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Abstract. We argue that delayed-evaluation, self-optimising sdiergoftware
components, which dynamically change their behaviourbeg to their calling
context at runtime offer a possible way of bridging the appaconflict between
the quality of scientific software and its performance. Rathan equipping sci-
entific software components withpgrformance interfacevhich allows the caller
to supply the context information that is lost when buildiagstract software
components, we propose to recapture this lost contextrirdtion at runtime.
This paper is accompanied by a public release of a paraliehtialgebra library
with both C and C++ language interfaces which implements phoposal. We
demonstrate the usability of this library by showing thataih be used to supply
linear algebra component functionality to an existing mxaésoftware package.
We give preliminary performance figures and discuss avefundsture work.

1 Component-based Application Construction

There is often an apparent conflict between the quality efgific software and its per-
formance. High quality scientific software has to be easytase, easy to re-engineer,
easy to maintain and easy to port to new platforms, as well@sdsto the kind of
thorough testing that is required for instilling confidemee@pplication users. Modern
software engineering achieves these aims by using akistrae should only have
to code one version of each operation [16], independenttii@tontext in which it is
called or the storage representation of participating.dette problem with this kind
of abstract, component-basesbftware is that abstraction very often blocks optimisa-
tion: the fact that we engineer software components in ferianeans that we have no
context information available for performing certain tgpe optimisation.

Performance InterfacesOne common solution to this problem is to equip software
components with gerformance interfac¢hat allows a calling program to tune not
only those parameters that affect the semantics of a conmpdné also those that af-
fect performance. One example for this might be PBLAS [5]e PADGEM\parallel
matrix-vector product routine takes 19 parameters, 3 othlire themselves arrays
of 9 integers. This compares with 11 parameters for the etpnv sequential routine

1n this paper we use the teroomponento refer to separately deployable units of software
reuse, including.g.subroutines from libraries like the BLAS [4].



from BLAS-2 [4]. The additional parameters in PBLAS are utedelect parallel data
placement. Thus, when a calling program contains a seri®BbAS routines, these
parameters can be used to choose a set of data placementsrinaise the need for
redistributions between calls. Assuming that the appboaprogrammer knows what
the optimal data layout is, the performance interface 8oiuts of course “optimal”.
However, calling routines with such large numbers of patenses very tedious and
highly likely to induce programming errors. Furthermomesting optimal data place-
ments is often an NP-hard problem [14], so expecting apidic@rogrammers to make
the right choice without access to suitable optimisatigoathms is unrealistic.

1.1 Background: Related Work

Code-Generating Systems&everal systems have been described that automatically
adapt numerical routines to new computer architectureSPAE! [3] uses parame-
terised code generators and search scripts that find optemaineters for a given archi-
tecture to generate matrix multiply routines that are caitipe with vendor libraries.
ATLAS (automatically tuned linear algebra software) [18F8 code generators to au-
tomatically adapt the performance-critical BLAS libradj fo new architectures.

Telescoping Languaged.he telescoping languages work [13] is in some aspects sim-
ilar to code-generating systems discussed above; howt&eeaim is not to optimise
individual routines to exploit machine architectures, tather to optimise library rou-
tines according to the context in which they are called. Tthegegy is to exhaustively
analyse a library off-line, generating specialised inséaof library routines for differ-

ent calling contexts. This is combined with a language @Bsoethat recognises library
calls in user programs and selects optimised implememisgiocording to context. This
work is currently still very much in-progress.

Template Meta-programmingseneric Programming techniques in C++ have been used
for example in MTL [16]: each algorithm is implemented onlgce as an abstract
template, independently of the underlying representatiothe data being accessed.
Optimisation in this framework is achieved by using C++ efifeely as a two-level
language, with the template mechanism being used for paviduation and code gen-
eration [18]. However, as pointed out by Quinlanal. [15], a serial C++ compiler
cannot find scalable parallel optimisations. A further jfassproblem with this tech-
nique is that templates make heavy demands of C++ compileichven at least some
high-performance architectures are much less developedQtor Fortran compilers.

