]. STABLE PERFORMANCE FOR
CC-NUMA USING FIRST TOUCH PAGE
PLACEMENT AND REACTIVE PROXIES

Sarah A. M. Talbot and Paul H. J. Kelly

Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, United Kingdom

{samt,phjk}@doc.ic.ac.uk

Abstract: A key problem for shared-memory systems is unpredictable perfor-
mance. A critical influence on performance is page placement: a poor choice
of home node can severely degrade application performance because of the in-
creased latency of accessing remote rather than local data. Two approaches to
page placement are the simple policies “first-touch” and “round-robin”, but nei-
ther of these policies suits all applications. We examine the advantages of each
strategy, the problems that can result from a poor choice of placement policy,
and how these problems can be alleviated by using proxies. Proxies route re-
mote read requests via intermediate nodes, where combining is used to reduce
contention at the home node. Our simulation results indicate that by using
reactive proxies with first-touch page placement, performance is always better
than using either page placement policy without proxies. These results suggest
that the application programmer can obtain stable performance without know-
ing the underlying implementation of cc-NUMA, and can avoid time-consuming
performance tuning.

Keywords: cache coherence protocols, shared-memory, combining, page place-
ment.

1.1 INTRODUCTION

Unpredictable performance anomalies have hampered the acceptance of coher-
ent-cache non-uniform memory access (cc-NUMA) shared-memory architectures.
One source of performance problems is the location of shared data: each page
of shared data is allocated in distributed memory at a home node, by the

2

operating system, when it is first accessed. The choice of home node for a page
is commonly on a first-touch or round-robin basis, but neither of these policies
is suited to all applications, and a poor choice of page placement policy can
have a marked effect on the performance of an application.

In this paper we examine the effects of simple page placement, and describe
how a technique for reducing read contention in cc-NUMA machines can alle-
viate problems with inappropriate page placement. In the proxy protocol, we
assoclate a small set of nodes with each location in shared memory, which act
as intermediaries for remote read requests. Using execution-driven simulations,
we show that using the reactive variant of proxies, in conjunction with first-
touch page placement, yields performance which i1s always better than using
either of the simple page placement strategies without proxies. This suggests
that, by using first-touch page placement with reactive proxies, application
programmers can be confident that they will obtain stable performance.

The rest of the paper is structured as follows: page placement is discussed
in Section 1.2, and the proxy protocol is explained in Section 1.3. We describe
our simulated architecture and experimental design in Section 1.4, and present
the results in Section 1.5. The relationship to previous work is discussed in
Section 1.6, and in Section 1.7 we summarise our conclusions and give pointers
to further work.

1.2 PAGE PLACEMENT POLICIES

In distributed shared memory multiprocessors, shared data is partitioned into
virtual memory pages. Each page of shared data is then physically allocated
to a home node, by the operating system, as a result of the page fault resulting
from the first access to the page. The choice of home node is commonly on
a first-touch or round-robin basis. First-touch allocates the page to the node
which first accesses it, and this strategy aims to achieve data locality. It is
important to distinguish between naive first-touch and first-touch after initiali-
sation policies. A naive policy will allocate pages on a first-touch basis from the
start of program execution. This is a problem for applications where one pro-
cess initialises everything before parallel processing commences, because all the
pages end up on the same node (with overflow to its neighbours). It is better
to use a first-touch after initialisation policy, where shared memory pages are
only permanently allocated to nodes once parallel processing has commenced,
and this is the policy we use.

In the round-robin approach, allocation cycles around the nodes, placing a
page in turn at each node. This approach distributes the data more evenly
around the system. Unfortunately, for applications which have been written
with locality in mind, it is likely that few, if any, of the pages accessed by a
node will be allocated to it. As a result, first-touch is generally the default page
placement policy, with round-robin being available as an option for improving
the performance of some applications (e.g. on sar’s Origin2000 (Laudon and

Lenoski, 1997)).

