Reactive Proxies: a Flexible Protocol
Extension to Reduce ccNUMA
Node Controller Contention

Sarah A. M. Talbot and Paul H. J. Kelly

Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, United Kingdom
{samt, phjk}@doc.ic.ac.uk

Abstract. Serialisation can occur when many simultaneous accesses are
made to a single node in a distributed shared-memory multiprocessor.
In this paper we investigate routing read requests via an intermediate
proxy node (where combining is used to reduce contention) in the pres-
ence of finite message buffers. We present a reactive approach, which
invokes proxying only when contention occurs, and does not require the
programmer or compiler to mark widely-shared data. Simulation results
show that the hot-spot contention which occurs in pathological exam-
ples can be dramatically reduced, while performance on well-behaved
applications is unaffected.

1 Introduction

Unpredictable performance anomalies have hampered the acceptance of cache-
coherent non-uniform memory access (ccNUMA) architectures. Our aim is to
improve performance in certain pathological cases, without reducing perfor-
mance on well-behaved applications, by reducing the bottlenecks associated with
widely-shared data. This paper moves on from our initial work on proxy pro-
tocols [1], eliminating the need for application programmers to identify widely-
shared data.

Each processor’s memory and cache is managed by a node controller. In
addition to local memory references, the controller must handle requests arriving
via the network from other nodes. These requests concern cache lines currently
owned by this node, cache line copies, and lines whose home is this node (i.e. the
page holding the line was allocated to this node, by the operating system, when
it was first accessed). In large configurations, unfortunate ownership migration
or home allocations can lead to concentrations of requests at particular nodes.
This leads to performance being limited by the service rate (occupancy) of an
individual node controller, as demonstrated by Holt et al. [6].

Our proxy protocol, a technique for alleviating read contention, associates
one or more proxies with each data block, ¢.e. nodes which act as intermediaries
for reads [1]. In the basic scheme, when a processor suffers a read miss, instead
of directing its read request directly to the location’s home node, it sends it

Proxy

(a) Without proxies (b) With two proxy clusters (c) Read next data block
(read Line) (i.e. read Line { +1)

Fig. 1. Contention is reduced by routing reads via a proxy

to one of the location’s proxies. If the proxy has the value, it replies. If not, it
forwards the request to the home: when the reply arrives it can be forwarded to
all the pending proxy readers and can be retained in the proxy’s cache. The main
contribution of this paper is to present a reactive version, which uses proxies only
when contention occurs, and does not require the application programmer (or
compiler) to identify widely-shared data.

The rest of the paper is structured as follows: reactive proxies are introduced
in Section 2. Our simulated architecture and experimental design are outlined in
Section 3. In Section 4, we present the results of simulations of a set of standard
benchmark programs. Related work is discussed in Section 5, and in Section 6
we summarise our conclusions and give pointers to further work.

2 Reactive Proxies

The severity of node controller contention is both application and architecture
dependent [6]. Controllers can be designed so that there is multi-threading of re-
quests (e.g. the Sun S3.mp is able to handle two simultaneous transactions [12])
which slightly alleviates the occupancy problem but does not eliminate it. Some
contention is inevitable, and will increase the latency of transactions. The key
problem 1s that queue lengths at controllers, and hence contention, are non-
uniformly distributed around the machine.

One way of reducing the queues is to distribute the workload to other node
controllers, using them as prozies for read requests, as illustrated in Fig. 1. When
a processor makes a read request, instead of going directly to the cache line’s
home, it is routed first to another node. If the proxy node has the line, it replies
directly. If not, it requests the value from the home itself, allocates it in its own
cache, and replies. Any requests for a particular block which arrive at a proxy
before it has obtained a copy from the home node, are added to a distributed
chain of pending requests for that block, and the reply is forwarded down the
pending chain, as illustrated in Fig. 2. It should be noted that write requests are

(a) First request to proxy has to be forwarded to the home node:

(proxy_read_request)

2. request is sent on to the home

/ (read_request)

Cllem 1 \1 client makes read request

(b) Second client request, before data is returned, forms pending chain:

3. client makes read request
Client 1 (proxy_read_| ? Client 2
4. client receives pomt;\
to 2nd client

(take_hole)

Home

(c) Data is passed to each client on the pending chain:

Proxy

7. data supplied to Client 2

6. data supplied to Client 1

(take_shared) \
Ajﬂ supplied to the proxy
Home

(take_shared)

Fig. 2. Combining of proxy requests

not affected by the use of proxies, except for the additional invalidations that
may be needed to remove proxy copies (which will be handled as a matter of
course by the underlying protocol).

