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Moving meshes 
 

Mixed meshes 
 

What we are doing…. 

!   Roadmap: applications drive DSLs, delivering performance portability 

Finite-volume 
CFD 

OP2.1: 
extended with 
dynamic 
meshes 

OP2: parallel 
loops over 
unstructured 
meshes 

Mesh 
adaptation 

OP2.2: 
extended with 
sparse matrices 

OP2.3: with 
fully-abstract 
graphs 

Finite-element 
assembly 

Particle 
problems – 
molecular 
dynamics 

Rolls-Royce 
HYDRA 
turbomachinery 
CFD 

Fluidity and the 
Imperial 
College Ocean 
Model (ICOM) 

FENiCS finite-
element PDE 
generator 

LAMMPS – 
granular flow 

OpenMP CUDA/
OpenCL MPI SSE/AVX FPGAs ? 

P-adaptivity 
 

OP2.4: mixed 
and piecewise 
structured 
meshes 

Fortran & C/C++ OP2 compiler 

Pair_gen for LAMMPS 

Multicore Form Compiler 



The message 

!  Three slogans 
!  Generative, instead 

of transformative 
optimisation 

!  Get the abstraction 
right, to isolate 
numerical methods 
from mapping to 
hardware 

!  Build vertically, 
learn horizontally 

!  Three stories 

!  The value of 
generative and DSL 
techniques 

!  Domain-specific 
active library 
examples 

!  General framework: 
access-execute 
descriptors 
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Easy parallelism – tricky engineering 

!  Parallelism breaks 
abstractions: 
!   Whether code should run in 

parallel depends on context 
!   How data and computation 

should be distributed across 
the machine depends on 
context 

!   “Best-effort”, opportunistic 
parallelisation is almost 
useless: 
!   Robust software must 

robustly, predictably, exploit 
large-scale parallelism 

How can we build 
robustly-efficient 
multicore 
software 
 
While maintaining 
the abstractions 
that keep code 
clean, reusable 
and of long-term 
value? 

It’s a software engineering problem 



Active libraries and DSLs 
!   Domain-specific languages... 
!   Embedded DSLs 
!   Active libraries 

!   Libraries that come with a 
mechanism to deliver library-
specific optimisations 

!   Domain-specific “active” library 
encapsulates specialist performance 
expertise 

!   Each new platform requires new 
performance tuning effort 

!   So domain-specialists will be doing the 
performance tuning 

!   Our challenge is to support them 

Applications 

Exotic hardware 

Active library 

GPU Multicore FPGA Quantum? 

Visual effects 
Finite element 

Linear algebra 
Game physics 

Finite difference 



!   Classical compilers have two halves 

Syntax 
Points-to 

Class-hierarchy 
Dependence 

Shape 
..... 

Register allocation 
Instruction selection/scheduling 

Storage layout 
Tiling 

Parallelisation 
Program Dependence 



!   The right domain-specific language or active library can give 
us a free ride 

Syntax 
Points-to 

Class-hierarchy 
Dependence 

Shape 
..... 

Register allocation 
Instruction selection/scheduling 

Storage layout 
Tiling 

Parallelisation 
Program Dependence 



!   It turns out that analysis is not always the interesting part.... 

Syntax 
Points-to 

Class-hierarchy 
Dependence 

Shape 
..... 

Register allocation 
Instruction selection/scheduling 

Storage layout 
Tiling 

Parallelisation 
Program Dependence 
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C,C++, C#, Java, Fortran 

Code motion 
optimisations 
Vectorisation and 
parallelisation of affine 
loops over arrays 

Capture dependence 
and communication in 
programs over  richer 
data structures 

Specify application 
requirements, leaving 
implementation to select 
radically-different solution 
approaches   



Encapsulating and delivering domain expertise 

!  Domain-specific languages & active 
libraries 
!  Raise the level of abstraction 
!  Capture a domain of variability 
!  Encapsulate reuse of a body of 

code generation expertise/
techniques 

!  Enable us to capture design space 
!  To match implementation choice to 

application context: 
!  Target hardware 
!  Problem instance  

!  This talk illustrates these ideas with 
some of our recent/current projects 

Target hardware context 

Application-domain context 

Unifying 
representation 



OP2 – a  decoupled access-execute active library  
for unstructured mesh computations  