STABLE PERFORMANCE FOR CC-NUMA 3

The operating system may also provide facilities for pages to migrate to a
new home node, or have copies of the page at other nodes. In recent years, there
has been much discussion of dynamic page migration and replication schemes,
mainly in the context of distributed virtual shared memory (Dvsm), where the
software implementation of shared memory on a message-passing distributed
memory architecture mandates the movement and/or copying of pages between
processing nodes (e.g. Munin (Carter et al., 1995)). In contrast, where dynamic
paging features are available on cc-NUMA systems, they are usually implemented
as options; they are not the default because of the overheads of capturing and
acting upon access patterns (Verghese et al., 1996). There is the problem
that if two or more processors update data on the same page, then the page
may “ping pong” between the new homes, or alternatively the coherence traffic
will increase greatly. Even when a page 1s migrated to the node which uses
it most, the average memory access times of other nodes may increase, and
reacting too late to the need to migrate or replicate a page may be completely
useless, and even costly (LaRowe and Schlatter Ellis, 1991). In addition, even
when all the migrations and replications are chosen correctly but they occur in
bursts, performance may suffer due to page fault handler, switch, and memory
contention.

Given the pitfalls of dynamic page placement, can we get reasonable perfor-
mance on cc-NUMA machines using simple page placement policies? The best
performance for shared memory machines can be obtained by tuning programs
based on page placement, but an important principle of shared memory is that
it provides application programmers with a simple programming model, where
they do not have to worry about the underlying machine, and which leads to
more portable programs. We want to keep programmer involvement in page
placement to a minimum, but still get reasonable performance.

1.3 PROXIES

Proxying is an extension to standard distributed directory cache coherence
protocols, and is designed to reduce node controller contention (Bennett et al.,
1996). Normally, a read request message would be sent to the location’s home
node, based on its physical page address. With proxying, a read request is
directed instead to another node controller, which acts as an intermediary.
Figure 1.1 illustrates how more than one proxy could serve read requests for
a given location, each handling requests from a different processor subset. In
this paper, the nodes are split into three proxy clusters (i.e. subsets): this
split was chosen after experimentation and represents the best balance for our
simulated system between contention for the proxy nodes and the degree of
combining. The mapping of each data block to its proxy node ensures that
requests for successive data blocks are served by different proxies. This balances
the queueing of read request messages across the input buffers of all the node
controllers.

If the proxy node has a copy of the requested data block in its cache, it
replies directly. If not, it requests the value from the home node, allocates the

(a) Without proxies (b) With two proxy clusters (¢) Read next data block
(read Line 1) (i.e. read Line [4+ 1)

Figure 1.1 Contention is reduced by routing reads via a proxy

(a) First request to proxy has to be forwarded to the home node:

1. client makes read request
\ (proxy_read_request)
/2. request is sent on to the home
- (read_request)

(b) Second client request, before data is returned, forms pending chain:

3. client makes read request
(proxy_read_request)

4. client receives pointer
to 1st client

(take_hole)

(c) Data is passed to each client on the pending chain:

7. data supplied to Client 1

(take_shared) -
A)pplied to Client 2

(take_shared)

/cm; supplied to the proxy

(take_shared)

Figure 1.2 Combining of proxy requests

STABLE PERFORMANCE FOR CC-NUMA 5

copy in its own cache, and replies to the client. Any requests for a particular
block which arrive at a proxy before it has obtained a copy from the home
node, are added to a distributed chain of pending requests for that block, and
the reply is forwarded down the pending chain, as illustrated in Figure 1.2.
The current implementation is slightly unfair in that the first client will be the
last to receive the data: we are investigating the tradeoff between increasing
the hardware overhead to hold an additional pointer to the tail of each pending
proxy chain, and any performance benefits.

Proxying requires a small amount of extra store to be added to each node
controller. We need to identify the data blocks for which a node is currently
obtaining data as a proxy, and hold the head of each pending proxy chain. The
node controller also has to handle the new proxy messages and state changes:
we envisage implementing this in software on a programmable node controller.

In the basic form of proxies, the application programmer uses program di-
rectives to mark data structures for handling by the proxy protocol - all other
shared data will be exempt from proxying. If the application programmer
makes a poor choice of data structures, then the overheads incurred by proxies
may outweigh any benefits and degrade performance. These overheads include
the extra work done by the proxy nodes handling the messages, proxy node
cache pollution, and longer sharing lists. In addition, the programmer may not
mark data structures that would benefit from proxying.

