
1 STABLE PERFORMANCE FORCC-NUMA USING FIRST TOUCH PAGEPLACEMENT AND REACTIVE PROXIESSarah A. M. Talbot and Paul H. J. KellyDepartment of ComputingImperial College of Science, Technology and Medicine180 Queen's Gate, London SW7 2BZ, United Kingdom{samt,phjk}@doc.ic.ac.ukAbstract: A key problem for shared-memory systems is unpredictable perfor-mance. A critical in
uence on performance is page placement: a poor choiceof home node can severely degrade application performance because of the in-creased latency of accessing remote rather than local data. Two approaches topage placement are the simple policies \�rst-touch" and \round-robin", but nei-ther of these policies suits all applications. We examine the advantages of eachstrategy, the problems that can result from a poor choice of placement policy,and how these problems can be alleviated by using proxies. Proxies route re-mote read requests via intermediate nodes, where combining is used to reducecontention at the home node. Our simulation results indicate that by usingreactive proxies with �rst-touch page placement, performance is always betterthan using either page placement policy without proxies. These results suggestthat the application programmer can obtain stable performance without know-ing the underlying implementation of cc-numa, and can avoid time-consumingperformance tuning.Keywords: cache coherence protocols, shared-memory, combining, page place-ment.1.1 INTRODUCTIONUnpredictable performance anomalies have hampered the acceptance of coher-ent-cache non-uniformmemory access (cc-numa) shared-memory architectures.One source of performance problems is the location of shared data: each pageof shared data is allocated in distributed memory at a home node, by the1

2operating system, when it is �rst accessed. The choice of home node for a pageis commonly on a �rst-touch or round-robin basis, but neither of these policiesis suited to all applications, and a poor choice of page placement policy canhave a marked e�ect on the performance of an application.In this paper we examine the e�ects of simple page placement, and describehow a technique for reducing read contention in cc-numa machines can alle-viate problems with inappropriate page placement. In the proxy protocol, weassociate a small set of nodes with each location in shared memory, which actas intermediaries for remote read requests. Using execution-driven simulations,we show that using the reactive variant of proxies, in conjunction with �rst-touch page placement, yields performance which is always better than usingeither of the simple page placement strategies without proxies. This suggeststhat, by using �rst-touch page placement with reactive proxies, applicationprogrammers can be con�dent that they will obtain stable performance.The rest of the paper is structured as follows: page placement is discussedin Section 1.2, and the proxy protocol is explained in Section 1.3. We describeour simulated architecture and experimental design in Section 1.4, and presentthe results in Section 1.5. The relationship to previous work is discussed inSection 1.6, and in Section 1.7 we summarise our conclusions and give pointersto further work.1.2 PAGE PLACEMENT POLICIESIn distributed shared memory multiprocessors, shared data is partitioned intovirtual memory pages. Each page of shared data is then physically allocatedto a home node, by the operating system, as a result of the page fault resultingfrom the �rst access to the page. The choice of home node is commonly ona �rst-touch or round-robin basis. First-touch allocates the page to the nodewhich �rst accesses it, and this strategy aims to achieve data locality. It isimportant to distinguish between na��ve �rst-touch and �rst-touch after initiali-sation policies. A na��ve policy will allocate pages on a �rst-touch basis from thestart of program execution. This is a problem for applications where one pro-cess initialises everything before parallel processing commences, because all thepages end up on the same node (with over
ow to its neighbours). It is betterto use a �rst-touch after initialisation policy, where shared memory pages areonly permanently allocated to nodes once parallel processing has commenced,and this is the policy we use.In the round-robin approach, allocation cycles around the nodes, placing apage in turn at each node. This approach distributes the data more evenlyaround the system. Unfortunately, for applications which have been writtenwith locality in mind, it is likely that few, if any, of the pages accessed by anode will be allocated to it. As a result, �rst-touch is generally the default pageplacement policy, with round-robin being available as an option for improvingthe performance of some applications (e.g. on sgi's Origin2000 (Laudon andLenoski, 1997)).

