
Optimising Shared Redu
tion Variables in MPIProgramsA.J. Field, P.H.J. Kelly and T.L. HansenDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, U.K.fajf,phjk,tlhg�do
.i
.a
.ukAbstra
t. CFL (Communi
ation Fusion Library) is an experimentalC++ library whi
h supports shared redu
tion variables in MPI pro-grams. It uses overloading to distinguish private variables from repli-
ated, shared variables, and automati
ally introdu
es MPI
ommuni
a-tion to keep repli
ated data
onsistent. This paper
on
erns a simplebut surprisingly e�e
tive te
hnique whi
h improves performan
e sub-stantially: CFL operators are exe
uted lazily in order to expose oppor-tunities for run-time,
ontext-dependent, optimisation su
h as messageaggregation and operator fusion. We evaluate the idea using both toyben
hmarks and a `produ
tion'
ode for simulating plankton populationdynami
s in the upper o
ean. The results demonstrate the software en-gineering bene�ts that a

rue from the use of the library and show thatperforman
e
lose to that of manually optimised
ode
an be a
hievedautomati
ally in many
ases.1 Introdu
tionIn this paper we des
ribe an experimental abstra
t data type for representingshared variables in SPMD-style MPI programs. The operators of the abstra
tdata type have a simple and intuitive semanti
s and hide any required
ommu-ni
ation. Although there are some interesting issues in the design of the library,the main
ontribution of this paper is to show how lazy evaluation
an exposerun-time optimisations that may be diÆ
ult, or even impossible, to spot using
onventional
ompile-time analysis. The paper makes the following
ontribu-tions:{ We present a simple and remarkably useful prototype
lass library whi
hsimpli�es
ertain kinds of SPMD MPI programs{ We dis
uss some of the design issues in su
h a library, in parti
ular theinterpretation of the asso
iated operators{ We show how lazy evaluation of the
ommuni
ation needed to keep repli
atedvariables
onsistent
an lead to substantial performan
e advantages{ We evaluate the work using both toy examples and a large-s
ale appli
ationThis paper extends our brief earlier paper [2℄ in providing better motivationand further experimental results, as well as a more thorough des
ription of thete
hnique.

double s1, s2 ;void sum(double& data) {double s = 0.0 ;for (j=jmin; j<=jmax; j++) {s += data[j℄ ;}MPI_Allredu
e(&s,&s1,1,MPI_SUM,..) ;}void sumsq(double& data) {double s = 0.0 ;for (j=jmin; j<=jmax; j++) {s += data[j℄ * data[j℄ ;}MPI_Allredu
e(&s,&s2,1,MPI_SUM,..) ;}for(i=0; i<N; i++) {sum(a[i℄) ;sumsq(a[i℄) ;var[i℄ = (s2 - s1*s1/N)/(N-1) ;}

CFL_Double s1(0), s2(0) ;/* Note: Initial values assumed
onsistent a
ross pro
s. */void sum(double& data) {s1 = 0.0 ;for (j=jmin; j<=jmax; j++) {s1 += data[j℄ ;}}void sumsq(double& data) {s2 = 0.0 ;for (j=jmin; j<=jmax; j++) {s2 += data[j℄ * data[j℄ ;}}for(i=0; i<N; i++) {sum(a[i℄) ;sumsq(a[i℄) ;var[i℄ = (s2 - s1*s1/N)/(N-1) ;}Fig. 1. Varian
e
al
ulation using MPI (left) and CFL (right).2 The IdeaFigure 1 illustrates the basi
 idea. This is a toy C++ appli
ation whi
h
omputesthe sample varian
e ofN bat
hes ofM data items, stored in anN�M array. Thedata is repli
ated over P pro
essors and ea
h pro
essor
omputes its
ontributionto the sum and sum-of-squares of ea
h bat
h of data using appropriately de�nedmethods. An MPI redu
tion operation sums these
ontributions. The main loop�lls the varian
e array (var).This program su�ers two drawba
ks. Firstly, the
ode is
onvoluted by theneed to
ode the
ommuni
ation expli
itly|an artefa
t of all MPI programs.Se
ondly, it misses an optimisation opportunity: the two redu
tion operations
an be fused (i.e. resolved using a single
ommuni
ation to sum the
ontributionsto s1 and s2 at the same time) sin
e the evaluation of sumsq does not depend onthat of sum. If the two redu
tion operations are brought out of the methods sumand sumsq and
ombined into a single redu
tion over a two-element ve
tor in theouter loop a performan
e bene�t of around 43% is a
hieved using four 300MHzUltraSpar
 pro
essors of a Fujitsu AP3000 with N=M=3000. Further results forthis ben
hmark are reported in Se
tion 5.

