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Abstract. Constructive methods for parallel programming are characterised by the
composition of optimised, parallel software components. This paper concerns data
placement, a key cross-component optimisation for regulardata-parallel programs.
This article is a survey of data placement optimisation techniques. The main contribu-
tions are (1) a uniform terminology, which identifies analyses of the problem which
have proven fruitful, (2) a taxonomy of versions of the problem, distinguished by the
efficiency with which they can be solved, (3) a discussion of open problems, challenges
and opportunities for further progress in the area, and (4) adiscussion of the signifi-
cance of these results for constructive methods in parallelprogramming. We observe,
in particular, the role of skeletons in restricting programgraph structure to ensure that
optimisation is tractable.

1 Introduction

This is a review paper on parallel data placement optimisation for data-parallel programs.
The key challenge in constructing efficient parallel programs for distributed memory mul-
tiprocessors has shifted from automatically generating parallel components to optimising
the composition of existing components. In the domain of purely data-parallel programs,
this problem is somewhat more tractable than in more generaldomains: the performance of
a data-parallel program constructed from existing parallel components depends largely on
the choice of data placements.

1.1 Contributions of this Paper

– We propose a taxonomy of different instances of the paralleldata placement problem.
Our classification clarifies the complexity of different instances of the problem.

– We review and summarise existing work in this problem domain, illustrating how the
complexity and accuracy of the proposed solutions depends on the method adopted.

– We outline outstanding issues within the domain.
– We discuss how the current state of the art in parallel data placement optimisation can

best be synthesised with existing constructive methods forparallel programming, and
point out areas for future research.
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Fig. 1. Three classes of program graph. The DAG is distinguished by the presence of a shared node
and by the fact that there may be more than one sink. The right hand side of the diagram (d) shows
the terms we will use to refer to different nodes in program graphs in this discussion.

1.2 Terminology

Mace [22] defines the parallel data placement problem in one very general form: the ob-
jective is to minimise the overall execution time of a program graph in which the nodes
represent parallel operations and data is communicated along the edges. Operations may
accept inputs and generate output in a number of different parallel data placements. Each
operation is assigned a cost, which is a function of the placement of its input and output
data. Data may be redistributed in between operations, and there is a cost function associ-
ated with redistributions.

– Data-Parallel Operations
Data-parallel operations are elementwise array operations, such as provided by For-
tran 90. In the context of our own work [7,8], array operations are calls to our library of
parallel numerical routines. We assume that all operationsproduce exactlyoneresult.

– Parallel Data Placements
We define parallel data placement in general as a relation that specifies which subar-
ray(s) of an array are stored on the individual nodes of a distributed memory multipro-
cessor.
It is common practice to represent parallel data placement as a mapping of multiple
stages:alignment, distribution, and possiblyreplication. Alignment maps array index
vectors onto an auxiliary Cartesian grid, known as a template or virtual processor grid.
Distribution, also known as folding, maps virtual processors onto physical ones. Repli-
cation is sometimes handled implicitly as part of the alignment stage, for example in
HPF [18], or, according to our own proposal [8], as an explicit third stage preceding
alignment.
Mace [22] calls parallel data placementsshapes. We will therefore useS to denote the
set of all possible placements ands to denote the size ofS (if the set is countable).

– Implementations of Data-Parallel Operations
Data-parallel operations may have a number of differentimplementations, which of-
ten have different associated computation costs. We give two alternative, more precise
definitions for implementations in Section 2.3.
Mace [22] uses the termmethods. We will useM to refer to the set of all possible
methods andm to denote the size ofM .

– Program Graphs
In the context of this article, we will use the term program graph for the data flow graph
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Fig. 2. Illustration of the problem domain of parallel data placement in data-parallel programs.

of a parallel program, where the nodes represent data-parallel operations, and data flow
is represented by edges. The direction of all edges will be inthe direction of data flow.1

We do not impose any restrictions on the arity of nodes or on the structure of the graph,
except that we do not consider control flow edges at this stage, hence the graphs are not
cyclic. Note that since each operation has exactly one result, we can uniquely identify
nodes by the result of the operation they represent.

– Array Redistributions
In our program graphs, the placement of arrays need not matchat the source and sink of
edges. If that is the case, the placement of the array needs tobe changed at runtime. We
will term this a redistribution.