The choice of proxy node can be at random, or (as shown in Fig. 1) on the
basis of locality. To describe how a client node decides which node to use as a
proxy for a read request, we begin with some definitions:

— P: the number of processing nodes.

— H(l): the home node of location /. This is determined by the operating
system’s memory management policy.

— NPC: the number of proxy clusters, i.e. the number of clusters into which
the nodes are partitioned for proxying (e.g. in Fig. 1, NPC=2). The choice
of N'PC depends on the balance between degree of combining and the length
of the proxy pending chain. NPC=1 will give the highest combining rate,
because all proxy read requests for a particular data block will be directed
to the same proxy node. As NPC increases, combining will reduce, but the
number of clients for each proxy will also be reduced, which will lead to
shorter proxy pending chains.

—
bounce

(a) Input buffer full, some read requests bounce (b) Reactive proxy reads

Fig. 3. Bounced read requests are retried via proxies

— PCS(C): the set of nodes which are in the cluster containing client node
C'. In this paper, PCS(C') is one of APC disjoint clusters each containing
P/NPC nodes, with the grouping based on node number.

— PN (I, C) the proxy node chosen for a given client node (C) when reading
location /. We use a simple hash function to choose the actual proxy from
the proxy cluster PCS(C). If PN (I,C) = C, or PA(I,C) = H(l), then client
C will send a read request directly to H(!)

The choice of proxy node is, therefore, a two stage process. When the system
is configured, the nodes are partitioned into APC clusters. Then, whenever a
client wants to issue a proxy read, it will use the hashing function PA (I,) to
select one proxy node from PCS(C'). This mapping ensures that requests for a
given location are routed via a proxy (so that combining occurs), and that reads
for successive data blocks go to different proxies (as illustrated in Fig. 1(c)). This
will reduce network contention [15] and balance the load more evenly across all
the node controllers.

In the basic form of proxies, the application programmer uses program di-
rectives to mark data structures: all other shared data will be exempt from
proxying [1]. If the application programmer makes a poor choice, then the over-
heads incurred by proxies may outweigh any benefits and degrade performance.
These overheads include the extra work done by the proxy nodes handling the
messages, proxy node cache pollution, and longer sharing lists. In addition, the
programmer may fail to mark data structures that would benefit from proxying.

Reactive proxies overcome these problems by taking advantage of the finite
buffering of real machines. When a remote read request reaches a full buffer,
it will immediately be sent back across the network. With the reactive proxies
protocol, the arrival of a buffer-bounced read request will trigger a proxy read
(see Fig. 3). This is quite different to the basic proxies protocol, where the user
has to decide whether all or selected parts of the shared data are proxied, and
proxy reads are always used for data marked for proxying. Instead, proxies are
only used when congestion occurs. As soon as the queue length at the destination
node has reduced to below the limit, read requests will no longer be bounced
and proxy reads will not be used.

The repeated bouncing of read requests which can occur with finite buffers
leads to the possibility of deadlock: the underlying protocol has to detect the
continuous re-sending of a remote read request, and eventually send a higher
priority read request which i1s guaranteed service. Read requests from proxy
nodes to home nodes will still be subject to buffer bouncing, but the combining
and re-routing achieved by proxying reduce the chances of a full input buffer at
the home node.

The reactive proxy scheme has the twin virtues of simplicity and low over-
heads. No information needs to be held about past events, and no decision is
involved in using a proxy: the protocol state machine is just set up to trigger a
proxy read request in response to the receipt of a buffer-bounced read request.

3 Simulated Architecture and Experimental Design

In our execution-driven simulations, each node contains a processor with an
integral first-level cache (FLC), a large second-level cache (SLC), memory (DRAM),
and a node controller (see Fig. 4). The node controller receives messages from,
and sends messages to, both the network and the processor. The sSLC, DRAM, and
the node controller are connected using two decoupled buses. This decoupled bus
arrangement allows the processor to access the SLC at the same time as the node
controller accesses the DRAM. Table 1 summarises the architecture.