Spotting this type of optimisation at
ompile time requires analysing a
rossmethod boundaries. While perfe
tly feasible in this
ase, in general these op-erations may o

ur deep in the
all graph, and may be
onditionally exe
uted,making stati
 optimisation diÆ
ult. The alternative we explore in this paper is toattempt the optimisation at run-time, requiring no spe
ialist
ompiler support.We have developed a prototype library
alled CFL (Communi
ation FusionLibrary) designed to support shared redu
tion variables. The library
an be freelymixed with standard MPI operations in a SPMD appli
ation. C++ operatoroverloading is used to simplify the API by using existing operators (e.g. +, *,+= et
.). Where an operation would normally require
ommuni
ation e.g. whena shared redu
tion variable is updated with the value of a variable lo
al to ea
hpro
essor, the
ommuni
ation is handled automati
ally.Figure 1 shows how the CFL library
an be used to model the shared quanti-ties s1 and s2 in the previous example. This eliminates all the expli
it
ommuni-
ation, in the spirit of shared-memory programming. However, the main bene�t
omes from CFL's lazy evaluation: just prior to the assignment to var[i℄ no
ommuni
ation has yet taken pla
e. The assignment for
es both delayed
om-muni
ations and resolves them using a single redu
tion operation, akin to themanual optimisation outlined above. There are some overheads asso
iated withthe maintenan
e of these shared variables, so we would not expe
t to a
hievethe performan
e of the manually optimised
ode. Nonetheless, this very sim-ple example, with s
ope for just two fusions per iteration, yields a performan
eimprovement of around 37% when
ompared to the original
ode on the sameplatform. Again more detailed results are presented in Se
tion 5.In the remainder of this paper we present some relevant ba
kground to thework (Se
tion 3), dis
uss the semanti
s of shared variables in the
ontext ofMPI programs (Se
tion 4) and present some performan
e ben
hmarks for both
ontrived test programs and a produ
tion o
eanography simulation (Se
tion 5).The
on
lusions are presented in Se
tion 6.3 Related workThe idea of delaying exe
ution in order to expose optimisation opportunitieshas appeared before. POOMA [4℄ uses expression templates in C++ to supportexpli
it
onstru
tion and then evaluation of expressions involving arrays and
ommuni
ation. A delayed-evaluation self-optimising (DESO) numeri
al libraryfor a distributed memory parallel
omputer is des
ribed in [7℄. By delaying theevaluation of operations, the library is able to
apture the data-
ow graph ofthe
omputation. Knowing how ea
h value is to be used, the library is able to
al
ulate an optimised exe
ution plan by propagating data pla
ement
onstraintsba
kwards through the DAG. This means that the library is able to
al
ulatea very eÆ
ient initial distribution for the data a
ross the pro
essors, and hen
efewer redistributions of the data will be ne
essary.A related idea, whi
h is exploited in BSP [3℄ and KeLP [10℄, is to organ-ise
ommuni
ation in a global
olle
tive operation. This allows multiple small