– Cost Functions
In any optimisation, candidate solutions are evaluated according to some cost function.
In our problem domain, the purpose of the cost function is to assess the quality of a
proposed set of parallel data placements for a particular program graph. The cost will
in general depend on both the cost of executing the individual nodes and on the cost
of any redistributions. In Section 2.1, we explain why the cost functions for modelling
redistribution cost are generally required to bemetrics.

1.3 Scope of this Review

In this paper, we review techniques for minimising the overall execution time of a program
graph as defined above. In purely data-parallel programs, the nodes of the graph are exe-
cutedsequentiallyto each other, i.e. we do not consider task parallelism between nodes.
This means that parallel data placement becomes the key determinant of program perfor-
mance. This observation is confirmed for example by Chatterjeeet al. [13]. The problem
we have to solve is therefore to select a set of parallel data placements for all arrays in a pro-
gram graph, both at the sink and at the source of each edge, such that the overall execution
time of the program graph is minimised.

1 This corresponds to the direction in which data dependence arrows are drawn in a dependence
graph. The edges in Mace’s program graphs [22] have the opposite orientation.



4

1.4 Overview of the Parallel Data Placement Problem

In this article, we will argue that the complexity of the parallel data placement problem is
determined by three key parameters. These are illustrated in Figure 2 and are as follows:

1. The structure of the program graph
We distinguish between three different classes of program graph: chains, trees and
DAGs. These are illustrated in Figure 1. DAGs are substantially harder to optimise than
trees. We explain why that is so in Section 2.4.

2. The cost function used as the objective when optimising
The properties of the cost function used in optimisation have a strong effect on the
complexity of the problem to be solved. Some types of parallel data placement may be
modelled adequately with a very simple cost function (such as the discrete metric, which
assigns every redistribution either a cost of 1 or 0). For other aspects of data placement,
this would be insufficient. The precise meaning of the different cost functions shown in
Figure 1 will be addressed in subsequent sections of the paper.

3. Whether or not node costs have to be taken into account
In some situations, the computation cost at the nodes in a graph may be unaffected by
data placements so that we are only having to minimise the cost of redistributions. In
other cases the computation cost is affected by data placement. We show examples for
this case in Section 5.

In the following sections, we will always indicate which part of the problem domain that
we have mapped out in Figure 2 we are currently addressing.

1.5 Structure of this Paper

In the next section (2), we review solutions to the parallel data placement problem for the
important case where the cost function is formulated as a lookup table. This variant of
the problem is the easiest to understand and exposes well thecomplexity of the problem.
However, the solution here actually also has the worst time complexity. Following that, in
Section 3, we review solutions for optimising only the alignment part of parallel data place-
ment. Proposed algorithms in that domain rely on using cost functions that are expressed in
a more compact form. Next, in Section 4, we consider optimisation of data replication. The
issue with replication is that it has no natural representation as a function; we discuss the
implications of that and possible solutions. Section 5 shows an example where the computa-
tion cost of nodes is affected by data placement: distribution. Finally, Section 6 reviews the
relationship of the problem domain of this paper to other research activities, and Section 7
concludes.

2 Solutions for Explicitly Enumerated Placements

We begin by reviewing solutions to the parallel data placement problem for the case where
the cost functions, both for node costs and for redistributions, are expressed in the form of
a lookup table. Specifically, this means that

– There is a single setS = fS1; : : : ;Ssg of s parallel data placements, and all arrays in the
program under consideration can adopt alls placements. The algorithm easily gener-
alises to the case where different arrays can adopt placements from different sets. The
crucial point is that we have a finite set of explicitly enumerated placements, and that
we do not make use of any specific properties of this set when optimising.
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– The cost function for redistributions is represented as a pre-computed table of sizes2:

CRed[Sfrom℄[Sto℄; Sfrom;Sto 2 S : (1)

2.1 Dynamic Programming Solution for Chains
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Section 2.1

We begin with the simplest class of program graph, chains. The
algorithm we propose below is based on the algorithm proposed
by Mace [22,23] for trees (see Sections 2.2 and 2.3). Observethat
for chains, each operationop has exactly one input and one result.
Leaf nodes represent evaluated data or input operations; ineither
case their data placement isfixed. We will denote the required input
data placement ofop by op:Sin, the result placement byop:Sout

and the cost of computingop with these placements byop:CNode.
Finally, we will denote the operation to be performed at somenodex by x:op and the
predecessor of nodex by x:pred. In addition to assuming that the program graph is a chain,
we will initially also assume that each operation has only one implementation, which for
now we take to mean that there isonespecific pair(Sin;Sout) of input and result placements.
We address the issue of multiple implementations in Section2.3.

