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Rolls-Royce

HYDRA LAMMPS —
turbomachinery granular flow
CFD

Fluidity and the
Imperial
College Ocean
Model (ICOM)

Multicore Form Compiler

FENICS finite-
element PDE
generator

Patrticle

Finite-volume problems — Finite-element Mesh

CFD molecular assembly adaptation Mixed meshes
dynamics

Pair_gen for LAMMPS P-adaptivity

OP2: parallel OP2.1:

loops over extended with
unstructured dynamic
meshes meshes

Fortran & C/C++ OP2 compiler

OP2.4: mixed
and piecewise
structured
meshes

OP2.2: OP2.3: with
extended with fully-abstract
sparse matrices | graphs

SSE/AVX FPGAs

B Roadmap: applications drive DSLs, delivering performance portability
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B [hree stories

B Three slogans

B Generative, instead B Domain-specific
of transformative active library
optimisation examples

B Get the abstraction B General framework:
right, to isolate access-execute
numerical methods descriptors
from mapping to
hardware B The value of

B Build vertically, ?:C”hiﬁztl'}’eesa”d DSk
learn horizontally -
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London Easy parallelism — tricky engineering

B Parallelism breaks

abstractions: How can we build
B Whether code should run in r Obu§tly -efficient
parallel depends on context multicore
B How data and computation software

should be distributed across
the machine depends on
context

B “Best-effort”, opportunistic

While maintaining
the abstractions

parallelisation is almost that keep code
useless: clean, reusable
B Robust software must and O; long-term
robustly, predictably, exploit value’

large-scale parallelism

It’'s a software engineering problem



mperial Colege - A ctive libraries and DSLs

- T Visual effects
Domain-specific languages... Finite element

Embedded DSLs Linear algebra

_ _ _ Game physics
Active libraries Finite difference

B [ibraries that come with a .
. . . Applications

mechanism to deliver library-

specific optimisations
Domain-specific “active” library

encapsulates specialist performance
expertise

Each new platform requires new
performance tuning effort

So domain-specialists will be doing the Exotic hardware
performance tuning

Our challenge is to support them

GPU Multicore FPGA Quantum?
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B Classical compilers have two halves



Class-hierarchy
Points-to

Syntax

B The right domain-specific ianguage or active library can give
us a free ride




Class-hierarchy
Points-to

B [t turns out that analysis is not always the interesting part....
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Code motion Capture dependence
optimisations and communication in
Vectorisation and programs over richer

parallelisation of affine data structures
loops over arrays

Specify application
requirements, leaving
implementation to select
radically-different solution
approaches
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B Domain-specific languages & active
libraries Application-domain context

B Raise the level of abstraction
B Capture a domain of variability

B Encapsulate reuse of a body of
code generation expertise/
techniques

Unifying
B Enable us to capture design space i ooontation

B To match implementation choice to
application context:

B Target hardware
B Problem instance

d
B This talk illustrates these ideas with Target hardware context

some of our recent/current projects
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or unstructured mesh comﬁutations

// declare sets, maps, and datasets float u_sum, u_max, beta = 1.0f;

op_set nodes = op_decl_set( nnodes ); for (int iter = 0; iter < NITER; iter++)

e { -
- S
// global variables and constants declarations

Example - Jacobi solver ' ! !

float alpha[2] = { 1.0f, 1.0f };
op_decl_const ( 2, alpha );




e College OP2- Data model

/l declare sets, maps, and datasets

A A A A A
Pedge1 Pedge1 Pedgel1 Pedgel1 Pedgel
op_set edges = op_decl_set( nedges ), Pedge2 Pedge?2 Pedge2 Pedge2 PedgeZ2

A
LA

op_set nodes = op decl set( nnodes );

r
u

/I global variables and constants declarations
float alpha[2] = { 1.0f, 1.0f };
op_decl _const ( 2, alpha );

OP2'’s key data structure is a set
A set may contain pointers that map into another set
Eg each edge points to two vertices




imperial College OP2 —a decoupled access-execute active library
London for unstructured mesh computations

float u_sum, u_max, beta = 1.0f;

i for (intiter = 0; iter < NITER; iter++ )
B Each parallel loop precisely

characterises the data that will be !
accessed by each iteration

B This allows staging into
scratchpad memory

B And gives us precise dependence
information

B In this example, the “res” kernel
visits each edge
B reads edge data, A
B Reads beta (a global),

