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Abstract. Constructive methods for parallel programming are charegd by the
composition of optimised, parallel software componentsisTpaper concerns data
placement, a key cross-component optimisation for regld¢a-parallel programs.
This article is a survey of data placement optimisation néples. The main contribu-
tions are (1) a uniform terminology, which identifies analy®of the problem which
have proven fruitful, (2) a taxonomy of versions of the pesh| distinguished by the
efficiency with which they can be solved, (3) a discussionpafroproblems, challenges
and opportunities for further progress in the area, and @iseussion of the signifi-
cance of these results for constructive methods in pamatEiramming. We observe,
in particular, the role of skeletons in restricting progrgraph structure to ensure that
optimisation is tractable.

1 Introduction

This is a review paper on parallel data placement optintedtr data-parallel programs.
The key challenge in constructing efficient parallel progsdor distributed memory mul-

tiprocessors has shifted from automatically generatingljgh components to optimising

the composition of existing components. In the domain okjyudata-parallel programs,

this problem is somewhat more tractable than in more gederahins: the performance of
a data-parallel program constructed from existing pdratienponents depends largely on
the choice of data placements.

1.1 Contributions of this Paper

— We propose a taxonomy of different instances of the pardd&d placement problem.
Our classification clarifies the complexity of differenttiausces of the problem.

— We review and summarise existing work in this problem domilurstrating how the
complexity and accuracy of the proposed solutions dependseomethod adopted.

— We outline outstanding issues within the domain.

— We discuss how the current state of the art in parallel dategphent optimisation can
best be synthesised with existing constructive methodpdoallel programming, and
point out areas for future research.
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Fig. 1. Three classes of program graph. The DAG is distinguishedhéyptesence of a shared node
and by the fact that there may be more than one sink. The ragid kide of the diagram (d) shows
the terms we will use to refer to different nodes in prograapds in this discussion.

1.2 Terminology

Mace [22] defines the parallel data placement problem in @mg general form: the ob-
jective is to minimise the overall execution time of a pragrgraph in which the nodes
represent parallel operations and data is communicated) dlee edges. Operations may
accept inputs and generate output in a number of differeratiiphdata placements. Each
operation is assigned a cost, which is a function of the phace of its input and output
data. Data may be redistributed in between operations,raréd s a cost function associ-
ated with redistributions.

— Data-Parallel Operations
Data-parallel operations are elementwise array opemgtisuch as provided by For-
tran 90. In the context of our own work [7, 8], array operasi@ne calls to our library of
parallel numerical routines. We assume that all operagwoduce exactlpneresult.

— Parallel Data Placements
We define parallel data placement in general as a relatidrspiexifies which subar-
ray(s) of an array are stored on the individual nodes of aidiged memory multipro-
Cessor.
It is common practice to represent parallel data placemegrat mapping of multiple
stagesalignment distribution, and possiblyeplication Alignment maps array index
vectors onto an auxiliary Cartesian grid, known as a terematvirtual processor grid.
Distribution, also known as folding, maps virtual processanto physical ones. Repli-
cation is sometimes handled implicitly as part of the aligmitnstage, for example in
HPF [18], or, according to our own proposal [8], as an exptinird stage preceding
alignment.
Mace [22] calls parallel data placemestgapesWe will therefore uses to denote the
set of all possible placements asitb denote the size ¢f (if the set is countable).

— Implementations of Data-Parallel Operations
Data-parallel operations may have a number of differemglementationswhich of-
ten have different associated computation costs. We giveatternative, more precise
definitions for implementations in Section 2.3.
Mace [22] uses the termnethods We will use M to refer to the set of all possible
methods andn to denote the size o/ .

— Program Graphs
In the context of this article, we will use the term prograraggr for the data flow graph
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Fig. 2. lllustration of the problem domain of parallel data placetria data-parallel programs.

of a parallel program, where the nodes represent datalglasperations, and data flow
is represented by edges. The direction of all edges will lledrdirection of data flow.
We do not impose any restrictions on the arity of nodes or ersttucture of the graph,
except that we do not consider control flow edges at this stegece the graphs are not
cyclic. Note that since each operation has exactly onettegalcan uniquely identify
nodes by the result of the operation they represent.

— Array Redistributions
In our program graphs, the placement of arrays need not maatble source and sink of
edges. If that is the case, the placement of the array nedssdioanged at runtime. We
will term this a redistribution.

