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Abstract. CFL (Communication Fusion Library) is an experimental
C++ library which supports shared reduction variables in MPI pro-
grams. It uses overloading to distinguish private variables from repli-
cated, shared variables, and automatically introduces MPI communica-
tion to keep replicated data consistent. This paper concerns a simple
but surprisingly effective technique which improves performance sub-
stantially: CFL operators are executed lazily in order to expose oppor-
tunities for run-time, context-dependent, optimisation such as message
aggregation and operator fusion. We evaluate the idea using both toy
benchmarks and a ‘production’ code for simulating plankton population
dynamics in the upper ocean. The results demonstrate the software en-
gineering benefits that accrue from the use of the library and show that
performance close to that of manually optimised code can be achieved
automatically in many cases.

1 Introduction

In this paper we describe an experimental abstract data type for representing
shared variables in SPMD-style MPI programs. The operators of the abstract
data type have a simple and intuitive semantics and hide any required commu-
nication. Although there are some interesting issues in the design of the library,
the main contribution of this paper is to show how lazy evaluation can expose
run-time optimisations that may be difficult, or even impossible, to spot using
conventional compile-time analysis. The paper makes the following contribu-
tions:

— We present a simple and remarkably useful prototype class library which
simplifies certain kinds of SPMD MPI programs

— We discuss some of the design issues in such a library, in particular the
interpretation of the associated operators

— We show how lazy evaluation of the communication needed to keep replicated
variables consistent can lead to substantial performance advantages

— We evaluate the work using both toy examples and a large-scale application

This paper extends our brief earlier paper [2] in providing better motivation
and further experimental results, as well as a more thorough description of the
technique.



CFL_Double s1(0), s2(0) ;
double s1, s2 ; /* Note: Initial values assumed

consistent across procs. */
void sum( double& data ) {

double s = 0.0 ; void sum( double& data ) {
for ( j=jmin; j<=jmax; j++ ) { sl = 0.0 ;
s += datalj] ; for ( j=jmin; j<=jmax; j++ ) {
} sl += datal[j] ;
MPI_Allreduce(&s,&s1,1,MPI_SUM,.. }
} }
void sumsq( double& data ) { void sumsq( double& data ) {
double s = 0.0 ; s2 = 0.0 ;
for ( j=jmin; j<=jmax; j++ ) { for ( j=jmin; j<=jmax; j++ ) {
s += data[j] * datalj] ; s2 += data[j] * datal[j] ;
} }
MPI_Allreduce(&s,&s2,1,MPI_SUM,.. }
}
for( i=0; i<N; i++ ) {
for( i=0; i<N; i++ ) { sum(a[i]) ;
sum(al[i]) ; sumsq(alil) ;
sumsq(ali]) ; var[i] = (82 - sil*s1/N)/(N-1) ;
var[i] = (s2 - s1*s1/N)/(N-1) ; }
}

Fig. 1. Variance calculation using MPI (left) and CFL (right).

2 The Idea

Figure 1 illustrates the basic idea. This is a toy C++ application which computes
the sample variance of N batches of M data items, stored in an N x M array. The
data is replicated over P processors and each processor computes its contribution
to the sum and sum-of-squares of each batch of data using appropriately defined
methods. An MPI reduction operation sums these contributions. The main loop
fills the variance array (var).

This program suffers two drawbacks. Firstly, the code is convoluted by the
need to code the communication explicitly—an artefact of all MPI programs.
Secondly, it misses an optimisation opportunity: the two reduction operations
can be fused (i.e. resolved using a single communication to sum the contributions
to s1 and s2 at the same time) since the evaluation of sumsq does not depend on
that of sum. If the two reduction operations are brought out of the methods sum
and sumsq and combined into a single reduction over a two-element vector in the
outer loop a performance benefit of around 43% is achieved using four 300MHz
UltraSparc processors of a Fujitsu AP3000 with N=M=3000. Further results for
this benchmark are reported in Section 5.