Reactive proxies, which take advantage of the finite buffering of real ma-
chines, overcome these problems and do not need application program direc-
tives. When a remote read request reaches a full buffer, it will immediately
be sent back across the network. When the originator receives the bounced
message, and the reactive proxies protocol is in effect, the arrival of the buffer-
bounced read request will trigger a proxy read (see Figure 1.3). A proxy read
is only done in direct response to the arrival of a buffer-bounced read request,
so as soon as the queue length at the destination node has reduced to below
the limit, read requests will no longer be bounced and no proxying will be
employed.

—
bounce

(a) Input buffer full, some read requests bounce (b) Reactive proxy reads

Figure 1.3 Bounced read requests are retried via proxies

6

1.4 SIMULATED ARCHITECTURE AND EXPERIMENTAL DESIGN

This paper uses results obtained from our execution-driven simulations of a
cc-NUMA system. FEach node contains a processor with an integral first-level
cache (FLC), a large second-level cache (SLC), memory (DRAM), and a node
controller (see Figure 1.4). The node controller receives messages from, and
sends messages to, both the network and the processor. The sL.C, DRAM, and the
node controller are connected using two decoupled buses. This decoupled bus
arrangement allows the processor to access the SLC at the same time as the node
controller accesses the DRAM. We simulate in detail the contention between the
local cpU and the node controller for the buses, between the ¢PU and incoming
messages for the node controller, and the use of the sLc to hold proxy data.
Table 1.1 summarises the specifications of the architecture. We simulate a
direct-mapped cache, but note that its large size (4 Mb) will have a miss rate
roughly equivalent to a 2-way associative cache of half that size (Hennessy and
Patterson, 1996).

We simulate a simplified interconnection network, which follows the LogP
model (Culler et al., 1993). We have parameterised the network and node
controller as follows:

m [: the latency experienced in each communication event: 10 cycles for
long messages (which include 64 bytes of data, i.e. one cache line), and 5
cycles for all other messages.

m o the occupancy of the node controller. We have adapted the LogP
model to recognise the importance of the occupancy of a node controller,
rather than just the overhead of sending and receiving messages (Holt
et al., 1995). Simulated in more detail (see Table 1.2).

m g the gap between successive sends or receives by a processor: b cycles.

m P: the number of nodes: set to 64.

We limit our finite length input message buffers to eight read requests. There
can be more messages in an input buffer, but once the queue length has risen
above eight, all read requests will be bounced back to the sender until the
queue length has fallen below the limit. This is done because we are interested
in the effect of finite buffering on read requests rather than all messages, and we
wished to be certain that all transactions would complete in our protocol. The
queue length of VP, where P is the number of processing nodes, is an arbitrary
but reasonable limit, and was chosen to reflect the limitations in queue length
that one would expect in large cc-NUMA configurations.

Fach cache line has a home node (at page level) which: either holds a valid
copy of the line (in sLc and/or DRAM), or knows the identity of a node which
does have a valid copy (the owner); has guaranteed space in DRAM for the line;
and holds directory information for the line (head and state of the sharing list).

The benchmarks and their parameters are summarised in Table 1.3. GE is
a simple Gaussian elimination program, similar to that used to study eager
combining (Bianchini and LeBlanc, 1994). We chose this benchmark because it
is an example of widely-shared data, and should benefit from using proxies, but

STABLE PERFORMANCE FOR CC-NUMA

network buffers ----> ’JA_\ le_l

Network
Controller

!

Node Memory
Controller (DRAM)

sLe FLC
(off-chip
SRAM) CPU

Figure 1.4 The architecture of a node

Table 1.1 Details of the simulated architecture
CPU CPI 1.0
Instruction set based on DEC Alpha
Instruction cache All instruction accesses assumed primary cache hits
First level data cache Capacity 8 Kbytes
Line size 64 bytes
Direct mapped, write-through
Second-level cache Capacity 4 Mbytes
Line size 64 bytes
Direct mapped, write-back
DRAM Capacity Infinite
Page size 8 Kbytes
Node controller Non-pipelined
Service time and occupancy See Table 1.2
Cycle time 10ns
Interconnection network Topology full crossbar
Incoming message queues 8 read requests

Cache coherence protocol

Invalidation-based, sequentially-consistent cc-NUMA.
Home nodes allocated on “first-touch-after-initialis-
ation” or “round-robin” basis. Distributed directory,
based on the Stanford Distributed-Directory Protocol
(Thapar and Delagi, 1990), using singly-linked sharing list.

