Accelerating a C++ Image
Processing Library with a GPU

Olav Beckmann
Department of Computing
Imperial College London

United Kingdom

Email: o.beckmann@imperial.ac.uk

Jay L. T. Cornwall
Department of Computing
Imperial College London

United Kingdom
Email: jay.cornwall@imperial.ac.uk

Paul H. J. Kelly
Department of Computing
Imperial College London

United Kingdom

Email: p.kelly@imperial.ac.uk

Abstract—This paper presents work-in-progress towards a often elusive. The barriers to uptake lie to some extent in the
C++ source-to-source translator that automatically seeks par- shortage of skilled programmers, but also in the architectural

allelisable code fragments and replaces them with code for mitations of GPU designs, and in the restructuring of source
a graphics co-processor. We report on our experience with . .
code that is required.

accelerating an industrial image processing library. To increase i))
the effectiveness of our approach, we exploit some domain-specific We aim to tackle this problem by developing a tool to

knowledge of the library’s semantics. . perform the transformation from serial processing to parallel
We outline the architecture of our translator and how it uses processing on graphics hardware automatically. Our source

the ROSE source-to-source transformation library to overcome lanauage is C++. givin hat we believe to be the broadest
complexities in the C++ language. Techniques for parallel analysis guage | » gving w w 1ev

and source transformation are presented in light of their uses in applicability. Larlggage CompleXitieS, such as templates and
GPU code generation. classes, have inhibited previous attempts to analyse C++

We conclude with results from a performance evaluation of two programs effectively; we take advantage of ROSE [3], a pow-
examples, image blending and an erosion filter, hand-translated g1, goyrce-to-source transformation library, to assist in our
with our parallelisation techniques. We show that our approach analvses and to perform the bulk of our code transformations
has potential and explain some of the remaining challenges in y _ p e :
building an effective tool. Generic C++ parallelisation is a very complex problem and

we do not aim to solve the general problem directly. Instead
I. INTRODUCTION ; . T -
) . . we focus on the computationally-intensive libraries within

Parallel computing, a field once dominated by supercompiiy application and use domain-specific knowledge of their
ers and clusters, is experiencing a surge of interest in the Iapterfaces in order to reduce the problem space. This approach
cost computing mass market; not just in symmetric multicoig very promising for the image processing library presented
processors, but also in heterogeneous configurations wighsection 11, producing a feasible automated parallelisation

data paths specialised for particular algorithmic structurggith very little domain-specific knowledge.
Multimedia instruction set extensions (SSE, AltiVec, etc.) are The main contributions of this paper are:

being augmented with parallel and vector accelerators such as

graphics co-processors (GPUs), games physics engines and,

for example, the IBM/Sony/Toshiba cell processor. Massive

advances in their performance and flexibility are offering an

increasingly attractive and widespread source of processing
power to application developers.

With these advances in technology comes a heavier bur-
den on the programmer to manage their available process-
ing resources efficiently and to employ them effectively in
problem-solving. Much of today’s software is written with
the CPU’s serial processing paradigm in mind, limiting the *
usefulness of parallel devices. Although the GPU was orig-
inally intended purely for graphics applications, a growing
number of promising performance results have been achieved
in more general applications [1]. As we demonstrated in an
earlier paper [2], recent developments, notablgmebuffer
objects have increased the GPU's scope, flexibility and ease of
programming. Later on in this paper we present results which
illustrate the performance potential of a GPU-based solution.
We also present results which show that high performance is

Parallelisation with ROSEWe employ the ROSE source-
to-source transformation library in the analysis and trans-
formation of C++ code, to detect and expose inherent
parallelism in the algorithms. Section Il highlights some
of the challenges in analysing the semantics of a C++
program and explains briefly how we overcome them.
Section IV gives an overview of our translator's design
and describes in more detail how the ROSE library
integrates with the analysis and transformation process.
Performance EvaluatianAn evaluation of the perfor-
mance experienced with our translation methods is pre-
sented in Section V, indicating the practicality of auto-
mated parallelisation for a library in our problem domain.
We explain some of the problems that we encountered in
attaining an optimal solution and demonstrate the GPU’s
potential with an erosion filter. Section VI discusses
a potential method to overcome the large overheads
encountered in data transfer, and shows how the library
paradigm greatly simplifies this problem.