Spotting this type of optimisation at compile time requires analysing across
method boundaries. While perfectly feasible in this case, in general these op-
erations may occur deep in the call graph, and may be conditionally executed,
making static optimisation difficult. The alternative we explore in this paper is to
attempt the optimisation at run-time, requiring no specialist compiler support.

We have developed a prototype library called CFL (Communication Fusion
Library) designed to support shared reduction variables. The library can be freely
mixed with standard MPI operations in a SPMD application. C++ operator
overloading is used to simplify the API by using existing operators (e.g. +, *,
+= etc.). Where an operation would normally require communication e.g. when
a shared reduction variable is updated with the value of a variable local to each
processor, the communication is handled automatically.

Figure 1 shows how the CFL library can be used to model the shared quanti-
ties s1 and s2 in the previous example. This eliminates all the explicit communi-
cation, in the spirit of shared-memory programming. However, the main benefit
comes from CFL’s lazy evaluation: just prior to the assignment to var[i] no
communication has yet taken place. The assignment forces both delayed com-
munications and resolves them using a single reduction operation, akin to the
manual optimisation outlined above. There are some overheads associated with
the maintenance of these shared variables, so we would not expect to achieve
the performance of the manually optimised code. Nonetheless, this very sim-
ple example, with scope for just two fusions per iteration, yields a performance
improvement of around 37% when compared to the original code on the same
platform. Again more detailed results are presented in Section 5.

In the remainder of this paper we present some relevant background to the
work (Section 3), discuss the semantics of shared variables in the context of
MPI programs (Section 4) and present some performance benchmarks for both
contrived test programs and a production oceanography simulation (Section 5).
The conclusions are presented in Section 6.

3 Related work

The idea of delaying execution in order to expose optimisation opportunities
has appeared before. POOMA [4] uses expression templates in C++ to support
explicit construction and then evaluation of expressions involving arrays and
communication. A delayed-evaluation self-optimising (DESO) numerical library
for a distributed memory parallel computer is described in [7]. By delaying the
evaluation of operations, the library is able to capture the data-flow graph of
the computation. Knowing how each value is to be used, the library is able to
calculate an optimised execution plan by propagating data placement constraints
backwards through the DAG. This means that the library is able to calculate
a very efficient initial distribution for the data across the processors, and hence
fewer redistributions of the data will be necessary.

A related idea, which is exploited in BSP [3] and KeLP [10], is to organ-
ise communication in a global collective operation. This allows multiple small



messages to be aggregated, and also provides the opportunity to schedule com-
munication to use avoid network and buffer contention.

A shared-memory programming model can be supported on distributed-
memory hardware using a page-based consistency protocol; sophisticated im-
plementations such as TreadMarks [5] support some run-time adaptation, for
example for pages with multiple writers. However, Treadmarks offers no special
support for reductions.

4 Shared variables in SPMD programs

In a data-parallel SPMD program, a large data structure is distributed across
each processor, and MPI is used to copy data to where it is needed. In contrast,
we focus in this paper on the program’s global state variables. In a distributed-
memory implementation, each processor holds its own copy of each shared vari-
able. When the variable is updated, communication is needed to ensure that
each processor’s copy is up to date.

In the context of this paper we focus exclusively on scalar double-precision
floating-point variables. The semantics of arithmetic operations on private vari-
ables are very well-understood, but are not so straightforward for shared vari-
ables as an operation on a shared double will be executed on several processors.

The interesting case concerns the assignment of the result of an arithmetic
expression to a variable. In what follows, x,y and z will refer to (global) shared
variables (i.e. of type CFL_Double) and a, b to local variables private to each
processor. Each processor maintains a local copy of each shared variable and the
library must ensure that after each operation these copies are consistent.

