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Abstract. We argue that delayed-evaluation, self-optimising scientific software
components, which dynamically change their behaviour according to their calling
context at runtime offer a possible way of bridging the apparent conflict between
the quality of scientific software and its performance. Rather than equipping sci-
entific software components with aperformance interfacewhich allows the caller
to supply the context information that is lost when buildingabstract software
components, we propose to recapture this lost context information at runtime.
This paper is accompanied by a public release of a parallel linear algebra library
with both C and C++ language interfaces which implements this proposal. We
demonstrate the usability of this library by showing that itcan be used to supply
linear algebra component functionality to an existing external software package.
We give preliminary performance figures and discuss avenuesfor future work.

1 Component-based Application Construction

There is often an apparent conflict between the quality of scientific software and its per-
formance. High quality scientific software has to be easy to re-use, easy to re-engineer,
easy to maintain and easy to port to new platforms, as well as suited to the kind of
thorough testing that is required for instilling confidencein application users. Modern
software engineering achieves these aims by using abstraction: We should only have
to code one version of each operation [16], independently ofthe context in which it is
called or the storage representation of participating data. The problem with this kind
of abstract, component-based1 software is that abstraction very often blocks optimisa-
tion: the fact that we engineer software components in isolation means that we have no
context information available for performing certain types of optimisation.

Performance Interfaces.One common solution to this problem is to equip software
components with aperformance interfacethat allows a calling program to tune not
only those parameters that affect the semantics of a component, but also those that af-
fect performance. One example for this might be PBLAS [5]: The P DGEMVparallel
matrix-vector product routine takes 19 parameters, 3 of which are themselves arrays
of 9 integers. This compares with 11 parameters for the equivalent sequential routine

1 In this paper we use the termcomponentto refer to separately deployable units of software
reuse, includinge.g.subroutines from libraries like the BLAS [4].



from BLAS-2 [4]. The additional parameters in PBLAS are usedto select parallel data
placement. Thus, when a calling program contains a series ofPBLAS routines, these
parameters can be used to choose a set of data placements thatminimise the need for
redistributions between calls. Assuming that the application programmer knows what
the optimal data layout is, the performance interface solution is of course “optimal”.
However, calling routines with such large numbers of parameters is very tedious and
highly likely to induce programming errors. Furthermore, selecting optimal data place-
ments is often an NP-hard problem [14], so expecting application programmers to make
the right choice without access to suitable optimisation algorithms is unrealistic.

1.1 Background: Related Work

Code-Generating Systems.Several systems have been described that automatically
adapt numerical routines to new computer architectures: PHiPAC [3] uses parame-
terised code generators and search scripts that find optimalparameters for a given archi-
tecture to generate matrix multiply routines that are competitive with vendor libraries.
ATLAS (automatically tuned linear algebra software) [19] uses code generators to au-
tomatically adapt the performance-critical BLAS library [4] to new architectures.

Telescoping Languages.The telescoping languages work [13] is in some aspects sim-
ilar to code-generating systems discussed above; however,the aim is not to optimise
individual routines to exploit machine architectures, butrather to optimise library rou-
tines according to the context in which they are called. The strategy is to exhaustively
analyse a library off-line, generating specialised instances of library routines for differ-
ent calling contexts. This is combined with a language processor that recognises library
calls in user programs and selects optimised implementations according to context. This
work is currently still very much in-progress.

Template Meta-programming.Generic Programming techniques in C++ have been used
for example in MTL [16]: each algorithm is implemented only once as an abstract
template, independently of the underlying representationof the data being accessed.
Optimisation in this framework is achieved by using C++ effectively as a two-level
language, with the template mechanism being used for partial evaluation and code gen-
eration [18]. However, as pointed out by Quinlanet al. [15], a serial C++ compiler
cannot find scalable parallel optimisations. A further possible problem with this tech-
nique is that templates make heavy demands of C++ compilers which on at least some
high-performance architectures are much less developed than C or Fortran compilers.

Incorporating Application Semantics into Compilation.Many library-based program-
ming systems effectively provide programmers with a semantically rich meta-language.
However, this meta-language is generally not understood bycompilers, which means
that both syntactic checking and optimisation of the meta-language are impossible.
MAGIK [9] is a system that allows programmers to incorporate application-specific
semantics into the compilation process. This can be used forexample in specialising re-
mote procedure calls or in enforcing rules such that application programs should check



the return code of system calls. A related system, ROSE [15],is a tool for generat-
ing library-specific optimising source-to-source preprocessors. ROSE is demonstrated
through an optimising pre-processor for the P++ parallel array class library.

