WORKLOAD CHARACTERIZATION USING LIGHTWEIGHT
SYSTEM CALL TRACING AND REEXECUTION

Ariel N. Burton and Paul H. J. Kelly
Department of Computing, Imperial College, London, United Kingdom
{anb,phjk}@doc.ic.ac.uk

ABSTRACT

This paper shows how system call traces can be obtained
with minimal interference to the system being charac-
terized, and used as realistic, repeatable workloads for
erperiments to evaluate operating system and file sys-
tem designs and configuration alternatives.

Our system call trace mechanism, called ULTra, cap-
tures a complete trace of each UNIX process’s calls to
the operating system. The performance impact is nor-
mally small, and it runs in user mode without special
privileges.

We show how the resulting traces can be used to drive
full, repeatable reexecution of the captured behaviour,
and present a case study which shows the usefulness
and accuracy of the tool for predicting the tmpact of file
system caching on a WWW server’s performance.

1 INTRODUCTION

Our aim in this work is to develop a tool for a sys-
tem performance consultant to use to characterize a
customer’s workload. The consultant would install the
trace capture tool on the customer’s UNIX server, en-
able tracing, and would monitor the customer’s system
as it performs its normal duties. The consultant would
then use the resulting trace to experiment with system
tuning parameters, hardware upgrades, workload redis-
tribution, etc., off-line using analytical models, simula-
tion, and perhaps also test hardware. Such traces could
also be used for benchmarking and in the operating sys-
tem and file system research community.

In order for this scenario to be realistic, trace capture
must

e incur minimum risk and interference to the target
system.

e must provide enough information for the perfor-
mance tuning mechanisms to be exercised prop-
erly.

e must lead to results having adequate predictive ac-
curacy.

The evaluation methodology presented in this paper
characterizes a workload by the trace of its system calls.
By rerunning the sequence of system calls in a trace
under different conditions, it becomes possible to com-
pare, evaluate or predict the performance of the work-
load under different system configurations. The term
rerun 1s used to describe this process. We distinguish
two modes of rerunning traces: trace replay and trace
reezecution. These are described below.

1.1 Trace replay

Here, we use a trace of system calls, their parameters,
and fine-grain timing of the user-mode CPU times be-
tween returning from a call and issuing the next.

The trace is used to exercise a system under test using
a “spinner” program. The spinner issues each call in
the trace in turn, and simulates CPU time used by
the application between system calls by looping for the
appropriate period as recorded in the trace. The actual
time taken to complete trace replay depends on the
system call service times achieved by the system under
test.

1.2 Trace reexecution

In some applications, the spinner leads to inaccurate
results because the actual behaviour of the application
interacts with the operating system, for example by
causing TLB misses or page faults, or by flushing op-
We can
capture this by rerunning the application code.

erating system data from hardware caches.

In order to get reproducible results, we make sure all
the results returned from system calls are recorded in
the trace. The application should behave in a precisely
reproducible way since it is fed precisely the same in-
puts.

The trace needed here is simpler; no timestamps are
needed. System call results must be recorded, but the
parameters need not.

Unfortunately, certain behaviours cannot be replayed
There are prob-
lems with asynchronous signals, and pre-emptively—

reproducibly at reasonable cost.

scheduled threads, which can be solved in principle by
modifying the application’s code (see Section 8.1). Par-
allel threads, and processes which interact via shared
memory, are probably not reexecutable.

1.3 Time measurements

In the description above, timestamps are used to ac-
count for CPU time used by the application. There
is another role for timestamps: to account for exter-
nal stimuli which occur at specific wall-clock times or
intervals.

To reproduce real workloads properly, it is vital to
distinguish such workload-determined timing from the
implementation-determined timing which is expected
to vary when the configuration of the system under test
1s modified.

In our experiments, we assume no external stimuli with
workload-determined timing. For a network server, for
example, the effect of this is that the number of trans-
actions per second is increased in proportion to the sys-
tem’s performance. It is reasonable, but more difficult,
to keep the transaction processing rate constant and to
optimise the response time.