— Cost Functions
In any optimisation, candidate solutions are evaluatedraatg to some cost function.
In our problem domain, the purpose of the cost function isseeas the quality of a
proposed set of parallel data placements for a particutagram graph. The cost will
in general depend on both the cost of executing the indiVidodes and on the cost
of any redistributions. In Section 2.1, we explain why thetdanctions for modelling
redistribution cost are generally required torbetrics

1.3 Scope of this Review

In this paper, we review techniques for minimising the ollereecution time of a program
graph as defined above. In purely data-parallel prograresndides of the graph are exe-
cutedsequentiallyto each other, i.e. we do not consider task parallelism batwedes.
This means that parallel data placement becomes the keyrdegat of program perfor-
mance. This observation is confirmed for example by Chagexj al. [13]. The problem
we have to solve is therefore to select a set of parallel datments for all arrays in a pro-
gram graph, both at the sink and at the source of each eddetlstdhe overall execution
time of the program graph is minimised.

1 This corresponds to the direction in which data dependemosva are drawn in a dependence
graph. The edges in Mace’s program graphs [22] have the dppmgentation.
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1.4 Overview of the Parallel Data Placement Problem

In this article, we will argue that the complexity of the pébdata placement problem is
determined by three key parameters. These are illustratégjure 2 and are as follows:

1. The structure of the program graph
We distinguish between three different classes of prograaphg chains, trees and
DAGs. These are illustrated in Figure 1. DAGs are substiyharder to optimise than
trees. We explain why that is so in Section 2.4.

2. The cost function used as the objective when optimising
The properties of the cost function used in optimisationehavstrong effect on the
complexity of the problem to be solved. Some types of pdrddéa placement may be
modelled adequately with a very simple cost function (swctina discrete metric, which
assigns every redistribution either a cost of 1 or 0). Foeo#spects of data placement,
this would be insufficient. The precise meaning of the défgrcost functions shown in
Figure 1 will be addressed in subsequent sections of the.pape

3. Whether or not node costs have to be taken into account
In some situations, the computation cost at the nodes inghgray be unaffected by
data placements so that we are only having to minimise thieatagdistributions. In
other cases the computation cost is affected by data pladekve show examples for
this case in Section 5.

In the following sections, we will always indicate which paf the problem domain that
we have mapped out in Figure 2 we are currently addressing.

1.5 Structure of this Paper

In the next section (2), we review solutions to the parallhdlacement problem for the
important case where the cost function is formulated as kulpdable. This variant of
the problem is the easiest to understand and exposes wealbthplexity of the problem.
However, the solution here actually also has the worst tiomepiexity. Following that, in
Section 3, we review solutions for optimising only the ahliggnt part of parallel data place-
ment. Proposed algorithms in that domain rely on using aosgttfons that are expressed in
a more compact form. Next, in Section 4, we consider optitiusaf data replication. The
issue with replication is that it has no natural represéniads a function; we discuss the
implications of that and possible solutions. Section 5 Shawexample where the computa-
tion cost of nodes is affected by data placement: distoufrinally, Section 6 reviews the
relationship of the problem domain of this paper to otheeaesh activities, and Section 7
concludes.

2 Solutions for Explicitly Enumerated Placements

We begin by reviewing solutions to the parallel data placerpeoblem for the case where
the cost functions, both for node costs and for redistrinsgj are expressed in the form of
a lookup table. Specifically, this means that

— There isasingle st = {S,...,Ss} of sparallel data placements, and all arrays in the
program under consideration can adoptsgtilacements. The algorithm easily gener-
alises to the case where different arrays can adopt pladsrfrem different sets. The
crucial point is that we have a finite set of explicitly enuated placements, and that
we do not make use of any specific properties of this set whemiging.
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— The cost function for redistributions is represented asacpmputed table of siz=:

Cred Strom|[Sto]s Srom;So € S . (1)

2.1 Dynamic Programming Solution for Chains

We begin with the simplest class of program graph, chaing. Th
algorithm we propose below is based on the algorithm prapose
by Mace [22, 23] for trees (see Sections 2.2 and 2.3). Obseate
for chains, each operatiap has exactly one input and one result,
Leaf nodes represent evaluated data or input operatiomsthar .
case their data placemenfised We will denote the required input 7 e

data placement ofp by op.Sp, the result placement bgp.Syut

and the cost of computingp with these placements mp.Cyode

Finally, we will denote the operation to be performed at sorodex by x.op and the
predecessor of nodeby x.pred. In addition to assuming that the program graph is aa¢hai
we will initially also assume that each operation has onlg onplementation, which for
now we take to mean that thereasespecific pain Sy, Sut) of input and result placements.
We address the issue of multiple implementations in Se@i8n

Section 2.1

Algorithm 1 (Solution for Chains, One Implementation). We can now give the follow-
ing recursive formulation for the minimum cdSkin(x,S) of evaluating a chain of data-
parallel operations with sinkinto placemens§.