Table 1.2 Latencies of the most important node actions
operation time (cycles)
Acquire SLC bus
Release SLC bus 1
SLC lookup 6
SLC line access 18
Acquire MEM bus 3
Release MEM bus 2
DRAM lookup 20
DRAM line access 24
Initiate message send 5

Table 1.3 Benchmark applications

application problem size shared data marked for basic proxying
Barnes 16K particles all

FFT 64K points all

FMM 8K particles f_array (part of G_Memory)

GE 512 x 512 matrix entire matrix

Ocean-Contig 258 x 258 ocean gq-multi and rhs_multi
Ocean-Non-Contig 258 x 258 ocean fields, fields2, wrk, and frcng
Water-Nsq 512 molecules VAR and PFORCES

we also wanted to observe how its performance would be affected by the two
simple page placement policies. GE is interesting because it is a relatively long-
running iterative code, where first-touch page placement becomes increasingly
inappropriate over the execution time.

We selected six applications from the sPLASH-2 suite (Woo et al., 1995), to
give a cross-section of scientific shared memory applications. We used both
Ocean benchmark applications, in order to study the effects of page place-
ment, and proxies, on the “tuned for data locality” and “easy to understand”
variants. The Ocean-Contig implementation allows the grid partitions to be
allocated contiguously and entirely in the local memory of the processors that
“own” them, improving data locality but increasing algorithm complexity. In
contrast, Ocean-Non-Contig implements the grids as 2-D arrays which prevents
the partitions being allocated contiguously, but it is easier to understand and
program. Other work which only refers to Ocean can be assumed to be using
Ocean-Contig.

1.5 EXPERIMENTAL RESULTS

In this section, we present the results obtained from our simulations, and discuss
the benefits and potential drawbacks of using proxies in conjunction with a
default page placement policy. Because first-touch 1s often the default page
placement policy, we have normalised the results with respect to first-touch.
The results for each benchmark are expressed as percentages, e.g. it will be
100% for the relative execution time of each benchmark running with first-
touch page placement and without proxies. The “number of messages” reflects
the total number of messages sent. The “remote read response” measures the
delay from sending a read request message to the receipt of the data.

1.5.1 Infinite Buffers

Without proxies, GE performs better with round-robin page placement, showing
a 7.3% speedup over first-touch (see Figure 1.5). This was expected because the
responsibility for updating rows of the matrix shifts during execution, so the
first-touch placement slowly becomes inappropriate. Also, the remote access
bottlenecks get worse towards the end of execution, as the accesses concentrate
on fewer and fewer home nodes. In contrast, the round-robin strategy will have
worse locality at the start of parallel execution, but it does not have the later

STABLE PERFORMANCE FOR CC-NUMA 9

g 150 -
= &
.5 OJF\Q? Q@""
S 100| 100 1002 99 1005 100 92 g5 100 997 101 100.6 o 5O
g : < i
[
2 N
_% 50
©
E
2 o0
ft rr ft r ft r
barnes fft fmm
o 150 .
£ 134.1
5
5 100 : 100 ggp 10381048 100 1007 1002 1009
Q
x
()
°
K 50
©
E
2 o0
ft rr ft r ft r ft rr
ge ocean-contig ocean-non-contig water-nsq
Figure 1.5 Relative performance, 64 nodes, infinite buffers
3185
300
3
%
[} R4
) 4
% 200 ¢
$ & e
f 1227 125.4 1257 126.2 S A
2 100 100 1068 100 100.2 . -
©
o
0
ft rr
barnes fft fmm
300 .
2]
(0]
4
A 200
Q
£
2 100l w0 1168 1097 116.9 oo 1051 124 18
kS
[
0

ft r ft r ft rr
ge ocean-contig ocean-non-contig water-nsq

Figure 1.6 Relative number of messages, 64 nodes, infinite buffers

problem of access concentration. Figure 1.6 shows that, for GE, the overall
number of messages increases by nearly 10% when round-robin is used, which
reflects the increase in remote access requests owing to the loss of locality. How-
ever, because it avoids first-touch’s problem of an increasing concentration of
requests as the algorithm progresses, the service time for remote reads improves
by 19% (as shown in Figure 1.7).