1.2 Delayed Evaluation, Self-Optimising (DESO) Libraries

Our approach is to use delayed evaluation of software components in order to re-capture
lost context information from within the component libraryat runtime. While execu-
tion is being delayed, we can build up a DAG (directed acyclicgraph) representing the
data flowof the computation to be performed [1]. Evaluation is eventually forced, ei-
ther because we have to output result data, or because the control-flow of the program
becomes data dependent (in conditional expressions).2 Once execution is forced, we
can construct an optimised execution plan at runtime, automatically and transparently
changing the behaviour of components according to calling context.

We have implemented a library of delayed evaluation, self-optimising routines from
the widely used set of BLAS kernels. The library performs cross-component data place-
ment optimisation at runtime, aiming to minimise the cost ofdata redistributions be-
tween library calls. Our library has both a C language interface, which is virtually
identical to the recently proposed C bindings for BLAS [4], and a C++ interface. The
C++ interface uses operator overloading to facilitate high-level, generic coding of algo-
rithms. This paper is accompanied by a public release of thislibrary [7].

Contributions of this Paper.We have previously described the basic idea behind this
library [1,2]. The distinct contributions of this paper areas follows:

1. We demonstrate theusabilityof our approach by showing how a number of com-
mon iterative numerical solvers can be implemented in a high-level, intuitive man-
ner using this approach.

2. We show that the C++ interface, which we have not previously described, imple-
ments the API required for instantiating the algorithm templates in the IML++
package by Dongarraet al. [8].

3. We give performance figures for four iterative solver algorithms from the IML++
package, which show that fairly good parallel performance can be obtained by sim-
ply using our library together with an existing generic algorithm.

4. We discuss the techniques used in implementing the C++ interface to our library.

2 Usability and Software Quality

One of the main requirements for a high-level parallel programming model is that it
should be easy for application programmers to implement scientific algorithms in par-
allel. IML++ by Dongarraet al. [8] provides generic C++ algorithms for solving linear
systems using a variety of iterative methods. Figure 1 (left) shows the generic IML++
code for the preconditioned biconjugate gradient algorithm. Note that this C++ code

2 We show examples of both kinds of force points in Section 2.



1 template < class Matrix , class Vector ,
2 class Preconditioner , class Real >
3 int BiCG ( const Matrix &A, Vector &x,
4 const Vector &b, const Precond &M,
5 int & max_iter , Real & tol ) {
6 Vector rho_1 (1), rho_2 (1), alpha (1), beta (1);
7 Vector z ( x. size () ), zti lde ( x. size () );
8 Vector p ( x. size () ), pti lde ( x. size () );
9 Vector q ( x. size () ), qti lde ( x. size () );

10 Vector r ( x . size () ); r = b - A * x;
11 Vector rti lde ( x. size () ); rt i lde = r ;
12 Real resid , normb ; normb = norm ( b );
13 // Omitted check whether already converged
14
15 for( int i = 1; i <= max_iter ; i ++ ) {
16 z = M.solve (r );
17 zti lde = M. trans_solve ( rti lde );
18 rho_1 (0) = dot(z , rt i lde );
19 // Omitted check for breakdown
20 if ( i == 1) {
21 p = z;
22 ptilde = zti lde ;
23 }
24 else {
25 beta (0) = rho_1 (0) / rho_2 (0);
26 p = z + beta (0) * p;
27 ptilde = zti lde + beta (0) * pti lde ;
28 }
29 q = A * p;
30 qtilde = A. trans_mult ( pti lde );
31 alpha (0) = rho_1 (0) / dot( pti lde , q);
32 x += alpha (0) * p;
33 r -= alpha (0) * q;
34 rt i lde -= alpha (0) * qti lde ;
35
36 // DESO++: Need to force evaluation of x
37 deso :: evaluate ( x );
38
39 rho_2 (0) = rho_1 (0);
40 if (( resid = norm(r ) / normb ) < tol ) {
41 tol = resid ; max_iter = i ; return 0;
42 }
43 }
44
45 tol = resid ; return 1;
46 }

1 #include < ParDeso .h++>
2 #include " include /bicg .h" // IML++ BiCG template
3
4 int main ( int argc , char * argv [] ) {
5 int SZ, max_iter ;
6 int result = -1; // CG return code
7
8 deso :: init ialise (& argc , & argv );
9

