
Reactive Proxies: a Flexible ProtocolExtension to Reduce ccNUMANode Controller ContentionSarah A. M. Talbot and Paul H. J. KellyDepartment of ComputingImperial College of Science, Technology and Medicine180 Queen's Gate, London SW7 2BZ, United Kingdomfsamt, phjkg@doc.ic.ac.ukAbstract. Serialisation can occur when many simultaneous accesses aremade to a single node in a distributed shared-memory multiprocessor.In this paper we investigate routing read requests via an intermediateproxy node (where combining is used to reduce contention) in the pres-ence of �nite message bu�ers. We present a reactive approach, whichinvokes proxying only when contention occurs, and does not require theprogrammer or compiler to mark widely-shared data. Simulation resultsshow that the hot-spot contention which occurs in pathological exam-ples can be dramatically reduced, while performance on well-behavedapplications is una�ected.1 IntroductionUnpredictable performance anomalies have hampered the acceptance of cache-coherent non-uniform memory access (ccnuma) architectures. Our aim is toimprove performance in certain pathological cases, without reducing perfor-mance on well-behaved applications, by reducing the bottlenecks associated withwidely-shared data. This paper moves on from our initial work on proxy pro-tocols [1], eliminating the need for application programmers to identify widely-shared data.Each processor's memory and cache is managed by a node controller. Inaddition to local memory references, the controller must handle requests arrivingvia the network from other nodes. These requests concern cache lines currentlyowned by this node, cache line copies, and lines whose home is this node (i.e. thepage holding the line was allocated to this node, by the operating system, whenit was �rst accessed). In large con�gurations, unfortunate ownership migrationor home allocations can lead to concentrations of requests at particular nodes.This leads to performance being limited by the service rate (occupancy) of anindividual node controller, as demonstrated by Holt et al. [6].Our proxy protocol, a technique for alleviating read contention, associatesone or more proxies with each data block, i.e. nodes which act as intermediariesfor reads [1]. In the basic scheme, when a processor su�ers a read miss, insteadof directing its read request directly to the location's home node, it sends it

Home

Proxy

Proxy

Home Home

Proxy

Proxy(a) Without proxies (b) With two proxy clusters (c) Read next data block(read Line l) (i.e. read Line l + 1)Fig. 1. Contention is reduced by routing reads via a proxyto one of the location's proxies. If the proxy has the value, it replies. If not, itforwards the request to the home: when the reply arrives it can be forwarded toall the pending proxy readers and can be retained in the proxy's cache. The maincontribution of this paper is to present a reactive version, which uses proxies onlywhen contention occurs, and does not require the application programmer (orcompiler) to identify widely-shared data.The rest of the paper is structured as follows: reactive proxies are introducedin Section 2. Our simulated architecture and experimental design are outlined inSection 3. In Section 4, we present the results of simulations of a set of standardbenchmark programs. Related work is discussed in Section 5, and in Section 6we summarise our conclusions and give pointers to further work.2 Reactive ProxiesThe severity of node controller contention is both application and architecturedependent [6]. Controllers can be designed so that there is multi-threading of re-quests (e.g. the Sun S3.mp is able to handle two simultaneous transactions [12])which slightly alleviates the occupancy problem but does not eliminate it. Somecontention is inevitable, and will increase the latency of transactions. The keyproblem is that queue lengths at controllers, and hence contention, are non-uniformly distributed around the machine.One way of reducing the queues is to distribute the workload to other nodecontrollers, using them as proxies for read requests, as illustrated in Fig. 1. Whena processor makes a read request, instead of going directly to the cache line'shome, it is routed �rst to another node. If the proxy node has the line, it repliesdirectly. If not, it requests the value from the home itself, allocates it in its owncache, and replies. Any requests for a particular block which arrive at a proxybefore it has obtained a copy from the home node, are added to a distributedchain of pending requests for that block, and the reply is forwarded down thepending chain, as illustrated in Fig. 2. It should be noted that write requests are

Client 1

Proxy

1. client makes read request
(proxy_read_request)

Home (read_request)
2. request is sent on to the home

(a) First request to proxy has to be forwarded to the home node:

Client 1 Client 2
3. client makes read request

(proxy_read_request)

(b) Second client request, before data is returned, forms pending chain:

Proxy

Home

4. client receives pointer
 to 2nd client

 (take_hole)

Client 1 Client 2

Home

(take_shared)

(c) Data is passed to each client on the pending chain:

Proxy

5. data supplied to the proxy
(take_shared)

(take_shared)

7. data supplied to Client 2

6. data supplied to Client 1Fig. 2. Combining of proxy requestsnot a�ected by the use of proxies, except for the additional invalidations thatmay be needed to remove proxy copies (which will be handled as a matter ofcourse by the underlying protocol).The choice of proxy node can be at random, or (as shown in Fig. 1) on thebasis of locality. To describe how a client node decides which node to use as aproxy for a read request, we begin with some de�nitions:{ P: the number of processing nodes.{ H(l): the home node of location l. This is determined by the operatingsystem's memory management policy.{ NPC: the number of proxy clusters, i.e. the number of clusters into whichthe nodes are partitioned for proxying (e.g. in Fig. 1, NPC=2). The choiceof NPC depends on the balance between degree of combining and the lengthof the proxy pending chain. NPC=1 will give the highest combining rate,because all proxy read requests for a particular data block will be directedto the same proxy node. As NPC increases, combining will reduce, but thenumber of clients for each proxy will also be reduced, which will lead toshorter proxy pending chains.

Home

bounce

Home

Proxy(a) Input bu�er full, some read requests bounce (b) Reactive proxy readsFig. 3. Bounced read requests are retried via proxies{ PCS(C): the set of nodes which are in the cluster containing client nodeC. In this paper, PCS(C) is one of NPC disjoint clusters each containingP=NPC nodes, with the grouping based on node number.{ PN (l; C) the proxy node chosen for a given client node (C) when readinglocation l. We use a simple hash function to choose the actual proxy fromthe proxy cluster PCS(C). If PN (l; C) = C, or PN (l; C) = H(l), then clientC will send a read request directly to H(l)The choice of proxy node is, therefore, a two stage process. When the systemis con�gured, the nodes are partitioned into NPC clusters. Then, whenever aclient wants to issue a proxy read, it will use the hashing function PN (l; C) toselect one proxy node from PCS(C). This mapping ensures that requests for agiven location are routed via a proxy (so that combining occurs), and that readsfor successive data blocks go to di�erent proxies (as illustrated in Fig. 1(c)). Thiswill reduce network contention [15] and balance the load more evenly across allthe node controllers.In the basic form of proxies, the application programmer uses program di-rectives to mark data structures: all other shared data will be exempt fromproxying [1]. If the application programmer makes a poor choice, then the over-heads incurred by proxies may outweigh any bene�ts and degrade performance.These overheads include the extra work done by the proxy nodes handling themessages, proxy node cache pollution, and longer sharing lists. In addition, theprogrammer may fail to mark data structures that would bene�t from proxying.Reactive proxies overcome these problems by taking advantage of the �nitebu�ering of real machines. When a remote read request reaches a full bu�er,it will immediately be sent back across the network. With the reactive proxiesprotocol, the arrival of a bu�er-bounced read request will trigger a proxy read(see Fig. 3). This is quite di�erent to the basic proxies protocol, where the userhas to decide whether all or selected parts of the shared data are proxied, andproxy reads are always used for data marked for proxying. Instead, proxies areonly used when congestion occurs. As soon as the queue length at the destinationnode has reduced to below the limit, read requests will no longer be bouncedand proxy reads will not be used.