The performance of GE improves even more by using proxies. Both placement
policies achieve more than 27% speedup over first-touch without proxies. Using

—_
o

150
[}
? .
(NS
2 ¢ &
o 100 OQ\ 05)\0
o <& o
=]
S
g H n
= 50|
[}
=
8
2 o
barnes fft fmm
150
3
c
<] 108.2 105.1
2 100| 100 100 98 100 1015 100 966 966 955
9 84.4 84.4
°
8
= 50|
[}
=
8
2 o
ft rr ft r ft r ft rr
ge ocean-contig ocean-non-contig water-nsq

Figure 1.7 Relative remote read response times, 64 nodes, infinite buffers

proxies increases the overall number of messages by 17% in comparison to just
first-touch, due to the additional proxy read requests and acknowledgements,
but there is a dramatic reduction in the remote read response time of around
90%, because the combining of requests at proxies reduces the read messages
queueing at the home node(s).

In contrast, the performance results for Ocean-Contig show first-touch as
the best page placement policy, because this application has been written to
exploit data locality. Round-robin leads to more remote reads, degrading per-
formance to be nearly 19% worse than with first-touch. Using proxies makes
the performance even worse for round-robin, increasing both mean remote read
response time and the total number of messages, and these extra messages
cause the network to overload. The best performance for the application is
obtained using proxies with first-touch page placement.

FMM, Ocean-Non-Contig, and Water-Nsq perform marginally better with
first-touch page placement, whereas Barnes and FFT perform marginally better
with round-robin. In addition, FFT, FMM, and Ocean-Non-Contig get their best
performance using first-touch page placement with proxies, with speedups of
9%, 0.3%, and 1.8% respectively. However, the performance of both Barnes
and Water-Nsq suffers when basic proxies are used, showing slowdowns of 0.2%
and 0.7%. These slight drops in performance illustrate the main pitfall of basic
proxies, t.e. a poor choice of data marked for proxying.

1.5.2 Finite Incoming Message Buflers

The introduction of finite buffers favours the first-touch page placement policy
(see Figure 1.8). The round-robin policy suffers because its lack of locality
results in more remote access requests, which increases the chance that an
input buffer already has eight or more messages, and so it is more likely that

STABLE PERFORMANCE FOR CC-NUMA 11

Table 1.4 Mean input buffer queueing cycles

infinite buffers finite input buffers
no proxies basic no proxies basic reactive
ft (3 ft (3 ft (3 ft (3 ft (3
Barnes 3.49 2.55 2.57 2.45 1.70 1.55 1.88 1.71 1.55 1.48
FFT 70.98 28.83 7.74 7.01 11.83 7.82 6.96 6.13 7.00 5.92
FMM 19.87 11.82 11.47 5.58 5.15 4.52 4.30 3.98 3.93 3.78
GE 301.60 213.62 15.95 13.13 | 3859 | 37.23 10.01 8.11 60.77 | 59.06
OceanC 5.80 5.21 6.01 5.28 4.61 4.80 5.17 | 5.19 4.40 4.89
OceanN 15.21 11.03 15.93 11.14 9.83 9.45 10.34 9.09 8.72 8.49
Water 6.37 4.82 4.89 4.07 4.20 3.71 3.67 | 3.48 3.95 3.55
® -
g 150 o
= & ¥ $©
2 S N &
S 100 | 100 999 99.9 100.2 100.3 99.8 & & ,bc}\
§ ® N @
o
s H B
9 50 |
©
£
2 o
first touch round robin
g 150 - barnes
F
= 100.9 100.7 100.7
§ 100 | 1001 g5 5 011 100 99.8 99.7 100 98.8
g 113 778 711 782
el
9 50 |
©
3
2 o0
first touch round robin first touch round robin first touch round robin
fmm ge
g 150 . 145,7 149.8 148.6
F
S 100 | 100 1011 g7g 100 100.7 gc o 10531085 100 100.7 99.8 100.3 101 100.2
]
x
o
el
K 50 |
©
£
g o
first touch round robin first touch round robin first touch round robin
ocean-contig ocean-non-contig water-nsq

Figure 1.8 Relative performance, 64 nodes, finite buffers

a read request will be bounced. For six of the seven benchmark applications,
round-robin page placement performs worse than first-touch, and for GE, the
performance benefit has been cut to 1.2%.