Incorporating Application Semantics into Compilatioklany library-based program-
ming systems effectively provide programmers with a sefoalty rich meta-language.
However, this meta-language is generally not understoocoypilers, which means
that both syntactic checking and optimisation of the mataylage are impossible.
MAGIK [9] is a system that allows programmers to incorporate apptin-specific

semantics into the compilation process. This can be usezkfimple in specialising re-
mote procedure calls or in enforcing rules such that apfdingrograms should check



the return code of system calls. A related system, ROSE 45, tool for generat-
ing library-specific optimising source-to-source pregssors. ROSE is demonstrated
through an optimising pre-processor for the P++ parallelyaclass library.

1.2 Delayed Evaluation, Self-Optimising (DESO) Libraries

Our approach is to use delayed evaluation of software coemsiin order to re-capture
lost context information from within the component libraay runtime. While execu-
tion is being delayed, we can build up a DAG (directed acygiaph) representing the
data flowof the computation to be performed [1]. Evaluation is evaltjforced, ei-
ther because we have to output result data, or because threleftow of the program
becomes data dependent (in conditional expressfo@s)ce execution is forced, we
can construct an optimised execution plan at runtime, aatically and transparently
changing the behaviour of components according to callongext.

We have implemented a library of delayed evaluation, spifraising routines from
the widely used set of BLAS kernels. The library performsssraomponent data place-
ment optimisation at runtime, aiming to minimise the costlafa redistributions be-
tween library calls. Our library has both a C language imatef which is virtually
identical to the recently proposed C bindings for BLAS [4]jdaa C++ interface. The
C++ interface uses operator overloading to facilitate Heylel, generic coding of algo-
rithms. This paper is accompanied by a public release ofitirary [7].

Contributions of this PaperWe have previously described the basic idea behind this
library [1, 2]. The distinct contributions of this paper a®follows:

1. We demonstrate thegsability of our approach by showing how a number of com-
mon iterative numerical solvers can be implemented in a-fegél, intuitive man-
ner using this approach.

2. We show that the C++ interface, which we have not previodsbkcribed, imple-
ments the API required for instantiating the algorithm téatgs in the IML++
package by Dongarret al.[8].

3. We give performance figures for four iterative solver aitpons from the IML++
package, which show that fairly good parallel performararelze obtained by sim-
ply using our library together with an existing generic altion.

4. We discuss the techniques used in implementing the Ce#ate to our library.

2 Usability and Software Quality

One of the main requirements for a high-level parallel paogming model is that it
should be easy for application programmers to implemeetsific algorithms in par-
allel. IML++ by Dongarreet al. [8] provides generic C++ algorithms for solving linear
systems using a variety of iterative methods. Figure 1)(#fows the generic IML++
code for the preconditioned biconjugate gradient algorithote that this C++ code

2 We show examples of both kinds of force points in Section 2.



1 tenplate < class Matrix, cl ass Vector, 1 #include <ParDeso.h++>

2 cl ass Preconditioner, class Real > 2 #include "include/bicg.h" /1 1 M++ Bi CG tenpl ate
3 int BiCG( const Matrix &A, Vector &x, 3

4 const Vector &b, const Precond &M, 4 int main( int argc, char * argv[] ) {

5 int &max_iter, Real &tol) { 5 int SZ, max_iter;

6 Vector rho_1(1), rho_2(1), alpha(1), beta(1); 6 int result = -1; /1 CGreturn code
7 Vector z( x.size() ), ztilde( x.size() ); 7

8 Vector p( x.size() ), ptilde( x.size() ); 8 deso::initialise (&arge, &argv);

9 Vector q( x.size() ), qtilde( x.size() ); 9

10 Vector r( x.size() ); r = b - A * x; 10 sz = atoi(*(++argv));

11 Vector rtilde( x.size() ); rtilde = r; 11 max_iter = atoi(*(++argv));

12 Real resid, normb; normb = norm( b ); 12

13 /1 Omtted check whether already converged

13 Il Create and read in matrix

14 14 Matrix< doubl e> A( SZ, SZ );

15 for( int i =1;i <= max_iter; i++ ) { 15 deso::fileRead ( A, "filename_A" );

16 z = M.solve(r); 16

17 ztilde = M.trans_solve (rtilde); 17 Il Create rhs and sol ution vectors
18 rho_1(0) = dot(z, rtilde); 18 Vector< doubl e> b( A.xsize() );

19 /1 Onmitted check for breakdown 19 Vector< doubl e> x( A.ysize() );

20 if (i ==1){ 20 deso::fileRead ( b, "filename_b" );

21 p =1z 21 deso::fileRead ( x, “filename_x" );