// declare sets, maps, and datasets 
op_set nodes = op_decl_set( nnodes ); 
op_set edges = op_decl_set( nedges ); 
 

op_map pedge1 = op_decl_map (edges, 
nodes, 1, mapData1 );  

op_map pedge2 = op_decl_map (edges, 
nodes, 1, mapData2 ); 

 

op_dat p_A = op_decl_dat (edges, 1, A ); 
op_dat p_r = op_decl_dat (nodes, 1, r ); 
op_dat p_u  = op_decl_dat (nodes, 1, u ); 
op_dat p_du = op_decl_dat (nodes, 1, du ); 
 

// global variables and constants declarations 
float alpha[2] = { 1.0f, 1.0f }; 
op_decl_const ( 2, alpha ); 

float u_sum, u_max, beta = 1.0f; 
 

for ( int iter = 0; iter < NITER; iter++ ) 
{  op_par_loop_4 ( res, edges, 

  op_arg_dat ( p_A,  0, NULL,  OP_READ ), 
  op_arg_dat ( p_u, 0, &pedge2, OP_READ ), 
  op_arg_dat ( p_du, 0, &pedge1, OP_INC  ), 
  op_arg_gbl ( &beta, OP_READ ) 
  ); 
 u_sum = 0.0f; u_max = 0.0f; 
 op_par_loop_5 ( update, nodes, 
  op_arg_dat ( p_r,  0, NULL, OP_READ ), 
  op_arg_dat ( p_du, 0, NULL, OP_RW ), 
  op_arg_dat ( p_u, 0, NULL, OP_INC ), 
  op_arg_gbl ( &u_sum, OP_INC ),  
  op_arg_gbl ( &u_max, OP_MAX )  
  ); 

} Example – Jacobi solver 



OP2- Data model 

OP2’s key data structure is a set 
A set may contain pointers that map into another set 

Eg each edge points to two vertices 

A 
Pedge1 
Pedge2 
 

r 
u 
Du 
 
 

A 
Pedge1 
Pedge2 
 

A 
Pedge1 
Pedge2 
 

A 
Pedge1 
Pedge2 
 

A 
Pedge1 
Pedge2 
 

r 
u 
Du 
 
 

r 
u 
Du 
 
 

r 
u 
Du 
 
 

r 
u 
Du 
 
 

r 
u 
Du 
 
 

// declare sets, maps, and datasets 
op_set nodes = op_decl_set( nnodes ); 
op_set edges = op_decl_set( nedges ); 
 

op_map pedge1 = op_decl_map (edges, 
nodes, 1, mapData1 );  

op_map pedge2 = op_decl_map (edges, 
nodes, 1, mapData2 ); 

 

op_dat p_A = op_decl_dat (edges, 1, A ); 
op_dat p_r = op_decl_dat (nodes, 1, r ); 
op_dat p_u  = op_decl_dat (nodes, 1, u ); 
op_dat p_du = op_decl_dat (nodes, 1, du ); 
 

// global variables and constants declarations 
float alpha[2] = { 1.0f, 1.0f }; 
op_decl_const ( 2, alpha ); 



OP2 – a  decoupled access-execute active library  
for unstructured mesh computations  

Example – Jacobi solver 

!   Each parallel loop precisely 
characterises the data that will be 
accessed by each iteration 

!   This allows staging into 
scratchpad memory 

!   And gives us precise dependence 
information 

!   In this example, the “res” kernel 
visits each edge 
!   reads edge data, A 
!   Reads beta (a global), 
!   Reads u belonging to the vertex 

pointed to by “edge2” 
!   Increments du belonging to  the 

vertex pointed to by “edge1” 

float u_sum, u_max, beta = 1.0f; 
 

for ( int iter = 0; iter < NITER; iter++ ) 
{  op_par_loop_4 ( res, edges, 

  op_arg_dat ( p_A,  0, NULL,  OP_READ ), 
  op_arg_dat ( p_u, 0, &pedge2, OP_READ ), 
  op_arg_dat ( p_du, 0, &pedge1, OP_INC  ), 
  op_arg_gbl ( &beta, OP_READ ) 
  ); 
 u_sum = 0.0f; u_max = 0.0f; 
 op_par_loop_5 ( update, nodes, 
  op_arg_dat ( p_r,  0, NULL, OP_READ ), 
  op_arg_dat ( p_du, 0, NULL, OP_RW ), 
  op_arg_dat ( p_u, 0, NULL, OP_INC ), 
  op_arg_gbl ( &u_sum, OP_INC ),  
  op_arg_gbl ( &u_max, OP_MAX )  
  ); 