1.4 Overview of the paper

The next section reviews some earlier contributions in
the area. Section 3 describes the design of ULTra, our
trace capture tool, showing how efficiency is achieved
and how replay and reexecution are organised. Sec-
tion 4 describes various subtleties of our implementa-
tion. The overheads of trace capture are evaluated in
Section 5. Section 6 shows how accurately replay and
reexecution track the application’s original execution
time. Section 7 presents a small case study demonstrat-
ing the predictive accuracy of the tool is evaluating the
performance benefits of different amounts of RAM in
WWW server application.

2 RELATED WORK

Trace capture has been used for many years for per-
formance evaluation. The critical aspect of our work
lies in capturing just enough information - in this case,
system calls - to be able to reconstruct the complete
computation by reexecution. Rather than supplanting
lower-level trace capture and analysis, for example by
hardware monitoring or modifying microcode, this fa-
cilitates it by making a reproducible record of the orig-
inal workload. We therefore focus our literature review
on trace capture and reexecution.

Intercepting system calls. The ptrace() system
call provides a mechanism for one process to monitor
the system call activity of another. The tracing process
is able to examine or modify the arguments to, and the

results from, each system call. However, as noted in
Section 5.1, this mechanism incurs large overheads.

Jones [6, 7] describes a general technique for interposing
agents between an application and the operating sys-
tem. Jones’s reported work relied on an operating sys-
tem facility to redirect system calls to a specified han-
dler. Jones does not report any work on using buffering
to reduce the overheads incurred by writing the trace
file at each call.

Ashton and Penny [1] developed INMON, an “interac-
tion network monitor”. INMON is designed to trace the
activity in the kernel caused by individual user actions.
Tools of this nature complement our work in that they
provide an insight to activity within the kernel caused
by a workload, whereas we report trace capture in order
to characterize the workload.

File access trace studies. Traces have been used
extensively to study file system activity by Ouster-
hout et al. [8] and Baker et al. [2] in the analysis of
the 4.2BSD, and Sprite distributed file systems, re-
spectively. Bozman et al. [5] modified a CMS moni-
tor, CMON, to gather traces of file reference patterns.
Of more interest is DFSTrace, used by Mummert and
Satyanarayanan [11] in the evaluation of the Coda file
system, since they also replayed the traces using the
timing information given by the trace. Instead of mod-
ifying the operating system kernel, Tourigny [13] and
Blaze [4] exploited a remote file system architecture to
obtain traces of file system activity by monitoring the
interactions between clients and server. This has the
virtue of being entirely non-intrusive, though includes
only remote file accesses and also requires privileged
access to the network.

By contrast, we aim in this paper to capture the en-
tire system call trace, and to use it to study the overall
system performance by using it to reexecute the appli-
cation.

Replay for debugging. The problem of reexecution
of parallel UNIX processes is similar to that of replay-
ing parallel programs (e.g. see LeBlanc and Mellor-
Crummey [9]) for debugging purposes. Note, though,
that we need to be able to reproduce the original exe-
cution time as accurately as possible.

Finally, Bitar [3] gives a useful review of the validity

issues in trace-driven simulation of concurrent systems.

3 DESIGN OF ULTra

Urtra (User Level Tracing) intercepts system calls, and
writes trace information to a trace file. Its performance
depends upon two key factors:

1. an efficient mechanism for intercepting the work-

load’s system calls.

2. buffering of trace output to reduce the number of
additional write operations incurred.

To be easy to use, we need a simple mechanism for
controlling tracing. Having considered various alter-
natives, we chose to substitute the dynamically-linked
standard shared library providing UNIX system calls.
In the ULTra version the system call stubs are extended
with modifications for trace capture and reexecution.
The advantage of this is that trace capture is confined
to the library, and is therefore transparent to applica-
tions. It should be noted that although applications
do not need to be recompiled, they must be relinked:
however, as in modern systems the final binding be-
tween an application and a library does not occur until
runtime, most applications can be traced as they are.
Exceptions include rare, statically-linked applications.

