Imperial College

London

-

a

Software abstractions for many-
core software engineering

Paul H J Kelly
Group Leader, Software Performance Optimisation
Department of Computing

Imperial College London
Joint work with :

David Ham, Gerard Gorman, Florian Rathgeber (Imperial ESE/Grantham Inst for Climate Change Res)

Mike Giles, Gihan Mudalige (Mathematical Inst, Oxford)

Adam Betts, Carlo Bertolli, Graham Markall, Tiziano Santoro, George Rokos (Software Perf Opt Group, Imperial)
Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)



Imperial College

London

Rolls-Royce

HYDRA LAMMPS —
turbomachinery granular flow
CFD

Fluidity and the
Imperial
College Ocean
Model (ICOM)

Multicore Form Compiler

FENICS finite-
element PDE
generator

Patrticle

Finite-volume problems — Finite-element Mesh

CFD molecular assembly adaptation Mixed meshes
dynamics

Pair_gen for LAMMPS P-adaptivity

OP2: parallel OP2.1:

loops over extended with
unstructured dynamic
meshes meshes

Fortran & C/C++ OP2 compiler

OP2.4: mixed
and piecewise
structured
meshes

OP2.2: OP2.3: with
extended with fully-abstract
sparse matrices | graphs

SSE/AVX FPGAs

B Roadmap: applications drive DSLs, delivering performance portability




Imperial College
London

“2

B [hree stories

B Three slogans

B Generative, instead B Domain-specific
of transformative active library
optimisation examples

B Get the abstraction B General framework:
right, to isolate access-execute
numerical methods descriptors
from mapping to
hardware B The value of

B Build vertically, ?:C”hiﬁztl'}’eesa”d DSk
learn horizontally -




Imperial College

London Easy parallelism — tricky engineering

B Parallelism breaks

abstractions: How can we build
B Whether code should run in r Obu§tly -efficient
parallel depends on context multicore
B How data and computation software

should be distributed across
the machine depends on
context

B “Best-effort”, opportunistic

While maintaining
the abstractions

parallelisation is almost that keep code
useless: clean, reusable
B Robust software must and O; long-term
robustly, predictably, exploit value’

large-scale parallelism

It’'s a software engineering problem



mperial Colege - A ctive libraries and DSLs

- T Visual effects
Domain-specific languages... Finite element

Embedded DSLs Linear algebra

_ _ _ Game physics
Active libraries Finite difference

B [ibraries that come with a .
. . . Applications

mechanism to deliver library-

specific optimisations
Domain-specific “active” library

encapsulates specialist performance
expertise

Each new platform requires new
performance tuning effort

So domain-specialists will be doing the Exotic hardware
performance tuning

Our challenge is to support them

GPU Multicore FPGA Quantum?



Imperial College
London

B Classical compilers have two halves



Class-hierarchy
Points-to

Syntax

B The right domain-specific ianguage or active library can give
us a free ride




Class-hierarchy
Points-to

B [t turns out that analysis is not always the interesting part....



Imperial College

Code motion Capture dependence
optimisations and communication in
Vectorisation and programs over richer

parallelisation of affine data structures
loops over arrays

Specify application
requirements, leaving
implementation to select
radically-different solution
approaches



Imperial College . . . . .
London D Encapsulating and delivering domain expertise

B Domain-specific languages & active
libraries Application-domain context

B Raise the level of abstraction
B Capture a domain of variability

B Encapsulate reuse of a body of
code generation expertise/
techniques

Unifying
B Enable us to capture design space i ooontation

B To match implementation choice to
application context:

B Target hardware
B Problem instance

d
B This talk illustrates these ideas with Target hardware context

some of our recent/current projects



Imperial College OP2 — a decoupled access-execute active library
London f

or unstructured mesh comﬁutations

// declare sets, maps, and datasets float u_sum, u_max, beta = 1.0f;

op_set nodes = op_decl_set( nnodes ); for (int iter = 0; iter < NITER; iter++)

e { -
- S
// global variables and constants declarations

Example - Jacobi solver ' ! !

