
GILK: A dynami
 instrumentation tool for theLinux KernelDavid J. Pear
e, Paul H.J. Kelly, Tony Field and Uli HarderImperial College of S
ien
e, Te
hnology and Medi
ineExhibition Road, London, UKAbstra
t. This paper des
ribes a dynami
 instrumentation tool for theLinux Kernel whi
h allows a sto
k Linux kernel to be modi�ed while in ex-e
ution, with instruments implemented as kernel modules. The Intel x86ar
hite
ture poses a parti
ular problem, due to variable length instru
-tions, whi
h this paper addresses for the �rst time. Finally we present ashort 
ase study illustrating its use in understanding i/o behaviour in thekernel. The sour
e 
ode is freely available for download.1 Introdu
tionIn this paper we des
ribe an instrumentation tool 
alled GILK that has beendeveloped spe
i�
ally for the Linux Kernel. It permits sensitive instrumentation
ode to be added to an unmodi�ed kernel in exe
ution with low instrumentationoverhead. This is a
hieved through an implementation of runtime 
ode spli
ing,whi
h allows arbitrary 
ode to be inserted in the kernel without a�e
ting itsbehaviour. Currently the tool works only for kernels running on the Intel x86ar
hite
ture, although in prin
iple there is no reason why it 
ould not work onothers. Through a graphi
al interfa
e, the user may 
hoose how and where toinstrument, when to begin and end individual instruments and what to do withthe information produ
ed. We make the following 
ontributions:{ An implementation of runtime 
ode spli
ing for the Intel x86 ar
hite
ture isoutlined.{ A new te
hnique for 
ode spli
ing, 
alled lo
al boun
e allo
ation, is des
ribed.2 Related WorkMu
h of the foundation for this proje
t has been laid by Tam
hes, et al. [1{3℄ with the KernInst dynami
 instrumentation tool. This works on the Solariskernel and UltraSpar
 ar
hite
ture and its te
hniques are appli
able to a �xedlength instru
tion set and multi-threaded kernel.Binary rewriters su
h as QP/QPT [4℄, EEL [5℄, BIT [6℄ and ATOM [7℄ intro-du
e instrumentation 
ode by modifying the exe
utable stati
ally.



movl 60(%esp,1),%ecx testb $0x10, %ch jz 24

pusha

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

jmp patch jz 24

push $iid call instrument

addl $4,%esp popapopf movl 60(%esp,1),%ecx

testb $0x10, %ch jmp next

pushf

Fig. 1: Illustrating the pro
ess of pla
ing a
ode spli
e. In the new sequen
e two bytesare now redundant, as they are no longerin the 
ow of 
ontrol. The two overwritteninstru
tions are relo
ated to the pat
h.

This is, arguably, a safer approa
hthan runtime modi�
ation, but ismore 
umbersome. It is our beliefthat GILK provides a more pra
ti
alsolution, as its dynami
 approa
h ismore suited to the exploratory na-ture of performan
e monitoring anddebugging.3 GILK OverviewThe GILK tool 
onsists of two 
om-ponents: a devi
e driver (
alled ILK)and a 
lient. The 
lient does the bulkof the work, with the devi
e driverproviding a