STABLE PERFORMANCE FOR CC-NUMA 3The operating system may also provide facilities for pages to migrate to anew home node, or have copies of the page at other nodes. In recent years, therehas been much discussion of dynamic page migration and replication schemes,mainly in the context of distributed virtual shared memory (dvsm), where thesoftware implementation of shared memory on a message-passing distributedmemory architecture mandates the movement and/or copying of pages betweenprocessing nodes (e.g. Munin (Carter et al., 1995)). In contrast, where dynamicpaging features are available on cc-numa systems, they are usually implementedas options; they are not the default because of the overheads of capturing andacting upon access patterns (Verghese et al., 1996). There is the problemthat if two or more processors update data on the same page, then the pagemay \ping pong" between the new homes, or alternatively the coherence tra�cwill increase greatly. Even when a page is migrated to the node which usesit most, the average memory access times of other nodes may increase, andreacting too late to the need to migrate or replicate a page may be completelyuseless, and even costly (LaRowe and Schlatter Ellis, 1991). In addition, evenwhen all the migrations and replications are chosen correctly but they occur inbursts, performance may su�er due to page fault handler, switch, and memorycontention.Given the pitfalls of dynamic page placement, can we get reasonable perfor-mance on cc-numa machines using simple page placement policies? The bestperformance for shared memory machines can be obtained by tuning programsbased on page placement, but an important principle of shared memory is thatit provides application programmers with a simple programming model, wherethey do not have to worry about the underlying machine, and which leads tomore portable programs. We want to keep programmer involvement in pageplacement to a minimum, but still get reasonable performance.1.3 PROXIESProxying is an extension to standard distributed directory cache coherenceprotocols, and is designed to reduce node controller contention (Bennett et al.,1996). Normally, a read request message would be sent to the location's homenode, based on its physical page address. With proxying, a read request isdirected instead to another node controller, which acts as an intermediary.Figure 1.1 illustrates how more than one proxy could serve read requests fora given location, each handling requests from a di�erent processor subset. Inthis paper, the nodes are split into three proxy clusters (i.e. subsets): thissplit was chosen after experimentation and represents the best balance for oursimulated system between contention for the proxy nodes and the degree ofcombining. The mapping of each data block to its proxy node ensures thatrequests for successive data blocks are served by di�erent proxies. This balancesthe queueing of read request messages across the input bu�ers of all the nodecontrollers.If the proxy node has a copy of the requested data block in its cache, itreplies directly. If not, it requests the value from the home node, allocates the

4
Home

Proxy

Proxy

Home Home

Proxy

Proxy(a) Without proxies (b) With two proxy clusters (c) Read next data block(read Line l) (i.e. read Line l+ 1)Figure 1.1 Contention is reduced by routing reads via a proxy(a) First request to proxy has to be forwarded to the home node:
Client 1

Proxy

1. client makes read request
(proxy_read_request)

Home (read_request)
2. request is sent on to the home(b) Second client request, before data is returned, forms pending chain:

Client 1 Client 2
3. client makes read request

(proxy_read_request)

 to 1st client
4. client receives pointer

 (take_hole)
Proxy

Home(c) Data is passed to each client on the pending chain:
Client 1 Client 2

Home

7. data supplied to Client 1
(take_shared)

Proxy 6. data supplied to Client 2
(take_shared)

5. data supplied to the proxy
(take_shared)Figure 1.2 Combining of proxy requests

STABLE PERFORMANCE FOR CC-NUMA 5copy in its own cache, and replies to the client. Any requests for a particularblock which arrive at a proxy before it has obtained a copy from the homenode, are added to a distributed chain of pending requests for that block, andthe reply is forwarded down the pending chain, as illustrated in Figure 1.2.The current implementation is slightly unfair in that the �rst client will be thelast to receive the data: we are investigating the tradeo� between increasingthe hardware overhead to hold an additional pointer to the tail of each pendingproxy chain, and any performance bene�ts.Proxying requires a small amount of extra store to be added to each nodecontroller. We need to identify the data blocks for which a node is currentlyobtaining data as a proxy, and hold the head of each pending proxy chain. Thenode controller also has to handle the new proxy messages and state changes:we envisage implementing this in software on a programmable node controller.In the basic form of proxies, the application programmer uses program di-rectives to mark data structures for handling by the proxy protocol - all othershared data will be exempt from proxying. If the application programmermakes a poor choice of data structures, then the overheads incurred by proxiesmay outweigh any bene�ts and degrade performance. These overheads includethe extra work done by the proxy nodes handling the messages, proxy nodecache pollution, and longer sharing lists. In addition, the programmer may notmark data structures that would bene�t from proxying.Reactive proxies, which take advantage of the �nite bu�ering of real ma-chines, overcome these problems and do not need application program direc-tives. When a remote read request reaches a full bu�er, it will immediatelybe sent back across the network. When the originator receives the bouncedmessage, and the reactive proxies protocol is in e�ect, the arrival of the bu�er-bounced read request will trigger a proxy read (see Figure 1.3). A proxy readis only done in direct response to the arrival of a bu�er-bounced read request,so as soon as the queue length at the destination node has reduced to belowthe limit, read requests will no longer be bounced and no proxying will beemployed.
Home

