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Abstract. This paper describes a dynamic instrumentation tool for the
Linuz Kernel which allows a stock Linuz kernel to be modified while in ez-
ecution, with instruments implemented as kernel modules. The Intel 86
architecture poses a particular problem, due to variable length instruc-
tions, which this paper addresses for the first time. Finally we present a
short case study illustrating its use in understanding i/o behaviour in the
kernel. The source code is freely available for download.

1 Introduction

In this paper we describe an instrumentation tool called GILK that has been
developed specifically for the Linux Kernel. It permits sensitive instrumentation
code to be added to an unmodified kernel in execution with low instrumentation
overhead. This is achieved through an implementation of runtime code splicing,
which allows arbitrary code to be inserted in the kernel without affecting its
behaviour. Currently the tool works only for kernels running on the Intel x86
architecture, although in principle there is no reason why it could not work on
others. Through a graphical interface, the user may choose how and where to
instrument, when to begin and end individual instruments and what to do with
the information produced. We make the following contributions:

— An implementation of runtime code splicing for the Intel x86 architecture is
outlined.
— A new technique for code splicing, called local bounce allocation, is described.

2 Related Work

Much of the foundation for this project has been laid by Tamches, et al. [1-
3] with the KernlInst dynamic instrumentation tool. This works on the Solaris
kernel and UltraSparc architecture and its techniques are applicable to a fixed
length instruction set and multi-threaded kernel.

Binary rewriters such as QP/QPT [4], EEL [5], BIT [6] and ATOM [7] intro-
duce instrumentation code by modifying the executable statically.
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The GILK tool consists of two com- b b | o

ponents: a device driver (called ILK)
and a client. The client does the bulk
of the work, with the device driver
providing access to kernel space.
The client begins with a scanning
phase to establish the set of valid in-
strumentation points. The user then
specifies what instrumentation should take place, which amounts to selecting
instruments, choosing points and specifying start and finish times. The tool
supports staggered launching and termination of instruments, which provides
greater flexibility.

There are two instrument points associated with each basic block of a kernel
function: the pre- and post-hook. A pre-hook instrument gets executed before
the first instruction of the block, while a post-hook instrument is executed after
the last non-branching statement.

Each of the instruments is assigned a unique identifier (iid) which is logged,
along with any additional data, to a buffer in the kernel, which the client peri-
odically flushes. Eventually, they are written to disk. The client keeps a record
of the active instruments so that the kernel can be safely restored to its original
form.

Fig. 1: Illustrating the process of placing a
code splice. In the new sequence two bytes
are now redundant, as they are no longer
in the flow of control. The two overwritten
instructions are relocated to the patch.

3.1 Code Splicing

The idea behind code splicing is to write a branch instruction or splice at the
instrument point. Clearly, this will overwrite instructions at that point and,
therefore, those affected are first relocated into a code patch. The splice targets
this code patch, which must also save and restore the machine state and call the
instrument function. This is illustrated in Figure 1.

Under the Intel x86 architecture, the splice used is 5 bytes long. However, an
instruction may be a single byte in length, making it possible for the splice to
overwrite more than one instruction. If an overwritten instruction (other than
the first) is the target of a branch, control could be passed into the middle of
the splice!



It is for this reason that GILK must generate the Control Flow Graph for
each kernel symbol. With this knowledge the above problem can be reduced to
saying that it is unsafe to straddle the splice across a basic block boundary.

There is a second problem with variable length architectures that is similar
to the first. This time, consider what happens if a thread is suspended at an
overwritten instruction. Again, when the thread awakens, control could be passed
into the middle of the splice. At this point, the methodology of the Linux Kernel
comes to the rescue. There are three main points:

— A process executing in kernel space must run to completion unless it volun-
tarily relinquishes control.

— Processes running in kernel space may be interrupted by hardware interrupts.

— An interrupt handler cannot be interrupted by a process running in kernel
space.

These three points, taken together, allow us to overcome this second problem.
Firstly, the ability to block interrupts means the device driver can write the
splice without fear of interruption. Secondly, although a process may relinquish
control it can only do so through indirectly calling the schedule () function. This
means that, so long as we don’t instrument this function, the sleeping thread
problem can be ignored. Further discussions on these topics can be found in [8].

3.2 Local Bouncing

It is sometimes the case that a basic block is less than five bytes in length. This
means we cannot always place a splice without straddling a block boundary.
However, the Intel x86 architecture also supports a two byte branch instruction
with limited range. In general, this is not enough to reach the code patch directly.

Therefore, GILK attempts to place a normal splice within this range. This is
termed bouncing. The problem, then, is where to position these bounces. Luckily,
it is often the case that space is made available by splices for other instruments.
To understand this better, consider again Figure 1. If the second overwritten
instruction was three or more bytes longer then there would be (at least) five
redundant bytes available for use as a bounce. If no other instruments are ac-
tive, or there are simply not enough redundant bytes, then GILK will relocate
instructions solely for the purpose of finding space.