ess to kernel spa
e.The 
lient begins with a s
anningphase to establish the set of valid in-strumentation points. The user thenspe
i�es what instrumentation should take pla
e, whi
h amounts to sele
tinginstruments, 
hoosing points and spe
ifying start and �nish times. The toolsupports staggered laun
hing and termination of instruments, whi
h providesgreater 
exibility.There are two instrument points asso
iated with ea
h basi
 blo
k of a kernelfun
tion: the pre- and post-hook. A pre-hook instrument gets exe
uted beforethe �rst instru
tion of the blo
k, while a post-hook instrument is exe
uted afterthe last non-bran
hing statement.Ea
h of the instruments is assigned a unique identi�er (iid) whi
h is logged,along with any additional data, to a bu�er in the kernel, whi
h the 
lient peri-odi
ally 
ushes. Eventually, they are written to disk. The 
lient keeps a re
ordof the a
tive instruments so that the kernel 
an be safely restored to its originalform.3.1 Code Spli
ingThe idea behind 
ode spli
ing is to write a bran
h instru
tion or spli
e at theinstrument point. Clearly, this will overwrite instru
tions at that point and,therefore, those a�e
ted are �rst relo
ated into a 
ode pat
h. The spli
e targetsthis 
ode pat
h, whi
h must also save and restore the ma
hine state and 
all theinstrument fun
tion. This is illustrated in Figure 1.Under the Intel x86 ar
hite
ture, the spli
e used is 5 bytes long. However, aninstru
tion may be a single byte in length, making it possible for the spli
e tooverwrite more than one instru
tion. If an overwritten instru
tion (other thanthe �rst) is the target of a bran
h, 
ontrol 
ould be passed into the middle ofthe spli
e!



It is for this reason that GILK must generate the Control Flow Graph forea
h kernel symbol. With this knowledge the above problem 
an be redu
ed tosaying that it is unsafe to straddle the spli
e a
ross a basi
 blo
k boundary.There is a se
ond problem with variable length ar
hite
tures that is similarto the �rst. This time, 
onsider what happens if a thread is suspended at anoverwritten instru
tion. Again, when the thread awakens, 
ontrol 
ould be passedinto the middle of the spli
e. At this point, the methodology of the Linux Kernel
omes to the res
ue. There are three main points:{ A pro
ess exe
uting in kernel spa
e must run to 
ompletion unless it volun-tarily relinquishes 
ontrol.{ Pro
esses running in kernel spa
e may be interrupted by hardware interrupts.{ An interrupt handler 
annot be interrupted by a pro
ess running in kernelspa
e.These three points, taken together, allow us to over
ome this se
ond problem.Firstly, the ability to blo
k interrupts means the devi
e driver 
an write thespli
e without fear of interruption. Se
ondly, although a pro
ess may relinquish
ontrol it 
an only do so through indire
tly 
alling the s
hedule() fun
tion. Thismeans that, so long as we don't instrument this fun
tion, the sleeping threadproblem 
an be ignored. Further dis
ussions on these topi
s 
an be found in [8℄.3.2 Lo
al Boun
ingIt is sometimes the 
ase that a basi
 blo
k is less than �ve bytes in length. Thismeans we 
annot always pla
e a spli
e without straddling a blo
k boundary.However, the Intel x86 ar
hite
ture also supports a two byte bran
h instru
tionwith limited range. In general, this is not enough to rea
h the 
ode pat
h dire
tly.Therefore, GILK attempts to pla
e a normal spli
e within this range. This istermed boun
ing. The problem, then, is where to position these boun
es. Lu
kily,it is often the 
ase that spa
e is made available by spli
es for other instruments.To understand this better, 
onsider again Figure 1. If the se
ond overwritteninstru
tion was three or more bytes longer then there would be (at least) �veredundant bytes available for use as a boun
e. If no other instruments are a
-tive, or there are simply not enough redundant bytes, then GILK will relo
ateinstru
tions solely for the purpose of �nding spa
e.This strategy is termed lo
al boun
e allo
ation be
ause GILK only attemptsto allo
ate boun
es within the fun
tion being instrumented.3.3 Instrument Fun
tionsThe instruments themselves are implemented as kernel modules, as this simpli�essome of the dynami
 linking issues. Ea
h instrument module initially registersitself with the ILK devi
e driver, providing a pointer to the instrument fun
tion.The instrument fun
tion a

epts, as parameters, at least the unique instrumentidenti�er and possibly other arguments depending upon whi
h 
ode pat
h tem-plate was used. An example fun
tion is:



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10

ca
ll 

co
un

t f
or

 in
te

rr
up

tib
le

_s
le

ep
_o

n

time in cycles

cat vol_dump
sed -e "s/\(.\)\/\(.\)/\2#\1/"

grep -a " "

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10 1.4e+10 1.6e+10

ca
ll 

co
un

t f
or

 in
te

rr
up

tib
le

_s
le

ep
_o

n

time in cycles

sed -e "s/\(.\)\/\(.\)/\2#\1/"
grep -a

sort

Fig. 2:void simple_instr(unsigned int iid) {ilk_log_integer_sample(jiffies,iid);}This fun
tion simply logs the value of the global variable \jiÆes" when it is 
alled.Being a kernel module, it has a

ess to all the stru
tures of the kernel whi
h it 
anreport on. Also, as a `C' fun
tion it 
ould easily be more sophisti
ated.4 Experimental Results4.1 Pipe Blo
kingThis experiment provides a simple 
ase study to show GILK being used to understandkernel and pro
ess behaviour. The idea behind it was this: suppose we have a seriesof UNIX 
ommands 
on
atenated with the \pipe" operator and we wish to determinewhi
h of the 
ommands is the bottlene
k. One way of using GILK to determine this isby instrumenting the kernel symbol pipe_write. Part of the 
ode for this symbol is:while ((PIPE_FREE(*inode) < free) || PIPE_LOCK(*inode)) {...interruptible_sleep_on(&PIPE_WAIT(*inode));The fun
tion interruptible_sleep_on() puts the pro
ess to sleep, pending a wakeup 
all from the pipe reader. So, the above 
an be simpli�ed to saying that the pro
essis put to sleep when there isn't enough spa
e in the bu�er or the pipe is lo
ked by areader. Therefore, it is reasonable to assume that a pro
ess in a pipeline will make alot of 
alls to interruptible_sleep_on() if it is produ
ing data faster that it 
an be
onsumed.To measure this, GILK was used to pla
e a pre-hook instrument on the basi
 blo
kwhi
h makes the 
all to interruptible_sleep_on(). The instrument re
orded thePro
ess ID and a timestamp. A large �le, 
alled \vol dump" was 
reated with randomdata and the following pipeline used:% 
at vol_dump | sed -e "s/\(.\)\/\(.\)/\2#\1/" | grep -a " " | sort



-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5 6 7

lo
g1

0(
pd

f)

log10(binsize in microseconds)

gilk 
tcpdump

Line with slope -2.6

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g1

0(
P

ow
er

)

log10(Frequency in Hz)

tcpdump
gilk

Line with slope -1.6

Fig. 3: These plots show a 
omparison of the histograms (left) and power spe
tra basedon data from GILK and t
pdump.The results 
an be seen in the left graph of Figure 2. They indi
ate that the \
at"pro
ess is making a large number of 
alls to interruptible_sleep_on() whilst theothers are making relatively little. This means that \
at" is produ
ing data faster thanit 
an be 
onsumed and this is 
ausing it to blo
k. The suspi
ion is, therefore, that\sed" is the bottlene
k for this pipeline.If this was the 
ase then we would expe
t pro
esses after it to be blo
king ontheir read operations. To 
on�rm this a se
ond experiment was performed in whi
hthe pipe read operation was monitored for 
alls to interruptible_sleep_on(). Theresults from this are shown in right graph of Figure 2 and they show that all pro
essesin the pipeline after \sed" are blo
king whilst waiting for data to be produ
ed. Hen
e,the 
on
lusion that \sed" is the bottlene
k seems reasonable.4.2 Network TraÆ
 AnalysisThe experiments outlined in this se
tion form part of ongoing resear
h into self-similarity of network traÆ
 at Imperial College. This parti
ular experiment used GILKto investigate the properties of arti�
ial network traÆ
. For this a simple multi-threaded JAVA server was 
onstru
ted that transferred data a
ross the network toa number of 
lients.The experiment requires inter-arrival times for pa
kets to be measured. The utilityt
pdump was initially used for this, but it o

