
WORKLOAD CHARACTERIZATION USING LIGHTWEIGHTSYSTEM CALL TRACING AND REEXECUTIONAriel N. Burton and Paul H. J. KellyDepartment of Computing, Imperial College, London, United Kingdomfanb,phjkg@doc.ic.ac.ukABSTRACTThis paper shows how system call traces can be obtainedwith minimal interference to the system being charac-terized, and used as realistic, repeatable workloads forexperiments to evaluate operating system and �le sys-tem designs and con�guration alternatives.Our system call trace mechanism, called Ultra, cap-tures a complete trace of each Unix process's calls tothe operating system. The performance impact is nor-mally small, and it runs in user mode without specialprivileges.We show how the resulting traces can be used to drivefull, repeatable reexecution of the captured behaviour,and present a case study which shows the usefulnessand accuracy of the tool for predicting the impact of �lesystem caching on a WWW server's performance.1 INTRODUCTIONOur aim in this work is to develop a tool for a sys-tem performance consultant to use to characterize acustomer's workload. The consultant would install thetrace capture tool on the customer's Unix server, en-able tracing, and would monitor the customer's systemas it performs its normal duties. The consultant wouldthen use the resulting trace to experiment with systemtuning parameters, hardware upgrades, workload redis-tribution, etc., o�-line using analytical models, simula-tion, and perhaps also test hardware. Such traces couldalso be used for benchmarking and in the operating sys-tem and �le system research community.In order for this scenario to be realistic, trace capturemust� incur minimum risk and interference to the targetsystem.� must provide enough information for the perfor-mance tuning mechanisms to be exercised prop-erly.� must lead to results having adequate predictive ac-curacy.

The evaluation methodology presented in this papercharacterizes a workload by the trace of its system calls.By rerunning the sequence of system calls in a traceunder di�erent conditions, it becomes possible to com-pare, evaluate or predict the performance of the work-load under di�erent system con�gurations. The termrerun is used to describe this process. We distinguishtwo modes of rerunning traces: trace replay and tracereexecution. These are described below.1.1 Trace replayHere, we use a trace of system calls, their parameters,and �ne-grain timing of the user-mode CPU times be-tween returning from a call and issuing the next.The trace is used to exercise a system under test usinga \spinner" program. The spinner issues each call inthe trace in turn, and simulates CPU time used bythe application between system calls by looping for theappropriate period as recorded in the trace. The actualtime taken to complete trace replay depends on thesystem call service times achieved by the system undertest.1.2 Trace reexecutionIn some applications, the spinner leads to inaccurateresults because the actual behaviour of the applicationinteracts with the operating system, for example bycausing TLB misses or page faults, or by
ushing op-erating system data from hardware caches. We cancapture this by rerunning the application code.In order to get reproducible results, we make sure allthe results returned from system calls are recorded inthe trace. The application should behave in a preciselyreproducible way since it is fed precisely the same in-puts.The trace needed here is simpler; no timestamps areneeded. System call results must be recorded, but theparameters need not.Unfortunately, certain behaviours cannot be replayedreproducibly at reasonable cost. There are prob-lems with asynchronous signals, and pre-emptively{