We simulate a simplified interconnection network, which follows the the Log P
model [3]. We have parameterised the network and node controller as follows:

— L: the latency experienced in each communication event, 10 cycles for long
messages (which include 64 bytes of data, i.e. one cache line), and 5 cycles
for all other messages. This represents a fast network, comparable to the
point-to-point latency used in [11].

— o0: the occupancy of the node controller. Like Holt et al. [6], we have adapted
the LogP model to recognise the importance of the occupancy of a node con-
troller, rather than just the overhead of sending and receiving messages. The
processes which cause occupancy are simulated in more detail (see Table 2).

— ¢: the gap between successive sends or receives by a processor, 5 cycles.

— P: the number of processor nodes, 64 processing nodes.

We limit our message buffers to eight for read requests. There can be more
messages in an input buffer; but once the queue length has risen above eight,
all read requests will be bounced back to the sender until the queue length has
fallen below the limit. This is done because we are interested in the effect of
finite buffering on read requests rather than all messages, and we wished to be
certain that all transactions would complete in our protocol. The queue length
of /P is an arbitrary but reasonable limit.

Fach cache line has a home node (at page level) which: either holds a valid
copy of the line (in sLc and/or DRAM), or knows the identity of a node which
does have a valid copy (i.e. the owner); has guaranteed space in DRAM for the
line; and holds directory information for the line (head and state of the sharing

Network buffers

NodeControIIer}A—{ DRAM ‘

MEM bus
SLC
<--- SLC bus
FLC
CPU

Fig. 4. The architecture of a node

Table 1. Details of the simulated architecture

CPU CPI 1.0
Instruction set based on DEC Alpha
Instruction cache All instruction accesses assumed primary cache hits
First level data cache Capacity 8 Kbytes
Line size 64 bytes
Direct mapped, write-through
Second-level cache Capacity 4 Mbytes
Line size 64 bytes
Direct mapped, write-back
DRAM Capacity Infinite
Page size 8 Kbytes
Node controller Non-pipelined
Service time and occupancy See Table 2
Cycle time 10ns
Interconnection network |Topology full crossbar
Incoming message queues 8 read requests
Cache coherence protocol|Invalidation-based, sequentially-consistent
ccNUMA, home nodes assigned to first node to refer-
ence each page (i.e. “first-touch-after-initialisation”).
Distributed directory, using singly-linked sharing list
Based on the Stanford Distributed-Directory Protocol,
described by Thapar and Delagi [14]

Table 2. Latencies of the most important node actions

|operation |time (cycles)|
Acquire SLC bus 2
Release SLC bus 1
SLC lookup 6
SLC line access 18
Acquire MEM bus 3
Release MEM bus 2
DRAM lookup 20
DRAM line access 24
Initiate message send 5

Table 3. Benchmark applications

|application | problem size |shared data marked for basic proxying|
Barnes 16K particles all

CFD 64 x 64 grid all

FFT 64K points all

FMM 8K particles f_array (part of G_Memory)

GE 512 x 512 matrix entire matrix

Ocean-Contig 258 x 258 ocean gq-multi and rhs_multi
Ocean-Non-Contig| 258 x 258 ocean fields, fields2, wrk, and frcng
Water-Nsq 512 molecules VAR and PFORCES

list). The distributed directory holds the identities of nodes which have cached a
particular line in a sharing chain, currently implemented as a singly-linked list.

The directory entry for each data block provides the basis for maintaining
the consistency of the shared data. Only one node at a time can remove entries
from the sharing chain (achieved by locking the head of the sharing chain at
the home node), and messages which prompt changes to the sharing chain are
ordered by their arrival at the home node. This mechanism is not affected by
the protocol additions needed to support proxies.

Proxy nodes require a small amount of extra store to be added to the node
controller. Specifically we need to be able to identify which data lines have out-
standing transactions (and the tags they refer to), and be able to record the
identity of the head of the pending proxy chain. In addition, the node controller
has to handle the new proxy messages and state changes. We envisage imple-
menting these in software on a programmable node controller, e.g. the MAGIC
node controller in Stanford’s FLAsH [9], or the scLIC in the Sequent NUMA-Q [10].

