int ) ;

s1 := s1. receive ( int ) ;

s1 := s1. send ( long )

}
}

We proceed to stage 1, converting to SSU form:

while (∗ ) {
s2 := s1. receive (Req2 ) ;

λ(s3 , s4) := s2 ;

i f (∗ ) {
s5 := s3. send ( int ) ;

s6 := s5. receive ( int ) ;

s1 := s6. send (char )

} else {
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in Req2

out int

in int

out char out int

in int

out long

{s1}

{s2, s3, s4}

{s5}

{s6}

{s7}

{s8}

Fig. 15. Result of graph building function fG applied to Example 1.

s7 := s4. send ( int ) ;

s8 := s7. receive ( int ) ;

s1 := s8. send ( long )

}
}

Applying the graph building function fG we obtain the graph shown in Figure 15.

This graph has no accepting states so the definite termination property vacuously

holds.

The graph has no recursively equal nodes for us to unify, so we proceed to DFA

building using the subset construction, giving us the graph shown in Figure 16. In

this graph, each node is a disjoint subset of the set of sessions, so our substitution

function has no effect. Applying the τ function to our graph to produce a Ninja

session type, we deduce the following overall type assignment for s1:

s1 : µt.in Req2.out int.in int.(out char.t|out long.t)

6 Sessions in C++

This section shall describe how the Ninja language has been adapted to standard

C++ in our language Ninja-C++, without the use of any special compilers or lan-

guage extensions.
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in Req2

out int

in int

out char out long

{s1}

{s2, s3, s4}

{s5, s7}

{s6, s8}

Fig. 16. Result of subset construction applied to Figure 15.

6.1 Sessions and Channels

In Ninja-C++ sessions are represented as a hierarchy of template instantiations, as

the C++ template mechanism allows us to specify a user-defined type hierarchy. As

we shall see, the template-based representation can express almost every session type

in our algebraic representation, modulo equivalence, discounting some restrictions

on choice.

We distinguish between Ninja actions and sessions. An action is a primitive

communication step, such as in int (of the form D V T from Figure 4), whereas a

session is a fully specified session which may include sequential composition, choice

etc. Actions in Ninja-C++ shall take the form in<T> or out<T>, where T is the

primitive data type to be sent or received across the channel.

For sessions, the two main constructs that we must represent are sequential

composition (. in Ninja) and choice (| in Ninja). Sequential composition will com-

pose an action with a session (its continuation), so our best choice of representation

is seq<A,S>, A being the action and S the session. For the choice construct we

compose sessions via a tuple-style representation of the form choice<S1,S2,...,Sn>.

The constraints implied by these template declarations allow for relatively trivial

derivation of the input domain, output domain and continuation type of a particular

type at each stage and, for this reason, provide the basis for additional constraints

imposed on derived types as we shall see.

Frequently when designing session types, we must be able to create recursive

types. This will commonly occur when we would like to represent a loop in our
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struct s ;

typedef seq<in<int >,call<s> > r ;

struct s { typedef r t ; } ;

Fig. 17. A recursive session type representing an infinite stream of int inputs

session typed code (for example a request-response loop, or a computation which

may produce an arbitrary number of responses). The most obvious way of creating

a recursive type in C++ (that is, defining a type in terms of itself in a typedef

statement) will not work, because the language prevents such a definition. However

an incompletely-defined type may be referred to in a template instantiation. This

allows us to specify a three-stage protocol that may be used to define a recursive

type. Firstly, an incomplete struct s is defined. Secondly, the recursive session type

r is defined using a typedef. Wherever a recursive reference is required, the special

instantiation call<s> is used. Thirdly, s is fully defined, with an internal typedef

t that is defined to be r. An example of such a definition is shown in Figure 17.

What we have done in the previous paragraph is establish an isorecursive type

system [17]. As opposed to the equirecursive type system of Ninja, where a recursive

type and references to the recursive type are equivalent via the (µExp) rule given

in Figure 5, in our isorecursive type system we have established an isomorphism

between the ‘rolled’ reference type call<s> and the ‘unrolled’ type r. The ‘unroll’

operation is carried out automatically during the computation of the continuation

type of a particular session type if it is found to be of the form call<s>. In this

case there is no inverse mapping from unrolled types to rolled types; we do not

require one here, but it would be trivial to define one in order to make this a ‘true’

isorecursive type system.