scheduled threads, which can be solved in principle bymodifying the application's code (see Section 8.1). Par-allel threads, and processes which interact via sharedmemory, are probably not reexecutable.1.3 Time measurementsIn the description above, timestamps are used to ac-count for CPU time used by the application. Thereis another role for timestamps: to account for exter-nal stimuli which occur at speci�c wall-clock times orintervals.To reproduce real workloads properly, it is vital todistinguish such workload-determined timing from theimplementation-determined timing which is expectedto vary when the con�guration of the system under testis modi�ed.In our experiments, we assume no external stimuli withworkload-determined timing. For a network server, forexample, the e�ect of this is that the number of trans-actions per second is increased in proportion to the sys-tem's performance. It is reasonable, but more di�cult,to keep the transaction processing rate constant and tooptimise the response time.1.4 Overview of the paperThe next section reviews some earlier contributions inthe area. Section 3 describes the design of Ultra, ourtrace capture tool, showing how e�ciency is achievedand how replay and reexecution are organised. Sec-tion 4 describes various subtleties of our implementa-tion. The overheads of trace capture are evaluated inSection 5. Section 6 shows how accurately replay andreexecution track the application's original executiontime. Section 7 presents a small case study demonstrat-ing the predictive accuracy of the tool is evaluating theperformance bene�ts of di�erent amounts of RAM inWWW server application.2 RELATED WORKTrace capture has been used for many years for per-formance evaluation. The critical aspect of our worklies in capturing just enough information - in this case,system calls - to be able to reconstruct the completecomputation by reexecution. Rather than supplantinglower-level trace capture and analysis, for example byhardware monitoring or modifying microcode, this fa-cilitates it by making a reproducible record of the orig-inal workload. We therefore focus our literature reviewon trace capture and reexecution.Intercepting system calls. The ptrace() systemcall provides a mechanism for one process to monitorthe system call activity of another. The tracing processis able to examine or modify the arguments to, and the

results from, each system call. However, as noted inSection 5.1, this mechanism incurs large overheads.Jones [6, 7] describes a general technique for interposingagents between an application and the operating sys-tem. Jones's reported work relied on an operating sys-tem facility to redirect system calls to a speci�ed han-dler. Jones does not report any work on using bu�eringto reduce the overheads incurred by writing the trace�le at each call.Ashton and Penny [1] developed INMON, an \interac-tion network monitor". INMON is designed to trace theactivity in the kernel caused by individual user actions.Tools of this nature complement our work in that theyprovide an insight to activity within the kernel causedby a workload, whereas we report trace capture in orderto characterize the workload.File access trace studies. Traces have been usedextensively to study �le system activity by Ouster-hout et al. [8] and Baker et al. [2] in the analysis ofthe 4.2BSD, and Sprite distributed �le systems, re-spectively. Bozman et al. [5] modi�ed a CMS moni-tor, CMON, to gather traces of �le reference patterns.Of more interest is DFSTrace, used by Mummert andSatyanarayanan [11] in the evaluation of the Coda �lesystem, since they also replayed the traces using thetiming information given by the trace. Instead of mod-ifying the operating system kernel, Tourigny [13] andBlaze [4] exploited a remote �le system architecture toobtain traces of �le system activity by monitoring theinteractions between clients and server. This has thevirtue of being entirely non-intrusive, though includesonly remote �le accesses and also requires privilegedaccess to the network.By contrast, we aim in this paper to capture the en-tire system call trace, and to use it to study the overallsystem performance by using it to reexecute the appli-cation.Replay for debugging. The problem of reexecutionof parallel Unix processes is similar to that of replay-ing parallel programs (e.g. see LeBlanc and Mellor-Crummey [9]) for debugging purposes. Note, though,that we need to be able to reproduce the original exe-cution time as accurately as possible.Finally, Bitar [3] gives a useful review of the validityissues in trace-driven simulation of concurrent systems.3 DESIGN OF ULTraUltra (User Level Tracing) intercepts system calls, andwrites trace information to a trace �le. Its performancedepends upon two key factors:1. an e�cient mechanism for intercepting the work-