Algorithm 1 (Solution for Chains, One Implementation). We can now give the follow-
ing recursive formulation for the minimum costCmin(x;Si) of evaluating a chain of data-
parallel operations with sinkx into placementSi .

Ctmp(x;Si) = x:op:CNode+CRed[x:op:Sout℄[Si℄
Cmin(x;Si) =Ctmp(x;Si) if x is the leaf (2)=Ctmp(x;Si)+Cmin(x:pred;x:op:Sin) otherwise (3)

This recursive algorithm to findCmin(x;Si) takesΘ(n) steps2 for a chain ofn nodes. The
overall minimum cost for calculating nodex is now theoretically

Cmin(x) = min
Si2S(Cmin(x;Si)) ; (4)

which could be calculated inΘ(n+ s) steps. However, with one implementation, we will
for all practical cases (ifCRed is a metric — explained shortly), have

Cmin(x) =Cmin(x;x:op:Sout) , (5)

which means that the problem may be solved simply inΘ(n) steps. The only remaining task
is to read off the actual shapesSi which resulted in the minimum cost.

Metric Properties of Redistribution Cost. Chatterjeeet al. [12–14,17] state that all their
cost functions for redistributions, which they calldistance functions, ought to be metrics. A
distance functiond : S �S �! R is a metric if for allSi;Sj ;Sk 2 S ,

d(Si;Sj)> 0 and d(Si;Sj) = 0, Si = Sj Nonnegativity (6)

d(Si;Sj) = d(Sj ;Si) Symmetry (7)

d(Si;Sj)6 d(Si;Sk)+d(Sk;Sj) Triangle inequality . (8)

2 We will use the complexity notations proposed by Knuth [20].
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Nonnegativity.There is a strong case that in real-world computer systems, costs are non-
negative. If that is the case, we can use Equation (5), ratherthan (4) in Algorithm 1.

Triangle inequality. Real systems do not necessarily satisfy the triangle inequality. Two-
phase random routing [28], for example, makes use of the factthat performing two com-
munications via a random intermediary, rather than sendingone direct message, can avoid
contention in networks. However, if we do allow cost functions which do not satisfy this
property, it is very difficult to bound the search space for the above algorithm: We have to
check (recursively!) whether any redistribution can be replaced with two cheaper redistri-
butions via an intermediate placement.

Symmetry. It appears that the parallel data placement algorithms proposed by Chatter-
jeeet al.do not actually rely on the symmetry property of the distancefunction. There are
some interesting models of redistribution cost that are notsymmetric. Replication is one
such example, which we discuss further in Section 4. Anotherexample are some instances
of the BSP cost model.

Weighted vs. Unweighted Optimisation Problem. Strictly speaking, the entries in the
redistribution cost table ought to be functions that take array size as an argument and return
a cost. Chatterjeeet al. [12, 14] approximate this by defining redistribution cost asthe cost
of moving one unit data and then assigning to all edgesE in the program graph a weight
wE which is the number of data units communicated along that edge. The cost contribution
of the edge is set towE �CRed[Sfrom℄[Sto℄. The resulting optimisation problem is called the
weightedparallel data placement problem and is in some instances harder to solve than the
unweighted problem [14].

In this paper, we concentrate on the unweighted problem, i.e. we will assume that
we are working with one fixed array size, which allows the entries in tableCRed to be
scalars. This corresponds to the approach of Mace [22] and Gilbert and Schreiber [17].
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Section 2.2
2.2 Dynamic Programming Solution for Trees

We now consider the case where the program graph is a tree rather
than a chain. For ana-ary tree, we will denote thei th predecessor
of a nodex by x:pred[i ℄, and the placement in which the operator
at nodex requires itsi th operand byx:op:Sin[i ℄.
Algorithm 2 (Solution for Trees, One Implementation). The minimum cost of evaluat-
ing ana-ary tree with sinkx into placementSi is

Ctmp(x;Si) = x:op:CNode+CRed[x:op:Sout℄[Si℄
Cmin(x;Si) =Ctmp(x;Si) if x is a leaf (9)=Ctmp(x;Si)+ ∑

06 j6a

Cmin(x:pred[ j ℄;x:op:Sin[ j ℄) otherwise (10)

If CRed is a metric, the overall minimum cost is given by Equation (5), as in the case for
chains. The time complexity of this algorithm isΘ(n).
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Chains and Trees. It is interesting to note that the time complexity for solving the optimal
parallel data placement problem is independent of the arityof the program tree, with chains
simply being a 1-ary tree. The reason for this is that the choice of optimal placements for
all input-branches to a node is independent, as long as the program graph is a tree.