The repeated bouncing of read requests which can occur with �nite bu�ersleads to the possibility of deadlock: the underlying protocol has to detect thecontinuous re-sending of a remote read request, and eventually send a higherpriority read request which is guaranteed service. Read requests from proxynodes to home nodes will still be subject to bu�er bouncing, but the combiningand re-routing achieved by proxying reduce the chances of a full input bu�er atthe home node.The reactive proxy scheme has the twin virtues of simplicity and low over-heads. No information needs to be held about past events, and no decision isinvolved in using a proxy: the protocol state machine is just set up to trigger aproxy read request in response to the receipt of a bu�er-bounced read request.3 Simulated Architecture and Experimental DesignIn our execution-driven simulations, each node contains a processor with anintegral �rst-level cache (flc), a large second-level cache (slc), memory (dram),and a node controller (see Fig. 4). The node controller receives messages from,and sends messages to, both the network and the processor. The slc, dram, andthe node controller are connected using two decoupled buses. This decoupled busarrangement allows the processor to access the slc at the same time as the nodecontroller accesses the dram. Table 1 summarises the architecture.We simulate a simpli�ed interconnection network, which follows the the LogPmodel [3]. We have parameterised the network and node controller as follows:{ L: the latency experienced in each communication event, 10 cycles for longmessages (which include 64 bytes of data, i.e. one cache line), and 5 cyclesfor all other messages. This represents a fast network, comparable to thepoint-to-point latency used in [11].{ o: the occupancy of the node controller. Like Holt et al. [6], we have adaptedthe LogP model to recognise the importance of the occupancy of a node con-troller, rather than just the overhead of sending and receiving messages. Theprocesses which cause occupancy are simulated in more detail (see Table 2).{ g: the gap between successive sends or receives by a processor, 5 cycles.{ P: the number of processor nodes, 64 processing nodes.We limit our message bu�ers to eight for read requests. There can be moremessages in an input bu�er, but once the queue length has risen above eight,all read requests will be bounced back to the sender until the queue length hasfallen below the limit. This is done because we are interested in the e�ect of�nite bu�ering on read requests rather than all messages, and we wished to becertain that all transactions would complete in our protocol. The queue lengthof pP is an arbitrary but reasonable limit.Each cache line has a home node (at page level) which: either holds a validcopy of the line (in slc and/or dram), or knows the identity of a node whichdoes have a valid copy (i.e. the owner); has guaranteed space in dram for theline; and holds directory information for the line (head and state of the sharing

MEM bus

Network Controller

Interconnect

Node Controller DRAM

Network buffers

SLC bus
SLC

FLC

CPUFig. 4. The architecture of a nodeTable 1. Details of the simulated architectureCPU CPI 1.0Instruction set based on DEC AlphaInstruction cache All instruction accesses assumed primary cache hitsFirst level data cache Capacity 8 KbytesLine size 64 bytesDirect mapped, write-throughSecond-level cache Capacity 4 MbytesLine size 64 bytesDirect mapped, write-backDRAM Capacity In�nitePage size 8 KbytesNode controller Non-pipelinedService time and occupancy See Table 2Cycle time 10nsInterconnection network Topology full crossbarIncoming message queues 8 read requestsCache coherence protocol Invalidation-based, sequentially-consistentccNUMA, home nodes assigned to �rst node to refer-ence each page (i.e. \�rst-touch-after-initialisation").Distributed directory, using singly-linked sharing listBased on the Stanford Distributed-Directory Protocol,described by Thapar and Delagi [14]Table 2. Latencies of the most important node actionsoperation time (cycles)Acquire SLC bus 2Release SLC bus 1SLC lookup 6SLC line access 18Acquire MEM bus 3Release MEM bus 2DRAM lookup 20DRAM line access 24Initiate message send 5