bounce

Home

Proxy(a) Input bu�er full, some read requests bounce (b) Reactive proxy readsFigure 1.3 Bounced read requests are retried via proxies

61.4 SIMULATED ARCHITECTURE AND EXPERIMENTAL DESIGNThis paper uses results obtained from our execution-driven simulations of acc-numa system. Each node contains a processor with an integral �rst-levelcache (flc), a large second-level cache (slc), memory (dram), and a nodecontroller (see Figure 1.4). The node controller receives messages from, andsends messages to, both the network and the processor. The slc, dram, and thenode controller are connected using two decoupled buses. This decoupled busarrangement allows the processor to access the slc at the same time as the nodecontroller accesses the dram. We simulate in detail the contention between thelocal cpu and the node controller for the buses, between the cpu and incomingmessages for the node controller, and the use of the slc to hold proxy data.Table 1.1 summarises the speci�cations of the architecture. We simulate adirect-mapped cache, but note that its large size (4 Mb) will have a miss rateroughly equivalent to a 2-way associative cache of half that size (Hennessy andPatterson, 1996).We simulate a simpli�ed interconnection network, which follows the LogPmodel (Culler et al., 1993). We have parameterised the network and nodecontroller as follows:L: the latency experienced in each communication event: 10 cycles forlong messages (which include 64 bytes of data, i.e. one cache line), and 5cycles for all other messages.o: the occupancy of the node controller. We have adapted the LogPmodel to recognise the importance of the occupancy of a node controller,rather than just the overhead of sending and receiving messages (Holtet al., 1995). Simulated in more detail (see Table 1.2).g: the gap between successive sends or receives by a processor: 5 cycles.P: the number of nodes: set to 64.We limit our �nite length input message bu�ers to eight read requests. Therecan be more messages in an input bu�er, but once the queue length has risenabove eight, all read requests will be bounced back to the sender until thequeue length has fallen below the limit. This is done because we are interestedin the e�ect of �nite bu�ering on read requests rather than all messages, and wewished to be certain that all transactions would complete in our protocol. Thequeue length of pP , where P is the number of processing nodes, is an arbitrarybut reasonable limit, and was chosen to re
ect the limitations in queue lengththat one would expect in large cc-numa con�gurations.Each cache line has a home node (at page level) which: either holds a validcopy of the line (in slc and/or dram), or knows the identity of a node whichdoes have a valid copy (the owner); has guaranteed space in dram for the line;and holds directory information for the line (head and state of the sharing list).The benchmarks and their parameters are summarised in Table 1.3. ge isa simple Gaussian elimination program, similar to that used to study eagercombining (Bianchini and LeBlanc, 1994). We chose this benchmark because itis an example of widely-shared data, and should bene�t from using proxies, but

STABLE PERFORMANCE FOR CC-NUMA 7
Network
Controller

Memory

(DRAM)

(off-chip

SRAM)

SLC FLC

CPU

network buffers

Controller
Node

MEM bus

SLC bus

Network

Figure 1.4 The architecture of a nodeTable 1.1 Details of the simulated architectureCPU CPI 1.0Instruction set based on DEC AlphaInstruction cache All instruction accesses assumed primary cache hitsFirst level data cache Capacity 8 KbytesLine size 64 bytesDirect mapped, write-throughSecond-level cache Capacity 4 MbytesLine size 64 bytesDirect mapped, write-backDRAM Capacity In�nitePage size 8 KbytesNode controller Non-pipelinedService time and occupancy See Table 1.2Cycle time 10nsInterconnection network Topology full crossbarIncoming message queues 8 read requestsCache coherence protocol Invalidation-based, sequentially-consistent cc-NUMA.Home nodes allocated on \�rst-touch-after-initialis-ation" or \round-robin" basis. Distributed directory,based on the Stanford Distributed-Directory Protocol(Thapar and Delagi, 1990), using singly-linked sharing list.Table 1.2 Latencies of the most important node actionsoperation time (cycles)Acquire SLC bus 2Release SLC bus 1SLC lookup 6SLC line access 18Acquire MEM bus 3Release MEM bus 2DRAM lookup 20DRAM line access 24Initiate message send 5