float alpha[2] = { 1.0f, 1.0f };
op_decl_const ( 2, alpha );




e College OP2- Data model

/l declare sets, maps, and datasets

A A A A A
Pedge1 Pedge1 Pedgel1 Pedgel1 Pedgel
op_set edges = op_decl_set( nedges ), Pedge2 Pedge?2 Pedge2 Pedge2 PedgeZ2

A
LA

op_set nodes = op decl set( nnodes );

r
u

/I global variables and constants declarations
float alpha[2] = { 1.0f, 1.0f };
op_decl _const ( 2, alpha );

OP2'’s key data structure is a set
A set may contain pointers that map into another set
Eg each edge points to two vertices




imperial College OP2 —a decoupled access-execute active library
London for unstructured mesh computations

float u_sum, u_max, beta = 1.0f;

i for (intiter = 0; iter < NITER; iter++ )
B Each parallel loop precisely

characterises the data that will be !
accessed by each iteration

B This allows staging into
scratchpad memory

B And gives us precise dependence
information

B In this example, the “res” kernel
visits each edge
B reads edge data, A
B Reads beta (a global),

B Reads u belonging to the vertex
pointed to by “edge2”

B Increments du belonging to the
vertex pointed to by “edge1”

Example - Jacobi solver’

u_sum = 0.0f; u_max = 0.0f;




inline void res(const float A[1], const float uf1],
float duf1], const float beta[1])

duf0] += beta[0]*A[0]*u[0]:

}
inline void update(const float r[1], float

float u[1], float u_sum[1], float u_max[1])
{
u[0] += du[0] + alpha * r[0];
du[0] = 0.0f;
u_sum|0] += u[0]*u[0];
u_max[0] = MAX(u_max[0],u[0]);

}

B In this example, the “res” kernel \_

visits each edge
B reads edge data, A
B Reads beta (a global),

B Reads u belonging to the vertex
pointed to by “edge2”

B Increments du belonging to the
vertex pointed to by “edge1”

OP2 - parallel loops

I — —

float u_sum, u_max, beta = 1.0f;

for (intiter = 0; iter < NITER; iter++)

u_sum = 0.0f; u_max = 0.0f;

}



A

- I

on GPU and
multicore A ‘
Implementation
We also have A“A-A
MPI-level ""' \/
parallelisation
Exploring SSE/ ‘
N ANVANYANIA=S

And FPGA -




e

Two k g A A
op\;\{?miggtions: {‘v V.VA§
Partitioning [\
Colouring “"
)
)\ V
Partition #53 Partition #54 Partition #55
( 5 Y4 A W4 A A
\ Edges
) e I_jSh{redMemory
Cross-partition
ages_——_—— 111171117
Vertices
— )

Y
Partition #54



Two key
optimisations:

st RVAVAVAVAVAVA ‘\
\/ \ AVAVAVAVAY,

the edge set
are coloured

to avoid

races due to

concurrent

updates to Partition #53 Partition #54 Partition #55

shared A A )\

nodes N N [ \

Edges

Cross-partition | ] Shared Memory
edges /' T T T T T T T T T

— ~ )
Partition #54




B Two key
optimisations:

B Partitioning

B Colouring
B Attwo levels

Partition #53 Partition #54 Partition #55

Edges

wl\ﬂemory

Cross-partition
edges

>
-
>
b

Vertices

/

Parti?cg #54



Imperial College

OP2 - performance

600 Y T
OpenMP Threads 1
OpenMP Threads 2
500 OpenMP Threads 4 T |
OpenMP Threads 8 2
OpenMP Threads 16 ]
400
_'Of.
g
S
2 300
—
200
100
0

B Two backends: OpenMP, CUDA (OpenCL coming)
B For tough, unstructured problems like this GPUs can

Partition size

(a) Intel Xeon E5540 (Nehalem) (ICC 11.1)