Table 3. Benchmark applicationsapplication problem size shared data marked for basic proxyingBarnes 16K particles allCFD 64 x 64 grid allFFT 64K points allFMM 8K particles f array (part of G Memory)GE 512 x 512 matrix entire matrixOcean-Contig 258 x 258 ocean q multi and rhs multiOcean-Non-Contig 258 x 258 ocean �elds, �elds2, wrk, and frcngWater-Nsq 512 molecules VAR and PFORCESlist). The distributed directory holds the identities of nodes which have cached aparticular line in a sharing chain, currently implemented as a singly-linked list.The directory entry for each data block provides the basis for maintainingthe consistency of the shared data. Only one node at a time can remove entriesfrom the sharing chain (achieved by locking the head of the sharing chain atthe home node), and messages which prompt changes to the sharing chain areordered by their arrival at the home node. This mechanism is not a�ected bythe protocol additions needed to support proxies.Proxy nodes require a small amount of extra store to be added to the nodecontroller. Speci�cally we need to be able to identify which data lines have out-standing transactions (and the tags they refer to), and be able to record theidentity of the head of the pending proxy chain. In addition, the node controllerhas to handle the new proxy messages and state changes. We envisage imple-menting these in software on a programmable node controller, e.g. the magicnode controller in Stanford's flash [9], or the sclic in the Sequent numa-q [10].The benchmarks and their parameters are summarised in Table 3. ge is asimple Gaussian elimination program, similar to that used by Bianchini andLeBlanc in their study of eager combining [2]. We chose this benchmark becauseit is an example of widely-shared data. cfd is a computational
uid dynam-ics application, modelling laminar
ow in a square cavity with a lid causingfriction [13]. We selected six applications from the splash-2 suite, to give across-section of scienti�c shared memory applications [16]. We used both Oceanbenchmark applications, in order to study the e�ect of proxies on the \tunedfor data locality" and \easy to understand" variants. Other work which refersto Ocean can be assumed to be using Ocean-Contig.4 Experimental ResultsIn this work, we concentrate on reactive proxies, but compare the results withbasic proxies (which have already been examined in [1]). The performance resultsfor each application are presented in Table 4 in terms of relative speedup withno proxying (i.e. the ratio of the execution time for 64 processing nodes to theexecution time running on 1 processor), and percentage changes in executiontime when proxies are used. The problem size is kept constant.The relative changes results in Fig. 5 show three di�erent metrics:

Table 4. Benchmark performance for 64 processing nodesrelative % change in execution time (+ is better,applications speedup proxy - is worse) for NPC = 1 to 8no proxies type 1 2 3 4 5 6 7 8Barnes 43.2 basic 0.0 -0.1 0.0 0.0 -0.2 +0.3 -0.2 -0.1reactive +0.3 +0.2 +0.3 +0.2 +0.1 -0.1 0.0 +0.3CFD 30.6 basic +6.6 +7.7 +6.4 +8.3 +6.7 +5.8 +6.0 +10.2reactive +5.6 +5.4 +4.7 +4.5 +5.6 +4.1 +4.1 +4.8FFT 47.4 basic +9.3 +9.0 +9.8 +9.4 +9.2 +8.8 +8.9 +8.9reactive +11.5 +11 +10.8 +10.8 +11.1 +11.6 +11.0 +10.6FMM 36.1 basic +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2reactive +0.4 +0.3 +0.3 +0.4 +0.3 +0.4 +0.3 +0.3GE 22.0 basic +28.7 +28.7 +28.7 +28.7 +28.7 +28.8 +28.8 +28.7reactive +23.3 +22.9 +22.3 +21.4 +21.5 +21.4 +21.7 +21.5Ocean-Contig 48.9 basic -3.2 +2.6 +0.1 -0.2 -0.8 -2.0 -2.1 -1.8reactive -0.2 0.0 -0.1 -0.3 +0.2 +2 +1.3 +2.1Ocean-Non-Contig 50.5 basic -0.3 +1.6 -1.7 +4.1 +1.0 -0.4 +0.2 +4.2reactive +3.1 +1.4 +1.4 +0.8 +5.1 +1.8 +1.2 +5Water-Nsq 55.5 basic -0.7 -0.6 -0.6 -0.5 -0.5 -0.5 -0.7 -0.5reactive +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.1 +0.2{ messages: the ratio of the total number of messages to the total withoutproxies,{ execution time: the ratio of the execution time (excluding startup) to theexecution time (also excluding startup) without proxies.{ queueing delay: the ratio of the total time that messages spend waiting forservice to the total without proxies, andThe message ratios shown in Fig. 6 are:{ proxy hit rate: the ratio of the number of proxy read requests which are ser-viced directly by the proxy node, to the total number of proxy read requests(in contrast, a proxy miss would require the proxy to request the data fromthe home node),{ remote read delay: the ratio of the delay between issuing a read request andreceiving the data, to the same delay when proxies are not used.{ bu�er bounce ratio: the ratio of the total number of bu�er bounce messagesto read requests. This gives a measure of how much bouncing there is for anapplication. This ratio can go above one, since only the initial read requestis counted in that total, i.e. the retries are excluded.{ proxy read ratio: the ratio of the proxy read messages to read requests - thisgives a measure of how much proxying is used in an application.