8 Table 1.3 Benchmark applicationsapplication problem size shared data marked for basic proxyingBarnes 16K particles allFFT 64K points allFMM 8K particles f array (part of G Memory)GE 512 x 512 matrix entire matrixOcean-Contig 258 x 258 ocean q multi and rhs multiOcean-Non-Contig 258 x 258 ocean �elds, �elds2, wrk, and frcngWater-Nsq 512 molecules VAR and PFORCESwe also wanted to observe how its performance would be a�ected by the twosimple page placement policies. ge is interesting because it is a relatively long-running iterative code, where �rst-touch page placement becomes increasinglyinappropriate over the execution time.We selected six applications from the splash-2 suite (Woo et al., 1995), togive a cross-section of scienti�c shared memory applications. We used bothOcean benchmark applications, in order to study the e�ects of page place-ment, and proxies, on the \tuned for data locality" and \easy to understand"variants. The Ocean-Contig implementation allows the grid partitions to beallocated contiguously and entirely in the local memory of the processors that\own" them, improving data locality but increasing algorithm complexity. Incontrast, Ocean-Non-Contig implements the grids as 2-D arrays which preventsthe partitions being allocated contiguously, but it is easier to understand andprogram. Other work which only refers to Ocean can be assumed to be usingOcean-Contig.1.5 EXPERIMENTAL RESULTSIn this section, we present the results obtained from our simulations, and discussthe bene�ts and potential drawbacks of using proxies in conjunction with adefault page placement policy. Because �rst-touch is often the default pageplacement policy, we have normalised the results with respect to �rst-touch.The results for each benchmark are expressed as percentages, e.g. it will be100% for the relative execution time of each benchmark running with �rst-touch page placement and without proxies. The \number of messages" re
ectsthe total number of messages sent. The \remote read response" measures thedelay from sending a read request message to the receipt of the data.1.5.1 In�nite Bu�ersWithout proxies, ge performs better with round-robin page placement, showinga 7.3% speedup over �rst-touch (see Figure 1.5). This was expected because theresponsibility for updating rows of the matrix shifts during execution, so the�rst-touch placement slowly becomes inappropriate. Also, the remote accessbottlenecks get worse towards the end of execution, as the accesses concentrateon fewer and fewer home nodes. In contrast, the round-robin strategy will haveworse locality at the start of parallel execution, but it does not have the later

STABLE PERFORMANCE FOR CC-NUMA 9
||0

|50

|100

|150

no proxie
s

basic
 proxie

s

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes
ft rr

fft
ft rr

fmm
ft rr

100 100.2 99.9 100.5 100
90.9

99.2 95.6 100 99.7 101 100.6

||0

|50

|100

|150

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ge
ft rr

ocean-contig
ft rr

ocean-non-contig
ft rr

water-nsq
ft rr

100

72.7

92.7

72.4

100 96.6

118.7

134.1

100 98.2 103.8 104.8 100 100.7 100.2 100.9 Figure 1.5 Relative performance, 64 nodes, in�nite bu�ers
||0

|100
|200

|300

no proxie
s

basic
 proxie

s

re
la

tiv
e

m
es

sa
ge

s

barnes
ft rr

fft
ft rr

fmm
ft rr

100 106.6
122.7 125.4

100

167.4

217.4

318.5

100 100.2
125.7 126.2

||0

|100

|200

|300

re
la

tiv
e

m
es

sa
ge

s

ge
ft rr

ocean-contig
ft rr

ocean-non-contig
ft rr

water-nsq
ft rr

100
116.8 109.7 116.9

100

132

208.5

239.2

100 105.1 112.4 118
100

125.8
113

138.8 Figure 1.6 Relative number of messages, 64 nodes, in�nite bu�ersproblem of access concentration. Figure 1.6 shows that, for ge, the overallnumber of messages increases by nearly 10% when round-robin is used, whichre
ects the increase in remote access requests owing to the loss of locality. How-ever, because it avoids �rst-touch's problem of an increasing concentration ofrequests as the algorithm progresses, the service time for remote reads improvesby 19% (as shown in Figure 1.7).The performance ofge improves even more by using proxies. Both placementpolicies achieve more than 27% speedup over �rst-touch without proxies. Using