[I. PROBLEM DOMAIN to the array as a single pointer with no bounds information.

This work arises from a collaboration with a visual eﬁectgxtensive analysis_is needed to rescue the semantics of the
software company, The Foundnaiming to accelerate a large/lPrary code operating on these classes.
range of image processing applications by translating much of [;s reacolorF §
their C++ class library to run on GPUs found in commodity | public:

PCs. This is an interesting and challenging exercise, based on imsonent &g i o
industrial code “captured from the wild” that uses much of the
power of C++. B

Our focus is on a small part of the library’s functionality, |template <class SrcPix ,class SrcAr>
called image blending. This feature merges two images into a | ©'2s FrTexture {
single image, with a user-selectable combination method. The| SrcPix x_data;
image data is an array of floating-point elements in memory, | . "
and we treat it as such in our translations. No special status
is given to the image data when performing operations on the

GPU, and we handle it in the same way as we would NUMErCRaSE offers several facilities to ease this analysis. In the

data. . parsing phase, templated classes are expanded with all of the
On the other hand, the image data structures do lepniementations that the program will use, each appearing as

themselves well to the GPU architecture. The basic data tyR&separate structure in the AST. We are able to directly link the

single precision IEEE floating-point, can be represented a%ta pointer to the base typRGBColorFthrough a simple

manipulated precisely in the GPU pipeline. Structural grouping| to the member variable’s AST node. ROSE provides an

of the components into RGB objects maps well to the GPUig, 4iive method to analyse the members of the RGBColorF

vector processing ability, enabling us to pack the data fefass, so we can determine thalata points to an array of
simultaneous computation by vector instructions. three-float components.

The library’s heavy use of advanced C++ features, sUChThe excerpt in Listing 2 highlights a loop structure which

as classes and templates, exercises the capabilities of §hfrs from the conventional two-dimensional nested loop.

ROSE library. These structural features are typical of mode|rt_niS designed to support image formats with padding, stride
software and present a fresh challenge to program analygi§q other awkward features. The horizontal iteration is imple-
To help overcome these problems, we have asserted semaQiGyteq in a while loop, traversing a predefined span of pixels
properties that can be derived from the library’s interfacgii, 4 pointer increment supplied by the image class. This
documentation. layout precludes template-matching approaches to parallel

Our main assumption is that pointer aliasing does ngfhaysis, demanding instead a pointer and data-flow analysis.
occur in the input parameters. The library accepts pointers

as parameters to image data held in memory. An implicit | for (int y = ystart; y< yend; ++y) {
if (this—islInterrupted ()) {

Listing 1. Obscured floating-point image array.

assumption in the logic of the library’s features is that these break:
areas of image data do not overlap. In cases where this| }
is not true, the library produces results that are not useful; | sicpix «dpix = dstimg>DstPixelAddr (xmin, y):
more importantly, loop-carried dependencies arise in the code _ _
and greatly obstruct the parallelisation process. We make the| *f (" % Xune X 5.0 €
assumption that pointers do not refer to overlapping blocks of int inc;
memory. SrcPix xsPix = srclmg>
This constraint can be enforced at the library interface GetXSpanClampedFallback(x,y,inc, span);
in order to guarantee that all implementations will satisfy X ¥ spam
it. By making this constraint explicit, which was already while (span——) {
assumed in the library’s design, we provide valuable additional y
information to our parallelisation analyses. , }

Ill. CHALLENGES TOAUTOMATIC PARALLELISATION Listing 2. Unconventional loop structure.

It is worth noting some of the challenges that this library) . o
presents to automated parallelisation. Listing 1 demonstrated & ROSE library provides several built-in data-flow analy-
how the key data structure, an array of floating-point imagS and frameworks on which to build custom analyses. Our
components, is obscured by several layers of abstraction. THERY recovery algorithm (see Section IV-E), for example, uses
immediate typedef in the class RGBColorF presents no gré¥SE'S control-flow analysis to trace paths through the loops
problem; more troubling is the class’s use as a template pa@@-d reconstruct array indices from pointer adjustments. We

meter to the image class FnTexture, which subsequently reféf® ROSE’s AST manipulation facilities to restructure the
loops into a perfect nest, while retaining the ability to produce