For trace reexecution, we can choose how much infor-
mation is included in the trace itself, and how much
is accessed via the filesystem during reexecution. It is
unattractive to have to include all the data the process
reads, although sometimes this is unavoidable. For ex-
ample, data from terminals or sockets are not available
at reexecution time. Similarly, data which are over-
written later must be saved. At present, we do not log
socket contents, relying instead on reexecution of the
correspondent process. Nor are copies of file data in-
cluded in the traces. This is adequate for our purposes.

3.1 Rerunning System Calls

On rerun the actions taken in response to a system call
are determined by the captured trace, and also by the
type of the system call. These fall into the following
categories:

e Simple calls. In this case the responses are com-
pletely determined from the trace. Although the
call need not be reexecuted to ensure the applica-
tion’s original behaviour is preserved, sometimes
this may be necessary so as to account for the time
spent servicing the call. Examples of this type of
call include getpid() and gettimeofday().

e Calls that may be rerun as before. An example of
this type of call is dup(), which modifies the pro-
cess’s file descriptor table. Clearly, as this effect
must be reproduced, the call must be repeated.
The new return value should be identical to that
in the trace. In general, the calls that fall into this
category are those that modify the process’s kernel
state.

e (Calls that must be reexecuted for their effects, but
where the returned value from a replayed call may
differ from that in the trace. This can occur where
a system call returns a kernel-created identifier or
handle for some resource that is used in later calls
to identify that resource. Both trace replay
and reexecution are affected, as there is no way of
ensuring that the repeated call returns the same
value. This 1s solved with the use of a table map-
ping capture time identifiers to those of trace re-
run. An example of a call of this type 1s wait ().

3.2 Measuring Time

It 1s important when a trace is rerun that the system
calls are reissued at the correct rate. This happens nat-
urally in the case of trace reexecution. However, in the
case of trace replay the time spent by the application
executing between system calls must be simulated by
the “spinner”. Consequently, the trace must include
the time spent executing at user level between system
calls. In selecting or designing a mechanism for captur-
ing these times the following issues must be considered:

1. the time taken to read the clock. This should be
small in order to reduce the overhead of trace cap-
ture.

2. the resolution of the times reported. These should
be sufficiently high to reflect the application’s be-
haviour accurately .

3. the means by which user level execution time is

1dentified.

4. the efficiency of the method used to communicate
the times from the kernel to ULTra.

An obvious candidate for collecting these times is
the resource utilization information maintained by
the kernel for purposes of management or accounting
(getrusage() or times()). However, the resolution of
these times 1s that of the clock interrupt interval, typi-
cally 10-20mS, which is too coarse for our purposes.

Another alternative is to approximate the user level
execution time between system calls by elapsed,
‘wall-clock’, time, for example, as reported by the
gettimeofday() system call. The resolution of
this time i1s hardware dependent, though it is of-
ten genuinely of microsecond granularity. This, like
getrusage() above, requires two additional system
calls for each call made by the application. A more
important weakness is that the measured time will in-
clude time spent on other activities, for example, sys-
tem activity on behalf of the process, or executing other

processes. Thus, this approach can be used only where
the principal activity in the system is the application
being traced. Nonetheless, when this is the case, this
method can yield useful results.

A ccounting for pre-emption. We account for user
time in the presence of other processes by modifying the
kernel to update a timer in its process table entry on
each context switch to, or from, user mode. To keep the
overhead to a minimum, the cost of reading the clock
should be low. We describe how this is achieved in our
implementation in section 4. This provides accounting
for user-mode execution time at clock-cycle resolution.
The counter could be accessed via a system call, but we
improve performance by avoiding this. Instead, imme-
diately prior to returning from a system call the kernel
writes the times to a small, pre-determined area of the
process’s user level address space reserved for this pur-
pose. When the system call returns, these times can
be read from the region by ULTra, and recorded in the
trace. It should be noted that if the application is not
being traced, then the times are simply ignored. The
location of this region is carefully chosen (for example,
at the base of the stack) so that its presence is trans-
parent to both traced and untraced applications.