2.3 Solution with Different Implementations for Nodes
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Section 2.3

We now move on to the case where operations can havemdifferent
implementations. We consider two definitions of implementations.

First Definition (Mace). Mace [22] characterises an implementa-
tion3 of a data-parallel operation as a distinct tuple of data place-
ments for the operands and the result of the operation. For exam-
ple, let operationop1 take 2 operands. One implementation ofop1
might be characterised by the fact that its operands need to be in
placementsS1 and S2 respectively, and that the result will have
placementS3. We write this as a tuple(S1;S2;S3). If op1 can also be performed leaving
its result in placementS4 instead ofS1, op1 is said to have two implementations. We will
denote the required input data placement of implementationMk of op by op:Mk:Sin, the
result placement byop:Mk:Sout and the cost of computingop with these placements by
op:Mk:CNode. If there are any implementations which have thesameinput and output place-
ments, but different costs, we can eliminate the more expensive methods in a preprocessing
stage.

Algorithm 3 (Solution for Trees, Implementations as Tuples). We have:

Ctmp(x;Mk;Si) = x:op:Mk:CNode+CRed[x:op:Mk:Sout℄[Si℄
Cmin(x;Si) = min

Mk2M �Ctmp(x;Mk;Si)� (11)

if x is a leaf= min
Mk2M  Ctmp(x;Mk;Si)+ ∑

06 j6a

Cmin(x:pred[ j ℄;x:op:Mk:Sin[ j ℄)! (12)

otherwise

The complexity of calculatingCmin(x;Si) now isΘ(mn). Furthermore, the presence of mul-
tiple methods with different result placements means that we can now not immediately see
which placement for the sink will result in overall minimum cost. We have:

Cmin(x) = min
Si2S (Cmin(x;Si)) . (13)

The complexity of Algorithm 3 isO(msn). We could have up tos placements with distinct
costs for the sinkx since candidate solutions that result in the same placementfor x are
reduced to the cheapest solution for that placement by Equations (12) and (11). If there
is someSi 2 S such that noMk 2M exists withSi = x:op:Mk:Sout, then that placement
Si could be eliminated from the search. Therefore, the complexity is O(msn) rather than
Θ(msn).

3 Mace uses the termmethod.
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Discussion. Note that given the above definition of implementations and the assumption
that implementations with identical input and output placements but higher costs are elimi-
nated,m has to be a number between 1 andsa+1 wherea is the arity of the operators in the
tree. Therefore, if we assume that the maximum possible number of implementations does
indeed exist, the complexity of the algorithm isO(sa+2n), i.e.O(s3n) for chains.

The algorithm we have described in this section is similar tothe original proposal
for a dynamic programming solution to the parallel data placement problem for trees by
Mace [22, 23]. Versions of the algorithm for chains have beenproposed by To [27, page
223] and Skillicornet al. [26].

The first definition treats as separate implementationsall possible combinations of in-
put and output placements. Thus, if we might calculate a vector addition with either both
operands and the result blocked over the rows of a processor mesh, or blocked over the
columns, these would be counted as two distinct implementations. The proposal we de-
scribe in the second definition aims to capture the fact that there exists a common pattern
between such implementations.

Second definition (Implementations as Placement Relations). Assume that the data
placement we are optimising takes the form of an invertible mapping. This includes, for
example,alignment, which may be expressed in the form of an invertible affine mapping
f (i) = A:i+ t from array index vectorsi onto virtual processor indices [7]. Given invertibil-
ity, we may always, for any pair of placement functionsf andg, calculate arelationship
function r= gÆ f�1 with the property thatg= r Æ f .

We now define an implementationMk of an a-ary data-parallel operation as a tuple
Mk = (r1; : : :ra) of relationship functions which describe the relationshipbetween the place-
ments ofresult andoperands, as follows:op:Sin[i ℄ = r i Æ op:Sout. We will denote the rela-
tionship function for operandj under implementationMk by Mk:r j .

