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Automated code generators for finite element local assembly have facilitated exploration of alternative
implementation strategies within generated code. However, even for a theoretical performance indicator
such as operation count, an optimal strategy for local assembly is unknown. We explore a code genera-
tion strategy based on symbolic integration and polynomial common sub-expression elimination (CSE). We
present our implementation of a local assembly code generator using these techniques. We systematically
evaluate the approach, measuring operation count, execution time and numerical error using a benchmark
suite of synthetic variational forms, comparing against the FEniCS Form Compiler (FFC). Our benchmark
forms span complexities chosen to expose the performance characteristics of different code generation ap-
proaches. We show that it is possible with additional computational cost, to consistently achieve much of,
and sometimes substantially exceed, the performance of alternative approaches without compromising pre-
cision. Although the approach of using symbolic integration and CSE for optimizing local assembly is not
new, we distinguish our work through our strategies for maintaining numerical precision and detecting
common sub-expressions. We discuss the benefits of the symbolic approach for inferring numerical relation-
ships, and analyze the relationship to other proposed techniques which also have greater computational
complexity than those of FFC.
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1. INTRODUCTION
The evaluation of local element matrices is of key importance in the implementation
of the finite element method. These matrices must typically be evaluated for every
cell in the discretized domain, so it is important that their calculation is efficient if
high performance is to be achieved. However, the process of evaluating these matrices

c© ACM, 2013. This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in ACM Transactions on Mathe-
matical Software, Volume 39, Issue 4, July 2013. http://dx.doi.org/10.1145/2491491.2491496
This work was supported by EPSRC under grant EP/I00677X/1 and a doctoral training studentship. The
authors would like to acknowledge Florian Rathgeber and Chris Cantwell for their insightful feedback.
Author’s addresses: F. P. Russell & P. H. J. Kelly, Department of Computing, Imperial College London.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 201Y ACM 0098-3500/201Y/-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: 201Y.

http://dx.doi.org/10.1145/2491491.2491496


A:2 Russell and Kelly

also has a direct correspondence to a much higher level mathematical description, the
computation of an integral of a variational form over a subset of the domain.

The need to be able to produce efficient local assembly implementations, while also
allowing computational scientists to vary the associated variational forms has led to
research into automated code generators. One such generator is the FEniCS Form
Compiler [Kirby and Logg 2006] (FFC) which is being developed as part of the FEniCS
project. FFC takes as input the Unified Form Language (UFL), a domain specific lan-
guage that describes the variational form to be integrated. The output is a C++ imple-
mentation conforming to the Unified Form-assembly Code (UFC) specification [Alnæs
et al. 2009], an interface defined by the FEniCS project that specifies how different
components of a finite element assembly implementation interact.

High level languages for describing variational forms such as UFL allow the specifi-
cation of assembly to be abstracted from its implementation. As such, it facilitates code
generators to vary aspects of the generated code in a way that would be impossible to
maintain in any hand written implementation.

The traditional approach to assembly has been to evaluate integrals using numeri-
cal quadrature. Quadrature based assembly implementations are relatively simple to
write and have well understood performance characteristics, both desirable aspects
for any implementation. Research into other implementation choices has led to the
development of a tensor contraction representation [Kirby and Logg 2006], which rep-
resents the process of local assembly a contraction between cell geometry dependent
and independent tensors.

The tensor contraction representation of assembly has been shown to be significantly
more efficient for evaluating certain classes of variational forms when compared to
quadrature based assembly [Kirby and Logg 2006]. An extension to this technique
uses topological relationships between the entries in the geometry independent tensor
to find redundancies in the computation, requiring more extensive analysis of the form
being evaluated [Kirby et al. 2006]. Such an approach is an example of the efficiency
improvements that can only be obtained when using automated code generation.

Work by Ølgaard and Wells [Ølgaard and Wells 2010] has shown that for some vari-
ational forms, the tensor contraction representation of assembly outperforms quadra-
ture by a factor of 300 in terms of operation count. However, for other forms, quadra-
ture representation can outperform tensor contraction by a factor of 100. Kirby et al.
state that the algorithm they use for reducing the operation count of the tensor con-
traction is optimal with respect to the optimizations they can express [Kirby et al.
2006]. This suggests that for some classes of forms, it is an inherent property of the
topological optimization technique which prevents it from reaching the efficiency of
quadrature for certain classes of forms.

One of our motivations for this work is to determine that if provided with a suffi-
ciently expressive representation of local assembly, a system can generate code that
equals or surpasses the efficiency of both tensor contraction and quadrature imple-
mentations. We observe that both quadrature and tensor contraction representations
correspond to specific factorizations of the expressions required to evaluate local as-
sembly matrices. If a code synthesis system is provided with a representation capable
of expressing a superset of the factorizations corresponding to quadrature or tensor
contraction based assembly, it should be possible for that system to generate code that
is at least as efficient as both, at least in terms of operation count. As such a repre-
sentation would be extremely flexible, the concern then becomes how to traverse the
search space of possible local assembly implementations.

For our work, we have chosen to explore local assembly optimizations using symbolic
algebra. We have implemented these optimizations in a C++ finite element library we
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have developed called EXCAFÉ 1. EXCAFÉ has been designed to explore optimizations
within the finite element method by capturing different aspects of the method using
various domain-specific abstractions. For the purposes of this paper, we only consider
the local assembly analyses implemented in EXCAFÉ.

Our approach can be summarised as follows:

(1) Compute symbolic representations for each scalar element of the local assembly
matrix.

(2) Apply an optimization pass to these expressions that exploits common sub-
expressions and other redundancies in order to compute an efficient evaluation
strategy.

The more general aspects of this approach are not new. The FINGER system [Wang
1986], uses MACSYMA [Fateman 1989] to perform symbolic integration, followed by a
CSE (common sub-expression elimination) pass, performed by REDUCE. More recent
work on the SyFi Form Compiler [Alnæs and Mardal 2010], explores performing both
analytical and quadrature based integration on symbolic expressions for local assem-
bly matrix entries before applying a CSE pass.

Symbolically integrating the expressions representing a local assembly matrix at
code-generation time means we avoid the use of quadrature at run-time. The tensor
contraction scheme also avoids run-time quadrature by moving the cell integral into
the expression for the reference tensor (for affine elements), which is computed at
code-generation time. One can think of this a technique that reduces operation count
by performing compile-time partial evaluation of integrals. However, the symbolic inte-
gration scheme also destroys the loop structure of the computation that tensor contrac-
tion and quadrature based code generation schemes exploit. Reclaiming such structure
is vital if the resulting code is to be efficient.

We distinguish ourselves from previous work through the efforts we take to con-
struct efficient code from the resulting symbolically integrated expressions. We use
existing work by Hosangadi et al. [Hosangadi et al. 2006] on polynomial common sub-
expression elimination (CSE) to find factorizations that exploit the distributivity of
multiplication over addition. We extend this work to take account of numerical rela-
tionships that would be opaque to the original Hosangadi et al. algorithms. Through
these analyses we aim to generate superior code than that resulting from the con-
ventional CSE passes that have been applied in generators such as SyFi [Alnæs and
Mardal 2010].

Alnæs et al. demonstrate significant performance improvements [Alnæs and Mardal
2010] when comparing code generated by SyFi to other hand written finite element im-
plementations such as Diffpack [Bruaset and Langtangen 1997] and deal.II [Bangerth
et al. 2007]. However, they do not perform an extensive comparison against the quadra-
ture and tensor contraction implementations generated by FFC. We believe that com-
parisons against other finite element implementations that do not use automated code
generation primarily provide evidence for the benefits of code generation, and not for
the symbolic manipulation approach in particular. Therefore, we only compare against
the FFC generated quadrature and tensor contraction implementations. One of our
motivations in this work is to determine if symbolic techniques can be used to achieve
comparable or improved performance over both these implementation choices.

1Available at http://www.doc.ic.ac.uk/~fpr02/excafe/ and also supplied as auxiliary material to this
publication.
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2. PRELIMINARIES
We consider the weak formulation of a general linear variational problem as follows.
Find u ∈ X such that

a(u, v) = L(v), ∀v ∈ V (1)
where a and L are bilinear and linear forms respectively. The function spaces X and

V are called the trial and test spaces, respectively. They both contain an infinite set of
functions so we approximate them with the discrete function spaces X δ and Vδ using
the basis function sets Φ and Ψ. Our problem now reads, find uδ ∈ X δ such that

a(uδ, vδ) = L(vδ), ∀vδ ∈ Vδ (2)
Our solution field uδ is expressed as a linear combination of test functions:

uδ(x) =

|Φ|∑
j=0

ûjΦj(x) (3)

We can now define our linear system as follows:

Ax = b (4)
whereA and b are the discretized versions of a and L respectively, defined as a matrix

and vector:

Aij = a(Φj(x),Ψi(x)) (5)
bi = L(Ψi(x)) (6)

and the unknown x is a vector containing the basis function coefficients of the solu-
tion field so that:

xj = ûj (7)
The domain Ω over which the partial differential equation is solved is partitioned

into cells. The basis functions are defined so that they are only non-zero valued on
neighbouring cells. As a consequence, the matrix A is sparse. Typically, the basis func-
tions are defined over a reference reference cell, and the process of performing a co-
ordinate transformation to the cell being integrated over is incorporated in the assem-
bly process.

We assume that our domain Ω is partitioned into a set of cells, K. We define the
following:
χk(ξ), a function that transforms a local co-ordinate ξ on the reference cell to the

global co-ordinate x on the cell k.
ιk(i), a function that returns the global numbering of the local basis function i de-

fined on cell k.
φ and ψ, the local versions of the basis function sets Φ and Ψ respectively. For all

local basis functions 1 ≤ p ≤ |φ|, 1 ≤ q ≤ |ψ| on any cell k ∈ K:

Φιk(p)(χ
k(ξ)) = φp(ξ) (8)

Ψιk(q)(χ
k(ξ)) = ψq(ξ) (9)
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We can now define our local assembly matrix for cell k as follows:

Mk
qp = a(Φιk(p),Ψιk(q)) (10)

The functional a corresponds to an integral over cell k. However, via a change of
variables, it can be rewritten as an integral over a reference region Ωst. The integration
is then performed with respect to local co-ordinates and uses the local basis sets φ and
ψ instead of the global ones Φ and Ψ.

