
S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

Run-time code generation in
C++ as a foundation for domain-
specific optimization
Paul Kelly (Imperial College London)
Joint work with

Olav Beckmann, Alastair Houghton,
Michael Mellor, Peter Collingbourne, Kostas
Spyropoulos Greenwich, November 200

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

2Mission statement
Extend optimising compiler technology to
challenging contexts beyond scope of
conventional compilers
Another talk:

Distributed systems:
Across network boundaries
Between different security domains
Maintaining proper semantics in event of failures

Another talk:
Active libraries for parallel scientific applications

Domain-specific optimisations without a DSL

This talk:
Cross-component, domain-specific optimisation in
numerical scientific applications, using run-time
code generation

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

3Generative and adaptive methods in performance
programming

Performance programming

Performance programming is the discipline
of software engineering in its application to
achieving performance goals

This talk introduces one of the
performance programming tools we have
been exploring

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

4Construction
What is the role of constructive methods in
performance programming?

“by construction”

“by design”

How can we build performance into a
software project?
How can we build-in the means to detect and
correct performance problems?
As early as possible
With minimal disruption to the software’s
long-term value?

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

5Abstraction
Most performance
improvement
opportunities come from
adapting components to
their context

So the art of
performance
programming is to
figure out how to design
and compose
components so this
doesn’t happen

Most performance
improvement measures break
abstraction boundaries

This talk is about two ideas
which can help:

Run-time program generation
(and manipulation)
Metadata, characterising data
structures, components, and
their dependence relationships

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

6Abstraction
Most performance
improvement
opportunities come from
adapting components to
their context

So the art of
performance
programming is to
figure out how to design
and compose
components so this
doesn’t happen

Most performance
improvement measures break
abstraction boundaries

This talk is about two ideas
which can help:

Run-time program generation
(and manipulation)
Metadata, characterising data
structures, components, and
their dependence relationships

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

7Abstraction
Most performance
improvement
opportunities come from
adapting components to
their context

So the art of
performance
programming is to
figure out how to design
and compose
components so this
doesn’t happen

Most performance
improvement measures break
abstraction boundaries

This talk is about two ideas
which can help:

Run-time program generation
(and manipulation)
Metadata, characterising data
structures, components, and
their dependence relationships

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

8Abstraction
Most performance
improvement
opportunities come from
adapting components to
their context

So the art of
performance
programming is to
figure out how to design
and compose
components so this
doesn’t happen

Most performance
improvement measures break
abstraction boundaries

This talk is about two ideas
which can help:

Run-time program generation
(and manipulation)
Metadata, characterising data
structures, components, and
their dependence relationships

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

9The TaskGraph library

“Multi-stage languages internalize the
notions of runtime program generation and
execution”

I present a C++ library for multi-stage
programming

“Metaprogramming - writing programs which
mess with the insides of other programs, eg
those it has just generated”

That too!
“Invasive composition - writing
metaprograms to implement interesting
component composition”

Future work

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

10

#include <TaskGraph>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
using namespace tg;

int main() {
int c = 1;
TaskGraph < Par < int, int >, Ret < int > > T;
taskgraph(T, tuple2(x, y)) {

tReturn(x + y + c);
}
T.compile(tg::GCC);
int a = 2;
int b = 3;
printf("a+b+c = %d\n", T.execute(a, b));

}

The TaskGraph
library is a
portable C++
package for
building and
optimising code
on-the-fly

Compare:
`C (tcc) (Dawson
Engler)
MetaOCaml
(Walid Taha et al)
Jak (Batory,
Lofaso,
Smaragdakis)

But there’s
more…

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

11

#include <TaskGraph>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
using namespace tg;

int main() {
int c = 1;
TaskGraph < Par < int, int >, Ret < int > > T;
taskgraph(T, tuple2(x, y)) {

tReturn(x + y + c);
}
T.compile(tg::GCC);
int a = 2;
int b = 3;
printf("a+b+c = %d\n", T.execute(a, b));

}

A taskgraph is an
abstract syntax
tree for a piece of
executable code
Syntactic sugar
makes it easy to
construct
Defines a
simplified sub-
language

With first-class
multidimensional
arrays, no
alliasing

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

12

Binding time is
determined by types
In this example

c is static
x and y dynamic

built using value of
c at construction
time

#include <TaskGraph>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
using namespace tg;

int main() {
int c = 1;
TaskGraph < Par < int, int >, Ret < int > > T;
taskgraph(T, tuple2(x, y)) {

tReturn(x + y + c);
}
T.compile(tg::GCC);
int a = 2;
int b = 3;
printf("a+b+c = %d\n", T.execute(a, b));