� � messages
� � execution time

 queueing delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

barnes - reactive proxies

� � � � � � � � �� � � � � � � � �

� � messages
� � execution time

 queueing delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

c f d - reactive proxies

� � � � � � � � ��
� � � � � � � �

� � messages
� � execution time

 queueing delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f f t - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

f m m - reactive proxies

� � � � � � � � �� � � � � � � � �

� � messages
� � execution time

 queueing delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80
|100

|120

|140

|160

|180

proxy clusters

g e - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

� � messages
� � execution time

 queueing delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-contig - reactive proxies

� � � � � � � � �� � � � � � � � �

� � messages
� � execution time

 queueing delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40
|60

|80

|100

|120

|140

|160

|180

proxy clusters

ocean-non-contig - reactive proxies

� � � � � � � � �� � � � �
� � � �

� � messages
� � execution time

 queueing delay

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80

|100

|120

|140

proxy clusters

water-nsq - reactive proxies

� � � � � � � � �� � � � � � � � �

Fig. 5. Relative changes for 64 processing nodes with reactive proxiesThe �rst point to note from Table 4 is that there is no overall \winner"between basic and reactive proxies, in that neither policy improves the perfor-mance of all the applications for all values of proxy clusters. Looking at theresults for di�erent values of NPC, for basic proxies there is no value which hasa positive e�ect on the performance of all the benchmarks. However, for reactiveproxies, there are two proxy cluster values that improve the performance of allthe benchmarks, i.e. NPC=5 and 8 achieve a balance between combining, queuedistribution, and length of the proxy pending chains. Reactive proxies may notalways deliver the best performance improvement, but by providing stable pointsfor NPC they are of more use to system designers. It should also be noted that,in general, using reactive proxies reduces the number of messages, because theybreak the cycle of re-sending read messages in response to a �nite bu�er bounce(see Fig. 5).Looking at the individual benchmarks:Barnes. In general, this application bene�ts from the use of reactive prox-ies. However, changing the balance of processing by routing read requests viaproxy nodes can have more impact than the direct e�ects of reducing home nodecongestion. Two examples illustrate this: when NPC=6 for basic proxies, loadmiss delay is the same as with no proxies, store miss delay has increased slightly

� � proxy hit rate
� � remote read delay
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

barnes - reactive proxies

�

�
�

� � � � � �

�

� � � � � � � �

�
� � � � � � � �� � � � � � � � �

� � proxy hit rate
� � remote read delay
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

c f d - reactive proxies

�

�

�

�

�

� �

�

�

�

� � � � �
� �

�

�
� � � � � �

� �

�
� � � � � � � �

� � proxy hit rate
� � remote read delay
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f f t - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

�
� � � � � � � �

� � proxy hit rate
� � remote read delay
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

f m m - reactive proxies

�

� �
� � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � � � � � � � �

� � proxy hit rate
� � remote read delay
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

proxy clusters

g e - reactive proxies

�

� � � � � � � �
�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

� � proxy hit rate
� � remote read delay
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

|1.2

proxy clusters

ocean-contig - reactive proxies

�

� �
� � � � � �

�
� � � � � � � �

�
� � � � � � � �� � � � � � � � �

� � proxy hit rate
� � remote read delay
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9
|1.0

|1.1

proxy clusters

ocean-non-contig - reactive proxies

�

�

�

� �
�

� �
�

�

�

�
� � �

� �
�

�

�
�

�
� �

� � �

� � � � � � � � �

� � proxy hit rate
� � remote read delay
� � buffer bounce ratio
� � proxy read ratio