The change of variables requires multiplying the integrand by |J(χk(ξ))|. This term
is the determinant of the Jacobian of the co-ordinate transformation from local to
global co-ordinates, and acts as a scaling factor.
a may also contain derivatives of the basis functions w.r.t. global co-ordinates. We

can compute any global derivatives from local ones by application of the chain rule.
In particular, we transform the gradient of a function defined in local co-ordinates to
the corresponding global gradient by taking the inner product between inverse of the
gradient of local-to-global co-ordinate transformation χk, and the gradient of the func-
tion w.r.t. local co-ordinates. Let us assume we have some function f defined in terms
of the local co-ordinate space ξ and we wish to find the gradient of Fk, the function f
transformed to cell k and expressed in terms of global co-ordinates

∇Fk(x) = (∇χk(ξ))−1 · ∇f(ξ) (11)
where

x = χk(ξ) (12)
The presence of derivatives in the variational forms being integrated has important

performance implications for the tensor contraction representation of assembly as dis-
cussed in the next section.

3. CURRENT APPROACHES TO LOCAL ASSEMBLY
In this section, we briefly review the quadrature and tensor contraction based ap-
proaches to performing local assembly. Both these approaches can be described in a
succinct mathematical form. In contrast, the symbolic approach permits more arbi-
trary optimizations and therefore tends to produce unstructured results. The topologi-
cal optimizations to the tensor contraction representation [Kirby et al. 2006] have the
same effect, as they also result in extremely form-specific optimizations.

As an example, we consider how to evaluate the local assembly matrix for the Lapla-
cian operator:

a(u, v) =

∫
Ω

∇u(x) · ∇v(x) dx (13)

3.1. Quadrature
The conventional approach to local assembly is via quadrature [Sherwin and Karni-
adakis 2005]. The integral is performed by evaluating the function to be integrated at
specific points of the cell, and taking a weighted sum of these values. For our Laplacian
example, we can write this as follows:

Mk
qp =

Q−1∑
i=0

wi(∇χk)−1 · ∇φp · (∇χk)−1 · ∇ψq|J(χk)| (14)
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The quadrature points and weights are typically chosen using Gaussian quadrature
rules. An m point rule will exactly integrate univariate polynomials up to degree 2m−
1. Higher-dimensional quadrature rules for simplices and hypercubes can be derived
from the one-dimensional variants. Gaussian quadrature does not use points at either
end of the interval being integrated, but there are also variants known as Gauss-Radau
and Gauss-Lobatto, which define points at one and both ends, respectively.

A typical implementation will consist of a loop that iterates over the Q quadrature
points, and sums into the local assembly matrix. The basis functions and their deriva-
tives (if needed) at the quadrature points can be computed just once and reused, since
they are only dependent on local co-ordinates.

For affine mappings, both the determinant of the Jacobian of the co-ordinate
transformation, |J(χk)|, and the inverse gradient of the co-ordinate transformation,
(∇χk)−1, only need be computed once since they will remain constant across the cell. If
the elements are not affine, they will need to be recomputed at each quadrature point.

The FEniCS form compiler also performs other optimizations for for quadrature
based code generation [Ølgaard and Wells 2010]. Firstly, if a basis function or its
derivatives evaluate to zero at all quadrature points, operations on those values can be
eliminated. Secondly, loop invariant code motion is used to avoid recomputing values
that are independent of the values of the quadrature summation indices.

3.2. Tensor Contraction
The tensor contraction representation is a local assembly implementation choice inves-
tigated as part of the FEniCS project, and implemented in FFC. It works by expressing
the local assembly matrix as a tensor contraction between a geometry independent ref-
erence tensor A0 and a geometry tensor Gk. The geometry tensor is cell-dependent and
must be recomputed for each cell. The reference tensor is independent of cell geome-
try and only needs to be computed once, during the code generation phase. The local
assembly matrix can be written as follows:

Mk = A0 : Gk (15)
where the : operator represents a summation over zero or more indices. In the case

of our Laplacian operator, the geometry and reference tensors are defined as follows:

A0
qpαβ =

∫
Ωst

∂φp
∂ξα

∂ψq
∂ξβ

dξ (16)

Gαβk = |J(χk)|
d∑

γ=0

∂ξα
∂xγ

∂ξβ
∂xγ

(17)

Here, α, β and γ are co-ordinate directions that we take partial derivatives with
respect to. Our trial and test basis function numberings are p and q respectively.
The chain rule has been applied to the partial derivatives of the Laplacian and the
geometry-independent terms moved into the reference tensor.

The per-cell cost of assembly is the number of operations required to evaluate the
geometry tensor and to perform the contraction between the reference and geometry
tensors. In some cases, this is a significant reduction in operations over a quadrature
based implementation.

For affine mappings, the integral over the reference cell is only present in the defini-
tion of the reference tensor. Since the reference tensor is evaluated at code-generation
time, the run-time cost of quadrature is not present in the tensor contraction represen-
tation. As a consequence, tensor contraction representation tends to perform well for
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higher order forms that would otherwise require a large number of quadrature points
to evaluate.

Kirby and Logg describe how the tensor contraction representation may be extended
to non-affine mappings in [Kirby and Logg 2006], Section 3.4. In the case of curvilinear
elements, the integral cannot be evaluated at code-generation time. As a consequence,
both the geometry and reference tensors have one extra dimension corresponding to
an index for quadrature points.

3.2.1. Graph-Based Optimizations. Further work on improving the performance of ten-
sor contraction representation has looked at reducing the operation count required to
perform the contraction between the geometry and reference tensors.

Each element of the local assembly matrix can be considered an inner product be-
tween a vector of values from the reference tensor and the entire geometry tensor. The
values of the elements of the reference tensor are known at code-generation time, but
the values of the geometry tensor are only known at run-time.

Kirby et al. have used metrics based on Hamming distance and collinearity between
vectors to characterise the number of multiply-add pairs (MAPs) required to compute
one inner product from another. Using these, they develop a code generation scheme
that is optimal with respect to the number of MAPs required to compute a local as-
sembly tensor exploiting these relationships [Kirby et al. 2006]. Kirby et al. call these
topological optimizations.

Kirby and Scott have extended this work to exploit linear dependence between vec-
tors in the reference tensor [Kirby and Scott 2007]. The presence of linear dependence
relationships between vectors in the reference tensor enables inner products to be com-
puted from weighted sums of other inner products. This can be more efficient than com-
puting the inner products outright. Kirby and Scott call these geometric optimizations
and show instances where they reduce operation count over topological optimization
techniques.

In terms of the reduction of operation count expressible within each framework, the
topological optimizations are optimal whereas the geometric optimizations are not.
The fact that the geometric optimizations can improve upon the topological ones indi-
cate that the latter only achieves this optimality result due to the restricted nature of
the expressible optimizations.

Wolf and Heath have also looked at exploiting linear dependencies between vectors
in the reference tensor although they limit themselves to relationships involving three
vectors (coplanar relationships) [Wolf and Heath 2009]. However, they generalise the
Hamming distance and collinearity relationships to the partial collinearity relation-
ship. Code exploiting this relationship makes use of collinearity between a subset of
the elements of two vectors from the reference tensor to reduce its operation count.
Hence, this work uses both topological and geometric techniques to reduce its opera-
tion count.

We describe these optimizations assuming vectors of values from the reference ten-
sor a0, a1 and a2 and the geometry tensor flattened to a vector, g.

Hamming Distance. This optimization generates code that derives some inner
product a1 · g from a0 · g. If a0 · g is already known, then a1 · g can be calculated
as (a1 − a0) · g + a0 · g.
If a0 and a1 have many entries in common, then the vector a1−a0 will contain many
zeros. Hence, (a1−a0) ·g can be computed with a cost proportional to the number of
non-zero values in a1 − a0 rather than the length of the vectors. Therefore, it may
require fewer operations to compute (a1 − a0) · g and add it to the already known
value a0 · g, compared to computing a1 · g directly.
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The cost of deriving a1 · g from a0 · g increases for each entry of a0 and a1 that is
different. Hence, the cost is proportional to the Hamming distance between the two
vectors.
Collinearity. This optimization derives an inner product a1 ·g from a0 ·g where a1 =
αa0. This requires that both vectors from the reference tensor are scaled versions
of each other. Computing a value in this way only requires a single multiplication
by the scaling factor α.
Partial Collinearity. This optimization generalises the Hamming distance and
collinearity optimizations previously described. Whereas the Hamming distance
optimization requires the two vectors a0 and a1 to have elements in common, the
partial collinearity optimization takes advantage of corresponding elements in a0

and a1 when related by a common scaling factor.
Coplanarity and Linear Dependence. If multiple vectors in the reference tensor
are linearly dependent, it is possible to calculate an inner product using a weighted
combination of other inner products.
For example, if a0, a1 and a2 are linearly dependent, a1 · g can be computed as
αa0 · g + βa2 · g for some α and β.
If the set of linearly dependent vectors has two elements, this is again the collinear-
ity relationship. If it is of size three, the relationship is coplanar.

Kirby et al. have implemented the Hamming distance and collinearity optimizations
in the FErari library which is used by FFC when it generates optimized tensor con-
traction implementations.

FErari builds a total undirected graph over the entries of the local assembly matrix,
where each edge is weighted with the number of MAPs required to compute one entry
from the other. A minimal spanning tree is constructed over this graph in order to
determine the execution strategy with the fewest number of MAPs. The resulting code
is optimal in the sense it requires the fewest number of operations with respect to the
redundancies FErari can exploit [Kirby et al. 2006].

4. CODE GENERATION IN EXCAFÉ
In this section, we describe the implementation of the local assembly code generator
implemented in EXCAFÉ. Specification of variational forms is done inside the library,
using C++ function calls and operator overloading in a syntax similar to UFL. We pro-
vide in Figure 1 a simple comparison of UFL and our C++ Domain Specific Language
(DSL) when used to specify the Laplacian operator. In order to facilitate comparisons
with FFC generated code, we have modified EXCAFÉ to output code conforming to the
UFL cell integral C++ class interface.

4.1. Overview
The process of code generation in EXCAFÉ for a given variational form consists of the
following steps:

(1) Compute symbolic representations of the basis functions used by the form to be
compiled (Section 4.2).

(2) Symbolically compute the integrand of the variational form for each choice of trial
and test function (Section 4.3).
The result is a matrix of symbolic expressions in which cell geometry, cell-local
co-ordinates and basis function coefficients are unknowns.