10
||0

|50

|100

|150

no proxie
s

basic
 proxie

s

re
la

tiv
e

re
ad

 r
es

po
ns

e

barnes
ft rr

fft
ft rr

fmm
ft rr

100
91.8 95.3 90.6

100

37.2

60.3

34.4

100

73.2
86.3

62.1

||0

|50

|100

|150

re
la

tiv
e

re
ad

 r
es

po
ns

e

ge
ft rr

ocean-contig
ft rr

ocean-non-contig
ft rr

water-nsq
ft rr

100

9.9

80.8

9.5

100
108.2

98
105.1 100 101.5

84.4 84.4

100 96.6 96.6 95.5 Figure 1.7 Relative remote read response times, 64 nodes, in�nite bu�ersproxies increases the overall number of messages by 17% in comparison to just�rst-touch, due to the additional proxy read requests and acknowledgements,but there is a dramatic reduction in the remote read response time of around90%, because the combining of requests at proxies reduces the read messagesqueueing at the home node(s).In contrast, the performance results for Ocean-Contig show �rst-touch asthe best page placement policy, because this application has been written toexploit data locality. Round-robin leads to more remote reads, degrading per-formance to be nearly 19% worse than with �rst-touch. Using proxies makesthe performance even worse for round-robin, increasing both mean remote readresponse time and the total number of messages, and these extra messagescause the network to overload. The best performance for the application isobtained using proxies with �rst-touch page placement.fmm, Ocean-Non-Contig, and Water-Nsq perform marginally better with�rst-touch page placement, whereas Barnes and fft perform marginally betterwith round-robin. In addition, fft, fmm, and Ocean-Non-Contig get their bestperformance using �rst-touch page placement with proxies, with speedups of9%, 0.3%, and 1.8% respectively. However, the performance of both Barnesand Water-Nsq su�ers when basic proxies are used, showing slowdowns of 0.2%and 0.7%. These slight drops in performance illustrate the main pitfall of basicproxies, i.e. a poor choice of data marked for proxying.1.5.2 Finite Incoming Message Bu�ersThe introduction of �nite bu�ers favours the �rst-touch page placement policy(see Figure 1.8). The round-robin policy su�ers because its lack of localityresults in more remote access requests, which increases the chance that aninput bu�er already has eight or more messages, and so it is more likely that

STABLE PERFORMANCE FOR CC-NUMA 11Table 1.4 Mean input bu�er queueing cyclesin�nite bu�ers �nite input bu�ersno proxies basic no proxies basic reactiveft rr ft rr ft rr ft rr ft rrBarnes 3.49 2.55 2.57 2.45 1.70 1.55 1.88 1.71 1.55 1.48FFT 70.98 28.83 7.74 7.01 11.83 7.82 6.96 6.13 7.00 5.92FMM 19.87 11.82 11.47 5.58 5.15 4.52 4.30 3.98 3.93 3.78GE 301.60 213.62 15.95 13.13 38.59 37.23 10.01 8.11 60.77 59.06OceanC 5.80 5.21 6.01 5.28 4.61 4.80 5.17 5.19 4.40 4.89OceanN 15.21 11.03 15.93 11.14 9.83 9.45 10.34 9.09 8.72 8.49Water 6.37 4.82 4.89 4.07 4.20 3.71 3.67 3.48 3.95 3.55
||0

|50

|100

|150

no proxie
s

basic
 proxie

s

reacti
ve

 proxie
s

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

barnes
first touch round robin

100 99.9 99.9 100.2 100.3 99.8

||0

|50

|100

|150

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

fft fmm ge
first touch round robin first touch round robin first touch round robin

100
91 89

100.1 95.2 91.1
100 99.8 99.7 100.9 100.7 100.7 100

71.3
77.8

98.8

71.1
78.2

||0

|50

|100

|150

no
rm

al
is

ed
 e

xe
cu

tio
n

tim
e

ocean-contig ocean-non-contig water-nsq
first touch round robin first touch round robin first touch round robin