4 IMPLEMENTING ULTra

ULTra is currently implemented as a substitute for
the libc (version 5.3.12) shared library under LINUX
2.0.25. We have also developed a statically-linked im-
plementation for SUNOS 4.3.1.

4.1 Measuring Time

The LINUX system call mechanism was modified to in-
clude the extensions described in section 3.2. To mea-
sure time with high resolution and low overheads, we
exploit the Pentium processor’s 64 bit Time Stamp
Counter. This is incremented on every clock cycle, and
can be read in a single instruciton (rdtsc). This allows
us to obtain fine-grained times very efficiently. We use
this feature to determine the number of clock cycles a
process spends executing at user level. In all, the mod-
ifications were modest, amounting to about 300 lines of
C and Pentium assembler.

4.2 Buffering

In a naive implementation, trace records would be writ-
ten out immediately. Doing so would double the num-
ber of real system calls made by an application, lead-
ing to poor performance; and consequently buffering is
used to reduce the overhead. Surprisingly, buffering is
ULTra’s main source of complexity.

The problems affect process creation, where the actions
of the new process and its parent must be coordinated

to prevent corruption of the buffer or loss of trace in-
formation; and also program invocation in which the
process’s user level context is completely replaced, with
consequential loss of the contents of the buffer. Trace
capture, reexecution, and replay are all affected, but
there is insufficient space to explain the details here.

5 PERFORMANCE OF ULTra

The overheads incurred by trace capture must be mini-
mal if ULTra is to be used as we intend. In this section
we present an estimate of the maximum overhead likely
to be experienced (a program loops calling a system call
which itself takes very little time), and also the over-
head likely to be seen in more realistic applications.

All times reported in this section were obtained using a
statically linked instance of version 1.7 of the GNU stan-
dard UNIX timing utility, /usr/bin/time. The tests
were run on an unloaded IBM-compatible PC with a
166MHz Intel Pentium CPU, 32MB EDO RAM and
512KB pipeline burst-mode secondary cache, running
Linux 2.0.25. All application file input and output was
to a local disk, with UrTra traffic directed to a second,
local disk.

The experiments described in this section used the fol-
lowing applications:

e getpid. This is a simple program that loops call-
ing the getpid() system call 1,000,000 times.

o IXTEX. BXTEX(version 2¢) is used to format a 168
page thesis.

e apache. The apache HTTP server (version
1.2b6) was configured to manage a copy of the
11,110 files (approximately 175MB) managed by
our WWW server. In each run the server processed
25,000 HTTP requests, delivering approximately
238MB of data. The HTTP requests were derived
from the access logs of our WWW server. In order to
make the experiment repeatable for the purposes
of this paper, the GET requests were issued by
a simple process running on the same CPU. (We
return to this example in Section 7).

e make. In this experiment make was used to recom-
pile one version of the UrTra library. This consists
of approximately 100 small files, and about 400
separate processes were involved.

The application binaries were either those distributed
with LINUX, or were built from source using the default
configuration and make options. Where necessary, the
applications were compiled using version 2.7.2 of the
GNU C compiler, gcc and linked to version 5.3.12 of
the GNU standard library, glibc.