The primitives invoke, send, receive, newchannel and spawn are implemented,

as in Ninja, as methods of the applicable classes, i.e. sessions (send, receive),

channels (invoke), participants (spawn). The newchannel primitive is presented as

a type constructor for the channel type.

We must define types for sessions and channels themselves. We have defined

a type session<S> for sessions, where S is the session type. Similarly we have

channel<S> for channels.

6.2 Participants

Each participant comprises:

• a list of its channels, including information regarding whether the channel is

linear, shared or invokable;

• for those channels which are linear or shared, an implementation of a communi-

cation procedure for that channel;

• for those channels which are invokable, a variable which will store the channel.

and provides the following functionality:

• a constructor which is provided with a sequential list of channels in the order

provided by its definition;
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struct par t bas e {

channel<s1> ∗ch1 ;

void ch2 ( session<s2> s ) {
. . .

}

} ;

typedef participant<part base ,

dual channe l<s1 >, &par t bas e : : ch1 ,

l i n ea r chann e l <s2 >, &par t bas e : : ch2

> part ;

Fig. 18. An example of a skeleton participant

• a spawn method which spawns the participant.

Participants are implemented as a participant template which is parameterised

over the types of its channels and the names of the relevant communication proce-

dures and channel fields. This allows us to perform compile-time type checking of

channels supplied to the participant.

The spawn primitive in Ninja takes an argument indicating the ‘location’ of the

participant. Normally this means the CPU core on which it shall run. Obviously

the specification of a location is implementation-specific, but in order to allow for

portable programs to be written, all implementations must provide a default loca-

tion. For a particular implementation, this may mean a particular core, or it may

mean that the underlying operating system should select one automatically. In any

case, the default location is given in the constant os :: default location .

A participant’s communication procedures and channel variables are encapsu-

lated by making them non-static members of their own class, known as the partic-

ipant implementation class. The name of this class is supplied as a parameter to

participant, which will declare it as a base class. Note that we cannot have the

participant implementation class be a subclass of the participant instantiation.

This is because it would entail that the implementation class be defined in terms

of the participant class (as it is a base class). Recall that the participant class is

parameterised over the implementation class’s fields and methods. So we have a

circular reference, which is not possible in the C++ language. participant’s tem-

plate parameters will thus comprise its base class (the implementation class) and

the list of channels.

An example of a skeleton participant is shown in Figure 18.

6.3 A Note on Session Variable Types

As previously mentioned, each session variable must be fully specified with its ses-

sion type. It is unfortunate that the C++ language does not provide us with the
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facility of automatically deducing the session variable’s type, even though it has all

the information available to do so. The most recent draft of the C++ standard [12]

provides for an auto specifier for variable declarations (section 7.1.5.4) which de-

duces the type of a variable from the type of its initialiser. This would be ideal for

our purposes here, but since the document is still in draft, no compiler implements

this feature yet, and we have to make do with what we have.

7 Implementation

Our prototype implementation of this algorithm covers stages 2 and 3 of the algo-

rithm described in Section 4, with two crucial differences:

• As Ninja-C++ does not currently take into account session subtyping as described

in Definition 1.4, an invoker’s communications must produce the exact same ses-

sion type via our algorithm as the dual of the corresponding communication

procedure for them to be compatible.

• It only performs a simplified version of the subset construction, and does not

check the superficial subtyping property for minimised graphs.

It is a C++ program transformation using the ROSE [19] source-to-source translator

framework. The transformation takes an untyped Ninja-C++ program as input, and

generates a compilable typed program as output.

The first step in implementing the algorithm is to create an untyped version of

Ninja-C++. Creating an untyped version of the language entails creating versions

of the session and channel templates that do not take session type parameters.

The two use cases for our type inference system are deriving intermediate session

types, and deriving full session and participant information. Thus we must have

two variants of our untyped implementation; for the first, only session and channel

are untyped (known as the untyped sessions variant); for the second, everything is

untyped (known as the untyped participants variant).

The implementation of the algorithm is used to automatically assign types to

sessions, channels and participants. It proceeds in three stages. Firstly it uses an

AST traversal to collect information about the session usages, channel invocations

and participant definitions that the program uses. Information about session usages

is stored in a graph-like structure, a mapping between a node and a set of arcs. Each

arc stores direction and type information as well as the node the arc points to. Each

node stores a set of ROSE AST variable declarations which represent the session

variables that correspond to the type at that node. Information about channel

invocations is stored as a mapping from channel variables (AST variable declaration

for the channel) to session nodes. Information about participant definitions is stored

as a mapping from the template parameter representing the channel type to the

session node.