Example.A very important class of data-parallel operations are those that can be expressed
as binary array operations in Fortran 90. A compiler can generate code for these in any
placement, as long as both operands and the result are aligned. Under the definition we
have outlined above, we may represent this by saying that these operations haveone im-
plementation, with r1; r2 = id, whereid is the identity affine function which maps every
placement to itself.

Algorithm 4 (Solution for Trees, Implementations as Placement Relations).Notice that
under this definition, the result of each operation may takeanyplacement from withinS ,
it is the relationship to the operands that is defined by the implementation. The placement
of leaf nodes isfixed. The minimum costCmin(x;Si) of evaluating nodex into placementSi

may be calculated as

Ctmp(x;Mk;Sj ;Si) = x:op:Mk:CNode+CRed[Sj ℄[Si℄
Cmin(x;Si) =Ctmp(x;M1;x:op:M1:Sout;Si) (14)

if x is a leaf= min
Sj2S

Mk2M  Ctmp(x;Mk;Sj ;Si)+ ∑
06l6a

Cmin(x:pred[k℄;x:op:Mk:r l ÆSj)!
(15)

otherwise .
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Fig. 3. Example of DAG transformation, collapsing nodesx andβ into one.

The complexity of calculatingCmin(x;Si) is Θ(msn). The overall minimum costCmin(x)
for evaluating nodex may again be calculated with Equation (13), resulting in an overall
complexity ofΘ(ms2n).
Discussion. This algorithm is based on the assumption that implementations which are
defined as above have constant parallel cost for node operations, independent of the actual
placements chosen for the result and operands.4 We argue, therefore, that the above defini-
tion of implementations captures the interestingly different cases of ‘implementations’ as
viewed under the first definition.

The algorithm we have outlined in this section provides a solution for the large class
of Fortran 90 array operations inΘ(s2n) time. This corresponds exactly to the algorithm
outlined by Chatterjeeet al. in [13]. The definition for implementations used in this chapter
has been previously stated in [7,8].

2.4 Solution for DAGs
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Section 2.4

Mace [22] shows the parallel data placement problem to be NP-
complete when the program graph is a general DAG. An intuition
as to why the problem is so much harder for DAGs than for trees
may be had from the following observations:

– The contribution towards the costs of a node from that come
from calculating the operands in the required placement (Equa-
tion 10) are no longer independent.

– A DAG may have multiple sinks. The minimum cost of com-
puting the DAG neednotplace the sinks in minimum cost positions, as we have assumed
for trees in Equation (13).

However, Mace also demonstrates that a polynomial algorithm may be found for a subclass
of DAGs known ascollapsible DAGs, and Mace argues [22, page 10] that a very significant
proportion of real program DAGs fall into this subclass.

4 The reasoning behind this assumption is that any differences in parallel completion time for the
node operations are most likely due to intrinsic communication which is necessary as part of
the operation; purely sequential computation time should be unaffected by data placement. The
only situation where we might expect to observe a change in the placement relation of result and
operands is if there is a change in intrinsic communication,which in turn would give a different
implementation and therefore a different cost.
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This result has parallels in the field of automatic code generation. Efficient algorithms
are known for the case where the program graph is a tree [1], but the problem is known
to be NP-complete for general DAGs [2]. Collapsible graphs were introduced by Prabhala
and Sethi [24], who showed that the optimal code generation problem may be solved in
polynomial time for this subclass of DAGs.

Mace presents an algorithm which solves the parallel data placement problem for col-
lapsible DAGs. The algorithm relies on a series of graph reductions, each of which collapses
two nodes into one and deletes all edges connecting those nodes. All nodes in a DAG are
required to have in-degreeor out-degree of 1 or less. DAGs which do not meet this property
can be transformed into ones that do; however, that may result in anO(n) increase in the
number of nodes the algorithm has to run over.

We illustrate one of the transformations which may be applied to a DAG in Figure 3.
The idea behind each transformation is to isolate the contribution to the overall cost of the
DAG of those edges that connect the two nodes being collapsed, and to minimise their cost.
In the example in Figure 3, the cost of nodex is a function Cost(x:op;S1;S2;S3) of the
operator at nodex and the data placements assigned to the edges which touch it.Similarly
for nodeβ: Cost(β:op;S3). The cost for the combined node(β;x) is

Cost((β;x):op;S1;S2) = min
Sj2S

�
Cost(x:op;S1;S2;Sj)+Cost(β:op;Sj)� (16)

The algorithm has complexityO(sd+1(n�1)) whered is the out-degree of the most highly-
shared node.