Application Elapsed times % of untraced Application Elapsed times % of untraced
(secs) time (secs) time
getpid untraced 2.0 100.0% getpid untraced 2.0 100.0%
ULTra—reexecution 4.8 242.7% rerun—reexecution 4.7 237.7%
ULTra—gettimeofday 13.4 675.8% rerun—gettimeofday 10.8 548.4%
ULTra—rdtsc 7.3 366.7% rerun—rdtsc 9.6 486.5%
strace 227.2 11487.4% IATEX untraced 7.6 100.0%
IATEX untraced 7.6 100.0% rerun—reexecution 7.5 99.3%
ULTra—reexecution 7.5 99.6% rerun—gettimeofday 7.5 99.3%
ULTra—gettimeofday 7.6 100.6% rerun—rdtsc 7.6 99.9%
ULTra—rdtsc 7.6 101.1% apache untraced 418.7 100.0%
strace 9.4 123.8% rerun—reexecution 454.8 108.6%
apache untraced 418.7 100.0% rerun—gettimeofday 480.3 114.7%
ULTra—reexecution 449.6 107.4% rerun—rdtsc 477.2 114.0%
ULTra—gettimeofday 493.5 117.9% make untraced 69.1 100.0%
ULTra—rdtsc 490.4 117.1% rerun—reexecution 74.3 107.6%
strace 985.3 235.3% rerun—gettimeofday 82.7 119.7%
make untraced 69.1 100.0% rerun—rdtsc 80.0 115.8%
ULTra—reexecution 74.3 107.6%
ULTra—gettimeofday 76.6 110.9%
ULTra—rdtsc 77.6 112.4%
strace 148.0 214.9% Table 2: Trace replay and reexecution with unchanged

Table 1: Trace capture overheads

In this section we consider three variants of ULTra:

1. Urrra (for replay): the traces captured include
system call parameters and the user level inter-
system call execution times needed by the “spin-
ner”. Execution times were approximated using

gettimeofday().

2. Urrra (for replay): as number 1 above, but
where user level inter-system call execution time
was measured using the modified kernel and rdtsc.

3. Urtra (for reexecution): the traces captured in-
clude system call results only. This is sufficient for
reexecution.

5.1 Trace capture overheads

Table 1 shows the execution times without tracing, and
with tracing for replay and for reexecution. It is un-
likely that any useful application would suffer the over-
heads seen with the getpid program. The additional
time 18 much larger for replay because of the need to
gather and record timing information. It should be
noted that the rdtsc figure is considerably better than
that for gettimeofday(), demonstrating the efficiency
of our timing and kernel to user level communication
mechanisms.

The overheads for reexecution are much smaller, reflect-
ing only the cost of copying information into the trace
file and periodically issuing a write when it fills.

For comparison, the strace utility, which uses UNIX’s
ptrace mechanism, took more than 200 seconds for

configuration

getpid (an over 100-fold slowdown), and 9.4 seconds
for the XTEX benchmark (123% of the untraced exe-
cution time). On the apache and make benchmarkes
the strace overheads are larger, at 235% and 214%,
respectively.

5.2 Buffering

We measured the effect of buffering on UrTra’s perfor-
mance using the getpid application. The unbuffered
version executed in 21.93 seconds, whilst with buffering
this improved to 4.8 seconds. Much of UrLTra’s com-
plexity is due to buffering, and this is clearly worth-
while.

6 REPLAY AND REEXECUTION

Table 2 shows how replay and execution times com-
pare with the original execution time for each bench-
mark. The replay time for the KTEX experiment is
extremely similar, indicating that paging and cache ef-
fects were negligible in the experiments, that our timing
measurements are sufficiently accurate, and that our
timing loops are well-calibrated. The time to replay
the getpid experiment is disappointingly high, proba-
bly because of the overheads of reading, accessing and
checking the trace. The replay times for the apache
and make experiments are reasonably close, but there
is room for improvement.

As expected, reexecution gives better results.

7 USING ULTra TRACES TO
PREDICT PERFORMANCE

More interesting is to see how well performance on a
different configuration can be predicted. To illustrate

this, we focus on the apache benchmark program. This
is highly file intensive, and there 1s potential for caching
since certain URLs are requested repeatedly during the
experiment. apache relies on the underlying file sys-
tem to cache repeatedly-used files, and this depends on
having enough memory. As an illustration of the po-
tential value of the approach, we show here that the
ULTra trace can be used to predict the performance of
the workload on configurations with a range of RAM
sizes.

7.1 Experimental design

Choice of benchmark. Urtra is designed for work-
load characterisation in situations where the applica-
tion is interacting with its environment in complicated
ways which make it difficult to redo performance exper-
iments with precisely reproducible results. However, for
the purposes of this paper, we need to be able to com-
pare the execution time of a particular workload with
the execution time using replay or reexecution of an
ULTra trace. For this experiment, we need to be able
to reproduce the actual workload as well.