Cimp(X, S) = X.0p.Cnode+ Cred X-0p-Sout][S]
Cmin(%,S) = Cimp(X, S) if xis the leaf 2)
= Cimp(X, S) + Cnin(X.pred x.op.Sn) otherwise (3)

This recursive algorithm to fin@min(x,S) takes®(n) stepg for a chain ofn nodes. The
overall minimum cost for calculating nodas now theoretically

Cmin(X) = gnei?(cmin()(,si)) ) 4)

which could be calculated i®(n+s) steps. However, with one implementation, we will
for all practical cases (i€reqis a metric — explained shortly), have

Chin(X) = Crin(X,X.0p.-Sout) » (5)

which means that the problem may be solved simp®(n) steps. The only remaining task
is to read off the actual shap8swhich resulted in the minimum cost.

Metric Properties of Redistribution Cost. Chatterjeest al.[12—-14,17] state that all their
cost functions for redistributions, which they cdistance functionought to be metrics. A
distance functiom : § x § — R is a metric if for all§, §j, S € S,

d(s,S)) >0 and d(S,5)=0&S=S; Nonnegativity (6)
d(s,S)) =d(S;,S) Symmetry (7)
d(S,S)) <d(S,S) +d(S. S)) Triangle inequality .  (8)

2 We will use the complexity notations proposed by Knuth [20].
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Nonnegativity. There is a strong case that in real-world computer systeosts @re non-
negative. If that is the case, we can use Equation (5), rétlaer(4) in Algorithm 1.

Triangle inequality. Real systems do not necessarily satisfy the triangle ingguawo-
phase random routing [28], for example, makes use of thetfiattperforming two com-
munications via a random intermediary, rather than sendngydirect message, can avoid
contention in networks. However, if we do allow cost funogavhich do not satisfy this
property, it is very difficult to bound the search space fer @bbove algorithm: We have to
check (recursively!) whether any redistribution can bdaegd with two cheaper redistri-
butions via an intermediate placement.

Symmetry. It appears that the parallel data placement algorithmsqseg by Chatter-
jeeet al.do not actually rely on the symmetry property of the distafiucetion. There are
some interesting models of redistribution cost that aresyatmetric. Replication is one
such example, which we discuss further in Section 4. Anatlkample are some instances
of the BSP cost model.

Weighted vs. Unweighted Optimisation Problem. Strictly speaking, the entries in the
redistribution cost table ought to be functions that takayasize as an argument and return
a cost. Chatterjeet al.[12, 14] approximate this by defining redistribution costtzes cost
of moving one unit data and then assigning to all edges the program graph a weight
we which is the number of data units communicated along thag €Bige cost contribution
of the edge is set toe - Cred Srom][So]- The resulting optimisation problem is called the
weightedparallel data placement problem and is in some instanceehtr solve than the
unweighted problem [14].

In this paper, we concentrate on the unweighted problemwieewill assume that
we are working with one fixed array size, which allows the iestin tableCreq to be
scalars. This corresponds to the approach of Mace [22] aflzeiGiand Schreiber [17].

Section 2.2
2.2 Dynamic Programming Solution for Trees

We now consider the case where the program graph is a trese r
than a chain. For aa-ary tree, we will denote the" predecessor S T o

of a nodex by x.predi], and the placement in which the operator
at nodex requires its ! operand by.op.Sp|i].