(3) Analytically integrate each expression in the matrix computed in the previous step
over the reference cell (Section 4.4).
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element = FiniteElement(" Lagrange " , triangle, 2)

v = TestFunction(element)
u = TrialFunction(element)

a = dot(grad(u), grad(v))*dx

(a) UFL

static const std::size_t dimension = 2;
Scenario<dimension>& scenario = getScenario();

Element element = scenario.addElement(new LagrangeTriangle<0>(2));
BilinearFormIntegralSum a = B(grad(element), grad(element))*dx;

(b) EXCAFÉ

Fig. 1: Specification of the Laplacian operator in UFL and EXCAFÉ. The EXCAFÉ ex-
ample is not self-contained, since it assumes the existence of a Scenario object, which
contains problem context information such as the mesh. The template parameter to
LagrangeTriangle is the rank of the basis, in this case zero, since it is a scalar field.

The result is matrix of expressions in which cell-local co-ordinates are no longer
unknowns (since they have been removed via integration). Code generation could
be performed at this step, but the result could contain many redundancies.

(4) Apply common sub-expression elimination to the symbolic expressions of the ma-
trix computed in the previous step to find an efficient evaluation strategy (Sec-
tion 5).

(5) Generate a UFC [Alnæs et al. 2009] compliant cell integration function. We note
that EXCAFÉ was not designed as a form compiler, and we generate UFC compliant
code primarily to facilitate comparisons against FFC.

We describe the symbolic manipulation EXCAFÉ performs in the rest of this section,
and the common sub-expression elimination technique we apply in Section 5.

4.2. Basis Functions
Currently, only the Lagrange basis functions over triangles have been implemented in
EXCAFÉ, but the techniques we describe easily generalise to any polynomial basis set
over simplex or hypercube elements.

Construction of the Lagrange basis functions is implemented in EXCAFÉ using the
techniques implemented in FIAT [Kirby 2004]. An orthogonal basis (called the prime
basis) is first constructed. Next, a matrix similar to a Vandermonde matrix is inverted
in order to find the linear combination of prime bases that form a nodal basis set.
For our triangular elements, the prime basis is the Dubiner orthogonal basis [Dubiner
1991], derived from the Jacobi polynomials.

In EXCAFÉ, construction of the Jacobi polynomials and the matrix inversion step are
performed entirely using rational numbers. Hence, our symbolic representation of the
Lagrange basis functions is exact, and not subject to any form of floating point related
inaccuracy. Keeping the coefficients in our symbolic representations as rational num-
bers wherever possible, rather than floating point values, is particularly important for
our factorization optimizations, described in Section 5.
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4.3. Variational Forms
Variational forms typically consist of vector calculus and tensor operators applied to
basis functions, and discretized fields represented as a linear combination of basis
functions.

Tensor operators can be applied directly to the symbolic expressions. The differen-
tial operators require the application of the chain rule in order to correctly transform
derivatives.

The local-to-global co-ordinate mapping is represented using the basis functions de-
fined over the reference cell. Since we only handle affine transformations, we use the
linear Lagrange basis functions to transform from local to global co-ordinates.

Symbolically taking the gradient of the co-ordinate transformation and applying
Cramer’s rule to invert it allows us to define expressions for the entries of the ten-
sor (∇χk(ξ))−1, which we use to transform a locally defined gradient to a global one on
the arbitrary cell k.

Similarly, it is possible to compute the local-to-global scaling factor, |J(χk)| analyti-
cally using the same techniques. We note that in a strict mathematical derivation, it is
possible for the local-to-global scaling factor to become negative if the cell orientation
has been reversed. The UFC [Alnæs et al. 2009] specification defines cell-local ver-
tex numbering in terms of global vertex numbering, which does not easily permit the
preservation of cell orientation. Therefore, we take the modulus of the scaling factor
instead, which allows cell orientation to be reversed without negating the value of the
cell integral. Code generated by the FEniCS Form Compiler does this also.

4.4. Symbolic Integration
We eliminate any need for run-time quadrature by symbolically integrating the ex-
pression for each element of the local assembly matrix. To integrate over the reference
triangle, we first perform a co-ordinate transformation to the bi-unit square. We can
then integrate over each dimension individually.

For certain classes of forms, symbolic integration can be particularly computation-
ally expensive. We could use quadrature at code-generation time, however, this would
introduce floating point values into our symbolic expressions, limiting the effectiveness
of our factorizer.

Our original symbolic representation used the C++ computer algebra library
GiNaC [Bauer et al. 2002] as a back-end. However, we later implemented our own
symbolic representation to explore implementation choices related to symbolic inte-
gration and selective expansion of certain terms. Since we have only considered affine
mappings, the expressions we integrate are always polynomial in the variables we
integrate over (the cell-local co-ordinates).

Pre-multiplication by multiple co-efficient functions results in expressions that have
a product-of-summations structure (since each field is represented by a weighted sum
of basis functions). This appears to be the primary source of inefficiency for the class of
forms we have chosen to benchmark over. Expanding complex products before integra-
tion can result in extremely large numbers of terms. However, performing integration
before expansion typically requires integration by parts, which can also lead to large
increases in the integrated expression size.

We have adopted the strategy of performing the minimal expansion of the input ex-
pression that also permits trivial integration of the resulting terms. Specifically, before
integrating, we rewrite the integrand as an expanded polynomial w.r.t. the integration
variable. This strategy appears to offer acceptable performance characteristics for the
classes of forms we have evaluated. In particular, it avoids integration by parts and
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only expands the sub-terms of the input expression necessary to permit trivial inte-
gration of the resulting terms.

An alternative strategy would be for us to interface with a computer algebra system
such as MAXIMA (an open-source fork of MACSYMA [Fateman 1989]) or similar system
that uses pattern matching of mathematical expressions to improve symbolic integra-
tion performance [Slagle 1963; Harrington 1979]. It is unclear how difficult this would
be to implement.

Since the symbolic integration pass typically results in extremely complex expres-
sions, we choose to distribute sums over products in order to permit simplification by
summing identical terms with different coefficients. After this step, each entry of the
local assembly matrix is represented by a sum of rational expressions.

5. POLYNOMIAL FACTORISATION AND COMMON SUB-EXPRESSION ELIMINATION
Having constructed symbolic expressions for each entry of the local assembly matrix,
it is necessary to find an efficient execution strategy for evaluating them. Approaches
in previous work [Wang 1986; Alnæs and Mardal 2010] have primarily consisted of the
application of standard compiler common sub-expression elimination (CSE) passes.

After the application of symbolic integration and expression normalisation, the re-
sulting expressions bear little resemblance to the original input. Tensor contraction
and quadrature implementations make use of the structure of the input form to prod-
uct efficient code. Since our transformations destroy that structure, it is important
that we use a CSE pass capable of recovering enough structure to produce code that is
competitive with those implementations.

Our factorizer is based on the work of Hosangadi et al. on factorizing sets of multi-
variate polynomial expressions [Hosangadi et al. 2006]. Most importantly, it is capable
of finding factorizations that employ distributivity. We have extended this work further
with improvements to the types of factorizations that can be detected.

The Hosangadi et al. algorithm cannot be applied directly to our expressions. The
presence of division (used in computing the inverse of the determinant of the co-
ordinate transformation) and the modulus operator means that our expressions are
not simply multivariate polynomials. To work around this, we replace non-polynomial
expressions and expressions raised to negative exponents with temporary variables.
We also extract any polynomial sub-expressions contained in non-polynomial ones.

Our input to the factorizer is a set of all polynomial sub-expressions present in the
expanded form of the original expressions. We do however, permit negative exponents
to remain in the products. The term x−n can be treated identically to yn where y cor-
responds to x−1. This is particularly useful for our extension for handling numerical
relationships between coefficients, described later.

5.1. Hosangadi et al. Factorisation Algorithm
We first provide a brief overview of the Hosangadi et al. algorithm. For a full descrip-
tion, consult [Hosangadi et al. 2006]. Hosangadi et al. use the following definitions:

Literal. A constant value or variable (e.g. 4.5 or x).
Cube. A product of literals raised to non-negative integer exponents. Cubes also
have positive or negative signs associated with them (e.g. 7xy2 or −2.5a3b2).
SOP. A “sum of products” representation of a polynomial, consisting of a sum of
cubes (e.g. 5.4x2y + 2xy + 7).
Cube-free. A SOP expression is “cube-free” if the only cube that can divide every
cube in the SOP is the literal “1”. For example, the SOP a2b+ cd is cube free since
a2 and cd have no common divisors.
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Kernel. For some SOP P and a cube c, the expression P/c is a kernel if it is cube-
free and it has at least two terms. For example, letting P = a2bc + ac, makes
P/ac = ab+ 1 a kernel.
Co-Kernel. This name is given to the cube dividing the SOP in a kernel expression.
In the above example, this is ac.

A kernel expression represents a factorization of an SOP, P , of the form P = C ∗F1 +
F2 where C is a cube and F1 and F2 are SOPs. For example, consider the factorization
of the SOP a2b2 + ab+ ac:

P = a2b2 + ab+ ac (18a)
P/ab = ab+ 1 (18b)

This represents a factorization of P of the form P = C ∗ F1 + F2 where:

C = ab (19a)
F1 = ab+ 1 (19b)
F2 = ac (19c)

The first step of the Hosangadi et al. algorithm is to construct a set of kernel ex-
pressions for each SOP in the input. For conciseness, we do not describe the kernel
extraction algorithm here, it is detailed in [Hosangadi et al. 2006]. The algorithm com-
putes the set of all possible kernel expressions for each SOP. Hosangadi et al. show
that all minimal algebraic factorizations of a polynomial expression can be obtained
from the set of kernels and co-kernels of an expressions. In this context, “minimal”
refers to the property that the only common divisor of the products forming F1 is “1”.

We consider a worked example on the following two input expressions. The bracketed
subscripts denote term numberings.

a2
(1) + ab (2) + c(3) (20a)

ab (4) + b2 (5) + bc (6) (20b)
The algorithm computes all kernels and co-kernels of the input SOPs, giving:

(a2 + ab+ c)/1 = a2 + ab+ c (21a)
(a2 + ab+ c)/a = a+ b (21b)

(ab+ b2 + bc)/1 = ab+ b2 + bc (21c)
(ab+ b2 + bc)/b = a+ b+ c (21d)

(21e)
The next step of the algorithm uses the kernel/co-kernel decomposition to find a

factorization of the input SOPs. The kernels and co-kernels are written in the form
of a matrix as shown in Figure 2. This matrix is called the Kernel Co-kernel matrix
(KCM).