load's system calls.2. bu�ering of trace output to reduce the number ofadditional write operations incurred.To be easy to use, we need a simple mechanism forcontrolling tracing. Having considered various alter-natives, we chose to substitute the dynamically-linkedstandard shared library providing Unix system calls.In the Ultra version the system call stubs are extendedwith modi�cations for trace capture and reexecution.The advantage of this is that trace capture is con�nedto the library, and is therefore transparent to applica-tions. It should be noted that although applicationsdo not need to be recompiled, they must be relinked:however, as in modern systems the �nal binding be-tween an application and a library does not occur untilruntime, most applications can be traced as they are.Exceptions include rare, statically-linked applications.For trace reexecution, we can choose how much infor-mation is included in the trace itself, and how muchis accessed via the �lesystem during reexecution. It isunattractive to have to include all the data the processreads, although sometimes this is unavoidable. For ex-ample, data from terminals or sockets are not availableat reexecution time. Similarly, data which are over-written later must be saved. At present, we do not logsocket contents, relying instead on reexecution of thecorrespondent process. Nor are copies of �le data in-cluded in the traces. This is adequate for our purposes.3.1 Rerunning System CallsOn rerun the actions taken in response to a system callare determined by the captured trace, and also by thetype of the system call. These fall into the followingcategories:� Simple calls. In this case the responses are com-pletely determined from the trace. Although thecall need not be reexecuted to ensure the applica-tion's original behaviour is preserved, sometimesthis may be necessary so as to account for the timespent servicing the call. Examples of this type ofcall include getpid() and gettimeofday().� Calls that may be rerun as before. An example ofthis type of call is dup(), which modi�es the pro-cess's �le descriptor table. Clearly, as this e�ectmust be reproduced, the call must be repeated.The new return value should be identical to thatin the trace. In general, the calls that fall into thiscategory are those that modify the process's kernelstate.

� Calls that must be reexecuted for their e�ects, butwhere the returned value from a replayed call maydi�er from that in the trace. This can occur wherea system call returns a kernel-created identi�er orhandle for some resource that is used in later callsto identify that resource. Both trace replayand reexecution are a�ected, as there is no way ofensuring that the repeated call returns the samevalue. This is solved with the use of a table map-ping capture time identi�ers to those of trace re-run. An example of a call of this type is wait().3.2 Measuring TimeIt is important when a trace is rerun that the systemcalls are reissued at the correct rate. This happens nat-urally in the case of trace reexecution. However, in thecase of trace replay the time spent by the applicationexecuting between system calls must be simulated bythe \spinner". Consequently, the trace must includethe time spent executing at user level between systemcalls. In selecting or designing a mechanism for captur-ing these times the following issues must be considered:1. the time taken to read the clock. This should besmall in order to reduce the overhead of trace cap-ture.2. the resolution of the times reported. These shouldbe su�ciently high to re
ect the application's be-haviour accurately .3. the means by which user level execution time isidenti�ed.4. the e�ciency of the method used to communicatethe times from the kernel to Ultra.An obvious candidate for collecting these times isthe resource utilization information maintained bythe kernel for purposes of management or accounting(getrusage() or times()). However, the resolution ofthese times is that of the clock interrupt interval, typi-cally 10{20mS, which is too coarse for our purposes.Another alternative is to approximate the user levelexecution time between system calls by elapsed,`wall-clock', time, for example, as reported by thegettimeofday() system call. The resolution ofthis time is hardware dependent, though it is of-ten genuinely of microsecond granularity. This, likegetrusage() above, requires two additional systemcalls for each call made by the application. A moreimportant weakness is that the measured time will in-clude time spent on other activities, for example, sys-tem activity on behalf of the process, or executing other