} 



OP2 – parallel loops 

Example – Jacobi solver 

!   Each parallel loop precisely 
characterises the data that will be 
accessed by each iteration 

!   This allows staging into 
scratchpad memory 

!   And gives us precise dependence 
information 

!   In this example, the “res” kernel 
visits each edge 
!   reads edge data, A 
!   Reads beta (a global), 
!   Reads u belonging to the vertex 

pointed to by “edge2” 
!   Increments du belonging to  the 

vertex pointed to by “edge1” 

float u_sum, u_max, beta = 1.0f; 
 

for ( int iter = 0; iter < NITER; iter++ ) 
{  op_par_loop_4 ( res, edges, 

  op_arg_dat ( p_A,  0, NULL,  OP_READ ), 
  op_arg_dat ( p_u, 0, &pedge2, OP_READ ), 
  op_arg_dat ( p_du, 0, &pedge1, OP_INC  ), 
  op_arg_gbl ( &beta, OP_READ ) 
  ); 
 u_sum = 0.0f; u_max = 0.0f; 
 op_par_loop_5 ( update, nodes, 
  op_arg_dat ( p_r,  0, NULL, OP_READ ), 
  op_arg_dat ( p_du, 0, NULL, OP_RW ), 
  op_arg_dat ( p_u, 0, NULL, OP_INC ), 
  op_arg_gbl ( &u_sum, OP_INC ),  
  op_arg_gbl ( &u_max, OP_MAX )  
  ); 

} 

inline void res(const float A[1], const float u[1],  
   float du[1], const float beta[1]) 

{ 
  du[0] += beta[0]*A[0]*u[0]; 
} 

inline void update(const float r[1], float du[1],  
 float u[1], float u_sum[1], float u_max[1]) 

{ 
  u[0] += du[0] + alpha * r[0]; 
  du[0] = 0.0f; 
  u_sum[0] += u[0]*u[0]; 
  u_max[0] = MAX(u_max[0],u[0]); 
} 



!   Two key 
optimisations: 

!   Partitioning 
!   Colouring 

!   Here we focus 
on GPU and 
multicore 
implementation 

!   We also have 
MPI-level 
parallelisation 

!   Exploring SSE/
AVX 

!   And FPGA 



!   Two key 
optimisations: 

!   Partitioning 
!   Colouring 

Edges 

Vertices 

Cross-partition 
edges 



Vertices 

Cross-partition 
edges 

Edges 

!   Two key 
optimisations: 

!   Partitioning 
!   Colouring 

!   Elements of 
the edge set 
are coloured 
to avoid 
races due to 
concurrent 
updates to 
shared 
nodes   



!   Two key 
optimisations: 

!   Partitioning 
!   Colouring 

!   At two levels 

Edges 

Vertices 

Cross-partition 
edges 



OP2 - performance 

!   Example: non-linear 2D inviscid unstructured airfoil 
code, double precision (compute-light, data-heavy) 

!   Two backends: OpenMP, CUDA (OpenCL coming) 
!   For tough, unstructured problems like this GPUs can 

win, but you have to work at it 
!   X86 also benefits from tiling; we are looking at how to 

enhance SSE/AVX exploitation 



Combining MPI, OpenMP and CUDA 

Titer = Tss + 2(Tac + Trc + Tbrc + Tu) (1)

Tss = wg,ss × ncells (2)

Tac = wg,ac × ncells (3)

Trc = max(wg,rc × ncore,edges, Tcomm,rc) +

wg,rc × (nieh,edges + neeh,edges) (4)

Tbrc = wg,brc × (nbedges + nieh,bedges) (5)

Tu = wg,u × ncells + Treduce (6)

Tcomm,rc = (nieh,cells + ninh,cells)× 8B ×
(esizep q + esizep adt) + 2LNavg,cells +

Lon chip × CNavg,cells (7)

Figure 4: Performance model for CPU cluster

Table 5: Airfoil Model validations and projections

System Nodes Pred. Actual Err

(sec) (sec) (%)