The benchmarks and their parameters are summarised in Table 3. GE is a
simple Gaussian elimination program, similar to that used by Bianchini and
LeBlanc in their study of eager combining [2]. We chose this benchmark because
it is an example of widely-shared data. cFD is a computational fluid dynam-
ics application, modelling laminar flow in a square cavity with a lid causing
friction [13]. We selected six applications from the SPLASH-2 suite, to give a
cross-section of scientific shared memory applications [16]. We used both Ocean
benchmark applications, in order to study the effect of proxies on the “tuned
for data locality” and “easy to understand” variants. Other work which refers
to Ocean can be assumed to be using Ocean-Contig.

4 Experimental Results

In this work, we concentrate on reactive proxies, but compare the results with
basic proxies (which have already been examined in [1]). The performance results
for each application are presented in Table 4 in terms of relative speedup with
no proxying (i.e. the ratio of the execution time for 64 processing nodes to the
execution time running on 1 processor), and percentage changes in execution
time when proxies are used. The problem size is kept constant.

The relative changes results in Fig. 5 show three different metrics:

Table 4. Benchmark performance for 64 processing nodes

CFD 30.6 basic | +6.6 | +7.7 | +6.4 | 483 | 46.7 | +5.8 | +6.0 |+10.2

FFT 47.4 basic | +9.3 | 49.0 | 4+9.8 | +9.4 | 49.2 | +8.8 | 489 | +8.9

FMM 36.1 basic | +0.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2

Ocean-Contig 48.9 basic -3.2 | 426 | +0.1 | -0.2 -0.8 -2.0 -2.1 -1.8

Ocean-Non-Contig 50.5 basic 03 | +16 | -1.7 | +41 | 410 | -04 | +0.2 | 44.2

Water-Nsq 55.5 basic -0.7 -0.6 -0.6 -0.5 -0.5 -0.5 -0.7 -0.5

relative % change in execution time (4 is better,
applications speedup | proxy - is worse) for NPC = 1 to 8
no proxies| type 1 [2 3] 4 1 5 [6 [7 T 8
Barnes 43.2 basic 0.0 -0.1 0.0 0.0 -0.2 +0.3 | -0.2 -0.1

reactive| 4+0.3 | +0.2 | 40.3 | 40.2 | 40.1 | -0.1 0.0 +0.3
reactive| +5.6 | +5.4 | +4.7 | +4.5 | +5.6 | +4.1 | +4.1 | +4.8
reactive| +11.5| 411 [4+10.8|+10.8|4+11.1|4+11.6|+11.0(4+10.6
reactive| +0.4 | 40.3 | 40.3 | 40.4 | 40.3 | 40.4 | +0.3 | 40.3
22.0 basic |4+28.7|428.7|+28.7|4+28.7|428.7|+28.8(4+28.8|428.7
reactive| +23.3|4+22.9(4+22.3|+21.4|4+21.5|4+21.4|+21.7|4+21.5

reactive| -0.2 0.0 -0.1 -0.3 +0.2 +2 +1.3 | +2.1

reactive| +3.1 | +1.4 [+1.4 | 408 | +5.1 | +1.8 | +1.2 +5

reactive| +0.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.1 | 40.2

— messages: the ratio of the total number of messages to the total without
proxies,

execution time: the ratio of the execution time (excluding startup) to the
execution time (also excluding startup) without proxies.

queueing delay: the ratio of the total time that messages spend waiting for
service to the total without proxies, and

The message ratios shown in Fig. 6 are:

proxy hit rate: the ratio of the number of proxy read requests which are ser-
viced directly by the proxy node, to the total number of proxy read requests
(in contrast, a proxy miss would require the proxy to request the data from
the home node),

remote read delay: the ratio of the delay between issuing a read request and
receiving the data, to the same delay when proxies are not used.

buffer bounce ratio: the ratio of the total number of buffer bounce messages
to read requests. This gives a measure of how much bouncing there is for an
application. This ratio can go above one, since only the initial read request
1s counted in that total, 7.e. the retries are excluded.

prozy read ratio: the ratio of the proxy read messages to read requests - this
gives a measure of how much proxying is used in an application.