messages to be aggregated, and also provides the opportunity to s
hedule
om-muni
ation to use avoid network and bu�er
ontention.A shared-memory programming model
an be supported on distributed-memory hardware using a page-based
onsisten
y proto
ol; sophisti
ated im-plementations su
h as TreadMarks [5℄ support some run-time adaptation, forexample for pages with multiple writers. However, Treadmarks o�ers no spe
ialsupport for redu
tions.4 Shared variables in SPMD programsIn a data-parallel SPMD program, a large data stru
ture is distributed a
rossea
h pro
essor, and MPI is used to
opy data to where it is needed. In
ontrast,we fo
us in this paper on the program's global state variables. In a distributed-memory implementation, ea
h pro
essor holds its own
opy of ea
h shared vari-able. When the variable is updated,
ommuni
ation is needed to ensure thatea
h pro
essor's
opy is up to date.In the
ontext of this paper we fo
us ex
lusively on s
alar double-pre
ision
oating-point variables. The semanti
s of arithmeti
 operations on private vari-ables are very well-understood, but are not so straightforward for shared vari-ables as an operation on a shared double will be exe
uted on several pro
essors.The interesting
ase
on
erns the assignment of the result of an arithmeti
expression to a variable. In what follows, x,y and z will refer to (global) sharedvariables (i.e. of type CFL_Double) and a, b to lo
al variables private to ea
hpro
essor. Ea
h pro
essor maintains a lo
al
opy of ea
h shared variable and thelibrary must ensure that after ea
h operation these
opies are
onsistent.If the target variable of an assigment is lo
al, as in a = x - b then the as-signment
an be performed
on
urrently on ea
h pro
essor without (additional)
ommuni
ation. However, if the result is stored in a shared variable then thebehaviour depends on the operator arguments. If both operator arguments areshared, as in x = y * z then again the assignment
an be e�e
ted lo
ally. How-ever, if one of the arguments is lo
al and the other shared, as in x += a or x =y + a, then our interpretation is that ea
h pro
essor
ontributes its own updateto x, implying a global redu
tion operation, with the rule that x -= a is inter-preted as x += (-a). Be
ause CFL is lazy, one or more of the shared variableson the right-hand side of an assignment may already
ontain a pending
ommu-ni
ation, either from an earlier assignment or an intermediate expression on thesame right-hand side, as in x = y + a - z. Any new required
ommuni
ationis simply added to those
urrently pending.Similar rules apply to the other operators -, *, / et
. and
ombined oper-ations like += have the same meaning as their expanded equivalents, e.g. x +=a and x = x + a.Assignment and redu
tion Note that the way the assignment v=e is implementednow depends on the nature of v and e. It is tempting to think that any potential
onfusion
an be over
ome by using a di�erent operator symbol when a global

redu
tion is intended, for instan
e x ++= a instead of x += a. However the as-signment x = x + a should have the same meaning so we would also need spe
ialversions of + (and the other operators) to
over all
ombinations of argumenttypes. We thus
hoose to sti
k to the familiar symbols using the overloading, butpropose the use of naming
onventions to distinguish shared from lo
al variableswhere any
onfusion may arise.An attempt to assign a lo
al variable to a shared variable either dire
tly (e.g.x = a) or as a result of a
al
ulation involving only lo
al variables (e.g. x = a- b) is disallowed.4.1 Delaying
ommuni
ationThe parallel interpretation of some operator uses su
h as x += a means that atany point a shared variable may need to syn
hronise with the other pro
essors.Be
ause ea
h pro
essor sees the variable in the same state every pro
essor willknow that the variable needs syn
hronisation. Moreover, as operations are exe-
uted in the same order on all the pro
essors (the SPMD model), shared variableswill a
quire the need for syn
hronisation in the same order on every pro
essor.This means that, in order to delay
ommuni
ation, we need only maintain a listof all the variables that need to be syn
hronised, and in what way. When
om-muni
ation is for
ed (see below) these syn
hronisations are piggyba
ked onto asingle message with an asso
iated redu
tion operator. An alternative would beto initiate a non-blo
king
ommuni
ation instead; although this might be ap-propriate for some hardware, little or no
omputation/
ommuni
ation overlap ispossible in most
urrent MPI implementations.An assignment of a shared variable to a lo
al variable
onstitutes a for
e point.At this point a
ommuni
ations manager marshalls all CFL variable updates intoa single array and performs a single global redu
tion operation over that array.On
ompletion, the resulting values are used to update all CFL_Doubles whi
hwere previously pending
ommuni
ation.In prin
iple, the syn
hronisation of a shared variable may be delayed untilits global value is required (for
e point), but in pra
ti
e the syn
hronisationmay be for
ed earlier than this, e.g. when another shared variable syn
hronisa-tion is for
ed before it. For
ing any delayed syn
hronisation will for
e all su
hsyn
hronisations.Limitations In the prototype implementation of CFL only `additive' operators(+, -, +=, -=) are handled lazily at present. This is suÆ
ient for experimentalevaluation of the basi
 idea. The other operators (and the
opy
onstru
tor)are all supported but they for
e all pending
ommuni
ation. Implementing theremaining operators lazily requires a little more work to pa
k the data for
om-muni
ation and to
onstru
t the asso
iated
omposite redu
tion operation, butis otherwise straightforward. This is left as future work.