The rows of the matrix represent co-kernels and may be repeated if the same co-
kernels are derived from different input expressions. The columns represent cubes,
and are unique. Each “1” in the KCM represents a way to evaluate the term identified
by the subscript.

A valid factorization is a sub-matrix formed from a subset of the rows and columns of
the KCM, in which every entry is “1”. Alternatively, a factorization can be considered
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a a2 ab b b2 bc c

1 0 1(1) 1(2) 0 0 0 1(3)

a 1(1) 0 0 1(2) 0 0 0

1 0 0 1(4) 0 1(5) 1(6) 0

b 1(4) 0 0 1(5) 0 0 1(6)

Fig. 2: The Kernel Co-Kernel Matrix (KCM) corresponding to the kernels in Equation
List 21. Each one in the matrix corresponds to a particular way of evaluating the cube
identified by the bracketed subscript.

a a2 ab b b2 bc c

1 0 1(1) 1(2) 0 0 0 1(3)

a 1(1) 0 0 1(2) 0 0 0

1 0 0 1(4) 0 1(5) 1(6) 0

b 1(4) 0 0 1(5) 0 0 1(6)

(a) A KCM covering

The rewritten polynomials are:

ae+ c

be+ bc

where:

e = a+ b

(b) The corresponding factorization

Fig. 3: A factorization of our example polynomials from equation list 20 that avoids
evaluating a+ b twice.

as any block of ones that can be formed by permuting the rows and columns of the
KCM. We show a factorization of our polynomials from Equations 20 in Figure 3. The
SOP a+ b is factored into a new expression, avoiding the repeated evaluation.

The columns of the sub-matrix represent the sum of cubes that form the new sub-
term. Each row of the sub-matrix represents a kernel. When the new sub-term is mul-
tiplied by the associated co-kernel, it evaluates to one or more terms from the original
SOP that produced that kernel.

Factorisations are scored according to a function that describes the number of the
multiplications and additions saved:

score =m ∗

(C − 1) ∗

(
R+

R∑
i=0

M(Ri)

)
+ (R− 1) ∗

C∑
j=0

M(Cj)


+ (R− 1) ∗ (C − 1)

(23)

where:
m is a factor that weights the number of multiplies saved,

R is the number of rows (co-kernels),
C is the number of columns (cubes),
M(Ri) is the number of multiplications required to evaluate co-kernel i,
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M(Cj) is the number of multiplications required to evaluate cube j

After the highest scoring factorization from the KCM is found, it is extracted into
a new term. The KCM is updated to take account of the terms that no-longer require
evaluation and additional rows added for the newly extracted term. This process re-
peats until no non-zero scoring factorizations are found. This makes the factorization
algorithm greedy.

Hosangadi et al. do not describe an algorithm to find the best scoring matrix covering
in [Hosangadi et al. 2006]. They do however note that it is analogous to the rectangle
covering problem described in [Brayton et al. 1987], which is NP-hard. We note that the
KCM can effectively be considered as the adjacency matrix of a bipartite graph. Any
valid coverings then correspond to bicliques within that graph. We have implemented
a branch and bound solver to search for the highest scoring factorizations.

5.2. Extensions to Hosangadi et al. Algorithm
The Hosangadi et al. algorithm treats all literals (numbers or variables) identically.
This is problematic since many numerical relationships between expressions are com-
pletely opaque to the factorizer.

We consider the following two expressions:

e0 =
3

5
x+

5

7
y (24a)

e1 = 1
1

5
x+ 1

3

7
y (24b)

The expression e1 can be calculated by doubling e0. This requires a single multiply
as opposed to the two multiplies and an addition that would be required to evaluate
e1 in isolation. However, when applied to equation set 24, the Hosangadi et al. algo-
rithm will consider the numeric coefficients as four distinct and unrelated values. As a
consequence, it is incapable of exploiting the redundancy between the two expressions.

The topological optimizations implemented in FFC [Kirby et al. 2006] demonstrate
the importance of exploiting numerical relationships to reduce local assembly opera-
tion count. Therefore, we consider it important that we can discern these relationships
in our factorizer.

We handle this by decomposing all rational coefficients in our expressions into a
product of prime numbers raised to positive and negative exponents. Equation set 24
is rewritten as follows:

e0 = 315−1x+ 517−1y (25a)
e1 = 31215−1x+ 51217−1y (25b)

Given this input, the factorizer can now detect that the expression e0 is equivalent
to e1 ÷ 2. Our factorizer will produce the following rewritten expressions:

e0 = e2 (26a)
e1 = 21e2 (26b)
e2 = 315−1x+ 517−1y (26c)

This form of decomposition requires that the coefficients in our expressions are rep-
resented as rational values. It is for this reason that we avoid introducing any form of
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numerical approximation during our symbolic manipulation. We can still handle arbi-
trary floating point values in our expressions if necessary, but these will be opaque to
the factorization pass.

Since multiplication and addition of constant values can be performed at compile
time or inside our code generator, the functions we use to evaluate the number of
multiplies in a cube and the number of operations saved by a factorization need to
reflect this.

Within a cube, all multiplies between constants can be evaluated. Therefore, given
the cube c = 315−172x, the number of multiplies required to evaluate it is M(c) = 1.
The function used to score factorizations must also be updated. The original Hosangadi
et al. factorization scoring function assumes that given the cubes c1 and c1, the number
of multiplies required to evaluate the expression c1c2 is M(c1) +M(c2) + 1 (i.e. the sum
of the multiplies required to evaluate each cube and an additional multiply to compute
the product).

We distinguish between different types of cube when computing the original cost to
evaluate a product of two cubes. Firstly, we distinguish the unit cube, since multiplica-
tion by one is always free. Secondly, we observe that multiplication of two cubes c1 and
c2 only requires M(c1) +M(c2) multiplies if both cubes have a numeric coefficient. We
identify the three possible cases.

(1) For two compile-time constants, the multiply can be also be done at compile-time.
Hence, the cost is M(c1) +M(c2) = 0 + 0 = 0.

(2) Taking a cube with a numeric coefficient c1 = 5ab and a constant valued cube
c2 = 7, the multiplication between the numeric part of c1 and c2 can be performed
at compile time. For our example, the cost is M(c1) +M(c2) = 2 + 0 = 2.

(3) Taking the cubes c1 = 5a and c2 = 7b, the cost of evaluating the product 35ab is
M(c1) +M(c2) = 1 + 1 = 2.

If one or both cubes consist of only values known at run-time, then the cost of eval-
uating the product of the cubes c1 and c2 remains M(c1) +M(c2) + 1.

We also account for compile-time evaluation of additions, but these occur far less
frequently, when at least two terms in a SOP have both a cube and co-kernel that are
numeric. This requires that we can also identify when a cube is entirely numeric (as
opposed to merely having a numeric coefficient).

6. EVALUATION
We evaluate our approach by comparing against code generated by the FEniCS Form
Compiler using both quadrature and tensor contraction implementations for equiva-
lent forms. We enable optimizations for both tensor contraction and quadrature im-
plementations. In the case of tensor contraction, this enables the FErari topological
optimizations [Kirby et al. 2006]. In the case of quadrature, this eliminates operations
on zeros and performs loop-invariant code motion [Ølgaard and Wells 2010]. We con-
sider two different sets of forms.

The set first consists of the two-dimensional mass matrix, with a Lagrange basis of
order q and pre-multiplied by nf functions of order p. We show an example of the UFL
corresponding to this form where p = 1, q = 2 and nf = 3 in Figure 4. We also show
an example of an EXCAFÉ generated tabulate tensor method (as specified by UFC) in
Figure 7.

We choose this set because it is also used by Ølgaard and Wells to evaluate the differ-
ent performance characteristics of tensor contraction and quadrature local assembly
implementations ([Ølgaard and Wells 2010], Section 4.3). Ølgaard and Wells state that
forms with numerous pre-multiplying functions are typical of the Jacobian resulting
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element = FiniteElement(" Lagrange " , " triangle " , 2)
element_f = FiniteElement(" Lagrange " , " triangle " , 1)

v = TestFunction(element)
u = TrialFunction(element)

f = Coefficient(element_f)
g = Coefficient(element_f)
h = Coefficient(element_f)

a = f*g*h*dot(v, u)*dx

Fig. 4: A specification for a pre-multiplied mass matrix with element order q = 2, pre-
multiplied by nf = 3 functions of order p = 1.

element = FiniteElement(" Lagrange " , " triangle " , 2)
element_f = FiniteElement(" Lagrange " , " triangle " , 1)

v = TestFunction(element)
u = TrialFunction(element)

f = Coefficient(element_f)

a = f*inner(grad(u), grad(v))*dx

Fig. 5: A specification for a pre-multiplied Laplacian with element order q = 2, pre-
multiplied by nf = 1 function of order p = 1.

from the linearisation of non-linear differential equations in a practical simulation. We
note that an increased number of pre-multiplying functions leads to an increase in the
rank of the geometry tensor in a tensor contraction local assembly implementation.

The second set of forms consist of a two-dimensional Laplacian operator with a La-
grange basis of order q and pre-multiplied by nf functions of order p. We show an
example of the UFL corresponding to this form where p = 1, q = 2 and nf = 3 in
Figure 5.

This choose this set of forms because it allows us to observe the effect of our opti-
mizations in the presence of differential operators. We note that increasing the number
of derivatives in a form causes the complexity of tensor contraction based assembly to
increase exponentially [Kirby and Logg 2006].

We vary the values of p, q and nf for both sets of forms to demonstrate the effec-
tiveness of our approach with different form complexities. We compare the number of
floating point operations required to evaluate the pre-multiplied mass matrix with and
without compiler optimizations enabled in Tables I and II, respectively. We compare
the number of operations required to evaluate the pre-multiplied Laplacian operator
in Table IV.

Results not present in the table indicate forms that we could not generate code for
due to RAM or execution time constraints. We discuss this further in Section 6.3.

Generation of the quadrature and tensor contraction implementations were per-
formed with version 1.0.0 (latest stable version at time of writing) of the FEniCS Form
Compiler. The benchmarks were compiled with the GNU C++ Compiler 4.7.1 and the
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Intel C++ Compiler 12.0. The benchmarks were run on a 2.4Ghz Intel Core 2 Duo with
a 3MB L2 cache running 64-bit Debian “testing”.

6.1. Methodology
In order to count the number of floating point operations in each generated local as-
sembly implementation, we have used the Performance Application Programming In-
terface (PAPI) library [Terpstra et al. 2010]. PAPI allows us to count the number of
floating point operations in the compiled local assembly implementations by using pro-
cessor hardware performance counters. We average our results over at least 100,000
calls to the generated local assembly function.