180 barnes - reactive proxies 180 c f d - reactive proxies

160 $O—< messages 160 $O—< messages
140 G—H execution time 140 G—H execution time
120 ¥——¥ queueing delay 120 ¥——¥ queueing delay

100 g
80
60

40 40
20 20
0 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
proxy clusters proxy clusters
180 fft- reactive proxies 180 f m m - reactive proxies 180 g e - reactive proxies
160 160 $—= messages 160
140 <O—=< messages 140 G3—H execution time 140 &— messages
120 G—H execution time 20 *¥——XK queueing delay 120 —1 execution time
¥——¥ queueing delay ing del
100 100 o o m o o 100 ¥ ¥—K queueing delay
[B E - S B - | 5 —o—0——3 00
80 80 80
60 60 60
40 40 40
20 20 20
0 0 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
proxy clusters proxy clusters proxy clusters
180 ocean-contig - reactive proxies 180 | ocean-non-contig - reactive proxies 140 water-nsq - reactive proxies
160 160 $&—=< messages 120
140 140 G3—H execution time
120 120 ¥——XK queueing delay 100 g
80
60 &—< messages
60 O—=< messages 60 40 O—£ execution time
40 O—=E1 execution time 40 *¥——X queueing delay
20 ¥——XK queueing delay 20 20
0 0 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
proxy clusters proxy clusters proxy clusters

Fig. 5. Relative changes for 64 processing nodes with reactive proxies

The first point to note from Table 4 is that there is no overall “winner”
between basic and reactive proxies, in that neither policy improves the perfor-
mance of all the applications for all values of proxy clusters. Looking at the
results for different values of N"PC, for basic proxies there is no value which has
a positive effect on the performance of all the benchmarks. However, for reactive
proxies, there are two proxy cluster values that improve the performance of all
the benchmarks, i.e. NPC=5 and 8 achieve a balance between combining, queue
distribution, and length of the proxy pending chains. Reactive proxies may not
always deliver the best performance improvement, but by providing stable points
for N'PC they are of more use to system designers. It should also be noted that,
in general, using reactive proxies reduces the number of messages, because they
break the cycle of re-sending read messages in response to a finite buffer bounce
(see Fig. 5).

Looking at the individual benchmarks:

Barnes. In general, this application benefits from the use of reactive prox-
ies. However, changing the balance of processing by routing read requests via
proxy nodes can have more impact than the direct effects of reducing home node
congestion. Two examples illustrate this: when NPC=6 for basic proxies, load
miss delay 1s the same as with no proxies, store miss delay has increased slightly

1.1 barnes - reactive proxies 1.1 c fd - reactive proxies

1.0 1.0

0.9 0.9

0.8 0.8

0.7 0.7

0.6 O—£ proxy hit rate 0.6

05 +—+ remote read delay 05 3—1 proxy hit rate

0.4 %—X_buffer bounce ratio 0.4 +—+ remote read delay

0.3 &—<> proxy read ratio 0.3 %—X_buffer bounce ratio

02 02 {&—=< proxy read ratio

0.1 0.1

0.0 0.0

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
proxy clusters proxy clusters

11 fft - reactive proxies 11 f m m - reactive proxies 85 g e - reactive proxies
10 1.0 3.0

0.9 0.9 G—H proxy hit rate

0.8 5—8 proxy hit rate 0.8 25 +—+ remote read dela.y
0.7 +—+ remote read delay 0.7 20 %—x_ buffer bouncevratlo
0.6 %—xX_buffer bounce ratio 0.6 O~ proxy read ratio
0.5 G—=<> proxy read ratio 0.5 G— proxy hit rate 15
8‘31 8‘31 +——+ remote read delay 1.0
0:2 0:2 X—xX buffer bounce»ratlo 05
01 01 <—= proxy read ratio - ; " % : :
0.0 0.0 0.0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
proxy clusters proxy clusters proxy clusters
12 ocean-contig - reactive proxies 1.1 | ocean-non-contig - reactive proxies 11 water-nsq - reactive proxies
11 1.0 1.0
104 0.9 w 0.9
09 0.8 0.8
gg 0.7 3—H proxy hit rate 0.7
0.6 0.6 +—+ remote read delay 0.6 3—1 proxy hit rate
05 G—=8 proxy hit rate 05 %—X buffer bounce ratio 0.5 +—+ remote read delay
0.4 +——+ remote read delay 0.4 <>—= proxy read ratio 0.4 >—x buffer bounce ratio
0.3 %—X buffer bounce ratio 0.3 0.3 $—=< proxy read ratio
0.2 {—= proxy read ratio 0.2 0.2
0.1 0.1 0.1
0.0 0.0 —o—O0—0 0.0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