N AP3000 (P=4) Exe
ution time(s)Original Hand optimised CFL500 0.341 0.157 (53.9%) 0.192 (43.6%)1000 0.748 0.347 (53.5%) 0.433 (42.0%)1500 1.159 0.574 (50.5%) 0.724 (37.5%)3000 2.544 1.463 (42.5%) 2.119 (16.7%)Table 1. AP3000 exe
ution times (in se
onds) for Figure 1 for various problem sizes,with per
entage speedup relative to the original, unoptimised
ode.5 EvaluationOur performan
e results are from dedi
ated runs on three platforms: a FujitsuAP3000 (80 nodes, ea
h a 300MHz Spar
 Ultra II pro
essor with 128 RAM, withFujitsu's 200MB/s AP-Net network), a Quadri
s/COMPAQ
luster (16 nodes,ea
h a Compaq DS20 dual 667MHz Alpha with 1GB RAM), and a
luster ofdual 400MHz Celeron PCs with 128MB RAM on 100Mb/s swit
hed Ethernet.In ea
h
ase there was one MPI pro
ess per node.5.1 Toy Ben
hmarkTable 1 shows the exe
ution times for the toy ben
hmark of Figure 1 for fourproblem sizes for the AP3000 platform using 4 pro
essors. Here the data matrixis assumed to be square, so the problem size de�nes both M and N . The �guresin parentheses show the redu
tion in exe
ution time, relative to the original un-optimised
ode. The results show that a signi�
ant performan
e improvement
an be a
hieved by fusing the
ommuni
ations, even though only two su
h
om-muni
ations
an be fused at any time. The results also show, as one would expe
t,diminishing returns for the CFL library, relative to the hand-optimised
ode, asthe problem size in
reases. This is be
ause larger problems in
ur a smaller
om-muni
ation overhead, so the overhead of maintaining the shared variable statetakes greater e�e
t.We would intuitively expe
t the performan
e of the CFL library to improve,relative to the hand-optimised
ode, for platforms with slower
ommuni
ationnetworks (measured by a
ombination of start-up
ost and bandwidth) and vi
eversa. This is borne out by Table 2 whi
h shows the performan
e of the sameben
hmark on our three referen
e platforms, using 4 pro
essors in ea
h
ase andwith a problem size of 3000. Relative to the hand-optimised
ode, the CFL libraryperforms extremely well on the PC
luster. However, on the COMPAQ platform,whi
h has a very fast
ommuni
ation network, the overheads of supporting lazyevaluation outweigh the bene�ts of
ommuni
ation fusion.The example of Figure 1 enables exa
tly two redu
tions to be fused on ea
hiteration of the loop. In some appli
ations (see below, for example) it may bepossible to do better. The varian
e example was therefore generalised arti�
ially

Variance calculation on PC/ethernet cluster

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Number of fusible reductions

E
xe

cu
tio

n t
im

e (
se

co
nd

s)

Unoptimised

CFL

Variance calculation on AP3000

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

Number of fusible reductions

E
xe

cu
tio

n t
im

e (
se

co
nd

s)

Unoptimised

CFL

Variance calculation on COMPAQ cluster

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

Number of fusible reductions

E
xe

cu
tio

n t
im

e (
se

co
nd

s)

Unoptimised

CFL

Fig. 2. Varian
e
al
ulation (3000�3000 array) on 4 pro
essors: performan
e of originalMPI
ode versus CFL library.

Platform Exe
ution time(s) (N=3000)Original Hand optimised CFLAP3000 2.544 1.463 (42.5%) 2.119 (16.7%)Cluster 7.154 3.670 (48.7%) 3.968 (44.5%)COMPAQ 0.263 0.161 (38.9%) 0.418 (-58.8%)Table 2. Exe
ution times for Figure 1 for various platforms.by introdu
ing an extra loop that
alled the sum fun
tion (only) a given num-ber of times, n, on ea
h iteration of the outer (i) loop. The results were storedin an array and later summed (again arbitrary, but this has the e�e
t of for
-ing
ommuni
ation in the CFL
ase). The obje
tive was to measure the
ostof performing repeated (expli
it) MPI redu
tion operations relative to the
ostof fusing them within CFL. The results for 4 pro
essors on ea
h platform withN = 3000 are shown in Figure 2. Note that the slope of the two
urves (originalMPI vs. CFL) in ea
h
ase expose these relative
osts and we
an see why CFLwins out on both the AP3000 and PC
luster. Conversely, on the COMPAQ plat-form no amount of fusion opportunity
an buy ba
k the performan
e overheadsinherent in the
urrent CFL implementation.5.2 O
eanography SimulationWe now present the results obtained when the CFL library was used to modelshared variables in a large-s
ale simulation of plankton population dynami
s inthe upper o
ean using the Lagrangian Ensemble method [9℄. Some dis
ussion ofthe
ode stru
ture is in order.The simulation is based on a one-dimensional water
olumn whi
h is strati�edinto 500 layers ea
h 1m deep. The plankton are grouped into parti
les ea
h ofwhi
h represents a sub-population of identi
al individuals. The parti
les moveby a
ombination of turbulen
e and sinking/swimming and intera
t with theirlo
al environment a