asionally reported inter-arrival times ofzero. Clearly, this is a mistake and it was un
lear whether the generated power spe
trawas being a�e
ted.Thus, GILK was deployed to 
on�rm that inter-arrival times of zero were not realand as
ertain if they were a�e
ting the original data. It was used to instrument fun
-tions within the Linux TCP/IP sta
k as well as the Ethernet driver. The measurementstaken 
on�rmed that interarrival times were always positive and it was 
on
luded thatthere was negligible di�eren
e between the power spe
tra generated with t
pdump.Figure 3 illustrates the 
omparison.The signi�
an
e of the power spe
tra and self-similarity are beyond the s
ope ofthis paper and the reader is referred to [9, 10℄ for more information.



5 Con
lusionGILK provides a useful instrumentation tool and provides an example implementationof runtime 
ode spli
ing for a variable length ar
hite
ture, whi
h has not been donebefore. Experimental eviden
e shows that it as an a

urate and reasonably low overheadway of performing instrumentation.There remains, however, some s
ope for improvement. Parti
ularly, the samplelogging pro
ess appears expensive. Live register analysis 
ould also be used to makema
hine state saving less expensive. Also, the need to implement instruments as kernelmodules adds to the overhead by requiring an extra fun
tion 
all. This 
ould be pre-vented by employing a more sophisti
ated dynami
 loader. The 
ustom disassembler
ould be reworked to allow easy updating for new instru
tion set extensions and, �-nally, the 
lient interfa
e 
ould be extended to provide more instrumentation strategiesand easier navigation through the kernel.The sour
e 
ode for the tool has been pla
ed under the GNU General Publi
 Li
enseand is available for download, along with an extended version of this paper [11℄.6 A
knowledgementsUli Harder is supported by an EPSRC grant (QUAINT). David Pear
e is supportedby an EPSRC grant.Referen
es1. Ariel Tam
hes and Barton P. Miller. Fine-grained dynami
 instrumentation of
ommodity operating system kernels. In Operating Systems Design and Imple-mentation, pages 117{130, 1999.2. Ariel Tam
hes and Barton P. Miller. Using dynami
 kernel instrumentation forkernel and appli
ation tuning. The International Journal of High Performan
eComputing Appli
ations, 13(3):263{276, Fall 1999.3. Ariel Tam
hes. Fine-Grained Dynami
 Instrumentation of Commodity OperatingSystem Kernels. PhD thesis, University of Wis
onsin, 2001.4. James R. Larus and Thomas Ball. Rewriting exe
utable �les to measure programbehavior. Software - Pra
ti
e and Experien
e, 24(2):197{218, February 1994.5. James R. Larus and Eri
 S
hnarr. EEL: ma
hine-independent exe
utable editing.ACM SIGPLAN Noti
es, 30(6):291{300, June 1995.6. Han Bok Lee and Benjamin G. Zorn. BIT: A tool for instrumenting Java byte
odes.In Pro
eedings of the USENIX Symposium on Internet Te
hnologies and Systems(ITS-97), pages 73{82, Berkeley, De
ember 8{11 1997. USENIX Asso
iation.7. Amitabh Srivastava and Alan Eusta
e. Atom: A system for building 
ustomizedprogram analysis tools. ACM SIGPLAN Noti
es, 29(6):196{205, June 1994.8. Mi
hael Be
k et al. Linux kernel internals. Addison-Wesley, Reading, MA, USA,se
ond edition, 1998.9. C. Tang P.Bak and K. Wiesenfeld. Self organised 
riti
ality: an explanation of 1/fnoise. Physi
al Review Letters, 59:381, 1987.10. H. J. Jensen. Self-organised 
riti
ality, CUP, 1998.11. Gilk: A dynami
 instrumentation tool for the linux kernel, http://www.do
.i
.a
.uk/~djp1/gilk.html.