B Example: non-linear 2D inviscid unstructured airfoil
code, double precision (compute-light, data-heavy)

win, but you have to work at it

B X86 also benefits from tiling; we are looking at how to

enhance SSE/AVX exploitation

Time (seconds)

150

100

50

Block Size 64
128
256
512

il

64 128

Partition size

(b) Tesla C2050

,_ h]_
256 512

LRSS

LRSI
.0.’0000‘:“::“ :“
Sesuelans

ey, ~
T

SRR

SRRTIT

“‘ \
uat

AL

0.5 1




Imperial College

Combining MPI, OpenMP and CUDA

B non-linear 2D 60 . . . . . . . . .
inviscid airfoil CX1Pred. —a—
code HECToR Actu. o

UM S s e S S HECToR Pred. —e— 1

B 26M-edge 3 ; ; g |

@ 1 1 1 1 1 C207O cluster Pred. ——
unstructured 3 | | | | | ‘
mesh A0 of T S S -

E 1000 3 A Unmod/f/ed C++ OP2 source
terations g | \\ code exploits inter-node

= parallelism using MPI, and

B Analytical £ f intra-node parallelism using
model AR D o Opé’h’IVIP"éhd"CUDA ********** T
validated on ® \g X | | | | |
up to 120 OF )\ NaNe e
Westmere e —o—Q8
X5650 cores e o A i
and 1920 0 I 1 1 ] ] ] A4 i i
HECToR 0 50 100 150 200 250 300 350 400 450 500
( Cra y XE 6) Number of nodes

cores (Preliminary results under review)



e i A higher-level DSL  =»<—

B Solving: Viu=f

B \Weak form: Vo -VudX =

(Ignoring boundaries) )

~1
/. \ W
== 2, ‘\y

Psi = state.scalar fields(“psi’)
v=TestFunction (Psi)
u=TrialFunction (Psi)

f=Function (Psi, “sin(x[0])+cos(x[1])”)
A=dot (grad(v) ,grad(u) ) *dx

RHS=v*f*dx

Solve (Psi,A,RHS)

W

UFL - Unified Form Language

(FENICS project, http://fenicsproject.org/):

A domain-specific language for generating finite
element discretisations of variational forms

Specify application
requirements, leaving
implementation to select
radically-different solution
approaches



Imperial College

The FE Method: computation overview

/ do element = 1,N
4{\. assemble(element)
_ end do
J k
i k

/Z7L(ll(5)dX=/ vgdX.
0O 0O

i i
j ﬁ i I

TR ) Ax=b —

B Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector



Imperial College Global Assembly — GPU Issues

Parallelising the global assembly leads to performance/
correctness issues:

B Bisection search: uncoalesced accesses, warp
divergence

B Contending writes: atomic operations, colouring

1 Local matrix
0 Global matrix for element 1

Lo
14

A=

Local matrix
for element 2

/\

Lo

B In some circumstances we can avoid building the
global system matrix altogether

B Goal: get the UFL compiler to pick the best option




Imperial College The Local Matr’ix ApproaCh

B Why do we assemble M?

We need to solve Y = Mv where M = ATM¢A

B In the Local Matrix Approach we recompute this, instead
of storing it:

IIIIIIIII
OOOOOOOOO
.........
IIIIIIIII

B Assemble it with an SpMV:  [i|| |

h = ATpe
AT\/ HEl Sl




Imperial College

London Test Problem Implementation

B Advection-Diffusion Equation:

oT
—— +uVT =V -0 VT

at

B Solved using a split scheme:
B Advection: Explicit RK4
B Diffusion: Implicit theta scheme

B GPU code: expanded data layouts,
with Addto or LMA

B CPU baseline code: indirect data ] -
layouts, with Addto [Vos et al., 2010] B Simplified CFD test

(Implemented within Fluidity) pI’ObIGm

B Double Precision arithmetic
B Simulation run for 200 timesteps



Imperial College

Test Platforms
e e — )

® Nvidia 280GTX:

B 240 stream processors: 30 multiprocessors with 8 SMs each
B 1GB RAM (4GB available in Tesla C1060)