Since we measure the operation counts of compiled code, these will differ to the
theoretical operation count values reported by each code generator and are dependent
on compiler optimization effects. However, the results we collect are true reflections of
the number of operations required to perform local assembly.

We compile our generated code with both the GNU C++ Compiler 4.7.1 and the Intel
C++ Compiler 12.0 to explore the optimization effects of different compilers. Manual
inspection of large FFC-generated tensor contraction implementations reveal common
sub-expressions that a compiler should be able to take advantage of. Therefore, we
expect that the true operation counts may be significantly smaller than code-generator
predicted values for those implementations.

Counting the number of operations in compiled code rather than those reported by
the respective code generators also gives us an objective scheme that is not dependent
on the particular code generator’s concept of an operation. This scheme is therefore
also unaffected by any flaws in the code generator’s calculation of this value.

6.2. Results
Operation counts for EXCAFÉ and optimized FFC-generated local pre-multiplied mass
matrix assembly implementations under different compilers (with optimization) are
shown in Table I. We also provide FLOP counts for implementations compiled with the
GNU C++ Compiler 4.7.1 with optimizations disabled to clarify compiler-dependent
effects in Table II.

We observe that operation count results for FFC-generated code vary significantly
for different compilers and optimization levels. In particular, the Intel C++ Compiler
12.0 appears to be significantly more effective at reducing the operation count of opti-
mized FFC-generated quadrature and tensor contraction implementations in compar-
ison to the GNU C++ Compiler 4.7.1.

The operation count of EXCAFÉ-generated code varies significantly less than the
FFC-generated code under varying compilers and optimization levels. We attribute
this to the fact that our factorizer can exploit many of the redundancies utilised by con-
ventional C compilers, in particular those found using common sub-expression elim-
ination. By using a CSE pass targeted towards polynomials, we also aim to exploit
redundancies not found by conventional CSE passes.

FErari also attempts to optimize for operation count when generating tensor con-
traction implementations, but its model prevents it from exploiting certain redundan-
cies that would be detected by compiler common sub-expression elimination passes.
We provide a concrete example in Section 7.1.

For the pre-multiplied mass matrix forms we have evaluated, we use fewer flops than
at least one of the FFC-generated local assembly implementations. When the number
of pre-multiplying functions is greater than one, under the GNU C++ Compiler 4.7.1,
we can always reduce operation count over both the tensor contraction and quadrature
implementations.
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nf = 1 nf = 2 nf = 3 nf = 4

Q T E B/E Q T E B/E Q T E B/E Q T E B/E
p = 1, q = 1 145 28 28 1.00 175 92 73 1.26 243 267 122 1.99 607 792 215 2.82

p = 1, q = 2 609 77 91 0.85 1123 217 163 1.33 1607 682 280 2.44 2682 1831 503 3.64

p = 1, q = 3 4935 132 161 0.82 7882 511 419 1.22 8057 1624 927 1.75 11851 2662 1199 2.22

p = 1, q = 4 17082 455 484 0.94 24847 1178 1065 1.11 25099 2854 2148 1.33 34503 4356 2874 1.52

p = 2, q = 1 169 52 55 0.95 583 344 220 1.56 1532 2022 919 1.67 2671 7361 2426 1.10

p = 2, q = 2 1111 132 131 1.01 2632 1040 591 1.76 4255 3999 2354 1.70 - - - -
p = 2, q = 3 7857 340 352 0.97 11779 2213 1468 1.51 16667 6950 4658 1.49 - - - -
p = 2, q = 4 24811 915 971 0.94 34405 4289 3599 1.19 - - - - - - - -
p = 3, q = 1 242 110 92 1.20 1607 1020 503 2.03 - - - - - - - -
p = 3, q = 2 1607 242 196 1.23 4363 2893 1465 1.97 - - - - - - - -
p = 3, q = 3 8057 812 808 1.00 16814 6052 4596 1.32 - - - - - - - -
p = 3, q = 4 25099 1765 2014 0.88 45959 10364 9683 1.07 - - - - - - - -

(a) GNU C++ Compiler 4.7.1

nf = 1 nf = 2 nf = 3 nf = 4

Q T E B/E Q T E B/E Q T E B/E Q T E B/E
p = 1, q = 1 175 28 31 0.90 175 76 73 1.04 213 185 125 1.48 530 516 218 2.37

p = 1, q = 2 476 78 94 0.83 885 176 166 1.06 1271 453 287 1.58 2133 911 506 1.80

p = 1, q = 3 2361 123 163 0.75 3832 375 413 0.91 3991 762 935 0.81 5947 1288 1200 1.07

p = 1, q = 4 7867 408 483 0.84 11541 807 1046 0.77 11758 1268 2157 0.59 16276 1780 2892 0.62

p = 2, q = 1 211 51 58 0.88 524 278 224 1.24 1457 1365 929 1.47 2527 4809 2514 1.01

p = 2, q = 2 667 135 134 1.01 1682 723 604 1.20 2851 2404 2438 0.99 - - - -
p = 2, q = 3 3837 317 354 0.90 5947 1390 1493 0.93 8689 3495 4715 0.74 - - - -
p = 2, q = 4 11557 807 972 0.83 16295 2347 3632 0.65 - - - - - - - -
p = 3, q = 1 266 108 95 1.14 1432 781 525 1.49 - - - - - - - -
p = 3, q = 2 1223 244 213 1.15 3470 1922 1514 1.27 - - - - - - - -
p = 3, q = 3 3907 709 834 0.85 8631 3343 4656 0.72 - - - - - - - -
p = 3, q = 4 11636 1516 2021 0.75 21994 5883 9756 0.60 - - - - - - - -

(b) Intel C++ Compiler 12.0

Table I: The number of floating point operations required to perform local assembly of
pre-multiplied mass matrices of varying complexity over a two-dimensional triangular
cell. Forms use an order q Lagrangian basis multiplied with nf functions of order p,
also discretized using a Lagrangian basis. Code was compiled using the “-O3” level of
optimization. The columns Q, T and E denote the number of floating point operations
required by the quadrature, tensor contraction and EXCAFÉ implementations, respec-
tively. The column B/E denotes the improvement in operation count of the EXCAFÉ
generated implementation over the quadrature or tensor contraction implementation
with the lowest floating point operation count.

For the pre-multiplied Laplacian forms that we have evaluated, we always use fewer
operations than both FFC-generated local assembly implementations under the GNU
C++ Compiler 4.7.1 and the Intel C++ Compiler 12.0. We provide operation counts for
EXCAFÉ and optimized FFC-generated local assembly implementations under differ-
ent compilers (with optimization) in Table IV.

We observe the reduction in operation count of EXCAFÉ generated code against the
tensor and quadrature implementations tend to become greater for increasing values
of nf . We also observe that for fixed values of p and nf , the greatest reductions in
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nf = 1 nf = 2 nf = 3 nf = 4

Q T E B/E Q T E B/E Q T E B/E Q T E B/E
p = 1, q = 1 217 29 34 0.85 259 104 73 1.42 350 343 125 2.74 679 1034 222 3.06

p = 1, q = 2 820 87 97 0.90 1484 235 163 1.44 2087 867 297 2.92 3433 2175 513 4.24

p = 1, q = 3 4938 144 184 0.78 7894 573 438 1.31 8065 1728 934 1.85 11859 3070 1201 2.56

p = 1, q = 4 17097 481 575 0.84 24888 1253 1085 1.15 25204 2974 2148 1.38 34539 4718 2874 1.64

p = 2, q = 1 253 60 55 1.09 655 396 226 1.75 1682 2548 926 1.82 2887 11248 2437 1.18

p = 2, q = 2 1473 151 139 1.09 3383 1208 593 2.04 5338 4781 2383 2.01 - - - -
p = 2, q = 3 7863 393 387 1.02 11789 2463 1469 1.68 16703 7583 4716 1.61 - - - -
p = 2, q = 4 24892 973 1051 0.93 34509 4451 3599 1.24 - - - - - - - -
p = 3, q = 1 350 118 92 1.28 1757 1170 503 2.33 - - - - - - - -
p = 3, q = 2 2089 300 221 1.36 5444 3207 1465 2.19 - - - - - - - -
p = 3, q = 3 8067 876 862 1.02 16825 6353 4596 1.38 - - - - - - - -
p = 3, q = 4 25114 1810 2015 0.90 46089 11122 9752 1.14 - - - - - - - -

Table II: The number of floating point operations required to perform local assembly of
pre-multiplied mass matrices of varying complexity over a two-dimensional triangular
cell. Code was compiled with the GNU C++ Compiler 4.7.1 at optimization level “-O0”.
Forms use an order q Lagrangian basis multiplied with nf functions of order p, also
discretized using a Lagrangian basis. The columns Q, T and E denote the number of
floating point operations required by the quadrature, tensor contraction and EXCAFÉ
implementations, respectively. The column B/E denotes the improvement in opera-
tion count of the EXCAFÉ generated implementation over the quadrature or tensor
contraction implementation with the lowest floating point operation count.

operation count typically occur at q = 1 or q = 2 and decrease as q moves away from
these values.

Unfortunately, we cannot draw conclusions about the trends we see in reduction
across operation count for varying values of p, q and nf . Since we do not know how
close the factorizations found by our algorithm are to the global optimal (the algorithm
is greedy), we cannot be certain that the trends we see are not due to properties of the
expressions and the factorization algorithm.

We have also evaluated the performance of the generated code by timing the gener-
ated assembly loops. We show these results in Table III. We stress that these results
only reflect speed-ups on particular architecture, and do not include the costs of fetch-
ing cell geometry and field coefficient data from memory or sparse matrix insertion
costs.

Our results suggest that the reduction in operation count typically corresponds with
an increase in performance on the architecture on which we evaluated. Since the code
we generate is effectively an unrolled implementation (we do not generate any loops)
the increased code size might become a factor for more complex forms. However, we do
not appear to see this for our chosen benchmarks.

6.3. Scalability
Currently, we cannot scale our code generation to some of the more complex pre-
multiplied mass matrix examples. This is a direct consequence of the complexity of
expressions generated, which can be computationally expensive to symbolically inte-
grate, and both computationally intensive and memory consuming to factorize.