2.5 Conclusion for Enumerated Cost Functions

The advantage of the algorithms for explicitly enumerated cost functions is that efficient
algorithms are known for solving the parallel data placement problem optimally for a large
number of program graphs. The major drawback of enumerated cost functions and enumer-
ated placements is that for many real applications, the number of feasible placements is
infinite (shift-offsets in alignments, skewings, block-cyclic distributions).

3 Compact Dynamic Programming Solution for Alignment
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Section 3

The solution to the problem of having a large, or infinite, number
of possible placements is to represent the cost function in amore
compact way than a lookup table, and then make use of thestruc-
ture of the cost function in optimisation. Chatterjeeet al. [13, 14]
describe a series ofcompact dynamic programmingalgorithms
which solve the parallel data placement problem for axis, stride
and offset alignment for trees in a way that makes use of the struc-
ture of the cost function.

Discrete metric for axis and stride alignment. Axis re-alignments are a generalisation
of transpose: permutations of the mapping of array axes ontoprocessor axes. The discrete
metric assigns a cost of 1 to every change in either stride or axis alignment. These re-
distributions are general data exchanges, which might be implemented through all-to-all
communication. The assertion is that they have a high, fixed cost.
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In terms of optimisation, the discrete metric intuitively has the property that each node
can be either placed in the same placement as its parents, or,if that is not possible, all
alternatives have the same cost penalty.

The algorithm which Chatterjeeet al. propose that uses the discrete metric for axis
and stride alignment solves the same problem for which we described aΘ(s2n) solution in
Section 2.3 in onlyO(nh) time, whereh is the height of the tree.

Note, however, that Chatterjeeet al. do not allow skewings in their alignments. These
are cheaper communications than, say, a transpose, which means that the discrete metric is
inadequate in comparing their cost to that of a transpose.

Grid metric for offset alignment. For offset alignment, the discrete metric is clearly un-
satisfactory, since it would assign the same cost to any offset / shift of data, independent of
the size of the offset.

Chatterjeeet al. propose to use agrid metric for offset alignment: the cost of a re-
distribution is modelled as the “distance” between the placements. The resulting compact
dynamic programming algorithm has complexityO(kn), wherek is the number of dimen-
sions of the virtual processor grid. Note that since the number of possible offset alignments
is generally very large (in fact,nk), the general algorithm from Section 2.3 is completely
infeasible. If the distance metric is to take account of wrap-around, the solution becomes
slightly more complex:O(knh). This is known as thering metric.

Heuristic Solution for DAGs. The above algorithms work for trees. In [9, 13], Chatter-
jee et al. present heuristic algorithms which solve the problem for DAGs. The algorithm
for axis and stride alignment, based on the discrete metric,is a modified tree algorithm,
while an integer linear programming algorithm is used to minimise the cost due to off-
set realignments. The latter is heuristic in that Chatterjee et al. use the real solution as an
approximation to the integer solution.

Discussion. The aim of this section has been to show how, in cases where theenumerated
algorithms are infeasible because the number of placementsis very large, solutions may be
found that make use of the structure of the cost function to direct the search.

4 Solution for Replication
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Section 4

Replication is a difficult problem in terms of data placementop-
timisation because the natural representation for replication is not
even a function: one location is mapped onto many. Several au-
thors [8,9,29] have therefore proposed representing theinverseof
copying, i.e. a function which maps multiple locations ontoone.
Notice that this representation is now not invertible: sucha func-
tion is not injective and hence cannot be inverted. This means that
according to this representation, the only “replication redistribu-
tions”, i.e. changes in replication that can be represented, are broadcasts. Once an array is
replicated, it remains replicated and all nodes “downstream” in the DAG from the broad-
cast, except for the results of reductions, have to be replicated aswell. A further observation
is that the natural replication cost function is not a metricbecause it isasymmetric.
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Chatterjee, Gilbert and Schreiber [10] make use of the rather unique properties of repli-
cation by proposing to solve the parallel data placement problem for replication using net-
work flow: The fact that only those replication redistributions can be represented which
allow an increase in replication means that the max flow / min cut theorem may be used
to find a set of placements that minimises the total number of broadcast operations. Notice
that the network flow algorithm is naturally an algorithm that works for general DAGs and
therefore subsumes the case for trees.