Lwww.thefoundry.co.uk minimally-changed source code back from the AST.

e SSJ,;% St o %AST% R F"LZ'SZL"Q Inlining is applied to the bodies of each PPL as a precursor
L Inined to analysis. This eliminates the need to perform interprocedural
Assignments

Enclosing Loops

Transformed /4 oot rRose |, analyses and localises statements to the loop body. Further
SeRrles /7 seuwee [BadeneRe] o substutes "' analysis of the set of PPAs and enclosing PPLs can then begin.
— Lolps We aim to confirm parallelism and to determine parameters

Sit?;—@~ PPl ! which define the parallel assignments: contiguity, lower and

upper array assignment bounds, input and output array sets,
etc. This information decorates the AST for retrieval at a later
Fig. 1. High-level structure and data-flow of the translator. stage.
We apply a range of code transformations throughout analy-
sis to expose parallelism and to hoist undesirable features
Listing 3 demonstrates a subtler problem, related to GRulit of the loop. Switch statements, for example, are lifted
performance. The call to this merge function occurs on a peéhrough loop unswitching to avoid the penalties of branching
pixel basis deep inside the loops shown in the previous exaom the GPU. These transformations are applied on-demand in
ple. Branch prediction minimises the penalty incurred whaesponse to patterns recognised by the assignment analysis. A
this algorithm runs on the CPU, but graphics hardware canrswtitch statement inside a loop, for example, will trigger loop
employ this technique when a branch diverges within vectaraswitching and initiate a reanalysis of the generated loops.
sized data units; it must execute both branches regardless. nce analysis is complete, the annotated AST fragments
is in our interest, therefore, to lift this conditional switch to dor each confirmed parallelisable loop are fed to the OpenGL
place outside the loop using the ROSE library. Shading Language (GLSL) generation stage. The AST is
walked for each loop and equivalent code for the GPU is pro-
duced. Annotations of the AST fragments are used to generate

template <class SrcPix ,class SrcAr>
class FnColorBlend {

public : small C++ stub functions which marshall the input and output
static SrcAr merge (SrcAr &, STCAr &b, data and execute the GLSL program. These functions are
ColorBlendType t float mix) substituted into the original AST, replacing each parallelisable
switch(t) { loop.

case eBlendHue: return blendHue(a,b); The GLSL program is encapsulated in a C++ source file
case eBlendLighten: return blendLighten (a,b); which can be added to the user's project and compiled as

} normal. A run-time system is provided in a linkable li-
};} brary, controlling the GPU’s memory management, program
compilation and execution. This component greatly dictates
Listing 3. Conditional switch nested deep inside a loop. the performance of the resulting code and can be upgraded

independently of the static compilation process. An example
of a GLSL program, for one mode of the image blending
In this section we present the source-to-source C++ translirary, is shown in Listing 4.

tor. Figure 1 provides an overview of the translator’s structure We now consider the most interesting aspects of the trans-
and the data flow between its components. The ROSE librdgyor in detail.
provides two of the main components — conversion from
source code to AST and back — and much of the supplementary|
functionality for the other components. One of ROSE’s most Vo\i/icf;aisflg)l({) o -
valuable features is that comments and the layout of input textureRect(srcl, glMexCoord[0].st).rgh;
source code are largely preserved in the output. This is a| vec3 src20.0 =

. . . textureRect(src2 ,glMexCoord[0].st).rgb;
desirable quality where coding standards must be enforced.

IV. TRANSLATOR ARCHITECTURE

uniform samplerRect srcl, src2;

gl_-FragColor = clamp(srcl10.0+src20.0,0.0,1.0);