Algorithm 2 (Solution for Trees, One Implementation). The minimum cost of evaluat-
ing ana-ary tree with sinkk into placemens§ is

Cimp(X, S) = X.0p.Cnode+ Cred X-0p-Sout][S]
Crmin(X,S) = Cmp(X,S) if xis a leaf (9)
= Cimp(%, S) + Z Cmin(x.predj],x.0p.Sn[j]) otherwise (10)

0<J<a

If Creqis a metric, the overall minimum cost is given by Equation €3 in the case for
chains. The time complexity of this algorithm@xn).
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Chains and Trees. It is interesting to note that the time complexity for solyithe optimal
parallel data placement problem is independent of the afitiye program tree, with chains
simply being a 1-ary tree. The reason for this is that theaghof optimal placements for
all input-branches to a node is independent, as long as tigggon graph is a tree.

2.3 Solution with Different Implementations for Nodes

We now move on to the case where operations can maliferent

implementations. We consider two definitions of implemaates. .
Section 2.3

Node Cost

First Definition (Mace). Mace [22] characterises an implementa:
tion® of a data-parallel operation as a distinct tuple of datagplac.
ments for the operands and the result of the operation. Fomex °
ple, let operatiompl take 2 operands. One implementatioropt
might be characterised by the fact that its operands need io b
placementsS; and S, respectively, and that the result will have
placementS;. We write this as a tupl€S;, S, ). If opl can also be performed leaving
its result in placemery, instead ofS;, opl is said to have two implementations. We will
denote the required input data placement of implementatiprof op by op.My.S,, the
result placement byp.My.Sut and the cost of computingp with these placements by
op.Mk.Cnode If there are any implementations which have sheneinput and output place-
ments, but different costs, we can eliminate the more expensethods in a preprocessing
stage.

tream s

DA
Program Graph

Algorithm 3 (Solution for Trees, Implementations as Tuple3. We have:

Ctmp(X7 My, S) = X.0p.Mk.Cnode+ CredX.0p-Mk.Sout[S]
Cmin(X,S) = min (Ctmp(xa Mk:SI)) (11)
MyeM

if xis a leaf

= min (Ctmp(xv My, S) +

MyeM

Cmin(x.preqj],x.op.Mk.Sn[j])> (12)

0<<a
otherwise

The complexity of calculatin@min(x, S) now is®(mn). Furthermore, the presence of mul-
tiple methods with different result placements means tleatan now not immediately see
which placement for the sink will result in overall minimurost. We have:

Crin(X) = gné? (Cmin(x.S)) - (13)

The complexity of Algorithm 3 i$D(msn. We could have up te placements with distinct
costs for the sink since candidate solutions that result in the same placefoentare
reduced to the cheapest solution for that placement by Emsa12) and (11). If there
is some§ € S such that ndMly € M exists withS = x.0p.My.Sut, then that placement
S could be eliminated from the search. Therefore, the conitgléx O(msn rather than
O(msn.

3 Mace uses the termethod
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Discussion. Note that given the above definition of implementations dreassumption
that implementations with identical input and output praeats but higher costs are elimi-
natedm has to be a number between 1 aid! wherea s the arity of the operators in the
tree. Therefore, if we assume that the maximum possible puofimplementations does
indeed exist, the complexity of the algorithm@$s22n), i.e. O(s®n) for chains.

The algorithm we have described in this section is similatht® original proposal
for a dynamic programming solution to the parallel data @taent problem for trees by
Mace [22, 23]. Versions of the algorithm for chains have bpeposed by To [27, page
223] and Skillicorret al.[26].

The first definition treats as separate implementat&dhpossible combinations of in-
put and output placements. Thus, if we might calculate aoveddition with either both
operands and the result blocked over the rows of a processsih,nor blocked over the
columns, these would be counted as two distinct implemientst The proposal we de-
scribe in the second definition aims to capture the fact tieret exists a common pattern
between such implementations.

Second definition (Implementations as Placement Relatiops Assume that the data
placement we are optimising takes the form of an invertibépping. This includes, for
example alignment which may be expressed in the form of an invertible affine pivagp
f(i) = A.i+t from array index vectorsonto virtual processor indices [7]. Given invertibil-
ity, we may always, for any pair of placement functiohandg, calculate aelationship
function r= go f 1 with the property thagy =r o f.

We now define an implementatidl; of an a-ary data-parallel operation as a tuple
Mg = (r1,...ra) of relationship functions which describe the relationdiepveen the place-
ments ofresultandoperandsas follows:op.Sp[i]| = rj o 0p.Sout. We will denote the rela-
tionship function for operanglunder implementatioMy by My.rj.