Looking at the results with proxies, reactive proxies have the advantage that
they handle all cases where contention occurs, but this is at the cost of a delay
while the original read request is bounced by the home node. GE illustrates
this change in behaviour (see Figure 1.9), where the use of proxies results in
fewer messages because they stop the repeated sending and bouncing of read
requests. However, the relative read response time does not improve as much

12

300 -
8 X
S) & oF
I . S
o 200 [o+\® Q‘o A\‘QQ
7] § O X
Q OQ ,06\ rbc’
E 122.4 6 = = <€
4 120.5 121.
,g 100 | 100 1061 g9 . -
8
9]
L
0 . .
first touch round robin
barnes
300 -
» 265.9
[
=)
& 200 195.6
a r : 182.9
1]
£ 139.7
4 100 100 B e 100 99.1
.= 100 86.6 97 956 .
kS| “ I 6q 128 I 628 L2
9]
L
0 ' :
first touch round robin first touch round robin first touch round robin
300 . fft fmm ge
[%]
o8 240.3
209.9
$ 200 | 28
[%]
1]
E 130.7 1241 . 136.6 1141
> 100 | 100 99.3 100 1048 gg9 108.3 110.9 107.6 100 996 . .
: “
9]
L
0 ' :
first touch round robin first touch round robin first touch round robin
ocean-contig ocean-non-contig water-nsq

Figure 1.9 Relative number of messages, 64 nodes, finite buffers

for reactive as it does for basic proxies, as is shown in Figure 1.10. This is
because of the initial delay, of read request and bounce, before a proxy read
request 1s made. In addition, for GE, the mean input buffer queueing cycles
increase with the introduction of proxies: this is because there are now more
messages being accepted into the buffers rather than bouncing (see Table 1.4).

Using reactive proxies in conjunction with first-touch page placement results
in the best performance for six of the seven benchmarks. The exception is GE:
as we have already noted, it is particularly well-suited to the targeted approach
of basic proxies. However, it still shows a marked performance improvement of
22.2% with reactive proxies. This suggests that a default policy of first-touch
page placement with reactive proxies will give stable performance, and it avoids
the more spectacular performance pitfalls that can occur using round-robin,
such as occur for Ocean-Contig(Figure 1.8).

1.5.3 Summary

The choice of the best simple page placement policy, in the absence of any
additional mechanism such as proxies or dynamic page migration/replication,
depends on the individual applications. Some applications, such as our GE
benchmark, suit the even distribution of shared data given by round-robin.
Other applications, such as Ocean-Contig, have been specifically written to

STABLE PERFORMANCE FOR CC-NUMA 13

150
[} X
@ & SP
AN
g & oF N
@ 100 L 1% 99 95.2 Q\°+ o &
8 r 9 90.5 917 89.3 © « &%
=]
8 " N
= 501
]
=
8
2 o
first touch round robin
150 - barnes
©
2
S
§ 100 | 100 100 . 100 97
= 732
=]
S 61 56.2 621 56
L 50| 401 a1
o 378 41, 386 495 -
© 9.6 9.1
2 o
first touch round robin first touch round robin first touch round robin
150 fft fmm ge
3
c
2 100 1082 071 100 99.3 100 100
2 100 | 939 99 96.9 2 s 966 989 s
= : 79 76.9 :
he] 73.4
8
= 501
]
=
8
2 o
first touch round robin first touch round robin first touch round robin
ocean-contig ocean-non-contig water-nsq

Figure 1.10 Relative remote read response times, 64 nodes, finite buffers

exploit data locality, and so suit the first-touch policy. This leaves the problem
that the best performance may only be obtained by experienced programmers
who know which page placement policy to choose, or by engaging in time-
consuming performance tuning.