A. Overview of the Translation Process

The first stage of our translation process is a search for Listing 4. A GLSL program for one mode of image blending.
potentially-parallel assignments (PPAs). We walk the AST and))
record the set of assignment statements that might be carffegPotentially-Parallel Assignment Search
out in parallel: those which assign to arrays or to pointers andimplemented as a complete traversal of the AST, this stage
which are enclosed within loops. Enclosing loops are defingénerates a set of assignments with their surrounding loops and
as those loops whose induction variables affect the offset adécorates each assignment with information about the array
the assignment into the array. We record the enclosing lodpsolved. Our run-time system supports assignments of up to
with each assignment to define the scope of code that mustfbier floating-point elements at a time, reflecting the vector size
replicated on the GPU. At this stage we aim to find potentiallpf the GPU; operations upon more elements would require a
parallel loops (PPLs), which are then the focus of inlining areegmentation algorithm to split them into vector-sized chunks.
other transformations. AST decorations record the number of floating-point variables

per array element; just one in the case of a float[] array aibd Loop Parallelisation

potentially more where arrays of classes are_ used.) Once a set of PPAs has been obtained, we undertake detailed
We can directly link a pointer or array used in an assignmeghayses of these assignments and their surrounding code
to its base type with ROSE. When this base type is a class, ¥eproduce a set of parallelisable assignments. This stage is
iterate over the members of the class and count the numQgeyoven with code transformations that aim to increase the
of floating-point variables; other member types cause thg alelism of the assignments, by moving invariant statements
assignment to be marked as unparallel, because they introdgyge of the loop body. We currently support only a limited
padding into the array. In theory, we might handle this paddingpset of transformations; we plan to build on these as new
in the memory unmarshalling stage, but we choose not t0 &qe examples pose different challenges to parallelism.
this point until we have addressed performance concerns. Listing 6 shows a fragment of this process, handling assign-
ment statements within the innermost loop. Prior to this stage
we assume that inlining, loop restructuring (see Section IV-C)
and array recovery (see Section IV-E) have taken place and
Our need to produce parallel programs from multidimenbhat a perfectly-nested loop is the result. If this condition is
sional loop nests drives a desire for perfectly-nested loopst met, we abandon the parallelisation.
with easily-derived bounds. This is reflected in the loop

C. Loop Restructuring

P R ; For each CFA path through the inner loop
restruc_turlng stage of our translator, which aims to tran§form For each statement in the path
an arbitrary loop nest into perfectly-nestéat loops. In this Switch (type of statement)
: : : . Case 'assignment’
form we can simply copy the loop bodies, Wlth approprlate It LHS is not an array
syntactic changes, to produce GPU algorithms. Listing 2 If LHS declared outside loop scope
: Attempt to hoist assignment
shows an example_ of_the unfortunate loop nest that appears in It hoist failed
the problem domain Ilbrary. Abandon parallelisation
. . - El
We currently appro_a(_:h perfect-nesting with a limited set of ffe LHS type is not 'float’ or 'int’
methods. ROSE'’s inlining feature serves to remove the three . dlff%bandon parallelisation
. n
function calls in the outer loop bodies. The first call is replaced Else
by a conditional that always fails; our translator employs dead Record output arrayand index expression
L . . Record arraysand input variables in RHS
code removal to eliminate this statement. The second and third Endlf
calls collapse into local variable declarations and our array Case ...
. . Default
recovery algorithm (see S_ecn_on IV-E) removes them. We are Abandon parallelisation
left with the code shown in Listing 5. _
If output arrays differ between two CFA paths
Abandon parallelisation
for(int y = ystart; y< yend; ++y) {
/1'if(false) { If assignments arenot contiguous
Il break; Abandon parallelisation

1Y}
))) Listing 6. Pseudo-code for loop parallelisation.
/1 SrcPix xdPix = &dstimg—>_data[yxdstimg—>_width

11 in]; . . .
wxmin] The algorithm considers each possible control flow path

for (int x = xmin; x < xmax;) { through the loop and compares the analyses of all the paths
int span = xmax— X; L
int inc; afterwards. This is necessary to ensure that, regardless of
_ . _ conditions, the same set of arrays is written to. There is no
Il SrcPix xsPix = &srclmg—>_data[yxsrcimg—>_width .. . "
I +x]; efficient equivalent to not writing to an output array on the
X *= span; GPU; instead we would have to feed the initial state of the
while (span—) { array as input and read from it to generate the same output. We
y choose instead to abandon the parallelisation for performance
} reasons, although we may later revise this decision if the
} impact is found to be small in comparison to the computation

Listing 5. The core loops after inlining and dead code removal. time.] .)
Assignment statements are the most interesting elements