As discussed in Section 4.4, we use a scheme for symbolic integration that involves
selective expansion of the input expression before performing the integration itself.
For our benchmarks, we find that this strategy scales well memory-wise, causing time
to become the more limiting factor.
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nf = 1 nf = 2 nf = 3 nf = 4

Q T E B/E Q T E B/E Q T E B/E Q T E B/E
p = 1, q = 1 77 19 18 1.06 94 46 29 1.59 123 132 41 2.96 272 494 83 3.29

p = 1, q = 2 423 43 43 1.00 709 111 94 1.18 989 384 112 3.42 1578 1104 223 4.94

p = 1, q = 3 1758 96 100 0.95 2773 258 188 1.37 2893 832 446 1.87 4211 1714 643 2.67

p = 1, q = 4 6949 273 345 0.79 11419 831 615 1.35 10406 3278 1450 2.26 15377 7217 3282 2.20

p = 2, q = 1 99 26 23 1.13 240 169 95 1.77 564 1351 461 1.22 1290 13971 1675 0.77

p = 2, q = 2 1089 80 81 0.98 2014 781 370 2.11 2975 7058 1698 1.75 - - - -
p = 2, q = 3 4280 251 267 0.94 6219 1956 1251 1.56 8762 13569 9939 0.88 - - - -
p = 2, q = 4 12940 701 770 0.91 16444 7901 7306 1.08 - - - - - - - -
p = 3, q = 1 196 72 65 1.12 901 964 410 2.20 - - - - - - - -
p = 3, q = 2 1551 149 141 1.05 2622 2207 911 2.42 - - - - - - - -
p = 3, q = 3 3976 660 584 1.13 8662 11858 9881 0.88 - - - - - - - -
p = 3, q = 4 13199 1418 1790 0.79 23628 21189 21462 0.99 - - - - - - - -

(a) GNU C++ Compiler 4.7.1

nf = 1 nf = 2 nf = 3 nf = 4

Q T E B/E Q T E B/E Q T E B/E Q T E B/E
p = 1, q = 1 108 20 23 0.85 93 38 29 1.31 120 83 43 1.93 242 232 75 3.11

p = 1, q = 2 470 48 50 0.96 873 70 63 1.11 1183 172 107 1.60 1864 387 204 1.89

p = 1, q = 3 2161 95 110 0.86 3193 158 191 0.83 3310 315 389 0.81 4724 546 501 1.09

p = 1, q = 4 6289 235 334 0.70 9309 348 485 0.72 9441 551 1055 0.52 15096 923 2063 0.45

p = 2, q = 1 139 25 26 0.94 268 116 83 1.39 689 650 341 1.91 1411 9273 1168 1.21

p = 2, q = 2 586 68 73 0.93 1073 304 220 1.38 1656 1124 965 1.16 - - - -
p = 2, q = 3 4550 219 242 0.90 7130 883 941 0.94 9254 7420 8913 0.83 - - - -
p = 2, q = 4 14168 507 749 0.68 17928 1520 7046 0.22 - - - - - - - -
p = 3, q = 1 275 68 54 1.26 837 417 212 1.97 - - - - - - - -
p = 3, q = 2 1569 114 118 0.96 4566 1490 1032 1.44 - - - - - - - -
p = 3, q = 3 5118 462 541 0.85 10539 8199 9651 0.85 - - - - - - - -
p = 3, q = 4 14033 864 1533 0.56 26110 14052 19999 0.70 - - - - - - - -

(b) Intel C++ Compiler 12.0

Table III: The times (nanoseconds) required to execute local assembly of pre-multiplied
mass matrices of varying complexity over a two-dimensional triangular cell. Forms use
an order q Lagrangian basis multiplied with nf functions of order p, also discretized
using a Lagrangian basis. The columns Q, T and E denote the execution times of the
quadrature, tensor contraction and EXCAFÉ implementations, respectively. The col-
umn B/E denotes the improvement in execution time of the EXCAFÉ generated imple-
mentation over the quadrature or tensor contraction implementation with the lowest
execution time.

For complex forms, the kernel cube matrix we construct for factorization can require
significant memory to store and time to search. We note that the algorithm we use
for selecting expressions to factorize is optimal (although it is applied repeatedly in
a greedy manner). We believe it is possible to avoid storing this matrix explicitly, re-
ducing memory costs at the expense of time. However, a heuristic approach to locating
the most beneficial factorizations may significantly reduce the cost of searching. Since
we have been investigating the maximum reduction in operation count our techniques
can provide, we have yet to investigate such heuristics.

We note that for the two-dimensional pre-multiplied mass matrix example, the num-
ber of terms in expressions we apply factorization to is O(p2nf ). Hence, our expression
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nf = 1 nf = 2

Q T E B/E Q T E B/E
p = 1, q = 1 49 74 45 1.09 128 199 58 2.21

p = 1, q = 2 1897 289 246 1.17 1939 854 428 2.00

p = 1, q = 3 6974 953 798 1.19 12097 3145 1601 1.96

p = 1, q = 4 38061 2405 1842 1.31 59691 7787 3684 2.11

p = 2, q = 1 125 75 45 1.67 305 497 100 3.05

p = 2, q = 2 1943 560 446 1.26 4012 3087 1069 2.89

p = 2, q = 3 11999 1956 1428 1.37 25338 12311 4425 2.78

p = 2, q = 4 59689 5173 3563 1.45 86408 33112 11840 2.80

p = 3, q = 1 275 208 58 3.59 923 1777 195 4.73

p = 3, q = 2 2312 1049 658 1.59 8724 10186 2691 3.24

p = 3, q = 3 16162 3214 2124 1.51 37038 36775 11204 3.28

p = 3, q = 4 59929 9360 5767 1.62 - - - -

(a) GNU C++ Compiler 4.7.1

nf = 1 nf = 2

Q T E B/E Q T E B/E
p = 1, q = 1 54 76 48 1.12 136 199 61 2.23

p = 1, q = 2 1201 295 251 1.18 1249 653 443 1.47

p = 1, q = 3 4953 916 802 1.14 8482 2168 1611 1.35

p = 1, q = 4 26192 2106 1837 1.15 41141 5021 3679 1.36

p = 2, q = 1 178 85 48 1.77 317 481 103 3.08

p = 2, q = 2 1237 538 464 1.16 2617 2237 1093 2.05

p = 2, q = 3 8477 1795 1447 1.24 17984 7884 4448 1.77

p = 2, q = 4 41067 4457 3544 1.26 59626 19174 11903 1.61

p = 3, q = 1 349 208 61 3.41 937 1566 198 4.73

p = 3, q = 2 1460 967 664 1.46 5700 7079 2724 2.09

p = 3, q = 3 11415 2941 2164 1.36 26255 23605 11246 2.10

p = 3, q = 4 41158 7631 5782 1.32 - - - -

(b) Intel C++ Compiler 12.0

Table IV: The number of floating point operations required to perform local assembly of
pre-multiplied Laplacian matrices of varying complexity over a two-dimensional trian-
gular cell. Forms use an order q Lagrangian basis multiplied with nf functions of order
p, also discretized using a Lagrangian basis. Code was compiled using the “-O3” level of
optimization. The columns Q, T and E denote the number of floating point operations
required by the quadrature, tensor contraction and EXCAFÉ implementations, respec-
tively. The column B/E denotes the improvement in operation count of the EXCAFÉ
generated implementation over the quadrature or tensor contraction implementation
with the lowest floating point operation count.

sizes increase exponentially as the number of multiplying functions increases, and also
as a square of the rank of the pre-multiplying basis.

For affine mappings, q does not affect the complexity of the individual expressions we
factorize since the symbolic integration step transforms the cell basis function expres-
sions to constant values. However, as q increases, so does the size of the local assembly
matrix, so the factorizer must handle greater numbers of expressions.

We give an indication of the time and memory requirements required to compile
some of the pre-multiplied mass matrix forms in Table V.
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nf = 1 nf = 2 nf = 3 nf = 4

Seconds MB Seconds MB Seconds MB Seconds MB
T E T E T E T E T E T E T E T E

p = 1, q = 1 0 1 20 32 0 1 20 32 0 1 20 32 1 7 20 37

p = 1, q = 2 1 2 21 32 1 3 21 32 2 6 21 33 4 27 21 59

p = 1, q = 3 4 4 22 32 6 8 22 32 11 36 22 46 23 201 22 149

p = 1, q = 4 18 13 27 32 27 28 27 37 52 142 27 92 121 922 27 502

p = 2, q = 1 1 2 20 48 1 3 21 47 2 52 21 77 6 3725 22 598

p = 2, q = 2 2 5 20 47 4 15 21 47 15 563 21 155 - - - -
p = 2, q = 3 3 5 22 47 9 63 22 69 43 4286 23 1303 - - - -
p = 2, q = 4 23 22 27 47 67 636 27 214 - - - - - - - -
p = 3, q = 1 1 2 21 66 1 32 21 71 - - - - - - - -
p = 3, q = 2 1 5 21 66 5 601 21 156 - - - - - - - -
p = 3, q = 3 6 19 22 66 32 9188 22 1074 - - - - - - - -
p = 3, q = 4 33 61 27 67 167 8268 27 693 - - - - - - - -

Table V: The user time and maximum resident process sizes of FFC performing tensor
contraction code generation (T) and EXCAFÉ code generation (E). We show results for
the pre-multiplied mass matrix examples across a range of problem sizes. Information
was collected using the GNU “time” command.

In comparison to FFC (when generating optimized tensor contraction code), we often
have significantly greater time and memory requirements. We attribute this to the
difference in size and nature of the search spaces traversed in order to locate beneficial
optimizations.

The FErari topological optimizations employ a minimal spanning tree, for which
there exist efficient calculation techniques. We also note that the optimizations found
by this technique do not require the introduction of new sub-expressions. However,
we have found that certain numerical redundancies can only be exploited though sub-
expression introduction (Section 7.1).

Furthermore, the FErari topological optimization techniques are optimal with re-
spect to the reduction of operation count that can be expressed using those techniques.
The fact that our (and other [Kirby and Scott 2007]) techniques can improve upon
them also suggests that the topological optimizations operate within a more restric-
tive search space.

The techniques we have adapted from Hosangadi et al. [Hosangadi et al. 2006] re-
quire the solution of a covering problem which is NP-Hard [Brayton et al. 1987]. Our
technique of decomposing rational coefficients increases the size of this search space
further.

Any redundancy found via a complexity-reducing relation can also be exploited by
our CSE pass. In addition, we have the capacity to exploit many redundancies that
cannot be expressed through complexity reducing relations. However, the algorithmic
complexity of locating solutions that effectively exploit these redundancies is signifi-
cantly greater.