We have proposed a new representation for replication [8] which solves the problem of
replication not being invertible. We can therefore represent both increases in replication, to
be implemented by broadcasts,andreductions in replication, which may be done by simply
“dropping” data. This means that we can represent a wider setof possible solutions. How-
ever, it also means that the problem can no longer be solved inthe same way as proposed
by Chatterjeeet al.. We have outlined a possible heuristic algorithm in [8].

The trade-off between the two proposals is a wider set of possible placements with a
harder optimisation problem (our proposal)vs.a more restrictive set of available solutions
with a precise algorithm (Chatterjeeet al.).

5 Solution for Distribution
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Section 5

Distribution determines how many data elements of each array, in
each dimension, get allocated to each physical processor. There-
fore, distribution clearly has an impact on the parallelcomputation
time of the operations at the nodes in the DAG. This makes dis-
tribution a hard problem to optimise. There exists a large body of
research on this topic, some key references are listed by Sheffler
et al. in [25]. The approaches may be separated into solving either
the static or thedynamicdistribution problem. Static in this case
means that each array has only one distribution. If redistributions are permitted, the problem
is termeddynamic. In the context of component composition, we are interestedin the dy-
namic instance of the problem, which has been shown to be NP-complete by Kremer [21].

Chatterjeeet al. [11] propose a heuristic divide-and-conquer algorithm to address the
dynamic distribution problem for data parallel programs. The “divide” pass of the algorithm
recursively subdivides the program into regions, within which distributions are assigned
independently. In the “conquer” pass, regions are merged ifthe redistribution cost between
them exceeds the disadvantage of choosing a sub-optimal distribution for one of them.

Redistribution is a very complex communication, especially if the blocksize of a block-
cyclic distribution is changed. Accordingly, Chatterjeeet al. use the discrete metric (see
Section 3) as the communication cost function in [11].

Sheffleret al. [25] show how the size of the distribution problem may be substantially
reduced bygraph contraction.

6 Related Work

We now briefly review the relationship between the work discussed in this paper and two
somewhat different approaches to solving a similar problem: automatic data placement in
automatic parallelisation and interprocedural analysis of user programs.
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6.1 Automatic Data Placement in Automatic Parallelisation

The aim of automatic parallelisation is to translate an existing sequential program into an
equivalent parallel program. Most early work in this field was done in the field of auto-
matic vectorisation [3]. However, the emphasis in supercomputer architecture has shifted
somewhat from vector processors to distributed memory multiprocessors, for a number of
reasons, as outlined in [16]. The key challenges in automatic parallelisation have accord-
ingly also shifted. Distributed memory machines have a highpenalty for non-local memory
access. Accordingly, data placement optimisation has become one of the key tasks an auto-
matic parallelisation system has to address.

Survey paper on automatic parallelisation are [6] by Banerjee et al. and [5] by Ba-
conet al.. A survey which focuses more closely on the automatic data placement techniques
in such systems is [4] by Ayguadéet al..

There are a number of reasons why solving the parallel data placement problem from an
automatic parallelisation approach is harder than from a component-composition approach.

Source code analysis.Automatic parallelisation is facilitated by a number of program anal-
ysis techniques. In fact, the success of automatic parallelisation systems often depends on
the degree of sophistication of the analysis techniques used. In the problem domain which
we discuss in this paper, the difficulties and limitations ofsource code analysis are avoided
because our starting point are data-parallelcomponentsfor which the relevant information
is either supplied by the user (in the case of hand-written components) or can be derived
with much greater ease from the source code because the code is written in a programming
language that is designed to expose such information.

Source code transformation.Automatic parallelisation generally relies on restructuring
user code in order to extract parallelism or maximise locality. It is clear that a conserva-
tive approach needs to be taken here to ensure that program semantics are not changed. In
the problem domain which we discuss here, the idea is that theexternal characterisation of
a component (more precisely, the metadata describing different available implementations)
describes a set of possible different behaviours which can be selected from by the optimiser.
Note, however, thatlegality testsmight still need to be performed.