Example.A very important class of data-parallel operations aredtibat can be expressed
as binary array operations in Fortran 90. A compiler can geaecode for these in any
placement, as long as both operands and the result are dligimeler the definition we
have outlined above, we may represent this by saying thaetbperations havene im-
plementationwith rq,r> = id, whereid is the identity affine function which maps every
placement to itself.

Algorithm 4 (Solution for Trees, Implementations as Placerent Relations).Notice that
under this definition, the result of each operation may takgplacement from withins,

it is the relationship to the operands that is defined by th@ementation. The placement
of leaf nodes igixed The minimum cos€min(x,S) of evaluating node into placemeng§
may be calculated as

Ctmp(X, Mk, S, S) = x.0p.Mk.Cnode+ CRed[Sj] [S]

Cmin(xvs) - Ctmp(xa Ml;X-Op-Ml-SOUt;SI) (14)
if xis a leaf

= min (Ctmp(X,Mk,Sj,S)‘l‘ Cin(X.predk], x.op.My.r, on)>
SjES 0< <a
MyeM

(15)
otherwise



Fig. 3. Example of DAG transformation, collapsing nodeand3 into one.

The complexity of calculatin@min(x,S) is ©(msn. The overall minimum coSCm;in(X)
for evaluating nodex may again be calculated with Equation (13), resulting in eerall
complexity of@(msn).

Discussion. This algorithm is based on the assumption that implememsathich are
defined as above have constant parallel cost for node opesatndependent of the actual
placements chosen for the result and operdnd¥s. argue, therefore, that the above defini-
tion of implementations captures the interestingly défdarcases of ‘implementations’ as
viewed under the first definition.

The algorithm we have outlined in this section provides atsmh for the large class
of Fortran 90 array operations @(s?n) time. This corresponds exactly to the algorithm
outlined by Chatterjeet al.in [13]. The definition for implementations used in this cteap
has been previously stated in [7, 8].

2.4 Solution for DAGs

Mace [22] shows the parallel data placement problem to be NP-
complete when the program graph is a general DAG. An intuitio

as to why the problem is so much harder for DAGs than for trees
may be had from the following observations:

Section 2.4

Yes
Cost Function

— The contribution towards the costs of a node from that com
from calculating the operands in the required placemenigEq g s e s
tion 10) are no longer independent.

— A DAG may have multiple sinks. The minimum cost of com-
puting the DAG needotplace the sinks in minimum cost positions, as we have assumed
for trees in Equation (13).

However, Mace also demonstrates that a polynomial alganittay be found for a subclass
of DAGs known asollapsible DAGsand Mace argues [22, page 10] that a very significant
proportion of real program DAGs fall into this subclass.

4 The reasoning behind this assumption is that any diffeeiic@arallel completion time for the
node operations are most likely due to intrinsic commurdcatvhich is necessary as part of
the operation; purely sequential computation time shoeldifiaffected by data placement. The
only situation where we might expect to observe a changedpldcement relation of result and
operands is if there is a change in intrinsic communicatiamch in turn would give a different
implementation and therefore a different cost.
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This result has parallels in the field of automatic code gatimn. Efficient algorithms
are known for the case where the program graph is a tree [Lthbuproblem is known
to be NP-complete for general DAGs [2]. Collapsible graplesenntroduced by Prabhala
and Sethi [24], who showed that the optimal code generatioblem may be solved in
polynomial time for this subclass of DAGs.

Mace presents an algorithm which solves the parallel daeephent problem for col-
lapsible DAGs. The algorithm relies on a series of graphetdns, each of which collapses
two nodes into one and deletes all edges connecting thossnald nodes in a DAG are
required to have in-degree out-degree of 1 or less. DAGs which do not meet this property
can be transformed into ones that do; however, that maytresah O(n) increase in the
number of nodes the algorithm has to run over.

We illustrate one of the transformations which may be appieea DAG in Figure 3.
The idea behind each transformation is to isolate the dmritdn to the overall cost of the
DAG of those edges that connect the two nodes being collapeedo minimise their cost.
In the example in Figure 3, the cost of norlés a function Cosix.op, S, S, Ss) of the
operator at nodg and the data placements assigned to the edges which to&mitarly
for nodep: Cos{.op,S3). The cost for the combined nodB, x) is

Cos{((B,x).0p,S1,S) = mln(Cos(x 0p,S1, S, Sj) + Costp.op,S))) (16)

The algorithm has complexi®(sd+1(n— 1)) whered is the out-degree of the most highly-
shared node.