5 (120 cores) 7.39 7.86 -6.08

10 (240 cores) 3.77 4.02 -6.30

HECToR 20 (480 cores) 1.92 2.09 -8.14

40 (960 cores) 0.99 1.12 -11.14

60 (1440 cores) 1.25 1.41 -11.29

80 (1920 cores) 1.14 1.28 -10.83

5(60 cores) 12.38 12.29 0.78

6(72 cores) 10.32 10.44 -1.20

CX1 10(120 cores) 6.22 6.07 2.51

40(480 cores) 1.61 - -

80(960 cores) 0.84 - -

120(1440 cores) 1.08 - -

2 × C2070 8.29 - -

Tesla 4 × C2070 4.30 - -

C2070 12 × C2070 1.87 - -

processor to another. Thus 1/B gives the bandwidth of the
network. L is the latency associated with communicating a
message with a neighbor. To account for the critical path
time during message passing, we use the off-node message
communication times. We double the latency term as there
are two data arrays being exchanged. The esize∗ gives the
size of an element (i.e. number of double precision values per
set element) for each data array. The 8 multiplier accounts
for the size of a double precision floating-point value on the
system. C is the number of cores that share a NIC (12 cores
share a NIC in HECToR [22] and CX1). We assume that
some serialization of MPI messages are caused at the NIC
during message passing [26, 25] and approximate it as the la-
tency for communicating a message within a node (Lon chip)
multiplied by the average number of MPI messages sent si-
multaneously. The values for B, L and Lon chip were found
by benchmarking the end-to-end message transfer time (using
the Intel MPI benchmarks suite [27]) between two nodes (and
two cores) for a range of message sizes. The time for a reduce
operation Treduce was approximately modeled as a tree gather
operation [25].
Table 5 details validations of the above performance model

on HECToR (up to 1920 cores) and CX1 (up to 120 cores).
The model accuracy exceeds 90% for most runs but is more
sensitive to the system communication performance at large
scale. However the model accurately predicts the number
of cores that gives the optimum runtime and the qualitative
trend in scaling on HECToR, allowing us to establish the lim-
its of scalability for Airfoil. Table 5 also notes projected run-
times using the model for CX1 up to 960 cores. Starting
at 1440 cores the model predicts that communication times
dominate the max term in (4) on both HECToR and CX1.
To extend the above homogeneous multi-core CPU cluster

model to that of a GPU cluster model requires us to con-
sider the additional costs involved during MPI operation over
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Figure 5: Airfoil - 26M edge mesh (1000 iterations) :

HECToR - 24 core/node, CX1 - 12 core/node, C2070

cluster - 1 GPU/node

GPUs. Such techniques have been previously used for pre-
dicting GPU cluster performance with high accuracy [28]. For
this paper we develop the GPU cluster model for Airfoil as-
suming a cluster of NVIDIA C2070 GPUs that is intercon-
nected by an InfiniBand network with similar performance to
that of CX1. Computation times for each loop was bench-
marked on a single C2070 GPU for various mesh sizes. This
gives us approximate times for the GPU to execute a given
number of set elements belonging to its local partition. The
communication time for res_calc in (7) was augmented with
PCIe bandwidths and latencies (measured using the NVIDIA
CUDA SDK’s bandwidthTest benchmark, and a custom la-
tency benchmark) to copy halo data to and from the GPU.
Our measurements indicated a host to device PCIe bandwidth
and latency of about 3700 MB/sec and 9µS respectively. The
device to host bandwidth and latency was about 3130 MB/sec
and 11µS. Assuming that each C2070 has exclusive access to
a NIC we remove the serialization costs terms from (7). The
current model does not taken into consideration the possible
performance gains with NVIDIA’s new GPUDirect [24] tech-
nology. Projections from the GPU cluster model are noted in
the final three rows of Table 5.

It is clear from these results that the 1.5 million edge mesh
on the GPU cluster reaches its scalability limits with a few
C2070 GPUs compared to HEXToR and CX1. Thus we bench-
mark and project performance for solving a 26 million edge
mesh with Airfoil. Figure 5 projects the performance of Airfoil
solving this mesh on both CX1 and the hypothetical C2070
GPU cluster. Actual run times from HECToR are also pro-
vided as a reference.

The model predicts, for example, a cluster with 36 C2070
GPUs to give equivalent performance to that of over 1920
HECToR cores (80 nodes) or a Westmere/InfiniBand cluster
with 1440 cores (120 nodes). Thus, we see a C2070 cluster to
give the same performance that is equivalent to performance
given by traditional homogeneous clusters that are more than
three times its size. However this should be considered in the
context of the amount of available memory on a GPU to hold
and execute the required partition size. For example, the 26
million edge mesh could not be solved on a single C2070 GPU
due to lack of resources on the device where at least 12 C2070
GPUs are required for such a workload.