processes. Thus, this approach can be used only wherethe principal activity in the system is the applicationbeing traced. Nonetheless, when this is the case, thismethod can yield useful results.Accounting for pre-emption. We account for usertime in the presence of other processes by modifying thekernel to update a timer in its process table entry oneach context switch to, or from, user mode. To keep theoverhead to a minimum, the cost of reading the clockshould be low. We describe how this is achieved in ourimplementation in section 4. This provides accountingfor user-mode execution time at clock-cycle resolution.The counter could be accessed via a system call, but weimprove performance by avoiding this. Instead, imme-diately prior to returning from a system call the kernelwrites the times to a small, pre-determined area of theprocess's user level address space reserved for this pur-pose. When the system call returns, these times canbe read from the region by Ultra, and recorded in thetrace. It should be noted that if the application is notbeing traced, then the times are simply ignored. Thelocation of this region is carefully chosen (for example,at the base of the stack) so that its presence is trans-parent to both traced and untraced applications.4 IMPLEMENTING ULTraUltra is currently implemented as a substitute forthe libc (version 5.3.12) shared library under Linux2.0.25. We have also developed a statically-linked im-plementation for SunOS 4.3.1.4.1 Measuring TimeThe Linux system call mechanism was modi�ed to in-clude the extensions described in section 3.2. To mea-sure time with high resolution and low overheads, weexploit the Pentium processor's 64 bit Time StampCounter. This is incremented on every clock cycle, andcan be read in a single instruciton (rdtsc). This allowsus to obtain �ne-grained times very e�ciently. We usethis feature to determine the number of clock cycles aprocess spends executing at user level. In all, the mod-i�cations were modest, amounting to about 300 lines ofC and Pentium assembler.4.2 Bu�eringIn a na��ve implementation, trace records would be writ-ten out immediately. Doing so would double the num-ber of real system calls made by an application, lead-ing to poor performance, and consequently bu�ering isused to reduce the overhead. Surprisingly, bu�ering isUltra's main source of complexity.The problems a�ect process creation, where the actionsof the new process and its parent must be coordinated

to prevent corruption of the bu�er or loss of trace in-formation; and also program invocation in which theprocess's user level context is completely replaced, withconsequential loss of the contents of the bu�er. Tracecapture, reexecution, and replay are all a�ected, butthere is insu�cient space to explain the details here.5 PERFORMANCE OF ULTraThe overheads incurred by trace capture must be mini-mal if Ultra is to be used as we intend. In this sectionwe present an estimate of the maximumoverhead likelyto be experienced (a program loops calling a system callwhich itself takes very little time), and also the over-head likely to be seen in more realistic applications.All times reported in this section were obtained using astatically linked instance of version 1.7 of the Gnu stan-dard Unix timing utility, /usr/bin/time. The testswere run on an unloaded IBM-compatible PC with a166MHz Intel Pentium CPU, 32MB EDO RAM and512KB pipeline burst-mode secondary cache, runningLinux 2.0.25. All application �le input and output wasto a local disk, with Ultra tra�c directed to a second,local disk.The experiments described in this section used the fol-lowing applications:� getpid. This is a simple program that loops call-ing the getpid() system call 1,000,000 times.� LATEX. LATEX(version 2") is used to format a 168page thesis.� apache. The apache HTTP server (version1.2b6) was con�gured to manage a copy of the11,110 �les (approximately 175MB) managed byour WWW server. In each run the server processed25,000 HTTP requests, delivering approximately238MB of data. The HTTP requests were derivedfrom the access logs of our WWW server. In order tomake the experiment repeatable for the purposesof this paper, the GET requests were issued bya simple process running on the same CPU. (Wereturn to this example in Section 7).� make. In this experiment make was used to recom-pile one version of the Ultra library. This consistsof approximately 100 small �les, and about 400separate processes were involved.The application binaries were either those distributedwith Linux, or were built from source using the defaultcon�guration and make options. Where necessary, theapplications were compiled using version 2.7.2 of theGnu C compiler, gcc and linked to version 5.3.12 ofthe Gnu standard library, glibc.