100 101.1 97.8

145.7 149.8 148.6

100 100.7 95.6
105.3 108.5

98.1 100 100.7 99.8 100.3 101 100.2 Figure 1.8 Relative performance, 64 nodes, �nite bu�ersa read request will be bounced. For six of the seven benchmark applications,round-robin page placement performs worse than �rst-touch, and for ge, theperformance bene�t has been cut to 1.2%.Looking at the results with proxies, reactive proxies have the advantage thatthey handle all cases where contention occurs, but this is at the cost of a delaywhile the original read request is bounced by the home node. ge illustratesthis change in behaviour (see Figure 1.9), where the use of proxies results infewer messages because they stop the repeated sending and bouncing of readrequests. However, the relative read response time does not improve as much

12
||0

|100

|200

|300

no proxie
s

basic
 proxie

s

reacti
ve

 proxie
s

re
la

tiv
e

m
es

sa
ge

s

barnes
first touch round robin

100 106.1 99.2
122.4 120.5 121.6

||0

|100

|200

|300

re
la

tiv
e

m
es

sa
ge

s

fft fmm ge
first touch round robin first touch round robin first touch round robin

100

139.7

86.6

195.6

265.9

182.9

100 97 95.6
122 120 119.5

100

64 75.8
99.1

62.8
79.2

||0

|100

|200

|300

re
la

tiv
e

m
es

sa
ge

s

ocean-contig ocean-non-contig water-nsq
first touch round robin first touch round robin first touch round robin

100

130.7

99.3

205

240.3

209.9

100 104.8 96.9 108.3 110.9 107.6 100
124.1

99.6
112.9

136.6
114.1 Figure 1.9 Relative number of messages, 64 nodes, �nite bu�ersfor reactive as it does for basic proxies, as is shown in Figure 1.10. This isbecause of the initial delay, of read request and bounce, before a proxy readrequest is made. In addition, for ge, the mean input bu�er queueing cyclesincrease with the introduction of proxies: this is because there are now moremessages being accepted into the bu�ers rather than bouncing (see Table 1.4).Using reactive proxies in conjunction with �rst-touch page placement resultsin the best performance for six of the seven benchmarks. The exception is ge:as we have already noted, it is particularly well-suited to the targeted approachof basic proxies. However, it still shows a marked performance improvement of22.2% with reactive proxies. This suggests that a default policy of �rst-touchpage placement with reactive proxies will give stable performance, and it avoidsthe more spectacular performance pitfalls that can occur using round-robin,such as occur for Ocean-Contig(Figure 1.8).1.5.3 SummaryThe choice of the best simple page placement policy, in the absence of anyadditional mechanism such as proxies or dynamic page migration/replication,depends on the individual applications. Some applications, such as our gebenchmark, suit the even distribution of shared data given by round-robin.Other applications, such as Ocean-Contig, have been speci�cally written to

STABLE PERFORMANCE FOR CC-NUMA 13
||0

|50

|100

|150

no proxie
s

basic
 proxie

s

reacti
ve

 proxie
s

re
la

tiv
e

re
ad

 r
es

po
ns

e

barnes
first touch round robin

100
92.9 90.5 95.2 91.7 89.3

||0

|50

|100

|150

re
la

tiv
e

re
ad

 r
es

po
ns

e

fft fmm ge
first touch round robin first touch round robin first touch round robin

100

37.8
31.4

61

34.6 29.5

100

73.2

56.2

86.3

62.1 56.2

100

9.6

40.1

97

9.1

41

||0

|50

|100

|150

re
la

tiv
e

re
ad

 r
es

po
ns

e

ocean-contig ocean-non-contig water-nsq
first touch round robin first touch round robin first touch round robin

100
108.2

93.9 99
107.1

96.9 100 99.3
86.7

79 76.9 73.4

100 96.6
87.5

100 98.9
89.8 Figure 1.10 Relative remote read response times, 64 nodes, �nite bu�ersexploit data locality, and so suit the �rst-touch policy. This leaves the problemthat the best performance may only be obtained by experienced programmerswho know which page placement policy to choose, or by engaging in time-consuming performance tuning.The use of proxies alters this situation. Proxies introduce a �ner-grainedsharing, at the level of data blocks rather than pages, and reduce queueing (asshown in Table 1.4). For basic proxies, this can be detrimental to performancewhere inappropriate data structures are marked as \hot", because every load(for addresses subject to proxying) goes via a proxy, whereas without prox-ies no indirection would be involved. Using reactive proxies has the bene�tthat proxies are only used when contention occurs at run-time: for six of ourbenchmarks this, in conjunction with �rst-touch page placement, resulted intheir best performance. Water-Nsq illustrated this, where basic proxies de-graded performance, whereas reactive proxies improved performance. Mostimportantly, �rst-touch page placement in conjunction with reactive proxiesalways resulted in performance that was better than either page placementpolicy without proxies. There are some applications, such as ge, where usingreactive, rather than basic, proxies results in a smaller performance improve-ment because of the delay in invoking proxies; however, the application stillshowed a noticeable speedup over not using proxies.