10 SZ = atoi (*(++ argv ));
11 max_iter = atoi (*(++ argv ));
12
13 // Create and read in matrix
14 Matrix < double> A( SZ , SZ );
15 deso :: f i leRead ( A, " fi lename_A " );
16
17 // Create rhs and solution vectors
18 Vector < double> b ( A.xsize () );
19 Vector < double> x ( A.ysize () );
20 deso :: f i leRead ( b, " fi lename_b " );
21 deso :: f i leRead ( x, " fi lename_x " );
22
23 // Create identity preconditioner
24 DiagPrecondi t ioner< double> I( SZ , " I " );
25
26 // Convergence tolerance
27 double tol = (50.0 * DBL_EPSILON );
28 Scalar < double> err ( tol );
29
30 deso :: startTimer ();
31
32 result = BiCG ( A , x, b , I , max_iter , err );
33
34 tol = deso :: returnValue ( err );
35
36 deso :: stopTimer ();
37
38 if( deso :: isController () ) {
39 printf ( "\ nFinal tolerance : %.10f .\ n" , tol );
40 }
41
42 deso :: printTime (SZ);
43
44 deso :: f inalise ();
45
46 return ( result == 1 ? 0 : -1) ;
47 }

Fig. 1. IML++ Preconditioned BiConjugate Gradient template function (left), together with call-
ing program (right).

is almost as high-level as pseudocode, the only likely difference being various type
declarations. We believe that the API defined by IML++ satisfies the requirements of
being easy-to-use, high-level and abstract. Since the C++BiCG function is a templated
(generic) function, it has to be instantiated with aMatrix , Vector , Precond andReal
class in order to be called. The template function implicitly defines the API these classes
need to implement, such as overloaded operators for vector-matrix computations.

DESO++, the C++ interface for our delayed evaluation, self-optimising linear al-
gebra library, provides parallel matrix, vector, scalar and preconditioner types that im-
plement the API required for instantiating IML++ template algorithms. Figure 1 (right)
shows an executable parallel program which is obtained by instantiating theBiCG tem-
plate. This demonstrates:

– A parallel BiCG solver can be implemented simply by creatingDESO++ objects for
initial matrices and vectors, choosing a DESO++ preconditioner and then calling
the IML++ template.

– Note that each operator in the BiCG template will call a delayed evaluation parallel
function, building up a DAG representing the computation tobe performed. Exe-
cution is forcedeither transparently on conditionals, such as the convergence test



0

500

1000

1500

2000

2500

0 5 10 15 20 25

P
er

fo
rm

an
ce

 in
 M

F
LO

P
s

Number of Processors

Absolute Performance of IML++ Iterative Solvers Instantiated with DESO++

Conjugate Gradient
Preconditioned Bi-Conjugate Gradient

Preconditioned Bi-Conjugate Gradient Stabilised
Preconditioned Conjugate Grdient Squared

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
up

 o
ve

r 
B

es
t-

E
ffo

rt
 S

eq
ue

nt
ia

l C
 C

od
e

Number of Processors

Parallel Speedup of IML++ Iterative Solvers Instantiated with DESO++

Linear
Conjugate Gradient

Preconditioned Bi-Conjugate Gradient
Preconditioned BiConjugate Gradient Stabilised

Preconditioned Conjugate Gradient Squared

Fig. 2.Performance of four different parallel iterative algorithms implemented using IML++ tem-
plates with DESO++. The platform is a (heterogeneous) cluster of AMD Athlon processors with
1.0 or 1.4 GHz clockspeed, 256 KB L2 cache, 256 or 512 MB RAM, running Linux 2.4.17 and
connected via a switched 100Mbit/s ethernet LAN. The problem size in each case is a dense ma-
trix of size 7200�7200. The left graph shows absolute performance in MFLOP/s,the right graph
shows speedup over a handwritten sequential C-language version of the same algorithm.

in line 40, or explicitly by using thedeso::evaluate function. The latter can be
seen in line 37. The reason why we have to manually force evaluation of the solu-
tion vectorx here is because the control flow of the program never directlydepends
on x. Alternatively, we could wait until function exit whenx would normally be
written to disk, which would also force evaluation.

IML++ was written with the aim of being usable with a diverse range of vector and
matrix classes. Since the code we instantiated required virtually no changes, we believe
that our parallel library should be suitable for transparently parallelising a range of
existing applications that currently rely on sequential vector and matrix classes written
in C++ to implement an API similar to IML++.