B Reads u belonging to the vertex
pointed to by “edge2”

B Increments du belonging to the
vertex pointed to by “edge1”

Example - Jacobi solver’

u_sum = 0.0f; u_max = 0.0f;




inline void res(const float A[1], const float uf1],
float duf1], const float beta[1])

duf0] += beta[0]*A[0]*u[0]:

}
inline void update(const float r[1], float

float u[1], float u_sum[1], float u_max[1])
{
u[0] += du[0] + alpha * r[0];
du[0] = 0.0f;
u_sum|0] += u[0]*u[0];
u_max[0] = MAX(u_max[0],u[0]);

}

B In this example, the “res” kernel \_

visits each edge
B reads edge data, A
B Reads beta (a global),

B Reads u belonging to the vertex
pointed to by “edge2”

B Increments du belonging to the
vertex pointed to by “edge1”

OP2 - parallel loops

I — —

float u_sum, u_max, beta = 1.0f;

for (intiter = 0; iter < NITER; iter++)

u_sum = 0.0f; u_max = 0.0f;

}
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on GPU and
multicore A ‘
Implementation
We also have A“A-A
MPI-level ""' \/
parallelisation
Exploring SSE/ ‘
N ANVANYANIA=S

And FPGA -
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Two key
optimisations:

st RVAVAVAVAVAVA ‘\
\/ \ AVAVAVAVAY,

the edge set
are coloured

to avoid

races due to

concurrent

updates to Partition #53 Partition #54 Partition #55

shared A A )\

nodes N N [ \

Edges

Cross-partition | ] Shared Memory
edges /' T T T T T T T T T

— ~ )
Partition #54




B Two key
optimisations:

B Partitioning

B Colouring
B Attwo levels

Partition #53 Partition #54 Partition #55

Edges

wl\ﬂemory

Cross-partition
edges

>
-
>
b

Vertices

/

Parti?cg #54
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OP2 - performance

600 Y T
OpenMP Threads 1
OpenMP Threads 2
500 OpenMP Threads 4 T |
OpenMP Threads 8 2
OpenMP Threads 16 ]
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g
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—
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100
0

B Two backends: OpenMP, CUDA (OpenCL coming)
B For tough, unstructured problems like this GPUs can

Partition size

(a) Intel Xeon E5540 (Nehalem) (ICC 11.1)

B Example: non-linear 2D inviscid unstructured airfoil
code, double precision (compute-light, data-heavy)

win, but you have to work at it

B X86 also benefits from tiling; we are looking at how to

enhance SSE/AVX exploitation
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Combining MPI, OpenMP and CUDA

B non-linear 2D 60 . . . . . . . . .
inviscid airfoil CX1Pred. —a—
code HECToR Actu. o

UM S s e S S HECToR Pred. —e— 1

B 26M-edge 3 ; ; g |

@ 1 1 1 1 1 C207O cluster Pred. ——
unstructured 3 | | | | | ‘
mesh A0 of T S S -

E 1000 3 A Unmod/f/ed C++ OP2 source
terations g | \\ code exploits inter-node

= parallelism using MPI, and

B Analytical £ f intra-node parallelism using
model AR D o Opé’h’IVIP"éhd"CUDA ********** T
validated on ® \g X | | | | |
up to 120 OF )\ NaNe e
Westmere e —o—Q8
X5650 cores e o A i
and 1920 0 I 1 1 ] ] ] A4 i i
HECToR 0 50 100 150 200 250 300 350 400 450 500
( Cra y XE 6) Number of nodes

cores (Preliminary results under review)



e i A higher-level DSL  =»<—

B Solving: Viu=f

B \Weak form: Vo -VudX =

(Ignoring boundaries) )

~1
/. \ W
== 2, ‘\y

Psi = state.scalar fields(“psi’)
v=TestFunction (Psi)
u=TrialFunction (Psi)

f=Function (Psi, “sin(x[0])+cos(x[1])”)
A=dot (grad(v) ,grad(u) ) *dx

RHS=v*f*dx

Solve (Psi,A,RHS)

W

UFL - Unified Form Language

(FENICS project, http://fenicsproject.org/):

A domain-specific language for generating finite
element discretisations of variational forms

Specify application
requirements, leaving
implementation to select
radically-different solution
approaches
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The FE Method: computation overview