To complete the restructuring process, the translator mudt the loop body since they are the only effects of an
consolidate the innermosthile loop into the seconébr loop. algorithm on the GPU. Clearly we must also consider the side-
It achieves this by first rewriting thevhile loop as afor loop; effects of other statements in the body, and these are handled
the loop test dictates the conditional and update statememtnservatively; where we cannot reproduce them in the GPU
and the initialiser is a derived induction variable of the outelgorithm or hoist them out of the loop, the parallelisation fails.
loop. The inner loop is then reversed, noting that there are Mbe cases for these statements have been omitted from the
loop-carried dependencies, and merged by reducing the odigting for brevity, although they are largely direct translations
loop’s step. We obtain a perfect nestfof loops as a result. from C++ into the C-like GLSL.

We support assignments to variables which are live only | for (int y = ystart; y< yend; ++y) {
within the scope of the loop, because they can be contained en{ '} {{"(% = 2T 5 xmax) £
tirely within the GPU algorithm. Assignments to variables that
are live-out at the end of the loop are not supported, since we
have no efficient mechanism of extracting them from the GPU,; dstimg—>_data [(yxdstimg—>_width+xmin)+
instead we try to hoist these out of the loop. Hoisting itself may (xmax-x)—span]. SetClamped (bPix);
cause problems if the variable is used inside the loop; we mark| }

the variable as dirty and abandon any parallelisation whose

while (span—) {

assignments reference it. On reflection, we could later support Listing 8. After array recovery and substitution.
a subset of these problematic loops if the dirty variables follow
strict incremental patterns throughout the loop; we can emulate V. PEREORMANCE EVALUATION

these with the GPU’sexture coordinates

In addition to collecting input and output arrays for mar- At this early stage of development we evaluate the perfor-
shalling purposes, we record the index expressions usedTAnce of hand-translated examples. These conform strictly to
array assignments_ We ana|yse these expressions and dém@r.aChievable and intended Output of the Completed translation
mine if the assignments form a contiguous block. Where trgoftware, giving representative performance of automatically-
is the case, we use the same expressions to derive upper @gslated code. We deliberately omitted optimisations that

lower bounds for the assignments to each output array. Would improve performance but which would not be imple-
mented in the short term.

Each benchmark was run on a 3.2GHz Pentium 4 (2MB
E. Array Recovery from Pointers Cache) with 1GB RAM. The GPU was provided by a GeForce
7800GTX 256MB (430MHz core clock, 1.2GHz memory
A key requirement of the parallelisation algorithm describeglock) attached to a PCI Express x16 bus. Windows XP
above is knowledge of the bounds and steps of array accesgggfessional with Service Pack 2, Visual C++ NET 2003 (7.1)
This information is crucial in establishing that assignments tghd Intel C++ 9.0 were used to build and run the benchmarks,
an array form a contiguous block — a prerequisite for efficiefith NVIDIAs 81.95 drivers supporting the GPU. In some
GPU processing — and in defining the sizes and locatiopgses the Intel compiler generated faster code, and in others
of input and output data. We derive these characteristics ¢ Microsoft compiler did; when we report CPU timings, we
performing analyses on the array index expressions and gigsent the faster of the two.
their corresponding loop induction variables. Figure 2 shows the performance of one mode (soft-light)
This method works for well-structured programs but failsf our domain library’s image blending feature on the CPU
for the large body of pointer-based software. In order tend, following hand-translation, on the GPU. A range of data
alleviate these problems we apply an array recovery algorithgat sizes were tested, each consisting of two square arrays of
temporarily converting pointer dereferences into array acces$@sr-float components of a width indicated on the horizontal
for analysis. We based our algorithm on a similar techniqugis. Two sets of data are provided for the GPU; this accounts
[4] from the digital signal processing field. for the extra overheads of context creation, data capture
Listing 7 shows how the image processing library usesitialisation and program compilation incurred on the first
pointers to manipulate image data. Information such as assigmA of the algorithm, and incurred partially on the first run
ment bounds and step is not immediately derivable from tii@lowing a change in the size of the output data sets.
pointer assignment statements. Conversely, the semanticallyThis is the most computationally-intensive mode of the
equivalent code fragment in Listing 8 directly links assignmetiibrary and consequently the best case for the GPU. While
offsets in the array to induction variables of the surroundinge see disappointing results in the initial run, with the GPU
loops. Our algorithm performs this transformation automattonsistently slower than the CPU for all sizes of input data,