The use of proxies alters this situation. Proxies introduce a finer-grained
sharing, at the level of data blocks rather than pages, and reduce queueing (as
shown in Table 1.4). For basic proxies, this can be detrimental to performance
where inappropriate data structures are marked as “hot”, because every load
(for addresses subject to proxying) goes via a proxy, whereas without prox-
les no indirection would be involved. Using reactive proxies has the benefit
that proxies are only used when contention occurs at run-time: for six of our
benchmarks this, in conjunction with first-touch page placement, resulted in
their best performance. Water-Nsq illustrated this, where basic proxies de-
graded performance, whereas reactive proxies improved performance. Most
importantly, first-touch page placement in conjunction with reactive proxies
always resulted in performance that was better than either page placement
policy without proxies. There are some applications, such as GE, where using
reactive, rather than basic, proxies results in a smaller performance improve-
ment because of the delay in invoking proxies; however, the application still
showed a noticeable speedup over not using proxies.

14

1.6 RELATED WORK

The effects of page placement policy have been investigated for shared memory
architectures where the coherence protocol is implemented in hardware (for cc-
NUMA) or in software (for bvsm) (Marchetti et al., 1995). Using a base policy
of round-robin, they also considered a first-touch after initialisation scheme, a
dynamic migration scheme, and three replication schemes. Their first-touch
scheme improved the performance of all their applications compared to naive
first-touch, regardless of whether coherence was maintained in hardware or
software. For their five applications, there was no performance benefit from
the dynamic migration or replication schemes. Their choice of benchmarks was
limited, in that they did not include an example of algorithms such as Gaussian
Elimination which are better suited to round-robin page placement.

A study of dynamic page migration and replication on Stanford FLASH, and
distributed FLASH, considered three dynamic page placement policies, migra-
tion and/or replication, and three simple policies of round-robin, first-touch,
and post facto (Verghese et al., 1996). They found that first-touch always gave
better performance than round-robin for their workloads, and that post facto
was the best simple policy. Their dynamic policies generally obtained better
performance than first-touch, and were never worse, even given the overheads
associated with implementing the dynamic policies. However, three of their
five workloads were multiprogrammed, and this put their first-touch policy at
a distinct disadvantage. For example, in their SPLASH workload, the jobs were
redistributed across the processors as applications entered and left the system,
but they did not re-invoke first-touch page placement when a job migrated.

Proxies allow read requests for data to be combined in controllers away from
the home node: this is a restricted instance of the combining of atomic read-
modify-write operations, e.g. as proposed for the NYU Ultracomputer (Gottlieb
et al., 1983), although proxies retain the data in cache, which allows for more
combining. Caching extra copies of data to speed-up retrieval time for remote
reads has been explored for hierarchical architectures, e.g. in the Swedish In-
stitute of Computer Science bpM (Haridi and Hagersten, 1989). The proxies
approach is different because it does not use a fixed hierarchy; instead it allows
requests for copies of successive data lines to be serviced by different proxies.

Eager combining uses intermediate nodes which act like proxies for “hot”
pages, i.e. the programmer is expected to mark data structures (Bianchini and
LeBlanc, 1994). Unlike proxies, their choice of server node is based on the
page address rather than data block address. In addition, their scheme eagerly
updates all proxies whenever a newly-updated value is read, unlike our protocol,
where data is allocated in proxies on demand, which reduces cache pollution.

The GLOW extensions for widely-shared data are, like proxies; designed to
be added to existing cache coherence protocols (Kaxiras and Goodman, 1996).
GLOW uses agents to intercept requests for widely-shared data at selected net-
work switch nodes. At present, GLOW requires application program directives
to 1dentify widely-shared data.

STABLE PERFORMANCE FOR CC-NUMA 15

1.7 CONCLUSIONS

We have used execution driven simulations to study the benefits of using prox-
ies and simple page placement. Our results confirm that there is no ideal
default policy for page placement. However, by using reactive proxies with
first-touch page placement, we obtained better performance than using either
page placement policy without proxies. This suggests that, with a default of
first-touch page placement with reactive proxies, application programmers can
be confident that they will obtain stable performance. The programmer will
not have to worry about the cc-NUMA implementation, and will rarely have to
do time-consuming performance tuning.

There are some overheads associated with proxies. As we noted in Sec-
tion 1.3, there are the costs of implementing proxies: in hardware to hold the
head of each pending proxy chain, and in software to handle the additional
message types and state changes. In addition, there will be cache pollution,
because allocating a proxy copy in the cache may displace another line, with
invalidation overhead for the displaced line, and possibly a later cache miss.
However, these costs may be balanced by the considerable benefits of perfor-
mance stability, the promise of architecture-independent application programs,
and the saving of performance tuning effort.