3 Performance

We have implemented four different iterative solvers in parallel in the manner shown in
Section 2: Conjugate Gradient, preconditioned Bi-Conjugate Gradient, preconditioned
Bi-Conjugate Gradient Stabilised and Conjugate Gradient Squared. The performance
we obtain is shown in Figure 2.

– Note that all these algorithms haveO(N2) computation complexity onO(N2) data,
which means that there is only limited scope for getting goodsequential perfor-
mance because of memory re-use.

– The measurements we show in Figure 2 are obtained without performing data
placement optimisation at runtime [1]. We believe that the performance can be
improved by optimising data placement to eliminate unnecessary communication.

– Even without data placement optimisation, a speedup of about 15 on a 25-processor
commodity cluster platform is encouraging, given how easy it was to obtain.



4 C++ Interface

In this section we discuss some of the design decisions and C++ programming tech-
niques that were used in implementing the DESO++ interface.The DESO++ interface
is built fully on top of the C interface,i.e. it calls the functions and uses the datatypes
from our C language library API. In the C language interface,the results of delayed op-
erations are represented by handles (which ultimately are integer indices into the data
structure storing the DAG for the computation being performed). The application pro-
grammer has to force evaluation of such handles explicitly before being able to access
the data. In C++, we can do better by using operator overloading: For example, theforce
that happens on the conditional statements in line 40 of Figure 1 is entirely transparent.

Reference-Counting Smart Pointers.The following example illustrates a potential prob-
lem that could arise due to our use of delayed evaluation:

1 Vector & fun ( const Vector &x , const Scalar & beta ) {
2 Vector a;
3 a = beta * x;
4 return ( x + a);
5 }

In our system, this function would return a handle for a delayed expression, to be eval-
uated when the return value of the function is eventually forced. The problem is that
on function exit,a would normally be destructed, leaving the return value of the func-
tion having an indirect reference to an invalid handle. We resolve this issue by using
reference-counting smart pointers, via an extra level of indirection, for accessing de-
layed handles.

Expression Templates.We use expression templates similar to those in Blitz++ [17]and
POOMA II [12] for parsing array expressions such asr = b - A * x . Construction of
such expressions is fully in-lined. Execution of the assignment operator= triggers the
actual construction of the DAG of delayed operations representing the expression.

Careful Separation of Copy Constructors and Assignment Operators. Non-basic types
such as our handles for the results of delayed operations trigger copy constructors in
C++ even for the purpose of parameter passing. We initially defined copy constructors
as making delayed calls to the BLAS copying routinecopy . This resulted in vast num-
bers of superfluous data copies. We therefore took the designdecision to define copy
constructors as making aliases, whilst the assignment operator actually copies data.

Traits. The traits technique [18] allows programmers to write functions that operate on
and returntypes. This technique is very useful when implementing generic functions,
in particular generic operators such as* . We could envisage writing a generic interface
for * as follows:

1 template< typename T1 , typename T2 >
2 inline Return_Type operator* ( const T1 &m1 , const T2 & m2 ) {
3 // ...
4 }



What shouldReturn Type be? Traits allow us to define a function that gives the correct
type:

1 template< typename T1 , typename T2 >
2 class _promote_product {
3 // General case: type of product is type of first operand.
4 typedef T1 Value_Type;
5 };
6
7 template< typename T2 >
8 class _promote_product< Scalar < double>, T2 > {
9 // But Scalar * any T2 is always T2

10 typedef T2 Value_Type;
11 };
12
13 template< >
14 class _promote_product< Vector < double>, Vector < double> > {
15 // Special case for dot product: Vector * Vector = Scalar
16 typedef Scalar < double> Value_Type;
17 };

The return type for* would then bepromote product<T1, T2>::Value Type . Note
that this example has been very much simplified in order to illustrate the programming
technique used.

5 Conclusion

We have described delayed evaluation, self-optimising software components as a possi-
ble way of bridging the apparent conflict between the qualityof scientific software and
its performance. We have presented a library which implements this proposal and have
shown that this can be used to write parallel numerical algorithms in a very high-level
intuitive manner as well as to transparently parallelise some existing sequential codes.

Skeletons without a Language.It is interesting to consider how our work compares with
the Skeletons approach to parallel programming [6, 10]. Typically, skeletons provide a
language for expressing the composition of computational components. The benefit of
this is that we have very precise high-level structural information about application
programs available for the purpose of optimisation. This information can be hard to
capture automatically when using compilers for common imperative languages. In our
approach, the information which is provided through high-level constructs in skeleton
programs is instead captured at runtime by using delayed evaluation.
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