cally. on subsequent runs the GPU outperforms the CPU by an
amount varying between 0-120ms. Setup overheads account
for (int y = ystart; y< yend; ++ y) { for a roughly constant 200ms, from the difference between the
for (int x = xmin; x < xmax;) { . . .
int span = xmax— x; two sets of GPU timings, independent of the data set sizes.
SrePix +dPix = adstimg->_data [ydstimg->_width I_n the worst case we see the performance _show_n in Figure 3.
+xmin]; This benchmarks the simplest mode of blending (linear-dodge)
while (span——) { and produces disappointing results on the GPU, which is
dPix—>SetClamped (bPix); slower than the CPU in all of the cases tested. A reduction in
++ dPix;
) } 2Data capture here refers to directing the results of a GPU calculation to a
1 general-purpose area of GPU memory, from where it can be used as an input
to a subsequent computation. By default, the results of GPU computations are
Listing 7. Pointer use in the image processing library. not necessarily stored in such a general-purpose region of memory but are

instead sent to a special-purpose output-only storage region.

600 T T T T T T T T T

T
CPY —— 100%
GPU (first run) ---x--- X ’
GPU (subsequent runs) ---:-- -
(q) 90% Download, Download,|
500 - 21.4% 20.5%
80%
400 g 0% :
Execution, Execution
= 60% SL0% 35.0%
£
g 300 q 50%
E
40%
K-
200 q
30%
Upload, Upload,
20% 47.6% 14.5%
100 q
10%
o 0%
0 - . - L - Simple Complex
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 .
) Blending Blending
Data set width (RGBA 4-float elements)

Fig. 2. Complex (soft-light) blending on two square arrays of four-element 4
(RGBA) 32-bit floating-point values. Visual C++ 7.1 produced the faste%tn '20'4
implementation among our compilers.

Breakdown of GPU computation time for two image blending modes,
8x2048 data sets. Upload refers to the transfer of data to the GPU,
download refers to the retrieval of results back into main memory.

500 - T T T

CPU —+—
40| GPU (subsecuoning % "] mance in each mode. To put this into perspective, the simpler
ool X | program consists of 3 instructions while the complex program
e has 59 instructions; we don't see a proportional increase
wor . in the execution time. In fact, in both cases the algorithms
300 | o 1 are memory-bound; we confirmed this by reducing the core

and memory clock speeds and by observing the impact on
performance. Increasing the computational complexity serves
largely to fill unused execution units whilst stalling for mem-

1 ory accesses.

Our second example shows more promise. Figure 5 demon-
strates the performance of an erosion filter — a minimising
7 convolution — on the CPU and on the GPU. Again, we
e — . — employ hand-translation with the capabilities of our translator

Data set width (RGBA 4-fioat elements) in mind. Here we see that the GPU offers large performance
Fig. 3. Simple (inear-dodge) blending on two square arrays of fou.peneﬂts over the CPU, even with the overheads of the first run
element (RGBA) 32-bit floating-point values. Intel C++ 9.0 produced théicluded. The two-dimensional texture cache prefetch of the
fastest implementation among our compilers. GPU allows us to incur only small penalties when accessing
the image data vertically, for the kernel overlay, while the CPU
appears to suffer considerably.
the setup overheads to about 140ms reflects the smaller proA breakdown comparison with the simple (linear-dodge)
gram compilation time. In comparison with the previous grapgilending mode is offered in Figure 6. An interesting feature
we see that the GPU execution time is almost unchanged; tbenote here is that the proportion of time spent uploading the
notable difference here is that the CPU’s execution time hagut data is heavily reduced in convolution. The data behind
been reduced. this graph suggests that the convolution program’s upload time

In order to understand why the GPU is unaffected by this dis-less than 15% of that of the blending algorithm. We might
crease in computational complexity, it is necessary to considpect this figure to be 50% of the blending program, since
the structure of the execution process in graphics hardwange are dealing with only a single set of input data, but there
Figure 4 provides a breakdown of the three primary stagase clearly more factors at play. This suggests that there is
involved: moving input data into video memory, executing theonsiderable inefficiency in streaming multiple sets of data into
program and moving the results back into main memory. ¥ideo memory serially. A recent paper [5] by NVIDIA offers a
mere 30-35% of the total computation time is spent executingason for this and proposes an alternative upload mechanism
the program in this example; the rest of the time is dependdpixel buffer objects which we have not yet explored.
only on the sizes of the input and output data sets.