/ do element = 1,N
4{\. assemble(element)
_ end do
J k
i k

/Z7L(ll(5)dX=/ vgdX.
0O 0O

i i
j ﬁ i I

TR ) Ax=b —

B Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector



Imperial College Global Assembly — GPU Issues

Parallelising the global assembly leads to performance/
correctness issues:

B Bisection search: uncoalesced accesses, warp
divergence

B Contending writes: atomic operations, colouring

1 Local matrix
0 Global matrix for element 1

Lo
14

A=

Local matrix
for element 2

/\

Lo

B In some circumstances we can avoid building the
global system matrix altogether

B Goal: get the UFL compiler to pick the best option




Imperial College The Local Matr’ix ApproaCh

B Why do we assemble M?

We need to solve Y = Mv where M = ATM¢A

B In the Local Matrix Approach we recompute this, instead
of storing it:

IIIIIIIII
OOOOOOOOO
.........
IIIIIIIII

B Assemble it with an SpMV:  [i|| |

h = ATpe
AT\/ HEl Sl
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B Advection-Diffusion Equation:

oT
—— +uVT =V -0 VT

at

B Solved using a split scheme:
B Advection: Explicit RK4
B Diffusion: Implicit theta scheme

B GPU code: expanded data layouts,
with Addto or LMA

B CPU baseline code: indirect data ] -
layouts, with Addto [Vos et al., 2010] B Simplified CFD test

(Implemented within Fluidity) pI’ObIGm

B Double Precision arithmetic
B Simulation run for 200 timesteps
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Test Platforms
e e — )

® Nvidia 280GTX:

B 240 stream processors: 30 multiprocessors with 8 SMs each
B 1GB RAM (4GB available in Tesla C1060)

B NVidia 480G TX:

B 480 stream processors: 15 multiprocessors with 32 SMs each
B 1.5GB RAM (3GB available in Tesla C2050, 6GB in Tesla C2060)

B AMD Radeon 5870:

B 1600 stream processors: 20 multiprocessors with 16 5-wide SIMD units
B 1GB RAM (768MB max usable)
Software:

B Intel Xeon E5620: | ubuntu 10.04

Intel Compiler 10.1 for Fortran (-03 flag)
NVIDIA CUDA SDK 3.1 for CUDA

ATl Stream SDK 2.2 for OpenCL
Linear Solver:
CPU: PETSc [Balay et al., 2010]

CUDA Conjugate Gradient Solver [Markall
& Kelly, 2009], ported to OpenCL

B 4 cores
B 12GB RAM
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Fermi Execution times

160 I | I I I I I I I
Advection-Diffusion Equation: OpenCL, Addto/colouring ---#--
oT _ 140 L CUDA, Addto/atomics - - ]
—+uVlr =V -pu-VT CUDA, Addto/colouring - n
ot o | OpenCL, LMA - I
Solved using a split scheme: ~ CUDA, IMA —— i
B Advection: Explicit RK4 7 100 | - @_,,»»’"” _
B Diffusion: Implicit theta .5 )&(/%
scheme 5 o> ]
GPU code: expanded data £
layouts, with Addto or LMA E }
CPU baseline code: indirect _
data layouts, with Addto [Vos
et al., 2010] -
(Implemented within Fluidity)
O 1 ] 1 1 ] 1 ] ] ]
iSi ' ' / / 5 2 : ' 5
Double Precision arithmetic J‘OOO 000 J% 9000 eJ\OO 000 JOO YOOO s{)\% 000 J
Simulation run for 200 v % % % % D % % %Y
timesteps

Number of Elements

B On the 480GTX (“Fermi”) GPU, local assembly is more
than 10% slower than the addto algorithm (whether using
atomics or with colouring to avoid concurrent updates)
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Intel 4-core E5620 (Westmere EP)

Advection-Diffusion Equation:

oT

 fuvVr=V.
ot T ¢

Solved using a split scheme:
B Advection: Explicit RK4

B Diffusion: Implicit theta
scheme

- VT

GPU code: expanded data
layouts, with Addto or LMA

CPU baseline code: indirect
data layouts, with Addto [Vos
et al., 2010]

(Implemented within Fluidity)

Double Precision arithmetic

Simulation run for 200
timesteps

Execution time (s)