22 ptilde = ztilde; 22

23 23 Il Create identity preconditioner
24 el se { 24 DiagPreconditioner< doubl e> I( Sz, "I");
25 beta(0) = rho_1(0) / rho_2(0); 25

26 p =z + beta(0) * p; 26 /1 Convergence tol erance

27 ptilde = ztilde + beta(0) * ptilde; 27 doubl e tol = (50.0 * DBL_EPSILON);
28 } 28 Scalar< doubl e> err( tol );

29 q=A*p 29

30 qtilde = A.trans_mult (ptilde); 30 deso::startTimer ();

31 alpha(0) = rho_1(0) / dot(ptilde, q); 31

32 x += alpha(0) * p; 32 result = BiCG( A, x, b, I, max_iter, err );
33 r -= alpha(0) * q; 33

34 rtilde -= alpha(0) * qtilde; 34 tol = deso::returnValue ( err );

35 35

36 /| DESO++: Need to force evaluation of x 36 deso::stopTimer ();

37 deso::evaluate ( x ); 37

38 38 i f( deso:isController() ) {

39 rho_2(0) = rho_1(0); 39 printf( "\nFinal _tolerance: _%.10f\n", tol );
40 if ((resid = norm(r) / normb) < tol) { 40 }

41 tol = resid; max_iter = i; return 0; 41

42 } 42 deso::printTime (SZ);

43 } 43

44 44 deso::finalise ();

45 tol = resid; return 1; 45

46 } 46 return (result == 1 ? 0 : -1);

Fig. 1. IML++ Preconditioned BiConjugate Gradient template fumcleft), together with call-
ing program (right).

is almost as high-level as pseudocode, the only likely difiee being various type
declarations. We believe that the API defined by IML++ satisthe requirements of
being easy-to-use, high-level and abstract. Since theBI3G function is a templated
(generic) function, it has to be instantiated witMatrix , Vector , Precond andReal
classin order to be called. The template function impliaifines the API these classes
need to implement, such as overloaded operators for vewatrix computations.

DESO++, the C++ interface for our delayed evaluation, eplimising linear al-
gebra library, provides parallel matrix, vector, scalad @aneconditioner types that im-
plement the API required for instantiating IML++ templatgaithms. Figure 1 (right)
shows an executable parallel program which is obtained &tpimiating theBiCG tem-
plate. This demonstrates:

— Aparallel BiCG solver can be implemented simply by creafrtSO++ objects for
initial matrices and vectors, choosing a DESO++ preconadr and then calling
the IML++ template.

— Note that each operator in the BiCG template will call a dethgvaluation parallel
function, building up a DAG representing the computatiomé¢operformed. Exe-
cution isforcedeither transparently on conditionals, such as the converytest
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Fig. 2. Performance of four different parallel iterative algonith implemented using IML++ tem-
plates with DESO++. The platform is a (heterogeneous) efudftAMD Athlon processors with
1.0 or 1.4 GHz clockspeed, 256 KB L2 cache, 256 or 512 MB RAMning Linux 2.4.17 and
connected via a switched 100Mbit/s ethernet LAN. The proldéze in each case is a dense ma-
trix of size 7200« 7200. The left graph shows absolute performance in MFLARégjght graph
shows speedup over a handwritten sequential C-languag®nef the same algorithm.

in line 40, or explicitly by using théeso::evaluate function. The latter can be
seen in line 37. The reason why we have to manually force atialuof the solu-

tion vectorx here is because the control flow of the program never diréethends

on x. Alternatively, we could wait until function exit whenwould normally be

written to disk, which would also force evaluation.

IML++ was written with the aim of being usable with a diversmge of vector and

matrix classes. Since the code we instantiated requiragklliy no changes, we believe
that our parallel library should be suitable for transpéyeparallelising a range of

existing applications that currently rely on sequentiaitee and matrix classes written
in C++ to implement an API similar to IML++.

3 Performance

We have implemented four different iterative solvers irgfiat in the manner shown in
Section 2: Conjugate Gradient, preconditioned Bi-Confe@aradient, preconditioned
Bi-Conjugate Gradient Stabilised and Conjugate Gradiguiafed. The performance
we obtain is shown in Figure 2.

— Note that all these algorithms ha@N?) computation complexity o®(N?) data,
which means that there is only limited scope for getting geeduential perfor-
mance because of memory re-use.