While one might expect an increase in the execution time to
have perhaps a third as much impact on the total computatiorOne of the most common complaints of programmers in
time, this does not fully account for the GPU’s similar perforthe general-purpose GPU (GPGPU) field is that data transfer

Time (ms)

250) |
200
150 - ><><*><~»——><~><~—~~
100

50

VI. DELAYED DATA RETRIEVAL

100 R are download into arrays just afterwards. This ensures that
GPU (subsequent runs) - any use of the output arrays will operate on the results of the
GPU computation. In cases where the output data is not used
directly, but is instead used as input to another GPU algorithm,
we waste time moving the data from video memory to main
memory and back again. This is a simple approach, but clearly
suboptimal.
1 A better method is to delay the retrieval of the results of
a GPU computation until they are used by the program. In
1 cases where they are not used, and are simply fed as input
to another GPU algorithm, we bypass the redundant transfer
1 between video memory and main memory. This is similar to a
— delayed execution model except that there is no real benefit in
020 400 600 800 1000 1200 1400 1600 1800 2000 2200 delaying the program execution, rather we delay the retrieval
Data set width (floats) Of itS results.
Fig. 5. An 8x8 erosion filter (convolution) on a square array of 32-bit floating- Implementing such a system in C++ is problematic due to
point values. Visual C++ 7.1 produced the fastest implementation among ¢he wide number of ways in which the data might be accessed;
compilers. through arrays, references, through pointers and pointers-to-
pointers, all with potentially overlapping areas of memory.
100% While intrusive solutions to this problem exist, the library
Download, paradigm offers a cleaner opportunity. By encapsulating the
o R output data structures in the library and abstracting their access
through library calls, we can insert optimally-placed trigger
70% cecuton points to initiate data retrieval from video memory.
60% L% This is an optimisation that we plan to explore in the future.
Automating this process would require extensive analysis to
ensure that access to the data structure couldn’t be leaked

1200 |

1000 |

800

Time (ms)

600

200

90%

80%

50%

Execution,

o 7.9 without a library call, and to identify all of the points in
0% o which to insert triggers. The benefits of this work, however,
20% 6% could widely increase the range of algorithms suitable for GPU
- processing.

Upload,

10.8%
o Blending Convolution VII. CONCLUSIONS ANDFURTHER WORK

Fio. 6. Breakd I ation time for blendi d i This paper offers a report on work in progress towards a
e T e e s egneral-purpose t0ol, and a methodblogy, for using streaming
download refers to the retrieval of results back into main memory. accelerators to enhance the performance of libraries in C++.
We have discussed some of the code features that have proven
troublesome, and we have briefly explored how semantic
times often dominate or severely impact the total computatipmoperties (or assumptions) of the library’s API can play a
time, in many cases making a GPU implementation slowpart in the process. Finally, we present performance results
than the CPU. We've highlighted the degree of this problemhich illustrate some of the potential of the approach — and
in Figures 4 and 6, where the data transfer overheads varguww that although very high performance is surely possible, at
between 30% and 70% of the total computation time. Thisast soon, it is not always easy to achieve on real applications.
inhibits the usefulness of the GPU in this domain and in many Our plans for this work begin with completing the automatic
others. translation process. Whilst our translator currently supports
In fact, we can overcome much of this overhead by avoidirgimple parallelisations, more work is needed to automate
the unnecessary transfer of input and output data between m@anallelisation of the image processing library and of other
memory and video memory. By localising this movement tcomplex examples. We plan to implement an interprocedural
video memory we can take advantage of the much highemalysis to trace temporary variables through potentially-
bandwidth and lower latency offered by the hardware. Whilgrtual function calls back to operations on data sets of interest.
this may seem an obvious optimisation, determining whenG@reater flexibility is needed in the induction variable analysis
is safe to hold the results of a computation in video memotg include affine transformations of loop control variables.
is a difficult problem. Switch hoisting still needs to be implemented to generate
In the context of our localised loop parallelisations, the inpetfficient GPU code, although ROSE provides most of this
data is uploaded just before the original loop and the resuftsictionality.