proxy clusters proxy clusters proxy clusters

Fig. 6. Message ratios for 64 processing nodes with reactive proxies

from the no proxy case, yet a reduction of 0.4% in lock and barrier delays results
in an overall performance improvement of 0.3%. Conversely, for reactive proxies
when NPC=6, the load and store miss delays are the same as when proxies are
not used, but a slight 0.1% increase in lock delay gives an overall performance
degradation of -0.1%.

CFD. This application benefits from the use of reactive proxies, with perfor-
mance improvements in the range 4.1% to 5.6%. However, the improvements are
not as great as those obtained with basic proxies. The difference is attributable
to the delay in triggering each reactive proxy read: for this application it is bet-
ter to use proxy reads straight away, rather than waiting for read requests to be
bounced. It should also be noted that the proxy hit rate oscillates, with peaks
at NPC=2,4,8 (see Fig. 6). This is due to a correspondence between the chosen
proxy node and ownership of the cache line.

FFT. This shows a marked speedup when reactive proxies are used, of be-
tween 10.6% and 11.6%. The number of messages decreases with proxies because
the buffer bounce ratio is cut from a severe 0.7 with no proxies. The mean queue-
ing delay drops down as the number of proxy clusters increases, reflecting the
benefit of spreading the proxy read requests. However, this is balanced by a slow
increase in the buffer bounce ratio, because as more nodes act as proxy there

will be more read requests to the home node, and these read requests will start
to bounce as the number of messages in the home node’s input queue rises to

VP and above.

FMM. There is a marginal speedup compared with no proxies (between
0.3% and 0.4%). This is as expected given only the farray (part of G_Memory)
is known to be widely-shared, which was why it was marked for basic proxies.
However, the performance improvement is slightly better than that achieved
using basic proxies, so the reactive method dynamically detects opportunities
for read combining which were not found by code inspection and profiling tools.

GE. This application, which is known to exhibit a high level of sharing of the
current pivot row, shows a large speedup in the range 21.4% to 23.2%. However,
the improvement is not as good as that obtained using basic proxies. This was to
be expected, because proxying is no longer targeted by marking widely-shared
data structures. Instead proxying is triggered when a read is rejected because
a buffer is full, and so there will be two messages (the read and buffer bounce)
before a proxy read request is sent by the client. It should also be noted that
the execution time increases as the number of proxy clusters increases. As the
number of nodes acting as proxy goes up, there will be more read requests (from
proxies) being sent to the home node, and the read requests are more likely to
be bounced, as shown by the buffer bounce ratio for Gt in Fig. 6. Finally, the
queueing delay is much higher when proxies are in use. This is because without
proxies there is a very high level of read messages being bounced (and thus
not making it into the input queues). With proxies, the proxy read requests are
allowed into the input queues, which increases the mean queue length.

Ocean-Contig. Reactive proxies can degrade the performance of this appli-
cation (by up to -0.3% at N’PC=4), but they achieve performance improvements
for more values of A"PC than the basic proxy scheme. Unlike basic proxies, re-
active proxies reduce the remote read delay by targeting remote read requests
that are bounced because of home node congestion. The performance degrada-
tion when NPC=1,3,4 is attributable to increased barrier delays caused by the
redistribution of messages.

Ocean-Non-Contig. This has a high level of remote read requests. These
remote read requests result in a high level of buffer bounces, which in turn invoke
the reactive proxies protocol. Unfortunately the data is seldom widely-shared,
so there is little combining at the proxy nodes, as is illustrated by the low proxy
hit rates. With APC=4, this results in a concentration of messages at a few
nodes, overall latency increases, and the execution time suffers. For N'PC=5,
the queueing delay is reduced in comparison to the no proxy case, and this
has the best execution time. Given these results, we are carrying out further
investigations into the hashing schemes suitable for the PA({, C) function, and
the partitioning strategy used to determine PCS(C), to obtain more reliable
performance for applications such as Ocean-Non-Contig.