On HECToR and CX1 we see that the increase in redun-
dant computations due to ieh at large-scales degrades per-
formance. The runtime at 160 HECToR nodes and 320 CX1
nodes was particularly affected by a large ieh. However, in-
crease in redundant computation has almost a negligible af-
fect on the C2070 GPUs due to their SIMD operation over
elements. Thus the model predicts a much more smoother
performance curve on the GPU cluster. The C2070 cluster
scales up to 128 nodes after which the performance plateaus.

(Preliminary results under review) 

!   non-linear 2D 
inviscid airfoil 
code 

!   26M-edge 
unstructured 
mesh 

!   1000 
iterations 

!   Analytical 
model 
validated on 
up to 120 
Westmere 
X5650  cores 
and 1920 
HECToR 
(Cray XE6)  
cores 

Unmodified C++ OP2 source 
code exploits inter-node 
parallelism using MPI, and 
intra-node parallelism using 
OpenMP and CUDA 



A higher-level DSL 

Specify application 
requirements, leaving 
implementation to select 
radically-different solution 
approaches   

Psi = state.scalar_fields(“psi”) 
v=TestFunction(Psi) 
u=TrialFunction(Psi) 
f=Function(Psi, “sin(x[0])+cos(x[1])”) 
A=dot(grad(v),grad(u))*dx 
RHS=v*f*dx 
Solve(Psi,A,RHS) 

!  Solving: 
!  Weak form: 
      (Ignoring boundaries) 
 

 
UFL – Unified Form Language  

(FEniCS project, http://fenicsproject.org/): 
A domain-specific language for generating finite 

element discretisations of variational forms 



The FE Method: computation overview 

do	
  element	
  =	
  1,N	
  
	
  	
  assemble(element)	
  
end	
  do	
  

i 

j k 

i i 

i 

j j 

j 

k k 

k 

Ax  =  b


!  Key data structures: Mesh, dense local assembly 
matrices, sparse global system matrix, and RHS vector 



Global Assembly – GPU Issues 

Parallelising the global assembly leads to performance/
correctness issues: 
!  Bisection search: uncoalesced accesses, warp 

divergence 
!  Contending writes: atomic operations, colouring 

!   In some circumstances we can avoid building the 
global system matrix altogether 

!  Goal: get the UFL compiler to pick the best option 

Global matrix 
Local matrix 
for  element 1 

Local matrix 
for  element 2 

• Set 1 
• Set 2 



The Local Matrix Approach 

!   Why do we assemble M? 

!   In the Local Matrix Approach we recompute this, instead 
of storing it: 

!   b is explicitly required  
!   Assemble it with an SpMV: 

where We need to solve 



Test Problem Implementation 
!  Advection-Diffusion Equation: 

 

!   Solved using a split scheme: 
!   Advection: Explicit RK4 
!   Diffusion: Implicit theta scheme 

!   GPU code: expanded data layouts,  
with Addto or LMA 

!   CPU baseline code: indirect data  
layouts, with Addto [Vos et al., 2010] 
(Implemented within Fluidity) 

 
!   Double Precision arithmetic 
!   Simulation run for 200 timesteps 

!  Simplified CFD test 
problem 



Test Platforms 
! Nvidia 280GTX: 

!   240 stream processors: 30 multiprocessors with 8 SMs each 
!   1GB RAM (4GB available in Tesla C1060) 

!  NVidia 480GTX: 
!   480 stream processors: 15 multiprocessors with 32 SMs each 
!   1.5GB RAM (3GB available in Tesla C2050, 6GB in Tesla C2060) 

!  AMD Radeon 5870:  
!   1600 stream processors: 20 multiprocessors with 16 5-wide SIMD units 
!   1GB RAM (768MB max usable) 

!  Intel Xeon E5620: 

!    4 cores 
!   12GB RAM 

Software: 
Ubuntu 10.04 
Intel Compiler 10.1 for Fortran (-O3 flag) 
NVIDIA CUDA SDK 3.1 for CUDA  
ATI Stream SDK 2.2 for OpenCL 
Linear Solver: 
CPU: PETSc [Balay et al., 2010] 
CUDA Conjugate Gradient Solver [Markall 