B NVidia 480G TX:

B 480 stream processors: 15 multiprocessors with 32 SMs each
B 1.5GB RAM (3GB available in Tesla C2050, 6GB in Tesla C2060)

B AMD Radeon 5870:

B 1600 stream processors: 20 multiprocessors with 16 5-wide SIMD units
B 1GB RAM (768MB max usable)
Software:

B Intel Xeon E5620: | ubuntu 10.04

Intel Compiler 10.1 for Fortran (-03 flag)
NVIDIA CUDA SDK 3.1 for CUDA

ATl Stream SDK 2.2 for OpenCL
Linear Solver:
CPU: PETSc [Balay et al., 2010]

CUDA Conjugate Gradient Solver [Markall
& Kelly, 2009], ported to OpenCL

B 4 cores
B 12GB RAM




Imperial College

Fermi Execution times

160 I | I I I I I I I
Advection-Diffusion Equation: OpenCL, Addto/colouring ---#--
oT _ 140 L CUDA, Addto/atomics - - ]
—+uVlr =V -pu-VT CUDA, Addto/colouring - n
ot o | OpenCL, LMA - I
Solved using a split scheme: ~ CUDA, IMA —— i
B Advection: Explicit RK4 7 100 | - @_,,»»’"” _
B Diffusion: Implicit theta .5 )&(/%
scheme 5 o> ]
GPU code: expanded data £
layouts, with Addto or LMA E }
CPU baseline code: indirect _
data layouts, with Addto [Vos
et al., 2010] -
(Implemented within Fluidity)
O 1 ] 1 1 ] 1 ] ] ]
iSi ' ' / / 5 2 : ' 5
Double Precision arithmetic J‘OOO 000 J% 9000 eJ\OO 000 JOO YOOO s{)\% 000 J
Simulation run for 200 v % % % % D % % %Y
timesteps

Number of Elements

B On the 480GTX (“Fermi”) GPU, local assembly is more
than 10% slower than the addto algorithm (whether using
atomics or with colouring to avoid concurrent updates)



Imperial College

Intel 4-core E5620 (Westmere EP)

Advection-Diffusion Equation:

oT

 fuvVr=V.
ot T ¢

Solved using a split scheme:
B Advection: Explicit RK4

B Diffusion: Implicit theta
scheme

- VT

GPU code: expanded data
layouts, with Addto or LMA

CPU baseline code: indirect
data layouts, with Addto [Vos
et al., 2010]

(Implemented within Fluidity)

Double Precision arithmetic

Simulation run for 200
timesteps

Execution time (s)

2500

2000

1500

1000

500

OpenCL, LMA - P
OpenCL, Addto/colouring --------
MPI baseline (Addto) ——

Number of Elements

B On the quad-core Intel Westmere EP system, the local
matrix approach is slower. Using Intel’ s compiler, the
baseline code (using addtos and without data expansion)

is faster still




Imperial College

Throughput compared to CPU Implementation

Number of Elements

6000 I I I I I I I I
5000 |
- " . s
% 4000 b - A X X=X e 3¢ - Hmoge 3™ e g T <., Ll
= 10|
2 :
£ P
..; 3000 — T T — 56l
2 il
'?:; NVIDIA GTX480, CUDA, LMA - Heooo 2|
g 2000 NVIDIA GTX280, CUDA, LMA - ---- 0 -
Z AMD 5870’ OpeI]CL’ LMA T AMD 5870 Nvidia 480GTX
1000 Intel Xeon E5620, MPI Baseline - B B AMD 5870 and
. o B b mn oo B G TX480 kernel
eEEEe B e e times very similar;
0 | | . . , . , | older AMD drivers
Y, 9 % e, Y, Dy, %, %, %, Y, Incurred
Y M, M, M, Y, %, %, %, %y, %, %, overheads

B Throughput of best GPU implementations relative to CPU
(quad-core Westmere E5620)

(preliminary results, esp the AMD numbers)



Imperial College

Summary of results
= = ———— .