Water-Nsq. Using reactive proxies gives a small speedup compared to no
proxies (around 0.2%). However, this is better than with basic proxies, where
performance is always worse (in the range -0.5% to -0.7%, see Table 4). The

extremely low proxy read ratios shows that there is very little proxying, but the
high proxy hit rates indicate that when proxy reads are invoked there is a high
level of combining. It is encouraging to see that the proxy read ratio is kept low:
this shows that the overheads of proxying (extra messages, cache pollution) are
only incurred when they are needed by an application.

To summarise, the results show that for reactive proxies, when the num-
ber of proxy clusters (NPC) is set to five or eight, the performance of all the
benchmarks improves, i.e. they achieve the best balance between combining,
queue length distribution, and the length of the proxy pending chains in our
simulated system. This is a very encouraging result, because without mark-
ing widely-shared data we have obtained sizeable performance improvements for
three benchmarks (GE, FFT, and cFD), and had no detrimental effect on the other
well-behaved applications. By selecting a suitable A"PC for an architecture, the
system designers can provide a ccNUMA system with more stable performance.
This 1s in contrast to basic proxies, where although better performance can
be obtained for some benchmarks, the strategy relies on judicious marking of
widely-shared data for each application.

5 Related Work

A number of measures are available to alleviate the effects of contention for a
node, such as improving the node controller service rate [11], and combining in
the interconnection network for fetch-and-update operations [4]. Architectures
based on clusters of bus-based multiprocessor nodes provide an element of read
combining since caches in the same cluster snoop their shared bus. Caching extra
copies of data to speed-up retrieval time for remote reads has been explored
for hierarchical architectures, including [5]. The proxies approach is different
because it does not use a fixed hierarchy: instead it allows requests for copies of
successive data lines to be serviced by different proxies.

Attempts have been made to identify widely-shared data for combining, in-
cluding the GLOW extensions to the sCI protocol [8, 7]. GLOW intercepts requests
for widely-shared data by providing agents at selected network switch nodes.
In their dynamic detection schemes, which avoid the need for programmers to
identify widely-shared data, agent detection achieves better results than the
combining of [4] by using a sliding window history of recent read requests, but
does not improve on the static marking of data. Their best results are with
program-counter based prediction (which identifies load instructions that suffer
very large miss latency) although this approach has the drawback of requiring
customisation of the local node cPUs.

In Bianchini and LeBlanc’s “eager combining”, the programmer identifies
specific memory regions for which a small set of server caches are pre-emptively
updated [2]. Eager combining uses intermediate nodes which act like proxies for
marked pages, i.e. their choice of server node 1s based on the page address rather
than data block address, so their scheme does not spread the load of messages
around the system in the fine-grained way of proxies. In addition, their scheme

eagerly updates all proxies whenever a newly-updated value is read, unlike our
protocol, where data is allocated in proxies on demand. Our less aggressive
scheme reduces cache pollution at the proxies.

6 Conclusions

This paper has presented the reactive proxy technique, discussed the design and
implementation of proxying cache coherence protocols, and examined the results
of simulating eight benchmark applications. We have shown that proxies benefit
some applications immensely, as expected, while other benchmarks with no ob-
vious read contention still showed performance gains under the reactive proxies
protocol. There is a tradeoff between the flexibility of reactive proxies and the
precision (when used correctly) of basic proxies. However, reactive proxies have
the further advantage that a stable value of APC (number of proxy clusters)
can be established for a given system configuration. This gives us the desired
result of improving the performance of some applications, without affecting the
performance of well-behaved applications. In addition, with reactive proxies, the
application programmer does not have to worry about the architectural imple-
mentation of the shared-memory programming model. This is in the spirit of the
shared-memory programming paradigm, as opposed to forcing the programmer
to restructure algorithms to cater for performance bottlenecks, or marking data
structures that are believed to be widely-shared.

We are currently doing work based on the Ocean-Non-Contig application to
refine our proxy node selection function (PA(I,C)). In addition, we are continu-
ing our simulation work with different network latency (L) and finite buffer size
values. We are also evaluating further variants of the proxy scheme: adaptive
proxies, non-caching proxies, and using a separate proxy cache.