We chose the apache web server as the benchmark in
order to overcome this problem; it has the advantage
that we can rerun it with a repeated sequence of HT'TP
“GET” requests, and get exactly the same behaviour
(a simple illustrative example of a situation where this
would not work would be where apache is configured
to operate as a WWW proxy cache; it is difficult to
get precisely reproducible results because cached data
expires as time elapses).

An additional apache benchmark. To illustrate a
richer range of behaviours, we include an additional
workload for apache with higher RAM demand. In
this variant the server was configured to manage about
4,900 documents, amounting to approximately 32MB.
A list of queries was constructed such that each doc-
ument was accessed twice. This was then randomly
permuted and used as the workload for the experiment.

Configuration modification. Once a reexecutable
ULTra trace has been captured, there are many per-
formance analysis and tuning opportunities. As a very
simple example to demonstrate the principle, we have
looked at the effect of differing amounts of RAM on the
effectiveness of file system caching. We booted LINUX
with various amounts of RAM, and compared the exe-
cution time of the actual workload with the time taken
to replay the ULTra trace, and to reexecute it. The
same replay trace was used for each memory size, cap-
tured from a run with the minimum 8MB configuration.

7.2 Results

Figure 1 shows the actual execution time of the original
apache experiment for various amounts of RAM, com-

pared with the execution time predicted by replay and
reexecution of an ULTra trace captured from an origi-
nal execution with SMB RAM. In Figure 2 we show the
actual and predicted execution times for the artificial
workload example.

T T T
Untraced execution time ——
Time predicted by reexecution -+--—-
Time predicted by gettimeofday -&
700 - Time predicted by rdtsc -x-- 1

Time (secs)
a
3
3

15 20 25 3‘0 3‘5 40
RAM size (MB)
Figure 1: apache performance with varying RAM - pre-

dicted and actual

The execution time predicted by replaying the trace
(using measured time for user mode execution, not re-
execution) is within 14% for large RAM configurations,
but 1s less accurate with small amounts of RAM where
paging of apache’s code and/or data occurs.

800

T T T

Untraced execution time ——

Time predicted by reexecution -+--—
Time predicted by gettimeofday -&

700 Time predicted by rdtsc - 7

600 -

500 -

Time (secs)

0 5 10 15 20 25 30 35 40
RAM size (MB)
Figure 2: apache performance with an artificial work-

load and varying RAM - predicted and actual

The execution time predicted by reexecuting the trace
Is more accurate in all cases, and is within 10% for
larger RAM configurations. This higher accuracy is
because the same memory access pattern occurs dur-
ing reexecution, leading to similar paging and hardware
cache effects.

8 CONCLUSIONS

We have presented the design of ULTra, an efficient,
portable technique for capturing traces of system call
activity of a UNIX process and the processes it forks.
ULtra’s efficiency 1s achieved by running at user level
as part of the standard libraries linked to applications,

and also by buffering the output of trace information.
We describe some implementation issues, which in some
cases turn out to be surprisingly tricky.

An important area where ULTra may be applied use-
fully is in the performance evaluation, tuning and com-
parison of operating systems and file systems. We
present a case study illustrating this, and demonstrate
that ULTra can be used to capture the workload with-
out substantial interference, and can be used to give
fairly accurate predictions of the effect of configuration
changes on application throughput.

We evaluate two ways of rerunning a workload: replay,
and reexecution. For applications where paging is in-
significant, both predict performance well. Reexecution
has lower trace capture overheads, and can be used to
study paging, cache effects and other lower-level issues.

8.1 Further work

Asynchronous signals. Asynchronous signals can
be workload-determined or implementation-determined
(see Section 1.3). Workload-determined signals, such as
timer interrupts, are problematic since there is poten-
tial for inconsistent results when the trace is replayed
on a faster or slower system.