Global Optimisation vs. Component Composition.In our approach, we optimise the com-
position of components that have been optimised in isolation. In contrast, an automatic
paralleliser would in general analyse and attempt to optimise the same program on one
level. Although it is possible that some optimisation opportunities are missed by optimising
components separately, it is also clear that not doing so will result in re-optimising smaller
units of code every time they occur in a different context. For some purposes it is possible
to fully characterise the behaviour of a component through some metadata such that no
opportunities are lost by not re-optimising, see Section 2.3.

6.2 Interprocedural Analyses

An alternative approach to solving a very similar problem tothe one we have addressed
in this paper is outlined by Creusillet and Irgoin [15]. For the case where the compo-
nents whose composition we are optimising are subroutines in a language such as Fortran,
Creusillet and Irigoin show how to analyse such programs interprocedurally, such that the
normal techniques of automatic parallelisation are not blocked by procedure boundaries.



14

It is clear that this approach may result in re-optimising components, which, under
the component-composition approach, would have been optimised in isolation and not re-
optimised at composition time. The question is whether component-composition stands to
lose optimisation opportunities. The key to not loosing optimisation opportunities has to
be that enough information is carried over into the component interface (metadata) when
each component (procedure, loop nest etc.) is optimised. Carrying only the information
about the best possible solution is insufficient. However, if the space of feasible solutions is
bounded, representing those as part of component metadata means that we can avoid having
to re-optimise components without losing any optimisationopportunities.

7 Summary and Conclusions

We have outlined current approaches to solving the paralleldata placement problem when
optimising the composition of data-parallel components.

– The parallel data placement problem has been solved for those cases where the set of
possible placements can be enumerated. The algorithms are linear in program size but
polynomial in the number of different placements.

– Heuristic algorithms exist for solving the problem for axis, stride and offset alignment
that avoid the problem of large or possibly infinite sets of possible placements.

– We have outlined two alternative proposals for optimising replication. No practical com-
parisons on their effectiveness have been carried out.

– There are a number of communication patterns (e.g. skewings) that have not been cov-
ered by the algorithms we have outlined in this paper. In order to find an algorithm that
allows optimising general alignment, including skewings,a cost model has to be found
that correctly compares the different types of alignment costs. Once that is available, its
structure can be studied with a view to finding a suitable algorithm.

– All DAG algorithms, except for the case of enumerated placements, are heuristic. We
are not aware of much practical experience with the effectiveness of these heuristics.

7.1 Relationship with Constructive Methods for Parallel Programming

Our discussion has highlighted a number of key issues that affect the feasibility of applying
parallel data placement optimisation in practice.

Component Metadata.We argued in Section 6.2 that it is very important that we do not
have to re-optimise components when seeking to optimise their composition. In order for
that to be possible without losing optimisation opportunities, the metadata which describe
the properties of our components have to be designed very carefully. We outlined one of
the issues, the compact representation for different implementations of a component, in
Section 2.3.

Enumerated vs. Compact PlacementsThe algorithms for enumerated placements are attrac-
tive because of their clarity and precise nature. Unfortunately, they also have high complex-
ity in the number of different possible placements. Enumerating possible placements also
has some advantages, especially in a context where programsare re-written symbolically.
However, if a more more compact, non-symbolic representation for placements does exist
(such as using

�
1 0
0 1

�
,
�

0 1
1 0

�
, : : : instead of names such asidentity, transpose, : : : this may ac-

tually allow us to use a more compact algorithm, such as thosedescribed in Section 3. The
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drawback of symbolic names for placements is that they mighthide relationships between
them that the optimiser might exploit.

Nature of the Program Graph.It is clear that the nature of the program graph, specifically,
whether it is a tree or a DAG, has a very substantial impact on the complexity of the opti-
misation problem to be solved. If a graph is in fact a DAG, applying a tree algorithm may
have unpredictable effects.

The question may be asked whether using BSP as a programming model ensures that
the program graphs we obtain are chains (unary trees). Unfortunately, this is not the case.
BSP describes and constrains the parallel scheduling of components (sequential with syn-
chronisation), it does not restrict thedata flowof a program. As long as the BSP program
contains operators (or supersteps) that require more than one input, we cannot be sure that
the data flow graph is not a tree or a DAG.

However,skeletonsdo have the potential to provide us with the type of information
about the data flow graph of a program which is much harder to obtain in a less constrained
programming environment. Skeletons might give us the information that a component either
only has one operand, or, they might directly constrain the data flow (such as in a pipe). It
seems advantageous to make use of this information in determining whether a tree algorithm
can be used.
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