Application Elapsed times % of untraced(secs) timegetpid untraced 2.0 100.0%Ultra|reexecution 4.8 242.7%Ultra|gettimeofday 13.4 675.8%Ultra|rdtsc 7.3 366.7%strace 227.2 11487.4%LATEX untraced 7.6 100.0%Ultra|reexecution 7.5 99.6%Ultra|gettimeofday 7.6 100.6%Ultra|rdtsc 7.6 101.1%strace 9.4 123.8%apache untraced 418.7 100.0%Ultra|reexecution 449.6 107.4%Ultra|gettimeofday 493.5 117.9%Ultra|rdtsc 490.4 117.1%strace 985.3 235.3%make untraced 69.1 100.0%Ultra|reexecution 74.3 107.6%Ultra|gettimeofday 76.6 110.9%Ultra|rdtsc 77.6 112.4%strace 148.0 214.2%Table 1: Trace capture overheadsIn this section we consider three variants of Ultra:1. Ultra (for replay): the traces captured includesystem call parameters and the user level inter-system call execution times needed by the \spin-ner". Execution times were approximated usinggettimeofday().2. Ultra (for replay): as number 1 above, butwhere user level inter-system call execution timewas measured using the modi�ed kernel and rdtsc.3. Ultra (for reexecution): the traces captured in-clude system call results only. This is su�cient forreexecution.5.1 Trace capture overheadsTable 1 shows the execution times without tracing, andwith tracing for replay and for reexecution. It is un-likely that any useful application would su�er the over-heads seen with the getpid program. The additionaltime is much larger for replay because of the need togather and record timing information. It should benoted that the rdtsc �gure is considerably better thanthat for gettimeofday(), demonstrating the e�ciencyof our timing and kernel to user level communicationmechanisms.The overheads for reexecution are much smaller, re
ect-ing only the cost of copying information into the trace�le and periodically issuing a write when it �lls.For comparison, the strace utility, which uses Unix'sptrace mechanism, took more than 200 seconds for

Application Elapsed times % of untraced(secs) timegetpid untraced 2.0 100.0%rerun|reexecution 4.7 237.7%rerun|gettimeofday 10.8 548.4%rerun|rdtsc 9.6 486.5%LATEX untraced 7.6 100.0%rerun|reexecution 7.5 99.3%rerun|gettimeofday 7.5 99.3%rerun|rdtsc 7.6 99.9%apache untraced 418.7 100.0%rerun|reexecution 454.8 108.6%rerun|gettimeofday 480.3 114.7%rerun|rdtsc 477.2 114.0%make untraced 69.1 100.0%rerun|reexecution 74.3 107.6%rerun|gettimeofday 82.7 119.7%rerun|rdtsc 80.0 115.8%Table 2: Trace replay and reexecution with unchangedcon�gurationgetpid (an over 100-fold slowdown), and 9.4 secondsfor the LATEX benchmark (123% of the untraced exe-cution time). On the apache and make benchmarkesthe strace overheads are larger, at 235% and 214%,respectively.5.2 Bu�eringWe measured the e�ect of bu�ering on Ultra's perfor-mance using the getpid application. The unbu�eredversion executed in 21.93 seconds, whilst with bu�eringthis improved to 4.8 seconds. Much of Ultra's com-plexity is due to bu�ering, and this is clearly worth-while.6 REPLAY AND REEXECUTIONTable 2 shows how replay and execution times com-pare with the original execution time for each bench-mark. The replay time for the LATEX experiment isextremely similar, indicating that paging and cache ef-fects were negligible in the experiments, that our timingmeasurements are su�ciently accurate, and that ourtiming loops are well-calibrated. The time to replaythe getpid experiment is disappointingly high, proba-bly because of the overheads of reading, accessing andchecking the trace. The replay times for the apacheand make experiments are reasonably close, but thereis room for improvement.As expected, reexecution gives better results.7 USING ULTra TRACES TOPREDICT PERFORMANCEMore interesting is to see how well performance on adi�erent con�guration can be predicted. To illustrate