— The measurements we show in Figure 2 are obtained withofibrpging data
placement optimisation at runtime [1]. We believe that tleefgrmance can be
improved by optimising data placement to eliminate unngmgscommunication.

— Even without data placement optimisation, a speedup oftaldoan a 25-processor
commodity cluster platform is encouraging, given how easyais to obtain.



4 C++ Interface

In this section we discuss some of the design decisions ardpBagramming tech-
nigues that were used in implementing the DESO++ interfabe. DESO++ interface

is built fully on top of the C interfacd,e. it calls the functions and uses the datatypes
from our C language library API. In the C language interfadlse results of delayed op-
erations are represented by handles (which ultimatelyraegér indices into the data
structure storing the DAG for the computation being perfedy The application pro-
grammer has to force evaluation of such handles explicéfpie being able to access
the data. In C++, we can do better by using operator ovenhgaéior example, thiorce
that happens on the conditional statements in line 40 ofrEigus entirely transparent.

Reference-Counting Smart Pointef®he following example illustrates a potential prob-

lem that could arise due to our use of delayed evaluation:
1 Vector &fun (  const Vector &x, const Scalar &beta ) {

2 Vector a;

3 a = beta * x;

4 return (x + a);

5

}

In our system, this function would return a handle for a dethgxpression, to be eval-
uated when the return value of the function is eventuallgédr The problem is that
on function exita would normally be destructed, leaving the return value efftinc-
tion having an indirect reference to an invalid handle. Weohee this issue by using
reference-counting smart pointers, via an extra level diré@ction, for accessing de-
layed handles.

Expression Template$Ve use expression templates similar to those in Blitz++ §hid]
POOMA Il [12] for parsing array expressions suclras b - A * x . Construction of
such expressions is fully in-lined. Execution of the assignt operator triggers the
actual construction of the DAG of delayed operations regmisg the expression.

Careful Separation of Copy Constructors and Assignment&pes. Non-basic types
such as our handles for the results of delayed operatiaygetricopy constructors in
C++ even for the purpose of parameter passing. We initiagfinéd copy constructors
as making delayed calls to the BLAS copying routio@y . This resulted in vast num-
bers of superfluous data copies. We therefore took the degigision to define copy
constructors as making aliases, whilst the assignmenatapeactually copies data.

Traits. The traits technique [18] allows programmers to write fiortsd that operate on
and returrtypes This technique is very useful when implementing genenfions,
in particular generic operators such*asVe could envisage writing a generic interface

for * as follows:
1 tenpl ate< typename T1, typename T2 >
2 inline Return_Type operator* ( const Tl &ml, const T2 &m2 ) {
3 /...

4}



What shoulcReturn _Type be? Traits allow us to define a function that gives the correct
type:

tenpl at e< typename T1, typename T2 >

cl ass _promote_product {

/1 Ceneral case: type of product is type of first operand.
typedef T1 Value_Type;

k

tenpl at e< typename T2 >

cl ass _promote_product< Scalar< doubl e>, T2 > {
9 // But Scalar * any T2 is always T2

10 typedef T2 Value_Type;

11}

0O~NOOOAWNERE

13 tenpl ate< >

14 cl ass _promote_product< Vector< doubl e>, Vector< double> > {

15 /1 Special case for dot product: Vector * Vector = Scal ar

16 typedef Scalar< doubl e> Value_Type;

17 %

The return type for would then bepromote _product<T1, T2>::Value _Type. Note
that this example has been very much simplified in order tstithte the programming

technique used.

5 Conclusion

We have described delayed evaluation, self-optimising&se components as a possi-
ble way of bridging the apparent conflict between the qualitgcientific software and
its performance. We have presented a library which implesiis proposal and have
shown that this can be used to write parallel numerical &lyois in a very high-level
intuitive manner as well as to transparently parallelisasexisting sequential codes.

Skeletons without a Languagk s interesting to consider how our work compares with
the Skeletons approach to parallel programming [6, 10]icBlly, skeletons provide a
language for expressing the composition of computatioo@ponents. The benefit of
this is that we have very precise high-level structural infation about application
programs available for the purpose of optimisation. Thfsrimation can be hard to
capture automatically when using compilers for common irafdee languages. In our
approach, the information which is provided through highel constructs in skeleton
programs is instead captured at runtime by using delayddaian.
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