If the target variable of an assigment is local, as in a = x - b then the as-
signment can be performed concurrently on each processor without (additional)
communication. However, if the result is stored in a shared variable then the
behaviour depends on the operator arguments. If both operator arguments are
shared, asin x = y * z then again the assignment can be effected locally. How-
ever, if one of the arguments is local and the other shared, as in x += aor x =
y + a, then our interpretation is that each processor contributes its own update
to x, implying a global reduction operation, with the rule that x -= a is inter-
preted as x += (-a). Because CFL is lazy, one or more of the shared variables
on the right-hand side of an assignment may already contain a pending commu-
nication, either from an earlier assignment or an intermediate expression on the
same right-hand side, as in x = y + a = z. Any new required communication
is simply added to those currently pending.

Similar rules apply to the other operators -, *, / etc. and combined oper-
ations like += have the same meaning as their expanded equivalents, e.g. x +=
aand x = x + a.

Assignment and reduction Note that the way the assignment v=e is implemented
now depends on the nature of v and e. It is tempting to think that any potential
confusion can be overcome by using a different operator symbol when a global



reduction is intended, for instance x ++= a instead of x += a. However the as-
signment x = x + ashould have the same meaning so we would also need special
versions of + (and the other operators) to cover all combinations of argument
types. We thus choose to stick to the familiar symbols using the overloading, but
propose the use of naming conventions to distinguish shared from local variables
where any confusion may arise.

An attempt to assign a local variable to a shared variable either directly (e.g.
x = a) or as a result of a calculation involving only local variables (e.g. x = a
- b) is disallowed.

4.1 Delaying communication

The parallel interpretation of some operator uses such as x += a means that at
any point a shared variable may need to synchronise with the other processors.
Because each processor sees the variable in the same state every processor will
know that the variable needs synchronisation. Moreover, as operations are exe-
cuted in the same order on all the processors (the SPMD model), shared variables
will acquire the need for synchronisation in the same order on every processor.
This means that, in order to delay communication, we need only maintain a list
of all the variables that need to be synchronised, and in what way. When com-
munication is forced (see below) these synchronisations are piggybacked onto a
single message with an associated reduction operator. An alternative would be
to initiate a non-blocking communication instead; although this might be ap-
propriate for some hardware, little or no computation/communication overlap is
possible in most current MPI implementations.

An assignment of a shared variable to a local variable constitutes a force point.
At this point a communications manager marshalls all CFL variable updates into
a single array and performs a single global reduction operation over that array.
On completion, the resulting values are used to update all CFL_Doubles which
were previously pending communication.

In principle, the synchronisation of a shared variable may be delayed until
its global value is required (force point), but in practice the synchronisation
may be forced earlier than this, e.g. when another shared variable synchronisa-
tion is forced before it. Forcing any delayed synchronisation will force all such
synchronisations.

Limitations In the prototype implementation of CFL only ‘additive’ operators
(+, -, +=, —-=) are handled lazily at present. This is sufficient for experimental
evaluation of the basic idea. The other operators (and the copy constructor)
are all supported but they force all pending communication. Implementing the
remaining operators lazily requires a little more work to pack the data for com-
munication and to construct the associated composite reduction operation, but
is otherwise straightforward. This is left as future work.



N AP3000 (P=4) Execution time(s)
Original|{Hand optimised CFL
500 | 0.341 | 0.157 (53.9%) |0.192 (43.6%)
1000| 0.748 | 0.347 (53.5%) |0.433 (42.0%)
1500 1.159 | 0.574 (50.5%) |0.724 (37.5%)
3000 2.544 | 1.463 (42.5%) |2.119 (16.7%)

Table 1. AP3000 execution times (in seconds) for Figure 1 for various problem sizes,
with percentage speedup relative to the original, unoptimised code.

5 Ewvaluation

Our performance results are from dedicated runs on three platforms: a Fujitsu
AP3000 (80 nodes, each a 300MHz Sparc Ultra IT processor with 128 RAM, with
Fujitsu’s 200MB/s AP-Net network), a Quadrics/COMPAQ cluster (16 nodes,
each a Compaq DS20 dual 667MHz Alpha with 1GB RAM), and a cluster of
dual 400MHz Celeron PCs with 128MB RAM on 100Mb/s switched Ethernet.
In each case there was one MPI process per node.