ording to rules derived from laboratory observation.The simulation is built by
omposing modules ea
h of whi
h models an as-pe
t of the physi
s, biology or
hemistry. The exa
t
on�guration may vary fromone simulation to the next. To give a
avour for the stru
ture of a typi
al
ode,the dominant (
omputationally speaking)
omponent of a parti
ular instan
e
alled \ZB" models phytoplankton by the sequential
omposition of four mod-ules: Move(), Energy(), Nutrients() and Evolve() (motion, photosynthesis,nutrient uptake and birth/death). A similar stru
ture exists for zooplankton.The model essentially involves
alling these (and the many other) modules inthe spe
i�ed order on
e per time-step.In parallelising the model a verti
al partitioning strategy is used to dividethe plankton parti
les among the available pro
essors. The pro
essors
ooperatethrough environment variables whi
h represent the
hemi
al, physi
al and bio-logi
al attributes of ea
h layer. The parallelisation strategy requires that ea
hpro
essor sees the same global environment at all times.

Pro
s Exe
ution time(s)Unoptimised Hand-optimised Using CFL1 3721 3721 (0%) 3738 (-0.5%)2 1805 1779 (1.5%) 1790 (0.8%)4 934 869 (7.5%) 866 (7.9%)8 491 433 (13.4%) 418 (17.5%)16 317 244 (29.9%) 257 (23.3%)32 292 191 (52.9%) 182 (60.4%)Table 3. Exe
ution times for the plankton
ode (320,000 parti
les). In bra
kets weshow the speedup relative to the unoptimised implementation.The various modules have been developed independently of the others, al-though they must �t into a
ommon framework of global variables, managementstru
tures et
. Within these modules there are frequent updates to the sharedvariables of the framework and it is
ommon for these to be assigned in one mod-ule and used in a later one. This relatively large distan
e between the produ
erand
onsumer provides good s
ope for message aggregation. However, manualoptimisation will work only for that parti
ular sequen
e of modules: adding a newmodule or
hanging the order of existing modules
hanges the data dependen
y.This is where the CFL library is parti
ularly bene�
ial: it will automati
allyfuse the maximum possible number of redu
tion operations (i.e. those that arisebetween for
e points).We began with the original (parallel) version of ZB and then hand-optimisedit by manually working out the data dependen
ies between the global sharedquantities and identifying for
e points. The fusion was a
tually a
hieved bybuilding a lazy version of MPI_All_Redu
e [1℄. This simpli�ed the implemen-tation signi�
antly but introdu
ed some overheads, very similar in fa
t to thosein CFL. The MPI
ode was then rewritten using the CFL library, simply bymarking the shared environment variables as CFL_doubles. The original
odeuses ex
lusively MPI redu
tion operations so the immediate e�e
t of using CFLis to remove all expli
it
ommuni
ation from the program. The e�e
t of themessage aggregation (both manual and using CFL) is to redu
e the number ofsyn
hronisations from 27 to just 3 in ea
h time step. In one of these no less than11 redu
tion operations were su

essfully fused between for
e points.AP3000 timing results for the exe
ution of the ZB model before and afterCFL was in
orporated are shown in Table 3 for a problem size of 320,000 par-ti
les. Both hand-optimised and CFL versions of the model have very similarperforman
e but this is not surprising given the way the hand-optimisation wasdone.Remarks In order to use the CFL library in this
ase study, we had to turn o�one feature of the model. During nutrient uptake the required redu
tion oper-ation is a
tually bounded in the sense that the -= operator would not normally