this, we focus on the apache benchmark program. Thisis highly �le intensive, and there is potential for cachingsince certain URLs are requested repeatedly during theexperiment. apache relies on the underlying �le sys-tem to cache repeatedly-used �les, and this depends onhaving enough memory. As an illustration of the po-tential value of the approach, we show here that theUltra trace can be used to predict the performance ofthe workload on con�gurations with a range of RAMsizes.7.1 Experimental designChoice of benchmark. Ultra is designed for work-load characterisation in situations where the applica-tion is interacting with its environment in complicatedways which make it di�cult to redo performance exper-iments with precisely reproducible results. However, forthe purposes of this paper, we need to be able to com-pare the execution time of a particular workload withthe execution time using replay or reexecution of anUltra trace. For this experiment, we need to be ableto reproduce the actual workload as well.We chose the apache web server as the benchmark inorder to overcome this problem; it has the advantagethat we can rerun it with a repeated sequence of HTTP\GET" requests, and get exactly the same behaviour(a simple illustrative example of a situation where thiswould not work would be where apache is con�guredto operate as a WWW proxy cache; it is di�cult toget precisely reproducible results because cached dataexpires as time elapses).An additional apache benchmark. To illustrate aricher range of behaviours, we include an additionalworkload for apache with higher RAM demand. Inthis variant the server was con�gured to manage about4,900 documents, amounting to approximately 32MB.A list of queries was constructed such that each doc-ument was accessed twice. This was then randomlypermuted and used as the workload for the experiment.Con�guration modi�cation. Once a reexecutableUltra trace has been captured, there are many per-formance analysis and tuning opportunities. As a verysimple example to demonstrate the principle, we havelooked at the e�ect of di�ering amounts of RAM on thee�ectiveness of �le system caching. We booted Linuxwith various amounts of RAM, and compared the exe-cution time of the actual workload with the time takento replay the Ultra trace, and to reexecute it. Thesame replay trace was used for each memory size, cap-tured from a run with the minimum8MB con�guration.7.2 ResultsFigure 1 shows the actual execution time of the originalapache experiment for various amounts of RAM, com-

pared with the execution time predicted by replay andreexecution of an Ultra trace captured from an origi-nal execution with 8MB RAM. In Figure 2 we show theactual and predicted execution times for the arti�cialworkload example.
200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40

T
im

e
(s

ec
s)

RAM size (MB)

Untraced execution time
Time predicted by reexecution

Time predicted by gettimeofday
Time predicted by rdtsc

Figure 1: apache performance with varying RAM - pre-dicted and actualThe execution time predicted by replaying the trace(using measured time for user mode execution, not re-execution) is within 14% for large RAM con�gurations,but is less accurate with small amounts of RAM wherepaging of apache's code and/or data occurs.
200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40

T
im

e
(s

ec
s)

RAM size (MB)

Untraced execution time
Time predicted by reexecution

Time predicted by gettimeofday
Time predicted by rdtsc

Figure 2: apache performance with an arti�cial work-load and varying RAM - predicted and actualThe execution time predicted by reexecuting the traceis more accurate in all cases, and is within 10% forlarger RAM con�gurations. This higher accuracy isbecause the same memory access pattern occurs dur-ing reexecution, leading to similar paging and hardwarecache e�ects. 8 CONCLUSIONSWe have presented the design of Ultra, an e�cient,portable technique for capturing traces of system callactivity of a Unix process and the processes it forks.Ultra's e�ciency is achieved by running at user levelas part of the standard libraries linked to applications,