B The Local Matrix Approach is fastest on
GPUs

B Global assembly with colouring is
fastest on CPUs

B Expanded data layouts allow coalescing
and higher performance on GPUs

B Accessing nodal data through
indirection is better on CPU due to
cache, lower memory bandwidth, and
arithmetic throughput



Imperial College

Mapping the design space — h/p
B The balance

between local- vs
global-assembly

—_
(00]

| | | | | | | | 1 |
Sum-Factorisation I
Local Element maamma _
Global Matrix  n—

—_
»
1

S

S

Q

&
depends on other §14 - _
factors Sl _

B Egtetrahedral vs ¢
hexahedral §10 i Relative execution time ]
B Eg higher-order § g | on CPU (dual quad Core2)

elements e

Helmholtz problem with 4
Hex elements
With increasing order

»
|

B Local vs Global
assembly is not the.
only interesting
option

Ime norma

s
T

Execution t
N
1
]

o

(Cantwell et al, provisional results under review) P



Imperial College

Mapping the design space — h/p

30 | | | | | | | | | |
B Contrast: with 28 L Sum-Factorisation |
Local Element mmomam
tetrahedral 26 | Global Matrix e -
elements 24 Relative execution time -
S2F on CPU (dual quad -
: & 20 F Core2) _
B Local is faster ‘§18
than global only g 6l Helmholtz problem with |
for much higher- ¢ y Tet elements
order > , i With increasing order |
k% - -
210 i
B Sum factorisation = 8F -
never wins E 6F _
S 4f _
3 2F _
S
w 0

(12 3 45 6 7 & 9 10|

(Cantwell et al, provisional results under review) P




Imperial College

End-to-end accuracy drives algorithm selection

srl) awinuny

“““““““ e
Al

- S

i 5 g
'y m.%%mqvw, mMWo
ELQ 5 EL T
23T 8 5§25
OTLE® > SRERS
N o o ® N =

- _

= - C O - (0
NS5 ® C = @ Q=03
= — -— = (7)) nn _— N

c50S% LS c50 cEQOQ
E2L0 50 0625 6E£8T
d.wmehmdpmw...mmeow
Qs O o C eoeWeth
HptewcaDsr T =0 O

- - — l

accuracy

Blue dotted lines show runtime of optimal strateqy; Red solid lines show L. error



General framework | A roadmap: taking a vertical view

Active libraries domain-

specific languages anda | "="'CS YrL - Other
. finite element application-

unifying common discretisation level program

framework DSL generators

AEcute: Kernels, iteration spaces, and access descriptors

OpenCL Other back-ends, eg AVX

intrinsics, FPGAs




ondon _Ce9e Conclusions and Further Work
B From these experiments:
B Algorithm choice makes a big Application-domain context

difference in performance

B The best choice varies with the
target hardware

B The best choice also varies with
problem characteristics and
accuracy objectives

Unifying
representation

B \We need to automate code
generation

B So we can navigate the design
space freely

:
B And pick the best implementation 7argst hardware context
strategy for each context




Imperial College

Having your cake and eating it

B If we get this right:

B Higher performance than you can
reasonably achieve by hand C/C++/Fortran t

B the DSL delivers reuse of expert
techniques DSL #
Reusable
generator

B Implements extremely aggressive
optimisations

B Performance portability

Ease of use

B [solate long-term value embodied
in higher levels of the software
from the optimisations needed for
each platform

Performance

B Raised level of abstraction

B Promoting new levels of
sophistication

B Enabling flexibility
B Domain-level correctness



Imperial College

Acknowledgements
= = ———— .

B Thanks to Lee Howes, Ben Gaster and
Dongping Zhang at AMD

B Partly funded by

B NERC Doctoral Training Grant (NE/
G523512/1)

B EPSRC “MAPDES” project (EP/I00677X/1)
B EPSRC “PSL’ project (EP/1006761/1)

B Rolls Royce and the TSB through the
SILOET programme