141.6 RELATED WORKThe e�ects of page placement policy have been investigated for shared memoryarchitectures where the coherence protocol is implemented in hardware (for cc-numa) or in software (for dvsm) (Marchetti et al., 1995). Using a base policyof round-robin, they also considered a �rst-touch after initialisation scheme, adynamic migration scheme, and three replication schemes. Their �rst-touchscheme improved the performance of all their applications compared to na��ve�rst-touch, regardless of whether coherence was maintained in hardware orsoftware. For their �ve applications, there was no performance bene�t fromthe dynamic migration or replication schemes. Their choice of benchmarks waslimited, in that they did not include an example of algorithms such as GaussianElimination which are better suited to round-robin page placement.A study of dynamic page migration and replication on Stanford flash, anddistributed flash, considered three dynamic page placement policies, migra-tion and/or replication, and three simple policies of round-robin, �rst-touch,and post facto (Verghese et al., 1996). They found that �rst-touch always gavebetter performance than round-robin for their workloads, and that post factowas the best simple policy. Their dynamic policies generally obtained betterperformance than �rst-touch, and were never worse, even given the overheadsassociated with implementing the dynamic policies. However, three of their�ve workloads were multiprogrammed, and this put their �rst-touch policy ata distinct disadvantage. For example, in their splash workload, the jobs wereredistributed across the processors as applications entered and left the system,but they did not re-invoke �rst-touch page placement when a job migrated.Proxies allow read requests for data to be combined in controllers away fromthe home node: this is a restricted instance of the combining of atomic read-modify-write operations, e.g. as proposed for the NYU Ultracomputer (Gottliebet al., 1983), although proxies retain the data in cache, which allows for morecombining. Caching extra copies of data to speed-up retrieval time for remotereads has been explored for hierarchical architectures, e.g. in the Swedish In-stitute of Computer Science ddm (Haridi and Hagersten, 1989). The proxiesapproach is di�erent because it does not use a �xed hierarchy; instead it allowsrequests for copies of successive data lines to be serviced by di�erent proxies.Eager combining uses intermediate nodes which act like proxies for \hot"pages, i.e. the programmer is expected to mark data structures (Bianchini andLeBlanc, 1994). Unlike proxies, their choice of server node is based on thepage address rather than data block address. In addition, their scheme eagerlyupdates all proxies whenever a newly-updated value is read, unlike our protocol,where data is allocated in proxies on demand, which reduces cache pollution.The glow extensions for widely-shared data are, like proxies, designed tobe added to existing cache coherence protocols (Kaxiras and Goodman, 1996).glow uses agents to intercept requests for widely-shared data at selected net-work switch nodes. At present, glow requires application program directivesto identify widely-shared data.