2.5 Conclusion for Enumerated Cost Functions

The advantage of the algorithms for explicitly enumeratest ¢unctions is that efficient
algorithms are known for solving the parallel data placenpeoblem optimally for a large

number of program graphs. The major drawback of enumeratgtidunctions and enumer-
ated placements is that for many real applications, the eurabfeasible placements is
infinite (shift-offsets in alignments, skewings, blocketig distributions).

3 Compact Dynamic Programming Solution for Alignment

The solution to the problem of having a large, or infinite, toem
of possible placements is to represent the cost functiomoie
compact way than a lookup table, and then make use ditthe-
ture of the cost function in optimisation. Chatterjeeal. [13,14] |
describe a series afompact dynamic programmlr@gorlthms .
which solve the parallel data placement problem for axisdest —sem—m— Lz
and offset alignment for trees in a way that makes use of the-st "

ture of the cost function.

Section 3

Node Cost

Discrete metric for axis and stride alignment. Axis re-alignments are a generalisation
of transpose: permutations of the mapping of array axes moicessor axes. The discrete
metric assigns a cost of 1 to every change in either stridexisr alignment. These re-
distributions are general data exchanges, which might ipeimented through all-to-all
communication. The assertion is that they have a high, fiestl c



11

In terms of optimisation, the discrete metric intuitivelgdthe property that each node
can be either placed in the same placement as its pareni§ tloat is not possible, all
alternatives have the same cost penalty.

The algorithm which Chatterjeet al. propose that uses the discrete metric for axis
and stride alignment solves the same problem for which weriesl a©(s?n) solution in
Section 2.3 in onlyO(nh) time, whereh is the height of the tree.

Note, however, that Chatterjet al. do not allow skewings in their alignments. These
are cheaper communications than, say, a transpose, whahsntigat the discrete metric is
inadequate in comparing their cost to that of a transpose.

Grid metric for offset alignment. For offset alignment, the discrete metric is clearly un-
satisfactory, since it would assign the same cost to angoffshift of data, independent of
the size of the offset.

Chatterjeeet al. propose to use grid metric for offset alignment: the cost of a re-
distribution is modelled as the “distance” between the graents. The resulting compact
dynamic programming algorithm has complex@dykn), wherek is the number of dimen-
sions of the virtual processor grid. Note that since the renmobpossible offset alignments
is generally very large (in factX), the general algorithm from Section 2.3 is completely
infeasible. If the distance metric is to take account of waapund, the solution becomes
slightly more complexO(knh). This is known as theing metric.

Heuristic Solution for DAGs. The above algorithms work for trees. In [9, 13], Chatter-
jee et al. present heuristic algorithms which solve the problem for@3AThe algorithm
for axis and stride alignment, based on the discrete mesrig, modified tree algorithm,
while an integer linear programming algorithm is used toimise the cost due to off-
set realignments. The latter is heuristic in that Chatéegfeal. use the real solution as an
approximation to the integer solution.

Discussion. The aim of this section has been to show how, in cases wheentirmerated
algorithms are infeasible because the number of placensewsy large, solutions may be
found that make use of the structure of the cost functionrectithe search.

4  Solution for Replication

Replication is a difficult problem in terms of data placemept
timisation because the natural representation for rejmicas not
even a function: one location is mapped onto many. Several au
thors [8, 9, 29] have therefore proposed representingtrexseof
copying, i.e. a function which maps multiple locations oote.
Notice that this representation is now not invertible: sadinc-
tion is not injective and hence cannot be inverted. This radaat
according to this representation, the ontgglication redistribu-
tions’, i.e. changes in replication that can be represented, @&disasts. Once an array is
replicated, it remains replicated and all nodes “downstrea the DAG from the broad-
cast, except for the results of reductions, have to be @elitaswell. A further observation
is that the natural replication cost function is not a mdiecause it igsymmetric

Section 4

‘Asymmetric

Gri
Discrete
Enumerated
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Chatterjee, Gilbert and Schreiber [10] make use of the rathigue properties of repli-
cation by proposing to solve the parallel data placemerilpro for replication using net-
work flow: The fact that only those replication redistrilmuts can be represented which
allow an increase in replication means that the max flow / nintikeorem may be used
to find a set of placements that minimises the total numberaddrast operations. Notice
that the network flow algorithm is naturally an algorithmttterks for general DAGs and
therefore subsumes the case for trees.