2500

2000

1500

1000

500

OpenCL, LMA - P
OpenCL, Addto/colouring --------
MPI baseline (Addto) ——

Number of Elements

B On the quad-core Intel Westmere EP system, the local
matrix approach is slower. Using Intel’ s compiler, the
baseline code (using addtos and without data expansion)

is faster still
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Throughput compared to CPU Implementation

Number of Elements

6000 I I I I I I I I
5000 |
- " . s
% 4000 b - A X X=X e 3¢ - Hmoge 3™ e g T <., Ll
= 10|
2 :
£ P
..; 3000 — T T — 56l
2 il
'?:; NVIDIA GTX480, CUDA, LMA - Heooo 2|
g 2000 NVIDIA GTX280, CUDA, LMA - ---- 0 -
Z AMD 5870’ OpeI]CL’ LMA T AMD 5870 Nvidia 480GTX
1000 Intel Xeon E5620, MPI Baseline - B B AMD 5870 and
. o B b mn oo B G TX480 kernel
eEEEe B e e times very similar;
0 | | . . , . , | older AMD drivers
Y, 9 % e, Y, Dy, %, %, %, Y, Incurred
Y M, M, M, Y, %, %, %, %y, %, %, overheads

B Throughput of best GPU implementations relative to CPU
(quad-core Westmere E5620)

(preliminary results, esp the AMD numbers)
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Summary of results
= = ———— .

B The Local Matrix Approach is fastest on
GPUs

B Global assembly with colouring is
fastest on CPUs

B Expanded data layouts allow coalescing
and higher performance on GPUs

B Accessing nodal data through
indirection is better on CPU due to
cache, lower memory bandwidth, and
arithmetic throughput



Imperial College

Mapping the design space — h/p
B The balance

between local- vs
global-assembly

—_
(00]

| | | | | | | | 1 |
Sum-Factorisation I
Local Element maamma _
Global Matrix  n—

—_
»
1

S

S

Q

&
depends on other §14 - _
factors Sl _

B Egtetrahedral vs ¢
hexahedral §10 i Relative execution time ]
B Eg higher-order § g | on CPU (dual quad Core2)

elements e

Helmholtz problem with 4
Hex elements
With increasing order

»
|

B Local vs Global
assembly is not the.
only interesting
option

Ime norma

s
T

Execution t
N
1
]

o

(Cantwell et al, provisional results under review) P
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Mapping the design space — h/p

30 | | | | | | | | | |
B Contrast: with 28 L Sum-Factorisation |
Local Element mmomam
tetrahedral 26 | Global Matrix e -
elements 24 Relative execution time -
S2F on CPU (dual quad -
: & 20 F Core2) _
B Local is faster ‘§18
than global only g 6l Helmholtz problem with |
for much higher- ¢ y Tet elements
order > , i With increasing order |
k% - -
210 i
B Sum factorisation = 8F -
never wins E 6F _
S 4f _
3 2F _
S
w 0

(12 3 45 6 7 & 9 10|

(Cantwell et al, provisional results under review) P
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End-to-end accuracy drives algorithm selection

srl) awinuny
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accuracy

Blue dotted lines show runtime of optimal strateqy; Red solid lines show L. error



General framework | A roadmap: taking a vertical view

Active libraries domain-

specific languages anda | "="'CS YrL - Other
. finite element application-

unifying common discretisation level program

framework DSL generators

AEcute: Kernels, iteration spaces, and access descriptors

OpenCL Other back-ends, eg AVX

intrinsics, FPGAs




ondon _Ce9e Conclusions and Further Work
B From these experiments:
B Algorithm choice makes a big Application-domain context

difference in performance

B The best choice varies with the
target hardware

B The best choice also varies with
problem characteristics and
accuracy objectives

Unifying
representation

B \We need to automate code
generation

B So we can navigate the design
space freely

:
B And pick the best implementation 7argst hardware context
strategy for each context
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Having your cake and eating it

B If we get this right:

B Higher performance than you can
reasonably achieve by hand C/C++/Fortran t

B the DSL delivers reuse of expert
techniques DSL #
Reusable
generator

B Implements extremely aggressive
optimisations

B Performance portability

Ease of use

B [solate long-term value embodied
in higher levels of the software
from the optimisations needed for
each platform

Performance

B Raised level of abstraction

B Promoting new levels of
sophistication

B Enabling flexibility
B Domain-level correctness
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