In the mid-term we aim to expand our application focufg] J.L. Cornwall, “Efficient multiple pass, multiple output algorithms on the

to Other ||brar|esl Intel’s Computer VISIOn lerary oﬁ:ers GPU," in 2nd European Conference on Visual Media Production (CVMP
. . . e 2005) December 2005.

a range of computatlonally-lntenswe computer vision alg%] M. Schordan and D. Quinlan, “A source-to-source architecture for user-
rithms. These algorithms offer good potential for GPU optimi- defined optimizations,” irProceedings of the Joint Modular Languages
sation and their performance-oriented source code presents arfonference (JMLC'03), Lecture Notes in Computer Scignoé 2789.
. Springer-Verlag, Aug 2003, pp. 214-223.
interesting challenge to the translator. This is a different forpp] B. Franke and M. O'Boyle, “Array recovery and high-level transforma-
of parallel analysis: not through unravelling layers of structural tions for DSP applications ACM Trans. on Embedded Computing Sys.

obscurity, but through extensive loop and pointer analysis tq Vo!- 2, no. 2, pp. 132-162, 2003.
y 9 P P y [5] “Fast texture downloads and readbacks using pixel buffer objects in

recover the algorlthm Seman_tlcs' o OpenGL,” http://developer.nvidia.com/object/faskturetransfers.html,
Our long-term plans are to introduce predictive performance 2005.

analysis into the translator to identify algorithms with higff] M. Wolfe, High Performance Compilers for Parallel Computing
Addison-Wesley Publishing Company, 1995.

computation to memory access ratios and other desirapie o krall and s. Lelait, “Compilation techniques for multimedia proces-

qualities for the GPU. By introducing a delayed execution sorsInt. J. Parallel Program, vol. 28, no. 4, pp. 347-361, 2000.

mechanism we hope to fuse multiple parallel operations t§ !- Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
. . . P. Hanrahan, “Brook for GPUs: stream computing on graphics hardware,”

gether to take advanf[a_ge of the high bandwidth INterconNects acwm Trans. Graph.vol. 23, no. 3, pp. 777—786, 2004.

local to the GPU, avoiding slower routes back to main memojg} M. D. McCool, Z. Qin, and T. S. Popa, “Shader metaprogramming,” in

with intermediate results. We also aim to expand our back-end HWWS '02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS con-

h llel devi h th I C{Eerence on Graphics hardware Aire-la-Ville, Switzerland, Switzerland:

to support other parallel devices, such as the cell processor andgrographics Association, 2002, pp. 57-68.

FPGAs. Through careful scheduling, we can deploy parallel

algorithms to multiple — perhaps heterogeneous — devices

simultaneously to maximise use of the available processing

resources.

VIIl. RELATED WORK

Generating code for streaming architectures like GPUs
is essentially vectorisation, and is well-covered in standard
textbooks such as [6]. It differs from code generation for
multimedia instruction set extensions (SSE, AltiVec etc),
which can be handled using sophisticated instruction selection
techniques [7]. It instead resembles classical vectorisation for
long-vector machines such as the Cray-1 and its successors.

The particular problems introduced by C have been tackled
in many commercial compilers, and are the focus of [4] as we
discussed earlier. The particular problems of (and opportunities
offered by) C++ have been the focus for the development
of the ROSE tool which we have used. ROSE is designed
to support library-specific optimisations [3], and is motivated
by the need to support scientific computing users coding
with the full abstractive power of C++, while retrieving the
performance attained by vectorizing and parallelizing Fortran
compilers.

Exploiting the GPU for general-purpose computation is the
focus of the GPGPU [1] community. Popular abstractions
for general-purpose GPU programming, such as the C-like
Brook [8] streaming language and the Sh [9] C++ constructs,
offer simple programming interfaces with low graphics knowl-
edge requirements.

IX. ACKNOWLEDGEMENTS

We would like to thank The Foundry for their support for
this project. This work was partly funded by the EPSRC (ref
EP/C549481).

REFERENCES

[1] “General-purpose computation on graphics hardware,”
http://www.gpgpu.org/.