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|1.1

proxy clusters

water-nsq - reactive proxies

�

� � � � � � � �

�

� � � � � � � �

�
� � � � � � �

�
� � � � � � � � �Fig. 6. Message ratios for 64 processing nodes with reactive proxiesfrom the no proxy case, yet a reduction of 0.4% in lock and barrier delays resultsin an overall performance improvement of 0.3%. Conversely, for reactive proxieswhen NPC=6, the load and store miss delays are the same as when proxies arenot used, but a slight 0.1% increase in lock delay gives an overall performancedegradation of -0.1%.CFD. This application bene�ts from the use of reactive proxies, with perfor-mance improvements in the range 4.1% to 5.6%. However, the improvements arenot as great as those obtained with basic proxies. The di�erence is attributableto the delay in triggering each reactive proxy read: for this application it is bet-ter to use proxy reads straight away, rather than waiting for read requests to bebounced. It should also be noted that the proxy hit rate oscillates, with peaksat NPC=2,4,8 (see Fig. 6). This is due to a correspondence between the chosenproxy node and ownership of the cache line.FFT. This shows a marked speedup when reactive proxies are used, of be-tween 10.6% and 11.6%. The number of messages decreases with proxies becausethe bu�er bounce ratio is cut from a severe 0.7 with no proxies. The mean queue-ing delay drops down as the number of proxy clusters increases, re
ecting thebene�t of spreading the proxy read requests. However, this is balanced by a slowincrease in the bu�er bounce ratio, because as more nodes act as proxy there

will be more read requests to the home node, and these read requests will startto bounce as the number of messages in the home node's input queue rises topP and above.FMM. There is a marginal speedup compared with no proxies (between0.3% and 0.4%). This is as expected given only the f array (part of G Memory)is known to be widely-shared, which was why it was marked for basic proxies.However, the performance improvement is slightly better than that achievedusing basic proxies, so the reactive method dynamically detects opportunitiesfor read combining which were not found by code inspection and pro�ling tools.GE. This application, which is known to exhibit a high level of sharing of thecurrent pivot row, shows a large speedup in the range 21.4% to 23.2%. However,the improvement is not as good as that obtained using basic proxies. This was tobe expected, because proxying is no longer targeted by marking widely-shareddata structures. Instead proxying is triggered when a read is rejected becausea bu�er is full, and so there will be two messages (the read and bu�er bounce)before a proxy read request is sent by the client. It should also be noted thatthe execution time increases as the number of proxy clusters increases. As thenumber of nodes acting as proxy goes up, there will be more read requests (fromproxies) being sent to the home node, and the read requests are more likely tobe bounced, as shown by the bu�er bounce ratio for ge in Fig. 6. Finally, thequeueing delay is much higher when proxies are in use. This is because withoutproxies there is a very high level of read messages being bounced (and thusnot making it into the input queues). With proxies, the proxy read requests areallowed into the input queues, which increases the mean queue length.Ocean-Contig. Reactive proxies can degrade the performance of this appli-cation (by up to -0.3% at NPC=4), but they achieve performance improvementsfor more values of NPC than the basic proxy scheme. Unlike basic proxies, re-active proxies reduce the remote read delay by targeting remote read requeststhat are bounced because of home node congestion. The performance degrada-tion when NPC=1,3,4 is attributable to increased barrier delays caused by theredistribution of messages.Ocean-Non-Contig. This has a high level of remote read requests. Theseremote read requests result in a high level of bu�er bounces, which in turn invokethe reactive proxies protocol. Unfortunately the data is seldom widely-shared,so there is little combining at the proxy nodes, as is illustrated by the low proxyhit rates. With NPC=4, this results in a concentration of messages at a fewnodes, overall latency increases, and the execution time su�ers. For NPC=5,the queueing delay is reduced in comparison to the no proxy case, and thishas the best execution time. Given these results, we are carrying out furtherinvestigations into the hashing schemes suitable for the PN (l; C) function, andthe partitioning strategy used to determine PCS(C), to obtain more reliableperformance for applications such as Ocean-Non-Contig.Water-Nsq. Using reactive proxies gives a small speedup compared to noproxies (around 0.2%). However, this is better than with basic proxies, whereperformance is always worse (in the range -0.5% to -0.7%, see Table 4). The