& Kelly, 2009], ported to OpenCL 



Fermi Execution times 

!   On the 480GTX (“Fermi”) GPU, local assembly is more 
than 10% slower than the addto algorithm (whether using 
atomics or with colouring to avoid concurrent updates) 

!   Advection-Diffusion Equation: 

 
!   Solved using a split scheme: 

!   Advection: Explicit RK4 
!   Diffusion: Implicit theta 

scheme 

!   GPU code: expanded data 
layouts, with Addto or LMA 

!   CPU baseline code: indirect 
data layouts, with Addto [Vos 
et al., 2010] 
(Implemented within Fluidity) 

 

!   Double Precision arithmetic 
!   Simulation run for 200 

timesteps 



Intel 4-core E5620 (Westmere EP)  

!   On the quad-core Intel Westmere EP system, the local 
matrix approach is slower.  Using Intel’s compiler, the 
baseline code (using addtos and without data expansion) 
is faster still 

!   Advection-Diffusion Equation: 

 
!   Solved using a split scheme: 

!   Advection: Explicit RK4 
!   Diffusion: Implicit theta 

scheme 

!   GPU code: expanded data 
layouts, with Addto or LMA 

!   CPU baseline code: indirect 
data layouts, with Addto [Vos 
et al., 2010] 
(Implemented within Fluidity) 

 

!   Double Precision arithmetic 
!   Simulation run for 200 

timesteps 



Throughput compared to CPU Implementation 

!   Throughput of best GPU implementations relative to CPU 
(quad-core Westmere E5620) 

(preliminary results, esp the AMD numbers)   
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Figure 12. Kernel execution times and driver overheads. Kernel execution
times are similar, but the driver overhead of the AMD card significantly
lowers performance.

setup.

B. Summary of Results
We conclude from the results from all architectures that

the LMA is the fastest algorithm on GPU architectures. This
is due to the increased coalescing and reduced control flow
divergence afforded by this algorithm. On the CPU architec-
tures, the Addto algorithm is the fastest approach, as a result
of the cache, and overall lower memory bandwidth. We also
conclude that the OpenCL implementation is performance-
portable across similar architectures, but not across the gap
between multi-core and many-core architectures.

VI. RELATED WORK

There have been various investigations into the perfor-
mance of various points in the implementation space of finite
element methods. Most of those that we highlight involve
the implementation in GPU architectures:

• In [17], [18], an implementation of a finite element
code for seismic simulation is presented that is written
in CUDA and uses MPI for communication between
nodes. In this implementation, the Addto algorithm is
used, but entire local matrices are coloured rather than
rows of the local matrices, and the performance of
assembly using atomic operations or the LMA is not
investigated.

• An implementation of the finite element method for
hyperelastic material simulation is discussed in [19],
[20], and optimisation of the code by fusing kernels is
examined. We believe that this fusion of the kernels can
also be represented at an abstract high level because
individual terms (such as integrals) correspond to a
kernel that evaluates them. However, this possibility
of high-level representation is not discussed by the
authors.

• The performance of GPU kernels that evaluate local
matrices for various polynomial orders of element is
discussed in [21]. However, the other portions of the
finite element method are not investigated.

• In [22], implementations of the Addto algorithm that
make use of various levels of the memory hierarchy
and different granularities of parallelism on GPUs are
discussed, and it is shown that the optimal implemen-
tation of the Addto varies significantly depending on
the mesh topology. This indicates that the optimal im-
plementation not only depends on the target hardware
and polynomial order of elements, but also the mesh
topology.

• In [7], [9], [8] the choice of optimal assembly strategy
is investigated, with consideration for the Addto algo-
rithm, the LMA, and a tensor-based algorithm. It is
shown that the optimal algorithm depends on factors
including the dimension of the problem, polynomial
order of the approximation, and the equation being
discretised. The tradeoff to find the most efficient
algorithm for solving an equation with a given tolerance
is also discussed. However, these investigations are
limited to CPU implementations.

Although some of these investigations consider similar
dimensions in the implementation space to this one, we note
that these investigations are performed at a low level, with
the goal of discovering how to write efficient finite element
codes, rather than how the high-level specifications relate
to and allow the derivation of optimisations. We also draw
attention to code generation tools that produce optimised
implementations in similar domains:

• The FEniCS Form Compiler [1], [23] generates code
that implements methods described in UFL. The code
generator uses optimisations based on algebraic manip-
ulation of an intermediate (but high-level) representa-
tion in order to minimise the operation count of the
generated code. Presently the code generator targets
CPUs only.