6.4. Validation and Numerical Accuracy
Given the extensive amount of expression manipulation performed by EXCAFÉ to pro-
duce the generated code, we considered it important to validate our results. We specif-
ically implemented our cell entity numbering and basis function construction so that
given the same input data, our generated code should produce the same output as the
FFC generated implementations.
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For each tested form, we generated pseudo-random basis function coefficients be-
tween −1 and 1 and provided them as input to the FFC generated quadrature imple-
mentation and EXCAFÉ generated code. We used pseudo-randomly generated locations
on a circle for the cell vertex locations. We verified that the Frobenius norm of the dif-
ferences between the two matrices remained less than 10−10.

During our validation, we observed significant differences between the local as-
sembly matrix entries computed by the FFC-generated tensor contraction implemen-
tations and both the EXCAFÉ-generated implementations and the FFC-generated
quadrature implementations. Disabling the tensor contraction topological optimiza-
tions caused these differences to become negligible. We have reported our observations
to the FEniCS developers2.

For the randomly generated basis function coefficients and cell geometry already
described, we also measured the extent of these differences across our class of pre-
multiplied mass matrix variational forms. The Frobenius norms of the differences be-
tween the FFC-generated quadrature implementation and the EXCAFÉ and optimized
tensor contraction implementations are shown in Table VI.

We observe that for more complex forms, the accuracy of the optimized tensor con-
traction implementations is significantly reduced. By editing the FErari source to dis-
able collinearity optimizations, we determined that the Hamming distance optimiza-
tions were the cause of the inaccuracies.

We rewrote the tabulate tensor function (which performs local assembly) of a FFC-
generated optimized tensor contraction to use GCC’s non-standard 128-bit floating
point type ( float128). Since we saw the same numerical errors, we determined that
the precision loss we saw was not occurring at run-time, but instead within the code
generator.

Within FErari’s topological optimization code, we found two approximations that
contributed to the numerical error:

(1) The Hamming distance optimization generates code that derives an inner product
a1 · g0 from a0 · g0 (where the entries of a0 and a1 are known at code-generation
time). It computes the value (a1 − a0) · g0 and can avoid generating multiplications
where entries of a1 − a0 are known to be zero.
Since FFC uses floating point, it approximates the check to see if two coefficients
are equal by checking to see if they differ by less than a chosen ε value.

(2) When unrolling code to compute an inner product a0 · g0 from scratch, FFC will ne-
glect to compute terms where the coefficient in a0 is less than some ε. This approx-
imates a check for coefficients in a0 that should be zero due to term cancellation
but are non-zero due to floating point precision issues.

We observe that as forms become more complex, the inner product coefficients tend
to become smaller. The numerical inaccuracies we see occur when the coefficients be-
come smaller than the chosen ε values, causing legitimate terms to not be evaluated
in unrolled inner products. Changing the ε values to zero causes the numerical inaccu-
racies to disappear, but has the effect of eliminating the reduction in operation count
from the topological optimizations. We note that for the FFC-generated tensor con-
traction implementations that have accuracy issues, we expect a sufficiently accurate
implementation to require more floating point operations than the results currently
presented in Table I.

One strategy to solve this would be to use an adaptive scheme that chooses ε values
based on the coefficient values in the reference tensor. However, this scheme is still
problematic in the sense that it is impossible to determine with complete certainty

2https://bugs.launchpad.net/ferari/+bug/822775
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nf = 1 nf = 2 nf = 3 nf = 4

EXCAFÉ Tensor EXCAFÉ Tensor EXCAFÉ Tensor EXCAFÉ Tensor
p = 1, q = 1 6.89e−17 9.30e−17 5.49e−17 4.95e−17 1.44e−17 1.34e−17 1.56e−17 4.43e−5

p = 1, q = 2 6.80e−17 1.56e−16 1.22e−16 7.14e−17 1.17e−17 1.27e−17 8.05e−18 9.77e−5

p = 1, q = 3 8.16e−17 8.94e−17 6.21e−17 6.77e−5 2.44e−17 7.69e−4 8.61e−17 5.02e−4

p = 1, q = 4 3.70e−16 1.83e−4 7.12e−16 4.11e−4 2.65e−16 5.42e−4 5.03e−16 4.36e−4

p = 2, q = 1 2.42e−16 2.34e−16 1.18e−16 3.42e−17 2.78e−17 1.30e−4 1.22e−16 3.06e−4

p = 2, q = 2 4.50e−16 1.47e−16 7.47e−17 7.04e−5 4.05e−16 6.47e−4 - -
p = 2, q = 3 1.85e−16 1.65e−4 7.76e−16 5.57e−4 1.88e−15 1.47e−3 - -
p = 2, q = 4 2.22e−15 2.90e−4 4.01e−15 1.42e−3 - - - -
p = 3, q = 1 6.54e−17 5.96e−17 8.13e−17 9.70e−5 - - - -
p = 3, q = 2 9.43e−17 1.26e−16 8.99e−16 5.23e−4 - - - -
p = 3, q = 3 2.27e−16 2.86e−4 5.77e−15 1.81e−3 - - - -
p = 3, q = 4 2.45e−15 5.31e−4 1.62e−14 2.54e−3 - - - -

Table VI: Frobenius norms of local assembly matrix differences between a refer-
ence FFC-generated quadrature implementation and EXCAFÉ and optimized FFC-
generated tensor contraction implementations. We have highlighted differences
greater than 10−10 which suggest that the optimized tensor contraction implemen-
tation has computed an incorrect result.

whether coefficients are meant to be equivalent or merely appear to be so within some
degree of error.

The symbolic approach used by EXCAFÉ has none of these issues. Since we use ratio-
nal values throughout our symbolic manipulation, we can always determine correctly
whether coefficients or terms are identical, an exact multiple of each other and whether
they cancel. Additionally, modifying FFC to use symbolic techniques to compute the
value of the reference tensor would also enable the FErari topological analyses to be
applied with no need for approximate numerical comparisons.

7. COMPARISON AGAINST GRAPH-BASED OPTIMIZATIONS
We primarily compare EXCAFÉ-generated code to the optimized tensor contraction
code generated by FFC using the FErari topological optimizations since we have ac-
cess to code generated by both. We compare against other graph-based optimizations
where appropriate.

We present extracts of FFC-generated optimized tensor contraction code and EX-
CAFÉ generated code for the same problem in Figures 6 and 7, respectively.

7.1. Sub-expression Introduction
The most apparent difference between EXCAFÉ-generated code and the optimized
tensor contraction code is that the EXCAFÉ-generated code introduces new sub-
expressions whilst the FErari optimized code does not. This directly affects the types
of numerical redundancies we are able to exploit.

The graph-based optimizations generate optimized code by deriving elements of the
local assembly tensor from one or more previously computed elements when it will save
operations. We consider a case when redundancies can only be exploited by introducing
a new sub-expression. Given two elements of the local assembly matrix m0 and m1:

m0 = rg0 + sg1 + tg2 + ug3 + vg4 + wg5 (27a)
m1 = rg0 + sg1 + tg2 + xg6 + yg7 + zg8 (27b)
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void tabulate_tensor(double* A, const double * const * w,
const ufc::cell& c) const

{
// Extract vertex coordinates
const double * const * x = c.coordinates;

// Compute Jacobian of affine map from reference cell
const double J_00 = x[1][0] - x[0][0];
const double J_01 = x[2][0] - x[0][0];
const double J_10 = x[1][1] - x[0][1];
const double J_11 = x[2][1] - x[0][1];

// Compute determinant of Jacobian
double detJ = J_00*J_11 - J_01*J_10;

// Set scale factor
const double det = std::abs(detJ);

// Compute geometry tensor
const double G0_0 = det*w[0][0]*(1.0);
const double G0_1 = det*w[0][1]*(1.0);
const double G0_2 = det*w[0][2]*(1.0);

// Compute element tensor
A[1] = 0.0166666666666667*G0_0 + 0.0166666666666667*G0_1 + 0.00833333333333332*G0_2;
A[5] = A[1] - 0.00833333333333334*G0_0 + 0.00833333333333334*G0_2;
A[0] = A[5] + 0.0416666666666666*G0_0;
A[7] = A[5];
A[8] = A[1] + 0.0416666666666666*G0_2;
A[3] = A[1];
A[4] = A[1] + 0.0333333333333333*G0_1 + 0.00833333333333334*G0_2;
A[6] = A[4] - 0.0416666666666666*G0_1;
A[2] = A[6];

}

Fig. 6: An FFC-generated tensor contraction local assembly implementation for a two-
dimensional pre-multiplied mass matrix with p = 1, q = 1 and nf = 1. Some comments
were removed and code reformatted for the purposes of clarity.

The variables r, s, t, u, v, w, x, y, z represent elements of the reference tensor and are
present in both m0 and m1 when the corresponding elements of the reference tensor
are identical.

As written above, m0 and m1 together take 10 additions and 12 multiplies to evalu-
ate. The presence of identical corresponding elements of the reference tensor make it
possible to apply the Hamming distance optimization:

m0 = rg0 + sg1 + tg2 + ug3 + vg4 + wg5 (28a)
m1 = m0 +−ug3 +−vg4 +−wg5 + xg6 + yg7 + zg8 (28b)

Now, m0 and m1 together take 11 additions and 13 multiplies to evaluate. Since both
m0 and m1 now incorporate the sum ug3 + vg4 +wg5 (m1 uses it negated), we would ex-
pect a reasonably sophisticated compiler reduce the operation count below that. How-
ever, this is a compiler-dependent optimization and not apparent to FErari. Since the
rewritten m0 and m1 require more operations to evaluate than the original, the FErari
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void tabulate_tensor(double* const A, const double* const* w,
const ufc::cell& c) const

{
const double * const * x = c.coordinates;

const double var_0 = -x[0][1];
const double var_1 = x[1][1] + var_0;
const double var_2 = -x[0][0];
const double var_3 = x[2][0] + var_2;
const double var_4 = x[1][0] + var_2;
const double var_5 = x[2][1] + var_0;
const double var_6 = -var_1*var_3 + var_4*var_5;
const double var_7 = std::abs(var_6);
const double var_8 = 0.0166666666666666664353702*var_7*w[0][0];
const double var_9 = 0.0166666666666666664353702*var_7*w[0][1];
const double var_10 = var_8 + var_9;
A[8] = 0.0500000000000000027755576*var_7*w[0][2] + var_10;
const double var_11 = 0.0166666666666666664353702*var_7*w[0][2];
const double var_12 = var_9 + var_11;
A[5] = 0.0083333333333333332176851*var_7*w[0][0] + var_12;
A[7] = A[5];
const double var_13 = var_8 + var_11;
A[2] = 0.0083333333333333332176851*var_7*w[0][1] + var_13;
A[1] = 0.0083333333333333332176851*var_7*w[0][2] + var_10;
A[6] = A[2];
A[3] = A[1];
A[0] = 0.0500000000000000027755576*var_7*w[0][0] + var_12;
A[4] = 0.0500000000000000027755576*var_7*w[0][1] + var_13;

}

Fig. 7: An EXCAFÉ generated local assembly implementation for a two-dimensional
pre-multiplied mass matrix with p = 1, q = 1 and nf = 1. We note that the KCM
is only intended to enable finding sums of at least two terms to be factored into new
expressions. Hosangadi et al. describe an additional algorithm for extracting products
common to individual cubes. This would enable products such as var[7]*w[0][1] to be
moved into new expressions. However, we have found that the common sub-expression
elimination in the GCC and ICC compilers can perform these optimizations effectively
and so have not yet chosen to implement this pass.

topological optimizations will choose not to exploit any relationship between m0 and
m1.