allow the (shared) nutrient variable to be
ome negative; instead the uptake wouldbe redu
ed so as to exa
tly deplete the nutrient. It is perfe
tly possible to buildsu
h bounded redu
tions into CFL but they are not
urrently supported.6 Con
lusionsThis paper presents a simple idea, whi
h works remarkably well in many
ases.We have built a small experimental library on top of MPI whi
h enables shareds
alar variables in parallel SPMD-style programs to be represented as an abstra
tdata type. By implementing the library in C++ and using C++'s operator over-loading, the familiar arithmeti
 operator symbols, su
h as +, -, *= et
.
an beused on shared variables. Some operators have a parallel reading when the targetof an assignment is another shared variable. Be
ause the operations are abstra
t,dynami
 run-time optimisations
an be built into their implementation. We haveshown how delayed evaluation
an be used to piggyba
k
ommuni
ations on topof earlier, as yet unevaluated, parallel operations. This means that the
om-muni
ation asso
iated with a global redu
tion, for example, may a
tually takepla
e as a side-e�e
t of another redu
tion operation in a di�erent part of the
ode. This avoids relian
e on sophisti
ated
ompile-time analyses and
an exploitopportunities whi
h arise from dynami
 data dependen
ies. Using a
ontrivedtest program and a realisti

ase study we have demonstrated very pleasingperforman
e improvements on some platforms. Unsurprisingly, the greatest per-forman
e bene�ts are seen on platforms with slower
ommuni
ation networks.In essen
e, what we have done is to implement an appli
ation-spe
i�

a
he
oheren
e proto
ol, in the spirit of, among others, [11℄. This hides
onsisten
yissues, and the asso
iated
ommuni
ation, from the programmer, with obviousbene�ts in software engineering terms.Could we a
hieve the redu
tion fusion optimisation by exe
uting standardMPI fun
tions lazily? Not without
ompiler support, sin
e the results of the MPIoperation are delivered to normal private data so we don't know when to for
e
ommuni
ation.The library is
urrently very mu
h a prototype. Nonetheless, the
urrentimplementation is robust and has proven to be of surprising utility, both inperforman
e and ease of use. We are now seeking to extend the library (forexample to handle arrays as well as s
alars) and to fo
us on internal optimisationsto redu
e management overheads.Referen
es1. S. H. M. Al-Battran: Simulation of Plankton E
ology Using the Fujitsu AP3000,MS
 thesis, Imperial College, September 19982. A J Field, T L Hansen and P H J Kelly: Run-time fusion of MPI
alls in a parallelC++ library. Poster paper at LCPC2000, The 13th International Workshop onLanguages and Compilers for High-Performan
e Computing, Yorktown Heights,August 2000.

3. J.M.D. Hill, D.B. Skilli
orn: Lessons learned from implementing BSP. Journal ofFuture Generation Computer Systems, Vol 13, No 4{5, pp. 327-335, Mar
h 1998.4. Steve Karmesin, James Crotinger, Julian Cummings, S
ott Haney, William J.Humphrey, John Reynders, Stephen Smith, Timothy Williams: Array Design andExpression Evaluation in POOMA II. ISCOPE'98 pp.231-238. Springer LNCS 1505(1998).5. P. Keleher, A. L. Cox, S. Dwarkadas, W. Zwaenepoel: TreadMarks: DistributedShared Memory on Standard Workstations and Operating Systems. In Pro
eedingsof the 1994 Winter Usenix Conferen
e, pp. 115-131, January 19946. K. Ghara
horloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J. Hennesey:Memory Consisten
y and Event Ordering in S
alable Shared-Memory Multipro
es-sors. In Pro
eedings of the 17th Annual International Symposium on ComputerAr
hite
ture, pp. 15-26, May 19907. O. Be
kmann, P. H. J. Kelly: EÆ
ient Interpro
edural Data Pla
ement Optimisa-tion in a Parallel Library, LCR '988. O.B. Be
kmann and P.H.J. Kelly, A Linear Algebra Formulation for OptimisingRepli
ation in Data Parallel Programs. In LCPC'99, Springer Verlag (2000).9. J. Woods and W. Barkmann, Simulation Plankton E
osystems using the La-grangian Ensemble Method, Philosophi
al Transa
tions of the Royal So
iety, B343,pp. 27-31.10. S.J. Fink, S.B. Baden and S.R. Kohn, EÆ
ient Run-time Support for IrregularBla
k-Stru
tured Appli
ations, Journal of Parallel and Distributed Programming,Vol 50, No. 1, pp 61{82, 1998.11. Andrew J. Bennett and Paul H. J. Kelly, EÆ
ient shared-memory support forparallel graph redu
tion. Future Generation Computer Systems, V.12 No.6 pp.481{503 (1997).