After the information has been collected, all sessions pertaining to a channel

invocation (found by using the channel invocation information that has been col-

lected, as well as by following the session usage graph) are ‘flipped’ and marked as

dual.
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Secondly, the process of unification takes place. This proceeds in two stages,

which repeat execution alternately until both stages cannot modify the graph. In

the first stage, we unify identical divergent paths using the subset construction. In

the second stage we unify based on recursive equality.

8 Conclusions and Future Work

We have shown how our type inference system allows for a program’s behaviour

to be expressed as a type. We have further shown how programs can be judged

to be compatible by a language’s type system using their assigned types. This

allows the developer greater freedom in designing client/server programs, as the

compatibility between the two peers can be checked at compile time without the

developer needing to compute the program’s session type manually. We have also

described a well-formedness constraint for session types with implicit choice that

forbids session types for which a dual cannot be constructed.

Ninja-C++ does not currently decide compatibility according to Definition 1.6;

instead, two session types are deemed to be compatible only if they are the exact

dual of each other. Clearly, this does not afford us much flexibility. The reason

for this is that any such compatibility check, being a compile-time mechanism,

must take place within the language’s facilities for compile-time computation. For

C++, this means the template system. However, the C++ template system, de-

spite being Turing complete [21], has insufficient expressibility for a maintainable

implementation of the compatibility relation to be feasible. In order to add a dy-

namic layer of expressibility to the language, a compile-time extension framework

can be implemented providing computed template instantiations in a functional, or

semi-functional, language such as ML or Haskell. In this instance, the extension

framework can be used to build a template representing a binary relation of session

subtyping as described in Definition 1.4. We can then use custom type conversion

operators and the Substitution Failure Is Not An Error (SFINAE) principle to fa-

cilitate substitutability and thus, by the construction of Ninja-C++, compatibility.

Ninja-C++ supports callable procedures that perform operations over session

types. In order to preserve type safety, such procedures are parameterised over the

remainder of the session type using C++ templates. However, our inference system

does not currently infer the session type of such procedures correctly. In order to

support interprocedural session type inference, the algorithm must be extended to

recognise where parameterisation is necessary (i.e. the passing of session variables

between procedures) and insert the correct template syntax where required.
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A Safe Directionality

The safe directionality property, as described in Section 1, is imposed on asyn-

chronous communication models, such as Ninja, in order to preserve compatibility

between peers. If both peers are in a state where both inputs and outputs are

permitted, and they simultaneously send data to each other, they will both have

followed different ‘paths’ through the session type thus risking that their respec-

tive ‘believed’ types for the session be incompatible. In the case of bidirectionality,

we sacrifice ‘path’ correctness, but maintain compatibility of the believed current

session types.

To see that the safe directionality property is correct for bidirectional types, we

consider a session s1 and its communicating peer s2 such that s1 ⊲⊳ s2. In order to

derive the minimal conditions that must be imposed on s1, we must consider the

most specific s2 such that s1 ⊲⊳ s2; i.e. s2 = s1. Suppose that peer p1 of session type

s1 sends a message of type t1 ∈ odom(s1) simultaneously with p2 of session type s2

whose message is of type t2 ∈ odom(s2). Their session types are now respectively

s′1 and s′2, where s1
out t1−→ s′1 and s2

out t2−→ s′2. We should now expect p1 to be able

to handle the message sent from p2 in its new session s′1. For this to be the case,

s1 ≤ s′1. Similarly, s2 ≤ s′2, which may be rewritten s1 ≤ s′′1 ⇒ s′′1 ≤ s1 where

s1
in t2−→ s′′1 by definition 1.5 and the standard session typing result:

S ≤ T ⇐⇒ T ≤ S

The clearest instance of a bidirectional type that satisfies the safe directionality

property is smin such that smin
a
−→ smin for all a ∈ {in t : t ∈ idom(smin)}∪{out t :

t ∈ odom(smin)}.

25


	Introduction
	Background: implicit choice in session types
	Example
	Definitions
	Type Mutation and Linearity
	Closing a Session

	Related Work
	Derivation and Canonicity
	Justification

	Algorithm
	Stage 1: Static Single Use
	Stage 2: Graph Building
	Stage 3: Graph Simplification and Translation

	Example
	Sessions in C++
	Sessions and Channels
	Participants
	A Note on Session Variable Types

	Implementation
	Conclusions and Future Work
	Acknowledgements
	References
	Safe Directionality