Since EXCAFÉ has the ability to introduce new sub-expressions, it can potentially
exploit the redundancy between m0 and m1 by introducing the new shared expression
e:

e = rg0 + sg1 + tg2 (29a)
m0 = e+ ug3 + vg4 + wg5 (29b)
m1 = e+ xg6 + yg7 + zg8 (29c)

Rewritten this way, m0 and m1 take 8 additions and 9 multiplies to evaluate, and
there are no further redundancies that a compiler could exploit.

Our example suggests that when optimizing for operation count, it is necessary to
take account of the introduction of common sub-expressions since many numerical re-
dundancies can only be exploited in this manner. Table I shows that the FLOP count of
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EXCAFÉ-generated code remains more consistent across compiler than FFC-generated
tensor contraction code, suggesting that we detect exploitable redundancies more ef-
fectively.

7.2. Exploitable Redundancies
The Hosangadi et al. CSE pass is capable of moving a sum common to multiple poly-
nomial expressions into a new sub-expression. Hence, we can detect equivalent re-
dundancies to the Hamming distance optimizations used by FErari. As described in
Section 7.1, we may be able to reduce operation count further than FFC for the same
redundancies.

The Hosangadi et al. CSE algorithm decomposes each sum of products into smaller
sums that when multiplied by a specific product, form a subset of terms from the origi-
nal sum. As described in Section 5.2, we represent our numeric coefficients as rational
numbers, and present them to the CSE algorithm as products of primes raised to pos-
itive and negative exponents.

As a consequence, our factorization algorithm can identify collinear expressions by
removing common factors from one or both expressions. Since we can do this for sub-
sets of terms in a sum, we should also be able to detect the same redundancies found
by the partial collinearity optimization described by Wolf and Heath [Wolf and Heath
2009].

Wolf and Heath describe how coplanarity between vectors in the reference tensor
enable the calculation of an element of the local assembly matrix from a linear combi-
nation of two other elements. Kirby and Scott generalise this optimization using linear
dependence between vectors in the reference tensor to determine when an element of
the local assembly matrix can be computed from a weighted sum of other elements of
the local assembly matrix.

The representation EXCAFÉ uses for common sub-expression elimination cannot
represent the evaluation of a product of variables as a sum. Therefore, it cannot exploit
coplanarity and linear dependence redundancies in the general case. However, if the
set of linearly dependent vectors do not have non-zero elements at identical locations,
EXCAFÉ can still exploit these relationships as individual products are not constructed
using sums. For example, given the linearly dependent expressions:

m0 = 7g0 + 5g2 + 3g3 (30a)
m1 = 6g1 + 12g4 + 4g5 (30b)
m2 = 7g0 + 3g1 + 5g2 + 3g3 + 6g4 + 2g5 (30c)

EXCAFÉ will rewrite them as follows:

e0 = 7g0 + 5g2 + 3g3 (31a)
e1 = 3g1 + 6g4 + 2g5 (31b)
m0 = e0 (31c)
m1 = 2e1 (31d)
m2 = e0 + e1 (31e)

The Hosangadi et al. CSE algorithm chooses to create new sub-expressions based
on the number of operations that would be saved compared to a naı̈ve evaluation of
the factorized terms. This process is inherently iterative, and repeats until no more
operation count reducing factorizations can be found. Hence, the algorithm is greedy
(although we choose the best factorization at each step).
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We do not yet have a way to optimize for operation count in a more global sense (such
as the minimal spanning tree used by Kirby et al. [Kirby et al. 2006]). Our CSE pass
is capable of generating a superset of the factorizations exploited by FFC-generated
optimized tensor contraction implementations. We believe that this greedy nature of
out algorithm accounts for the instances where we generate code that uses more oper-
ations that the FFC-generated implementations.

8. CONCLUSION
We have presented the algorithms underpinning a library we implemented, EXCAFÉ,
that generates finite element local assembly implementations from specifications of
bilinear forms. Symbolic techniques are used for manipulating basis functions and
performing symbolic integration.

We have taken existing work by Hosangadi et al. and used it to search for factor-
izations in local assembly matrix expressions that can take advantage of distributiv-
ity, which has typically not been considered in previous work. We have extended the
algorithm to make it aware of the multiplicative relationships between numeric co-
efficients, enabling it to exploit a new class of common sub-expressions for reducing
operation count.

We have shown that these techniques can be used to produce local assembly im-
plementations that reduce operation count compared to both quadrature and tensor
contraction implementations, in some cases, by over a factor of 4 in compiled code.
We also show performance results that indicate that (neglecting other run-time costs)
that these reductions in operation count correspond to observable speed-ups against
quadrature and optimized tensor implementations.

By using symbolic techniques, our code generator is capable of representing numer-
ical coefficients as rational values throughout its manipulation of expressions. This
enables us to avoid committing to floating point values (and possibly losing accuracy)
until the step of code generation.

Scalability of these techniques is still an issue. However, the main motivation of
this work is to investigate their effectiveness in comparison to other code generation
techniques. We believe that with additional work, scalability of both the symbolic in-
tegration and factorization algorithms can be improved further.

The symbolic techniques we employ enable us to determine equivalence between
and relationships between terms and coefficients in the expressions we optimize with
complete accuracy. We have seen that using floating point representation of coefficients
can lead to significant numerical issues in form compilers that attempt to infer these
relationships. We conclude that the symbolic approach offers significant benefits for
any analysis that requires establishing relationships between numeric values.

The code we generate is usually competitive in terms of operation count against
the better performing FFC-generated local assembly implementation and always uses
fewer operations than the worse-performing implementation. We note that for forms
where the optimized tensor contraction implementation has lost accuracy, our reduc-
tion in operation count is likely an underestimation since the FFC-generated code has
neglected to perform certain numerical operations. As a consequence, we expect that
our results will improve against a version of FFC that fixes the topological optimiza-
tion issues.

The tensor contraction implementations we have compared against used complexity-
reducing relations to reduce operation count. Related work has used linear depen-
dence relationships in the reference tensor to reduce the operation count of tensor con-
traction [Kirby and Scott 2007]. Other work has generalised the techniques present
in FFC further to exploit relationships such as partial collinearity [Wolf and Heath
2009]. These techniques are able to improve upon the results produced by complexity-
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reducing relations; comparisons are an interesting direction for future research and
we discuss these techniques further in Section 9. We note that both the linear depen-
dence techniques and extensions to complexity-reducing relations do not require the
introduction of new sub-expressions, which we identified in Section 7.1 as necessary
for exploiting some numerical relationships.

9. FUTURE WORK
Our most interesting results occur at the limits at which we can currently scale our
code generation techniques. Further work to extend this frontier will help characterise
the performance trends of our techniques at the extremes of our parameter space.

Similarly, we would like to be able to compare against FErari topologically opti-
mized code where the reference tensor has been computed symbolically. Currently, the
FErari optimized code produces inaccurate values for more complex forms, making
performance comparisons less illustrative. Computing the reference tensor symboli-
cally would enable us to compare operation counts for more complex forms with the
knowledge that both codes are evaluating identical expressions.

Related work has explored generalizing complexity-reducing relationships beyond
what is currently used by FErari as well as exploiting numerical relationships based
on linear dependence [Kirby and Scott 2007; Wolf and Heath 2009]. These techniques
have been shown to reduce the operation count over complexity-reducing relations in
various instances. As with our techniques, scalability becomes an issue and heuristics
are necessary for acceptable performance.

We do not yet have performance results for these techniques and are therefore in-
terested in comparing the limits to which operation count can be reduced by each, and
which parameters affect whether a given problem can be solved tractably. We have
attempted to expose a large search space for possible optimizations though our CSE
approach. A comparison against other techniques should help us to gain further in-
sight into what optimizations we can and cannot expose.

We are also interested in extending our techniques to exploit linear dependence. To
fully exploit linear dependence, we would need to be able to detect partial linear de-
pendence, a generalisation of the partial collinearity optimization. However, it seems
unlikely that it is possible to do this efficiently, even for small problems. Attempts to
combine complexity-reducing relations with limited forms of linear dependence have
encountered significant scalability issues [Kirby and Scott 2007] and our proposed
search space is much larger than this.

We have restricted our code generation to affine mappings since these are most com-
mon and our primary basis for comparison (FFC) does not support non-affine mappings
at present. Our primary obstacle in handing non-affine mappings is the symbolic in-
tegration step that we perform on the expressions of the local assembly matrix. We
currently use our own implementation of symbolic integration optimized for (and only
applicable to) polynomials. To scale effectively, we suspect interfacing with a computer
algebra system such as MAXIMA (an open-source fork of MACSYMA [Fateman 1989])
would be necessary. Our factorizer is only presented with the polynomial parts of ex-
pressions so the non-affine mappings would not cause an issue for this step.

We have yet to systematically determine which redundancies our code generation
system makes use of when it reduces operation count over other schemes. To do this
would require automated analysis of our generated code since our best results occur on
more complex problems. This could lead to a more structured, targeted optimization
pass that operates more efficiently than our presented techniques.

So far, we have chosen to optimize only for operation count. However, each new sub-
expression we introduce requires additional memory to store. An alternative code gen-
eration scheme might attempt to restrict the number of temporary values required
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while minimizing the number of additional operations. This would enable more effec-
tive utilization of hardware on architectures with limited high-bandwidth memory.
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