Acknowledgements

This work was funded by the U.K. Engineering and Physical Sciences Research
Council through the crRaAMP project GR/J 99117, and a Research Studentship.
We would also like to thank Andrew Bennett and Ashley Saulsbury for their
work on the ALITE simulator and for porting some of the benchmark programs.

References

1. Andrew J. Bennett, Paul H. J. Kelly, Jacob G. Refstrup, and Sarah A. M. Tal-
bot. Using proxies to reduce cache controller contention in large shared-memory
multiprocessors. In Luc Bougé et al, editor, Furo-Par 96 European Conference on
Parallel Architectures, Lyon, volume 1124 of Lecture Notes in Computer Science,
pages 445-452. Springer-Verlag, August 1996.

2. Ricardo Bianchini and Thomas J. LeBlanc. FEager combining: a coherency pro-
tocol for increasing effective network and memory bandwidth in shared-memory
multiprocessors. In 6th IFEFE Symposium on Parallel and Distributed Processing,
Dallas, pages 204-213, October 1994.

10.

11.

12.

13.

14.

15.

16.

. David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eunice E. San-

tos, Klaus Erik Schauser, Ramesh Subramonian, and Thorsten von Eicken. LogP: a
practical model of parallel computation. Communications of the ACM, 39(11):78—
85, November 1996.

Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry
Rudolph, and Marc Snir. The NYU Ultracomputer — designing a MIMD shared
memory parallel computer. IEEE Transactions on Computers, C-32(2):175-189,
February 1983.

Seif Haridi and Erik Hagersten. The cache coherence protocol of the Data Diffu-
sion Machine. In E. Odijk, M. Rem, and J.-C Syre, editors, PARLE 89 Parallel
Architectures and Languages Furope, Findhoven, volume 365 of Lecture Notes in
Computer Science, pages 1-18. Springer-Verlag, June 1989.

Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John Hen-
nessy. The effects of latency, occupancy and bandwidth in distributed shared
memory multiprocessors. Technical Report CSL-TR-95-660, Computer Systems
Laboratory, Stanford University, January 1995.

David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi. Scal-
able Coherent Interface. IEEE Computer, 23(6):74-77, June 1990.

. Stefanos Kaxiras, Stein Gjessing, and James R. Goodman. A study of three dy-

namic approaches to handle widely shared data in shared-memory multiprocessors.
In (to appear) 12th ACM International Conference on Supercomputing, Melbourne,
July 1998.

Jeffrey Kuskin. The FLASH Multiprocessor: designing a flexible and scalable sys-
tem. PhD thesis, Computer Systems Laboratory, Stanford University, November
1997. Also available as a technical report, CSL-TR-97-744.

Tom Lovett and Russell Clapp. STiNG: a CC-NUMA computer system for the
commercial marketplace. 238rd Annual International Symposium on Computer Ar-
chitecture, Philadelphia, in Computer Architecture News, 24(2):308-317, May 1996.
Maged M. Michael, Ashwini K. Nanda, Beng-Hong Lim, and Michael L. Scott. Co-
herence controller architectures for SMP-based CC-NUMA multiprocessors. 24th
Annual International Symposium on Computer Architecture, Denver, in Computer
Architecture News, 25(2):219-228, June 1997.

Andreas Nowatzyk, Gunes Aybay, Michael Browne, Edmund Kelly, Michael Parkin,
Bill Radke, and Sanjay Vishin. The S3.mp scalable shared memory multiprocessor.
In Proceedings of the International Conference on Parallel Processing Vol. 1, pages
1-10, August 1995.

B. A. Tanyi. Iterative Solution of the Incompressible Navier-Stokes Equations on
a Distributed Memory Parallel Computer. PhD thesis, University of Manchester
Institute of Science and Technology, 1993.

Manu Thapar and Bruce Delagi. Stanford distributed-directory protocol. IEEFE
Computer, 23(6):78-80, June 1990.

Leslie G. Valiant. Optimality of a two-phase strategy for routing in interconnection
networks. IEEE Transactions on Computers, C-32(8):861-863, August 1983.
Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 programs: characterization and methodological
considerations. Proceedings of the 22nd Annual International Symposium on Com-
puter Architecture, in Computer Architecture News, 23(2):24-36, June 1995.

This article was processed using the INTpX macro package with LLNCS style