and also by bu�ering the output of trace information.We describe some implementation issues, which in somecases turn out to be surprisingly tricky.An important area where Ultra may be applied use-fully is in the performance evaluation, tuning and com-parison of operating systems and �le systems. Wepresent a case study illustrating this, and demonstratethat Ultra can be used to capture the workload with-out substantial interference, and can be used to givefairly accurate predictions of the e�ect of con�gurationchanges on application throughput.We evaluate two ways of rerunning a workload: replay,and reexecution. For applications where paging is in-signi�cant, both predict performance well. Reexecutionhas lower trace capture overheads, and can be used tostudy paging, cache e�ects and other lower-level issues.8.1 Further workAsynchronous signals. Asynchronous signals canbe workload-determined or implementation-determined(see Section 1.3). Workload-determined signals, such astimer interrupts, are problematic since there is poten-tial for inconsistent results when the trace is replayedon a faster or slower system.Implementation-determined signals, such as synchroni-sation between processes, are easily traced. Care isneeded during trace replay to ensure that the signalledprocess blocks until the event it's waiting for occurs.This is necessary to ensure the replayed behaviour isconsistent with the trace, but is inaccurate since theblocking is an artifact of the replay mechanism. How-ever, in many applications the process will be sleep-ing (e.g., when waiting for a timeout) anyway. For re-execution, it is vital for the signal to be delivered atprecisely the same instruction execution point as dur-ing trace capture. The only way we know to do this(see [10]) is to modify the application's code (by re-compiling or post-processing the executable). Code isadded to count branches and trap on over
ow. Thecounter is preloaded on reexecution so that the trapoccurs in the basic block where the process was inter-rupted at trace capture time.Pre-emptive threads. Pre-emptively scheduledthreads can be handled by a similar mechanismas asyn-chronous signals. Details can be found in [12], wherethe performance overheads are reported to be around10%.Given that it is di�cult or impossible to create a reex-ecutable trace for absolutely any application, our aimis to be able to detect whether an application behavesin a way which invalidates the trace.

Acknowledgements This work was funded by theU.K. Engineering and Physical Sciences Research Councilthrough a Research Studentship, and the Cramp project(ref. GR/J 99117). Thanks also to Olav Beckmann.REFERENCES[1] P. Ashton. The Amoeba interaction network monitor|initial results. Tech Report TR-COSC 09/95, Deptart-ment of Computer Science, Univ. of Canterbury, NewZealand, Oct 1995.[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.Shirri�, and J. K. Ousterhout. Measurements of a dis-tributed �le system. In Proc. 13th ACM Symposium onOperating System Principles, pp 198{212, Oct 1991.[3] P. Bitar and A. M. Despain. Multiprocessor cache syn-chronisation; issues, innovations, evolution. ComputerArchitecture News, 14(2), June 1986. 13th Annual In-ternational Symposium on Computer Architectures.[4] M. Blaze. NFS tracing by passive network monitoring.In USENIX Winter Conference, pp 333{334, 1992.[5] G. Bozman, H. Ghannad, and E. Weinberger. Atrace-driven study of CMS �le references. IBM Jour-nal of Research and Development, 35(5/6):815{828,Sept/Nov 1991.[6] M. B. Jones. Transparently Interposing User Code atthe System Interface. PhD thesis, School of ComputerScience, Carnegie Mellon University, Sept 1992.[7] M. B. Jones. Interposition agents: Transparently in-terposing user code at the system interface. Proc.14th ACM Symposium on Operating System Principles,27(5):80{93, Dec 1993.[8] J. K.Ousterhout, H. D. Costa, D. Harrison, J. A.Knuze, M. Kupfer, and J. G. Thompson. A trace-driven analysis of the UNIX 4.2BSD �le system. InProc. 10th ACM Symposium on Operating SystemPrinciples, pp 15{24, Dec 1985.[9] T. J. LeBlanc and J. M. Mellor-Crummey. Debuggingparallel programs with instant replay. IEEE Trans. onComputers, C-36(4):471{482, Apr. 1987.[10] J. M. Mellor-Crummey and T. J. LeBlanc. A softwareinstruction counter. In Proc 3rd International Confer-ence Architectural Support for Programming Languagesand Operating System (ASPLOS), pp 78{86, May 1989.[11] L. Mummert and M. Satyanarayanan. Long termdistributed �le reference tracing: Implementationand experience. Software|Practice and Experience,26(8):705{736, June 1996.[12] M. Russinovitch and B. Cogswell. Replay for concur-rent, non-deterministic shared-memory applications.In Proc. ACM SIGPLAN'96 Conference on Program-ming Language Design and Implementation, pp 258{266, May 1996.[13] S. R. Tourigny. Characterising the workload of a dis-tributed �le server. Master's thesis, Deptartment Com-putational Science, Uni. of Saskatchewan, Canada,Sept 1988.