}

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

13

Better example:
Applying a
convolution
filter to a 2D
image
Each pixel is
averaged
with
neighbouring
pixels
weighted by
a stencil
matrix

void filter (float *mask, unsigned n, unsigned m,
const float *input, float *output,
unsigned p, unsigned q)

{
unsigned i, j;
int k, l;
float sum;
int half_n = (n/2);
int half_m = (m/2);

for (i = half_n; i < p - half_n; i++) {
for (j = half_m; j < q - half_m; j++) {

sum = 0;

for (k = -half_n; k <= half_n; k++)
for (l = -half_m; l <= half_m; l++)

sum += input[(i + k) * q + (j + l)]
* mask[k * n + l];

output[i * q + j] = sum;
}

}
}

Mask

Image

// Loop bounds unknown at compile-time
// Trip count 3, does not fill vector registers

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

14

// Inner loops fully unrolled
// j loop is now vectorisable

TaskGraph
representation of
this loop nest
Inner loops are
static – executed
at construction
time
Outer loops are
dynamic
Uses of mask
array are entirely
static

This is deduced
from the types of
mask, k, m and l.

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

15

Image
convolution
using
TaskGraphs:
performance

We use a 3x3 averaging filter as
convolution matrix
Images are square arrays of single-
precision floats ranging in size up to
4096x4096
Measurements taken on a 1.8GHz
Pentium 4-M running Linux 2.4.17, using
gcc 2.95.3 and icc 7.0
Measurements were taken for one pass
over the image

(Used an earlier release of the TaskGraph library)

Generalised Image Filtering Performance (1 Pass)

0

0.2

0.4

0.6

0.8

1

1.2

0 512 1024 1536 2048 2560 3072 3584 4096
Image Size (512 means image size is 512x512 floats)

R
un

tim
e

in
 S

ec
on

ds

Generic C++ compiled with gcc

Generic C++ compiled with icc

TaskGraph gcc

TaskGraph icc

Generalised Image Filtering - Timing Breakdown

0

0.1

0.2

0.3

Generic gcc
1024

Generic icc
1024

TaskGraph
gcc 1024

TaskGraph
icc 1024

Generic gcc
2048

Generic icc
2048

TaskGraph
gcc 2048

TaskGraph
icc 2048

Ti
m

e
in

 S
ec

on
ds

Code Runtime

Compile Time

1024x1024 too small

2048x2048 big
enough

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

16Domain-specific optimisation
The TaskGraph library is a tool for dynamic
code generation and optimisation
Large performance benefits can be gained
from specialisation alone

But there’s more:
TaskGraph library builds SUIF intermediate
representation
Provides access to SUIF analysis and
transformation passes

SUIF (Stanford University Intermediate Form)
Detect and characterise dependences between
statements in loop nests
Restructure – tiling, loop fusion, skewing,
parallelisation etc

Tiling
Example: matrix multiply

Original TaskGraph
for matrix multiply

Code to interchange and tile

Loop tries all tile
sizes and finds

fastest

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

18Loop interchange and tiling
extern void taskGraph_1(void **params)
{

float (*a)[512];
float (*b)[512];
float (*c)[512];
int i;
int j;
int k;
int j_tile;
int k_tile;

a = *params;
b = params[1];
c = params[2];
for (i = 0; i <= 511; i++)

for (j_tile = 0; j_tile <= 511; j_tile += 64)
for (k_tile = 0; k_tile <= 511; k_tile += 64)

for (j = j_tile;
j <= min(511, 63 + j_tile); j++)

for (k = max(0, k_tile);
k <= min(511, 63 + k_tile); k++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

Original TaskGraph
for matrix multiply

Code to interchange and tile

Generated code
(Slightly tidied)

On Pentium 4-M, 1.8 GHz, 512KB L2 cache, 256 MB, running Linux 2.4 and icc 7.1.

Adapting to platform/resources

We can program a
search for the best
implementation for
our particular
problem size, on our
particular hardware

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

20Adapting to platform/resources

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

21Adapting to platform/resources

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

22Potential for user-directed restructuring
Programmer controls application of
sophisticated transformations
Performance benefits can be large – in this
example >8x
Different target architectures and problem
sizes need different combinations of
optimisations

ijk or ikj?
Hierarchical tiling
2d or 3d?
Copy reused submatrix into contiguous memory?