Implementation-determined signals, such as synchroni-
sation between processes, are easily traced. Care is
needed during trace replay to ensure that the signalled
process blocks until the event it’s waiting for occurs.
This is necessary to ensure the replayed behaviour is
consistent with the trace, but is inaccurate since the
blocking is an artifact of the replay mechanism. How-
ever, in many applications the process will be sleep-
ing (e.g., when waiting for a timeout) anyway. For re-
execution, it 1s vital for the signal to be delivered at
precisely the same instruction execution point as dur-
ing trace capture. The only way we know to do this
(see [10]) is to modify the application’s code (by re-
compiling or post-processing the executable). Code is
added to count branches and trap on overflow. The
counter is preloaded on reexecution so that the trap
occurs in the basic block where the process was inter-
rupted at trace capture time.

Pre-emptive threads. Pre-emptively scheduled
threads can be handled by a similar mechanism as asyn-
chronous signals. Details can be found in [12], where
the performance overheads are reported to be around

10%.

Given that it is difficult or impossible to create a reex-
ecutable trace for absolutely any application, our aim
is to be able to detect whether an application behaves
in a way which invalidates the trace.

Acknowledgements This work was funded by the
U.K. Engineering and Physical Sciences Research Council
through a Research Studentship, and the CRAMP project
(ref. GR/J 99117). Thanks also to Olav Beckmann.

REFERENCES

[1] P. Ashton. The Amoeba interaction network monitor—
initial results. Tech Report TR-COSC 09/95, Deptart-
ment of Computer Science, Univ. of Canterbury, New
Zealand, Oct 1995.

[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff, and J. K. Ousterhout. Measurements of a dis-
tributed file system. In Proc. 13" ACM Symposium on
Operating System Principles, pp 198-212, Oct 1991.

[3] P. Bitar and A. M. Despain. Multiprocessor cache syn-
chronisation; issues, innovations, evolution. Computer
Avrchitecture News, 14(2), June 1986. 13" Annual Tn-
ternational Symposium on Computer Architectures.

[4] M. Blaze. NFS tracing by passive network monitoring.
In USENIX Winter Conference, pp 333-334, 1992.

[5] G. Bozman, H. Ghannad, and E. Weinberger. A
trace-driven study of CMS file references. IBM Jour-
nal of Research and Development, 35(5/6):815-828,
Sept/Nov 1991.

[6] M. B. Jones. Transparently Interposing User Code at
the System Interface. PhD thesis, School of Computer
Science, Carnegie Mellon University, Sept 1992.

[7] M. B. Jones. Interposition agents: Transparently in-
terposing user code at the system interface. Proc.
14" ACM Symposium on Operating System Principles,
27(5):80-93, Dec 1993.

[8] J. K.Ousterhout, H. D. Costa, D. Harrison, J. A.
Knuze, M. Kupfer, and J. G. Thompson. A trace-
driven analysis of the UNIX 4.2BSD file system. In
Proc. 10" ACM Symposium on Operating System
Principles, pp 15-24, Dec 1985.

[9] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IFEE Trans. on
Computers, C-36(4):471-482, Apr. 1987.

[10] J. M. Mellor-Crummey and T. J. LeBlanc. A software
instruction counter. In Proc 8" International Confer-

ence Architectural Support for Programming Languages
and Operating System (ASPLOS), pp 78-86, May 1989.

[11] L. Mummert and M. Satyanarayanan. Long term
distributed file reference tracing: Implementation
and experience. Software—Practice and Experience,
26(8):705-736, June 1996.

[12] M. Russinovitch and B. Cogswell. Replay for concur-
rent, non-deterministic shared-memory applications.
In Proc. ACM SIGPLAN’96 Conference on Program-
ming Language Design and Implementation, pp 258—
266, May 1996.

[13] S. R. Tourigny. Characterising the workload of a dis-
tributed file server. Master’s thesis, Deptartment Com-
putational Science, Uni. of Saskatchewan, Canada,
Sept 1988.