extremely low proxy read ratios shows that there is very little proxying, but thehigh proxy hit rates indicate that when proxy reads are invoked there is a highlevel of combining. It is encouraging to see that the proxy read ratio is kept low:this shows that the overheads of proxying (extra messages, cache pollution) areonly incurred when they are needed by an application.To summarise, the results show that for reactive proxies, when the num-ber of proxy clusters (NPC) is set to �ve or eight, the performance of all thebenchmarks improves, i.e. they achieve the best balance between combining,queue length distribution, and the length of the proxy pending chains in oursimulated system. This is a very encouraging result, because without mark-ing widely-shared data we have obtained sizeable performance improvements forthree benchmarks (ge, fft, and cfd), and had no detrimental e�ect on the otherwell-behaved applications. By selecting a suitable NPC for an architecture, thesystem designers can provide a ccnuma system with more stable performance.This is in contrast to basic proxies, where although better performance canbe obtained for some benchmarks, the strategy relies on judicious marking ofwidely-shared data for each application.5 Related WorkA number of measures are available to alleviate the e�ects of contention for anode, such as improving the node controller service rate [11], and combining inthe interconnection network for fetch-and-update operations [4]. Architecturesbased on clusters of bus-based multiprocessor nodes provide an element of readcombining since caches in the same cluster snoop their shared bus. Caching extracopies of data to speed-up retrieval time for remote reads has been exploredfor hierarchical architectures, including [5]. The proxies approach is di�erentbecause it does not use a �xed hierarchy: instead it allows requests for copies ofsuccessive data lines to be serviced by di�erent proxies.Attempts have been made to identify widely-shared data for combining, in-cluding the glow extensions to the sci protocol [8, 7]. glow intercepts requestsfor widely-shared data by providing agents at selected network switch nodes.In their dynamic detection schemes, which avoid the need for programmers toidentify widely-shared data, agent detection achieves better results than thecombining of [4] by using a sliding window history of recent read requests, butdoes not improve on the static marking of data. Their best results are withprogram-counter based prediction (which identi�es load instructions that su�ervery large miss latency) although this approach has the drawback of requiringcustomisation of the local node cpus.In Bianchini and LeBlanc's \eager combining", the programmer identi�esspeci�c memory regions for which a small set of server caches are pre-emptivelyupdated [2]. Eager combining uses intermediate nodes which act like proxies formarked pages, i.e. their choice of server node is based on the page address ratherthan data block address, so their scheme does not spread the load of messagesaround the system in the �ne-grained way of proxies. In addition, their scheme

eagerly updates all proxies whenever a newly-updated value is read, unlike ourprotocol, where data is allocated in proxies on demand. Our less aggressivescheme reduces cache pollution at the proxies.6 ConclusionsThis paper has presented the reactive proxy technique, discussed the design andimplementation of proxying cache coherence protocols, and examined the resultsof simulating eight benchmark applications. We have shown that proxies bene�tsome applications immensely, as expected, while other benchmarks with no ob-vious read contention still showed performance gains under the reactive proxiesprotocol. There is a tradeo� between the
exibility of reactive proxies and theprecision (when used correctly) of basic proxies. However, reactive proxies havethe further advantage that a stable value of NPC (number of proxy clusters)can be established for a given system con�guration. This gives us the desiredresult of improving the performance of some applications, without a�ecting theperformance of well-behaved applications. In addition, with reactive proxies, theapplication programmer does not have to worry about the architectural imple-mentation of the shared-memory programmingmodel. This is in the spirit of theshared-memory programming paradigm, as opposed to forcing the programmerto restructure algorithms to cater for performance bottlenecks, or marking datastructures that are believed to be widely-shared.We are currently doing work based on the Ocean-Non-Contig application tore�ne our proxy node selection function (PN (l; C)). In addition, we are continu-ing our simulation work with di�erent network latency (L) and �nite bu�er sizevalues. We are also evaluating further variants of the proxy scheme: adaptiveproxies, non-caching proxies, and using a separate proxy cache.AcknowledgementsThis work was funded by the U.K. Engineering and Physical Sciences ResearchCouncil through the cramp project GR/J 99117, and a Research Studentship.We would also like to thank Andrew Bennett and Ashley Saulsbury for theirwork on the alite simulator and for porting some of the benchmark programs.References1. Andrew J. Bennett, Paul H. J. Kelly, Jacob G. Refstrup, and Sarah A. M. Tal-bot. Using proxies to reduce cache controller contention in large shared-memorymultiprocessors. In Luc Boug�e et al, editor, Euro-Par 96 European Conference onParallel Architectures, Lyon, volume 1124 of Lecture Notes in Computer Science,pages 445{452. Springer-Verlag, August 1996.2. Ricardo Bianchini and Thomas J. LeBlanc. Eager combining: a coherency pro-tocol for increasing e�ective network and memory bandwidth in shared-memorymultiprocessors. In 6th IEEE Symposium on Parallel and Distributed Processing,Dallas, pages 204{213, October 1994.