5.1 Toy Benchmark

Table 1 shows the execution times for the toy benchmark of Figure 1 for four
problem sizes for the AP3000 platform using 4 processors. Here the data matrix
is assumed to be square, so the problem size defines both M and N. The figures
in parentheses show the reduction in execution time, relative to the original un-
optimised code. The results show that a significant performance improvement
can be achieved by fusing the communications, even though only two such com-
munications can be fused at any time. The results also show, as one would expect,
diminishing returns for the CFL library, relative to the hand-optimised code, as
the problem size increases. This is because larger problems incur a smaller com-
munication overhead, so the overhead of maintaining the shared variable state
takes greater effect.

We would intuitively expect the performance of the CFL library to improve,
relative to the hand-optimised code, for platforms with slower communication
networks (measured by a combination of start-up cost and bandwidth) and vice
versa. This is borne out by Table 2 which shows the performance of the same
benchmark on our three reference platforms, using 4 processors in each case and
with a problem size of 3000. Relative to the hand-optimised code, the CFL library
performs extremely well on the PC cluster. However, on the COMPAQ platform,
which has a very fast communication network, the overheads of supporting lazy
evaluation outweigh the benefits of communication fusion.

The example of Figure 1 enables exactly two reductions to be fused on each
iteration of the loop. In some applications (see below, for example) it may be
possible to do better. The variance example was therefore generalised artificially
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Platform Execution time(s) (N=3000)

Original|{Hand optimised CFL
AP3000 | 2.544 | 1.463 (42.5%) |2.119 (16.7%)
Cluster | 7.154 | 3.670 (48.7%) |3.968 (44.5%)

COMPAQ| 0.263 | 0.161 (38.9%) [0.418 (-58.8%)

Table 2. Execution times for Figure 1 for various platforms.

by introducing an extra loop that called the sum function (only) a given num-
ber of times, n, on each iteration of the outer (i) loop. The results were stored
in an array and later summed (again arbitrary, but this has the effect of forc-
ing communication in the CFL case). The objective was to measure the cost
of performing repeated (explicit) MPI reduction operations relative to the cost
of fusing them within CFL. The results for 4 processors on each platform with
N = 3000 are shown in Figure 2. Note that the slope of the two curves (original
MPI vs. CFL) in each case expose these relative costs and we can see why CFL
wins out on both the AP3000 and PC cluster. Conversely, on the COMPAQ plat-
form no amount of fusion opportunity can buy back the performance overheads
inherent in the current CFL implementation.

5.2 Oceanography Simulation

We now present the results obtained when the CFL library was used to model
shared variables in a large-scale simulation of plankton population dynamics in
the upper ocean using the Lagrangian Ensemble method [9]. Some discussion of
the code structure is in order.

The simulation is based on a one-dimensional water column which is stratified
into 500 layers each 1m deep. The plankton are grouped into particles each of
which represents a sub-population of identical individuals. The particles move
by a combination of turbulence and sinking/swimming and interact with their
local environment according to rules derived from laboratory observation.

The simulation is built by composing modules each of which models an as-
pect of the physics, biology or chemistry. The exact configuration may vary from
one simulation to the next. To give a flavour for the structure of a typical code,
the dominant (computationally speaking) component of a particular instance
called “ZB” models phytoplankton by the sequential composition of four mod-
ules: Move (), Energy(), Nutrients() and Evolve() (motion, photosynthesis,
nutrient uptake and birth/death). A similar structure exists for zooplankton.
The model essentially involves calling these (and the many other) modules in
the specified order once per time-step.

In parallelising the model a vertical partitioning strategy is used to divide
the plankton particles among the available processors. The processors cooperate
through environment variables which represent the chemical, physical and bio-
logical attributes of each layer. The parallelisation strategy requires that each
processor sees the same global environment at all times.