We have proposed a new representation for replication [8¢léolves the problem of
replication not being invertible. We can therefore repnég®th increases in replication, to
be implemented by broadcasasidreductions in replication, which may be done by simply
“dropping” data. This means that we can represent a widesfqatssible solutions. How-
ever, it also means that the problem can no longer be solvéttisame way as proposed
by Chatterjeest al.. We have outlined a possible heuristic algorithm in [8].

The trade-off between the two proposals is a wider set ofiblesplacements with a
harder optimisation problem (our proposes) a more restrictive set of available solutions
with a precise algorithm (Chatterje¢ al)).

5 Solution for Distribution

Distribution determines how many data elements of eacly,darra
each dimension, get allocated to each physical proceskereT
fore, distribution clearly has an impact on the parait@iputation
time of the operations at the nodes in the DAG. This makes d| >
tribution a hard problem to optimise. There exists a larggybaf
research on this topic, some key references are listed bifi&he se—_<—Zn
et al.in [25]. The approaches may be separated into solving either”
the static or thedynamicdistribution problem. Static in this case
means that each array has only one distribution. If redistions are permitted, the problem
is termeddynamic In the context of component composition, we are interestete dy-
namic instance of the problem, which has been shown to bediipiete by Kremer [21].

Chatterjeeet al. [11] propose a heuristic divide-and-conquer algorithmddrass the
dynamic distribution problem for data parallel programise Tdivide” pass of the algorithm
recursively subdivides the program into regions, withinicgkhdistributions are assigned
independently. In the “conquer” pass, regions are mergtuakifedistribution cost between
them exceeds the disadvantage of choosing a sub-optintabdtgon for one of them.

Redistribution is a very complex communication, espegilihe blocksize of a block-
cyclic distribution is changed. Accordingly, Chatterjetal. use the discrete metric (see
Section 3) as the communication cost function in [11].

Sheffleret al.[25] show how the size of the distribution problem may be safisally
reduced bygraph contraction

Section 5

6 Related Work

We now briefly review the relationship between the work désad in this paper and two
somewhat different approaches to solving a similar problmomatic data placement in
automatic parallelisation and interprocedural analykisser programs.
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6.1 Automatic Data Placement in Automatic Parallelisation

The aim of automatic parallelisation is to translate antexgssequential program into an
equivalent parallel program. Most early work in this fieldsa@done in the field of auto-
matic vectorisation [3]. However, the emphasis in supemater architecture has shifted
somewhat from vector processors to distributed memoryiprattessors, for a number of
reasons, as outlined in [16]. The key challenges in autanpatrallelisation have accord-
ingly also shifted. Distributed memory machines have a pigimalty for non-local memory
access. Accordingly, data placement optimisation hasrheame of the key tasks an auto-
matic parallelisation system has to address.

Survey paper on automatic parallelisation are [6] by Baeegf al. and [5] by Ba-
conet al.. A survey which focuses more closely on the automatic daegohent techniques
in such systems is [4] by Ayguad al..

There are a number of reasons why solving the parallel datzpient problem from an
automatic parallelisation approach is harder than frormapmment-composition approach.

Source code analysidutomatic parallelisation is facilitated by a number of gram anal-
ysis techniques. In fact, the success of automatic pasaten systems often depends on
the degree of sophistication of the analysis techniqued. use¢he problem domain which
we discuss in this paper, the difficulties and limitationsotfirce code analysis are avoided
because our starting point are data-paratehponent$or which the relevant information
is either supplied by the user (in the case of hand-writtenpmnents) or can be derived
with much greater ease from the source code because thescadéen in a programming
language that is designed to expose such information.

Source code transformationAutomatic parallelisation generally relies on restruictgr
user code in order to extract parallelism or maximise logali is clear that a conserva-
tive approach needs to be taken here to ensure that prograanses are not changed. In
the problem domain which we discuss here, the idea is thaxtegnal characterisation of
a component (more precisely, the metadata describingeliff@vailable implementations)
describes a set of possible different behaviours which easelected from by the optimiser.
Note, however, thdegality testamight still need to be performed.