3. David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eunice E. San-tos, Klaus Erik Schauser, Ramesh Subramonian, and Thorsten von Eicken. LogP: apractical model of parallel computation. Communications of the ACM, 39(11):78{85, November 1996.4. Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuli�e, LarryRudolph, and Marc Snir. The NYU Ultracomputer { designing a MIMD sharedmemory parallel computer. IEEE Transactions on Computers, C-32(2):175{189,February 1983.5. Seif Haridi and Erik Hagersten. The cache coherence protocol of the Data Di�u-sion Machine. In E. Odijk, M. Rem, and J.-C Syre, editors, PARLE 89 ParallelArchitectures and Languages Europe, Eindhoven, volume 365 of Lecture Notes inComputer Science, pages 1{18. Springer-Verlag, June 1989.6. Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John Hen-nessy. The e�ects of latency, occupancy and bandwidth in distributed sharedmemory multiprocessors. Technical Report CSL-TR-95-660, Computer SystemsLaboratory, Stanford University, January 1995.7. David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi. Scal-able Coherent Interface. IEEE Computer, 23(6):74{77, June 1990.8. Stefanos Kaxiras, Stein Gjessing, and James R. Goodman. A study of three dy-namic approaches to handle widely shared data in shared-memory multiprocessors.In (to appear) 12th ACM International Conference on Supercomputing, Melbourne,July 1998.9. Je�rey Kuskin. The FLASH Multiprocessor: designing a
exible and scalable sys-tem. PhD thesis, Computer Systems Laboratory, Stanford University, November1997. Also available as a technical report, CSL-TR-97-744.10. Tom Lovett and Russell Clapp. STiNG: a CC-NUMA computer system for thecommercial marketplace. 23rd Annual International Symposium on Computer Ar-chitecture, Philadelphia, in Computer Architecture News, 24(2):308{317, May 1996.11. Maged M. Michael, Ashwini K. Nanda, Beng-Hong Lim, and Michael L. Scott. Co-herence controller architectures for SMP-based CC-NUMA multiprocessors. 24thAnnual International Symposium on Computer Architecture, Denver, in ComputerArchitecture News, 25(2):219{228, June 1997.12. Andreas Nowatzyk, Gunes Aybay, Michael Browne, Edmund Kelly, Michael Parkin,Bill Radke, and Sanjay Vishin. The S3.mp scalable shared memory multiprocessor.In Proceedings of the International Conference on Parallel Processing Vol. 1, pages1{10, August 1995.13. B. A. Tanyi. Iterative Solution of the Incompressible Navier-Stokes Equations ona Distributed Memory Parallel Computer. PhD thesis, University of ManchesterInstitute of Science and Technology, 1993.14. Manu Thapar and Bruce Delagi. Stanford distributed-directory protocol. IEEEComputer, 23(6):78{80, June 1990.15. Leslie G. Valiant. Optimality of a two-phase strategy for routing in interconnectionnetworks. IEEE Transactions on Computers, C-32(8):861{863, August 1983.16. Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, andAnoop Gupta. The SPLASH-2 programs: characterization and methodologicalconsiderations. Proceedings of the 22nd Annual International Symposium on Com-puter Architecture, in Computer Architecture News, 23(2):24{36, June 1995.This article was processed using the LaTEX macro package with LLNCS style