Matrix multiply is a simple example

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

23Cross-component loop fusion

Image processing
example
Blur, edge-detection
filters then sum with
original image

Final two additions using Intel
Performance Programming Library:

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

24Cross-component loop fusion

After loop fusion:

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

25Cross-component loop fusion

After loop fusion:

Simple fusion leads to small
improvement
Beats Intel library only on large images
Further fusion opportunities require
skewing/retiming

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

26Performance metadata informs cross-component optimisation

We know we can
fuse the two image
addition loops
However our
performance results
show this is only
sometimes faster

For small images
it’s faster to call the
Intel Performance
library functions
one-at-a-time
On this machine,
fusion is a huge
benefit – but only
for images >
4000x4000

How can we tell what to do?
Could use static rule “on a Pentium4 fuse if size
>4000”
Could experiment at runtime, measure whether
fusion is faster, roll-back if not
Could use hardware performance counters – if
TLB and L2 cache miss rate are low, fusion
unlikely to win

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

27Conclusions
TaskGraph library delivers run-time code
generation (as found in `C, Jak, MetaOCaml etc)
as a library, rather than a language extension
SUIF offers the metaprogrammer full power of a
restructuring compiler
Aggressive compiler techniques can be
especially effective:

The TaskGraph language is simple and clean
TaskGraphs are usually small
Compilation effort can be directed by the programmer
Domain knowledge can direct the focus and selection
of optimisations
Programmers can build and share domain-specific
optimisation components

Domain-specific optimisation components have lots of
potential

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

28Restructuring loops by metaprogramming
The taskgraph library is still at the prototype
stage
We have ambitious plans for this work:

Combining specialisation with dependence analysis
and restructuring

cf inspector-executor
Domain-specific optimisation components

Build collection of optimisation components specialised to
computational kernels of particular kinds
Eg stencil loops (Jacobi, red-black, Gauss-Seidel etc)

Combine
domain-specific information (eg algebraic properties of
tensor operators)
Problem-specific information (eg sizes and shapes of data)
Context-specific information (the application’s control and
data dependence structure)

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

29TaskGraph – open issues…
Types

TaskGraph library currently limited to scalars+arrays. How can
we use calling program’s data types, in an efficient and type
safe way?
How can we check that the generated code is being used in a
safe way?

Compilation overhead
Building and compiling small code fragments takes ~100ms.
Mostly in C compiler (not TGL or SUIF). This is a major
problem in some applications, eg JIT

Metaprogramming API
Much more work is needed on designing a flexible
representation of the dependence information we have (or
need) about a TaskGraph (eg Dan Quinlan’s ROSE)
Fundamental issue is to make metadata smaller than the data

Introspection and naming
Need to think more about how a metaprogrammer refers to the
internal structures of the subject code – “which loop did I
mean?”

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

30Domain-specific optimisation – open issues
Domain-specific optimisation is surprisingly hard to
find
Domain-specific information is hard to use

How to capture a software component's characteristics,
so that the component can be optimised to its context
(or mode) of use.
How to represent the space of possible optimisation
alternatives for a component, so that the best
combination of optimisations can be chosen when the
component is used.
How to represent the relevant internal structure of a
component so that domain-specific optimisations can be
implemented at a sufficiently abstract level to be re-
usable and easy to construct.

S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

31Components for performance programming

Component’s functional interface
Component’s adaptation interface
Component metadata

Characterizes how the component can adapt
Provides performance model
Provides elements from which composite
optimisation formulation can be assembled

Composition metaprogramming
Uses components’ metadata to find optimal
composite configuration
Uses component adaptation interfaces to
implement it
May also deploy and use instrumentation to refine
its decision

	Run-time code generation in C++ as a foundation for domain-specific optimization
	Mission statement
	Generative and adaptive methods in performance programming
	Construction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	The TaskGraph library
	
	
	
	
	
	Image convolution using TaskGraphs: performance
	Domain-specific optimisation
	Tiling
	Loop interchange and tiling
	
	Adapting to platform/resources
	Adapting to platform/resources
	Potential for user-directed restructuring
	Cross-component loop fusion
	Cross-component loop fusion
	Cross-component loop fusion
	Performance metadata informs cross-component optimisation
	Conclusions
	Restructuring loops by metaprogramming
	TaskGraph – open issues…
	Domain-specific optimisation – open issues
	Components for performance programming