Procs Execution time(s)

Unoptimised|Hand-optimised| Using CFL
1 3721 3721 (0%) |3738 (-0.5%)
2 1805 1779 (1.5%) |1790 (0.8%)
4 934 869 (7.5%) | 866 (7.9%)
8 491 433 (13.4%) |418 (17.5%)
16 317 244 (29.9%) | 257 (23.3%)
32 292 191 (52.9%) | 182 (60.4%)

Table 3. Execution times for the plankton code (320,000 particles). In brackets we
show the speedup relative to the unoptimised implementation.

The various modules have been developed independently of the others, al-
though they must fit into a common framework of global variables, management
structures etc. Within these modules there are frequent updates to the shared
variables of the framework and it is common for these to be assigned in one mod-
ule and used in a later one. This relatively large distance between the producer
and consumer provides good scope for message aggregation. However, manual
optimisation will work only for that particular sequence of modules: adding a new
module or changing the order of existing modules changes the data dependency.
This is where the CFL library is particularly beneficial: it will automatically
fuse the maximum possible number of reduction operations (i.e. those that arise
between force points).

We began with the original (parallel) version of ZB and then hand-optimised
it by manually working out the data dependencies between the global shared
quantities and identifying force points. The fusion was actually achieved by
building a lazy version of MPI_A11_Reduce [1]. This simplified the implemen-
tation significantly but introduced some overheads, very similar in fact to those
in CFL. The MPI code was then rewritten using the CFL library, simply by
marking the shared environment variables as CFL_doubles. The original code
uses exclusively MPI reduction operations so the immediate effect of using CFL
is to remove all explicit communication from the program. The effect of the
message aggregation (both manual and using CFL) is to reduce the number of
synchronisations from 27 to just 3 in each time step. In one of these no less than
11 reduction operations were successfully fused between force points.

AP3000 timing results for the execution of the ZB model before and after
CFL was incorporated are shown in Table 3 for a problem size of 320,000 par-
ticles. Both hand-optimised and CFL versions of the model have very similar
performance but this is not surprising given the way the hand-optimisation was
done.

Remarks In order to use the CFL library in this case study, we had to turn off
one feature of the model. During nutrient uptake the required reduction oper-
ation is actually bounded in the sense that the -= operator would not normally



allow the (shared) nutrient variable to become negative; instead the uptake would
be reduced so as to exactly deplete the nutrient. It is perfectly possible to build
such bounded reductions into CFL but they are not currently supported.

6 Conclusions

This paper presents a simple idea, which works remarkably well in many cases.
We have built a small experimental library on top of MPI which enables shared
scalar variables in parallel SPMD-style programs to be represented as an abstract
data type. By implementing the library in C++ and using C++’s operator over-
loading, the familiar arithmetic operator symbols, such as +, -, *=etc. can be
used on shared variables. Some operators have a parallel reading when the target
of an assignment is another shared variable. Because the operations are abstract,
dynamic run-time optimisations can be built into their implementation. We have
shown how delayed evaluation can be used to piggyback communications on top
of earlier, as yet unevaluated, parallel operations. This means that the com-
munication associated with a global reduction, for example, may actually take
place as a side-effect of another reduction operation in a different part of the
code. This avoids reliance on sophisticated compile-time analyses and can exploit
opportunities which arise from dynamic data dependencies. Using a contrived
test program and a realistic case study we have demonstrated very pleasing
performance improvements on some platforms. Unsurprisingly, the greatest per-
formance benefits are seen on platforms with slower communication networks.

In essence, what we have done is to implement an application-specific cache
coherence protocol, in the spirit of, among others, [11]. This hides consistency
issues, and the associated communication, from the programmer, with obvious
benefits in software engineering terms.

Could we achieve the reduction fusion optimisation by executing standard
MPI functions lazily? Not without compiler support, since the results of the MPI
operation are delivered to normal private data so we don’t know when to force
communication.

The library is currently very much a prototype. Nonetheless, the current
implementation is robust and has proven to be of surprising utility, both in
performance and ease of use. We are now seeking to extend the library (for
example to handle arrays as well as scalars) and to focus on internal optimisations
to reduce management overheads.
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