• OPlus2 [24], [25] is a framework for writing parallel
programs that perform computations on unstructured
meshes. It uses source-to-source translation to generate
CUDA implementations of user-specified code. The
abstraction provided by OPlus2 is a lower-level, more
imperative one than that used to derive optimisations
in this work such as the LMA.

VII. CONCLUSIONS

The results presented in this paper demonstrate that the
algorithmic choice in finite element method implementations
makes a big difference in performance. Furthermore, the
best choice varies with the target hardware. This motivates
the automation of code generation, so that we can navigate
the various dimensions of the implementation space freely

!   AMD 5870 and 
GTX480 kernel 
times very similar; 
older AMD drivers 
incurred 
overheads 



Summary of results 

!  The Local Matrix Approach is fastest on 
GPUs 

!  Global assembly with colouring is 
fastest on CPUs 

!  Expanded data layouts allow coalescing 
and higher performance on GPUs 

!  Accessing nodal data through 
indirection is better on CPU due to 
cache, lower memory bandwidth,  and 
arithmetic throughput 



Mapping the design space – h/p 
!   The balance 

between local- vs 
global-assembly 
depends on other 
factors 

!   Eg tetrahedral vs 
hexahedral  

!   Eg higher-order 
elements  

!   Local vs Global 
assembly is not the 
only interesting 
option 
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(Cantwell et al, provisional results under review) 



Mapping the design space – h/p 
!   Contrast: with 

tetrahedral 
elements 

!   Local is faster 
than global only 
for much higher-
order 

!   Sum factorisation 
never wins 
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End-to-end accuracy drives algorithm selection 
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Figure 5: Contour plots showing the runtime (dotted lines) and L2-error (solid lines and fixed

across all plots) for each (h, P )-combination in solving the Helmholtz problem using tetrahedral

elements. The three evaluation strategies are shown: sum-factorisation (a), elemental matrices (b)

and global matrix (c). A comparison with the optimal strategy chosen for each discretisation is

shown in (d), where the filled circle marks the optimal discretisation to attain a solution with a

10% error tolerance, while the open circle indicates the optimal discretisation for 0.1%.
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Figure 5: Contour plots showing the runtime (dotted lines) and L2-error (solid lines and fixed

across all plots) for each (h, P )-combination in solving the Helmholtz problem using tetrahedral

elements. The three evaluation strategies are shown: sum-factorisation (a), elemental matrices (b)

and global matrix (c). A comparison with the optimal strategy chosen for each discretisation is

shown in (d), where the filled circle marks the optimal discretisation to attain a solution with a

10% error tolerance, while the open circle indicates the optimal discretisation for 0.1%.
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!   Helmholtz 
problem using 
tetrahedral 
elements 

!   What is the best 
combination of h 
and p? 

!   Depends on the 
solution accuracy 
required 

!   Which, in turn 
determines 
whether to 
choose local vs 
global assembly  

Optimum 
discretisation 
for 10% 
accuracy 

Optimum 
discretisation 
for 0.1% 
accuracy 

Blue dotted lines show runtime of optimal strategy; Red solid lines show L2 error 



AEcute: Kernels, iteration spaces, and access descriptors 

A roadmap: taking a vertical view General framework 



Conclusions and Further Work 
!  From these experiments: 
!  Algorithm choice makes a big 

difference in performance 
!  The best choice varies with the 

target hardware 
!  The best choice also varies with 

problem characteristics and 
accuracy objectives 

!  We need to automate code 
generation 

!  So we can navigate the design 
space freely 

!  And pick the best implementation 
strategy for each context 

Target hardware context 

Application-domain context 

Unifying 
representation 



Having your cake and eating it 

!   If we get this right: 
!   Higher performance than you can 

reasonably achieve by hand 
!   the DSL delivers reuse of expert 

techniques 
!   Implements extremely aggressive 

optimisations 
!   Performance portability 

!   Isolate long-term value embodied 
in higher levels of the software 
from the optimisations needed for 
each platform 

!   Raised level of abstraction 
!   Promoting new levels of 

sophistication 
!   Enabling flexibility 

!   Domain-level correctness 

C/C++/Fortran 

CUDA 
VHDL 

DSL 
Reusable 
generator 

Performance 

E
as

e 
of

 u
se
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