STABLE PERFORMANCE FOR CC-NUMA 151.7 CONCLUSIONSWe have used execution driven simulations to study the bene�ts of using prox-ies and simple page placement. Our results con�rm that there is no idealdefault policy for page placement. However, by using reactive proxies with�rst-touch page placement, we obtained better performance than using eitherpage placement policy without proxies. This suggests that, with a default of�rst-touch page placement with reactive proxies, application programmers canbe con�dent that they will obtain stable performance. The programmer willnot have to worry about the cc-numa implementation, and will rarely have todo time-consuming performance tuning.There are some overheads associated with proxies. As we noted in Sec-tion 1.3, there are the costs of implementing proxies: in hardware to hold thehead of each pending proxy chain, and in software to handle the additionalmessage types and state changes. In addition, there will be cache pollution,because allocating a proxy copy in the cache may displace another line, withinvalidation overhead for the displaced line, and possibly a later cache miss.However, these costs may be balanced by the considerable bene�ts of perfor-mance stability, the promise of architecture-independent application programs,and the saving of performance tuning e�ort.Study of further benchmarks will provide deeper insight into the trade-o�s,and in particular we are looking for applications which have not been carefullyoptimised for existing architectures. We are currently investigating the cachepollution e�ect, by examining both a \no-allocate" proxy scheme (where nodesdo not cache the proxy lines), and the use of a separate proxy cache. We planto continue our simulation work to evaluate how changing the architecturalbalance (e.g. slower interconnection networks) a�ects our conclusions.AcknowledgmentsThis work was funded by the U.K. Engineering and Physical Sciences Research Coun-cil: through the CRAMP project (GR/J 99117), and a Research Studentship. Wewould also like to thank Ashley Saulsbury for the alite simulator, and Andrew Ben-nett and the anonymous referees for their comments on this work.ReferencesAndrew J. Bennett, Paul H. J. Kelly, Jacob G. Refstrup, and Sarah A. M.Talbot. Using proxies to reduce cache controller contention in large shared-memory multiprocessors. In Luc Boug�e et al, editor, Euro-Par 96 EuropeanConference On Parallel Architectures, Lyon, volume 1124 of Lecture Notesin Computer Science, pages 445{452. Springer-Verlag, 1996.Ricardo Bianchini and Thomas J. LeBlanc. Eager combining: a coherency pro-tocol for increasing e�ective network and memory bandwidth in shared-memory multiprocessors. In 6th IEEE Symposium on Parallel and Distribu-ted Processing (SPDP), Dallas, pages 204{213, October 1994.

16John B. Carter, John K. Bennett, and Willy Zwaenepoel. Techniques for re-ducing consistency-related communication in distributed shared memory sys-tems. ACM Trans. on Computer Systems, 13(3):205{243, August 1995.David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schau-ser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP:Towards a realistic model of parallel computation. 4th Symposium on Prin-ciples and Practice of Parallel Programming, in Sigplan Notices, 28(7):1{12,July 1993.Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuli�e, LarryRudolph, and Marc Snir. The NYU Ultracomputer { designing an MIMDshared memory parallel computer. IEEE Transactions on Computers, C-32(2):175{189, February 1983.Seif Haridi and Erik Hagersten. The cache coherence protocol of the DataDi�usion Machine. In E. Odijk, M. Rem, and J.-C Syre, editors, PARLE 89Parallel Architectures and Languages Europe, Eindhoven, June 1989, vol.365 of Lecture Notes in Computer Science, pages 1{18. Springer-Verlag.John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-tative Approach. Morgan Kaufman, 2nd edition, 1996.Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and JohnHennessy. The e�ects of latency, occupancy and bandwidth in distributedshared memory multiprocessors. Technical Report CSL-TR-660, ComputerSystems Laboratory, Stanford University, January 1995.Stefanos Kaxiras and James R. Goodman. The glow cache coherence protocolextensions for widely shared data. In 10th ACM International Conferenceon Supercomputing, May 25-28, Philadelphia, PA, pages 35{43, May 1996.Richard P. LaRowe Jr and Carla Schlatter Ellis. Experimental comparison ofmemory management policies for NUMA multiprocessors. ACM Transac-tions on Computer Systems, 9(4):319{363, November 1991.James Laudon and Daniel Lenoski. The SGI Origin 2000: A CC-NUMA highlyscalable server. 24th Annual International Symposium on Computer Archi-tecture, Denver, May 1997, in Computer Architecture News, 25(2):241{251.Michael Marchetti, Leonidas Kontothanassis, Ricardo Bianchini, and MichaelL. Scott. Using simple page placement policies to reduce the cost of cache �llsin coherent shared-memory systems. In 9th International Parallel ProcessingSymposium (IPPS), Santa Barbara, CA, pages 480{485, April 1995.Manu Thapar and Bruce Delagi. Stanford distributed-directory protocol. IEEEComputer, 23(6):78{80, June 1990.Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operatingsystem support for improving data locality on CC-NUMA compute servers.ASPLOS-VII, Cambridge, Mass, in ACM SIGPLAN Notices, 31(9):279{289,September 1996.Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, andAnoop Gupta. The SPLASH-2 programs: Characterization and methodolog-ical considerations. In 22nd Annual International Symposium on ComputerArchitecture, June 1995, in Computer Architecture News, 23(2):24{36.