Study of further benchmarks will provide deeper insight into the trade-offs,
and 1n particular we are looking for applications which have not been carefully
optimised for existing architectures. We are currently investigating the cache
pollution effect, by examining both a “no-allocate” proxy scheme (where nodes
do not cache the proxy lines), and the use of a separate proxy cache. We plan
to continue our simulation work to evaluate how changing the architectural
balance (e.g. slower interconnection networks) affects our conclusions.

Acknowledgments

This work was funded by the U.K. Engineering and Physical Sciences Research Coun-
cil: through the CRAMP project (GR/J 99117), and a Research Studentship. We
would also like to thank Ashley Saulsbury for the ALITE simulator, and Andrew Ben-
nett and the anonymous referees for their comments on this work.

References

Andrew J. Bennett, Paul H. J. Kelly, Jacob G. Refstrup, and Sarah A. M.
Talbot. Using proxies to reduce cache controller contention in large shared-
memory multiprocessors. In Luc Bougé et al, editor, Euro-Par 96 European
Conference On Parallel Architectures, Lyon, volume 1124 of Lecture Notes
m Computer Science, pages 445-452. Springer-Verlag, 1996.

Ricardo Bianchini and Thomas J. LeBlanc. Eager combining: a coherency pro-
tocol for increasing effective network and memory bandwidth in shared-
memory multiprocessors. In 6th ITEEFE Symposium on Parallel and Distribu-
ted Processing (SPDP), Dallas, pages 204-213, October 1994.

16

John B. Carter, John K. Bennett, and Willy Zwaenepoel. Techniques for re-
ducing consistency-related communicationin distributed shared memory sys-
tems. ACM Trans. on Computer Systems, 13(3):205-243, August 1995.

David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schau-
ser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP:
Towards a realistic model of parallel computation. 4th Symposium on Prin-
ciples and Practice of Parallel Programming, in Sigplan Notices, 28(7):1-12,
July 1993.

Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry
Rudolph, and Marc Snir. The NYU Ultracomputer — designing an MIMD
shared memory parallel computer. IFEE Transactions on Computers, C-
32(2):175-189, February 1983.

Seif Haridi and Erik Hagersten. The cache coherence protocol of the Data
Diffusion Machine. In E. Odijk, M. Rem, and J.-C Syre, editors, PARLE 89
Parallel Architectures and Languages Furope, Findhoven, June 1989, vol.
365 of Lecture Notes in Computer Science, pages 1-18. Springer-Verlag.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufman, 2nd edition, 1996.

Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John
Hennessy. The effects of latency, occupancy and bandwidth in distributed
shared memory multiprocessors. Technical Report CSL-TR-660, Computer
Systems Laboratory, Stanford University, January 1995.

Stefanos Kaxiras and James R. Goodman. The GLOW cache coherence protocol
extensions for widely shared data. In 10th ACM International Conference
on Supercomputing, May 25-28, Philadelphia, PA, pages 35-43, May 1996.

Richard P. LaRowe Jr and Carla Schlatter Ellis. Experimental comparison of
memory management policies for NUMA multiprocessors. ACM Transac-
tions on Computer Systems, 9(4):319-363, November 1991.

James Laudon and Daniel Lenoski. The SGI Origin 2000: A CC-NUMA highly
scalable server. 24th Annual International Symposium on Computer Archi-
tecture, Denver, May 1997, in Computer Architecture News, 25(2):241-251.

Michael Marchetti, Leonidas Kontothanassis, Ricardo Bianchini, and Michael
L. Scott. Using simple page placement policies to reduce the cost of cache fills
in coherent shared-memory systems. In 9th International Parallel Processing
Symposium (IPPS), Santa Barbara, CA, pages 480-485, April 1995.

Manu Thapar and Bruce Delagi. Stanford distributed-directory protocol. IEEE
Computer, 23(6):78-80, June 1990.

Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating
system support for improving data locality on CC-NUMA compute servers.
ASPLOS-VII, Cambridge, Mass, in ACM SIGPLAN Notices, 31(9):279-289,
September 1996.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 programs: Characterization and methodolog-
ical considerations. In 22nd Annual International Symposium on Computer
Architecture, June 1995, in Computer Architecture News, 23(2):24-36.