Global Optimisation vs. Component Compositidn.our approach, we optimise the com-
position of components that have been optimised in isalatio contrast, an automatic
paralleliser would in general analyse and attempt to ogenthe same program on one
level. Although it is possible that some optimisation ogipnities are missed by optimising
components separately, it is also clear that not doing daegllt in re-optimising smaller
units of code every time they occur in a different context. $@me purposes it is possible
to fully characterise the behaviour of a component throumnes metadata such that no
opportunities are lost by not re-optimising, see Secti@n 2.

6.2 Interprocedural Analyses

An alternative approach to solving a very similar problenitie one we have addressed
in this paper is outlined by Creusillet and Irgoin [15]. Fbetcase where the compo-
nents whose composition we are optimising are subroutmadanguage such as Fortran,
Creusillet and Irigoin show how to analyse such programerpmbcedurally, such that the
normal techniques of automatic parallelisation are notked by procedure boundaries.
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It is clear that this approach may result in re-optimisingnponents, which, under
the component-composition approach, would have been wggtthin isolation and not re-
optimised at composition time. The question is whether camept-composition stands to
lose optimisation opportunities. The key to not loosingimation opportunities has to
be that enough information is carried over into the compoirgarface (metadata) when
each component (procedure, loop nest etc.) is optimisedyi@g only the information
about the best possible solution is insufficient. Howevéing space of feasible solutions is
bounded, representing those as part of component metadatssithat we can avoid having
to re-optimise components without losing any optimisatpportunities.

7 Summary and Conclusions

We have outlined current approaches to solving the parddie placement problem when
optimising the composition of data-parallel components.

— The parallel data placement problem has been solved foe tt@ses where the set of
possible placements can be enumerated. The algorithmsaeg in program size but
polynomial in the number of different placements.

— Heuristic algorithms exist for solving the problem for gxsride and offset alignment
that avoid the problem of large or possibly infinite sets adgible placements.

— We have outlined two alternative proposals for optimisigication. No practical com-
parisons on their effectiveness have been carried out.

— There are a number of communication patterns (e.g. skejihgshave not been cov-
ered by the algorithms we have outlined in this paper. Int@énd an algorithm that
allows optimising general alignment, including skewinggpost model has to be found
that correctly compares the different types of alignmestEdOnce that is available, its
structure can be studied with a view to finding a suitable ratigam.

— All DAG algorithms, except for the case of enumerated plazais) are heuristic. We
are not aware of much practical experience with the effeotgs of these heuristics.

7.1 Relationship with Constructive Methods for Parallel Pogramming

Our discussion has highlighted a number of key issues tfexitahe feasibility of applying
parallel data placement optimisation in practice.

Component MetadataWe argued in Section 6.2 that it is very important that we db no
have to re-optimise components when seeking to optimige ¢benposition. In order for
that to be possible without losing optimisation opportiesit the metadata which describe
the properties of our components have to be designed vegjutlgr We outlined one of
the issues, the compact representation for different impteations of a component, in
Section 2.3.

Enumerated vs. Compact Placemeiftse algorithms for enumerated placements are attrac-
tive because of their clarity and precise nature. Unfottielgathey also have high complex-
ity in the number of different possible placements. Enuitireggpossible placements also
has some advantages, especially in a context where proguame-written symbolically.
However, if a more more compact, non-symbolic represanmtdor placements does exist
(suchasusing} 9), (93). ... instead of names such @sntity, transpose, . .. this may ac-
tually allow us to use a more compact algorithm, such as teseribed in Section 3. The
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drawback of symbolic names for placements is that they nhgld relationships between
them that the optimiser might exploit.

Nature of the Program Graphilt is clear that the nature of the program graph, specifically
whether it is a tree or a DAG, has a very substantial impachercomplexity of the opti-
misation problem to be solved. If a graph is in fact a DAG, g a tree algorithm may
have unpredictable effects.

The question may be asked whether using BSP as a programnoidgl mnsures that
the program graphs we obtain are chains (unary trees). tumiately, this is not the case.
BSP describes and constrains the parallel scheduling opooents (sequential with syn-
chronisation), it does not restrict tloata flowof a program. As long as the BSP program
contains operators (or supersteps) that require more themeput, we cannot be sure that
the data flow graph is not a tree or a DAG.

However,skeletongdo have the potential to provide us with the type of informmati
about the data flow graph of a program which is much hardertaim a less constrained
programming environment. Skeletons might give us the médron that a component either
only has one operand, or, they might directly constrain tita flow (such as in a pipe). It
seems advantageous to make use of this information in deti@gnwhether a tree algorithm
can be used.
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