This strategy is termed local bounce allocation because GILK only attempts
to allocate bounces within the function being instrumented.

3.3 Instrument Functions

The instruments themselves are implemented as kernel modules, as this simplifies
some of the dynamic linking issues. Each instrument module initially registers
itself with the ILK device driver, providing a pointer to the instrument function.
The instrument function accepts, as parameters, at least the unique instrument
identifier and possibly other arguments depending upon which code patch tem-
plate was used. An example function is:
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Fig. 2:

void simple_instr(unsigned int iid) {
ilk_log_integer_sample(jiffies,iid);
}

This function simply logs the value of the global variable “jiffies” when it is called.
Being a kernel module, it has access to all the structures of the kernel which it can
report on. Also, as a ‘C’ function it could easily be more sophisticated.

4 Experimental Results

4.1 Pipe Blocking

This experiment provides a simple case study to show GILK being used to understand
kernel and process behaviour. The idea behind it was this: suppose we have a series
of UNIX commands concatenated with the “pipe” operator and we wish to determine
which of the commands is the bottleneck. One way of using GILK to determine this is
by instrumenting the kernel symbol pipe_write. Part of the code for this symbol is:

while ((PIPE_FREE(*inode) < free) || PIPE_LOCK(*inode)) {

interruptible_sleep_on(&PIPE_WAIT (*inode));

The function interruptible_sleep_on() puts the process to sleep, pending a wake
up call from the pipe reader. So, the above can be simplified to saying that the process
is put to sleep when there isn’t enough space in the buffer or the pipe is locked by a
reader. Therefore, it is reasonable to assume that a process in a pipeline will make a
lot of calls to interruptible_sleep_on() if it is producing data faster that it can be
consumed.

To measure this, GILK was used to place a pre-hook instrument on the basic block
which makes the call to interruptible_sleep_on(). The instrument recorded the
Process ID and a timestamp. A large file, called “vol_.dump” was created with random
data and the following pipeline used:

% cat vol_dump | sed -e "s/\C.\)\/\C.\)/\2#\1/" | grep -a " " | sort
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Fig. 3: These plots show a comparison of the histograms (left) and power spectra based
on data from GILK and tcpdump.

The results can be seen in the left graph of Figure 2. They indicate that the “cat”
process is making a large number of calls to interruptible_sleep_on() whilst the
others are making relatively little. This means that “cat” is producing data faster than
it can be consumed and this is causing it to block. The suspicion is, therefore, that
“sed” is the bottleneck for this pipeline.

If this was the case then we would expect processes after it to be blocking on
their read operations. To confirm this a second experiment was performed in which
the pipe read operation was monitored for calls to interruptible_sleep_on(). The
results from this are shown in right graph of Figure 2 and they show that all processes
in the pipeline after “sed” are blocking whilst waiting for data to be produced. Hence,
the conclusion that “sed” is the bottleneck seems reasonable.

4.2 Network Traffic Analysis

The experiments outlined in this section form part of ongoing research into self-
similarity of network traffic at Imperial College. This particular experiment used GILK
to investigate the properties of artificial network traffic. For this a simple multi-
threaded JAVA server was constructed that transferred data across the network to
a number of clients.

The experiment requires inter-arrival times for packets to be measured. The utility
tcpdump was initially used for this, but it occasionally reported inter-arrival times of
zero. Clearly, this is a mistake and it was unclear whether the generated power spectra
was being affected.

Thus, GILK was deployed to confirm that inter-arrival times of zero were not real
and ascertain if they were affecting the original data. It was used to instrument func-
tions within the Linux TCP/IP stack as well as the Ethernet driver. The measurements
taken confirmed that interarrival times were always positive and it was concluded that
there was negligible difference between the power spectra generated with tcpdump.
Figure 3 illustrates the comparison.

The significance of the power spectra and self-similarity are beyond the scope of
this paper and the reader is referred to [9,10] for more information.



5 Conclusion

GILK provides a useful instrumentation tool and provides an example implementation
of runtime code splicing for a variable length architecture, which has not been done
before. Experimental evidence shows that it as an accurate and reasonably low overhead
way of performing instrumentation.

There remains, however, some scope for improvement. Particularly, the sample
logging process appears expensive. Live register analysis could also be used to make
machine state saving less expensive. Also, the need to implement instruments as kernel
modules adds to the overhead by requiring an extra function call. This could be pre-
vented by employing a more sophisticated dynamic loader. The custom disassembler
could be reworked to allow easy updating for new instruction set extensions and, fi-
nally, the client interface could be extended to provide more instrumentation strategies
and easier navigation through the kernel.

The source code for the tool has been placed under the GNU General Public License
and is available for download, along with an extended version of this paper [11].
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