Is Morton layout competitive for large
two-dimensional arrays?

Jeyarajan Thiyagalingam and Paul H J Kelly

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, U.K.
{jeyan,phjk}@doc.ic.ac.uk

Abstract. Two-dimensional arrays are generally arranged in memory
in row-major order or column-major order. Sophisticated programmers,
or occasionally sophisticated compilers, match the loop structure to the
language’s storage layout in order to maximise spatial locality. Unsophis-
ticated programmers do not, and the performance loss is often dramatic
— up to a factor of 20. With knowledge of how the array will be used,
it is often possible to choose between the two layouts in order to max-
imise spatial locality. In this paper we study the Morton storage layout,
which has substantial spatial locality whether traversed in row-major or
column-major order. We present results from a suite of simple applica-
tion kernels which show that, on the AMD Athlon and Pentium ITI, for
arrays larger than 256 x 256, Morton array layout, even implemented
with a lookup table with no compiler support, is always within 61% of
both row-major and column-major — and is sometimes faster.

1 Introduction

Every student learns that multidimensional arrays are stored in “lexicographic”
order: row-major (for Pascal etc) or column-major (for Fortran). Modern pro-
cessors rely heavily on caches and spatial locality, and this works well when the
access pattern matches the storage layout. However, accessing a row-major array
in column-major order leads to dismal performance (and vice-versa). The Mor-
ton layout for arrays (for background and history see [13, 3]) offers a compromise,
with some spatial locality whether traversed in row-major or column-major or-
der — although in neither case is spatial locality as high as the best case for
row-major or column-major. A further disadvantage is the cost of calculating ad-
dresses. So, should language implementors consider using Morton layout for all
multidimensional arrays? This paper explores this question, and provides some
qualified answers.

Perhaps controversially, we confine our attention to “naively” written codes,
where a mismatch between access order and layout is reasonably likely. We also
assume that the compiler does not help, neither by adjusting storage layout,
nor by loop nest restructuring such as loop interchange or tiling. Naturally, we
fervently hope that users will be expert and that compilers will successfully

analyse and optimise the code, but we recognise that very often, neither is the
case.

The idea is this: if we know how the array is going to be used, we could choose
optimally between the two lexicographic layouts. If we don’t know how the array
will be used, we can guess. If we guess right, we can expect good performance.
If wrong, we may suffer very badly.

One way to evaluate the use of Morton layout to avoid such worst-case be-
haviour is by analogy with competitive on-line algorithms. Suppose we have an
optimal array layout scheme OPT. Following [9,11], a memory layout scheme
ALG is e-competitive (for a constant “efficiency” factor ¢) if there exists a con-
stant « such that for all utilisation scenarios o,

COSTarg(o) <c¢-COSTopr (o) + @

In this paper we evaluate experimentally whether the Morton layout is c-competitive
with respect to a scheme OPT, in which the faster of the two lexicographic lay-
outs is chosen. The key issue is whether the competitive efficiency ¢ is low enough

in practice.

We use a small suite of simple application kernels to test this hypothesis,
and evaluate the competitive efficiency ¢ for various computer systems. We also
evaluate the slowdown which occurs with these applications when the wrong
layout is chosen.

2 Related work

Compiler techniques Locality can be enhanced by restructuring loops to tra-
verse the data in an appropriate order [14,12]. Tiling can suffer disappointing
performance due to associativity conflicts, which, in turn, can be avoided by
copying the data accessed by the tile into contiguous memory [10]. Copying can
be avoided by building the array in this layout. More generally, storage layout
can be selected to match execution order [8]. While loop restructuring is limited
by what the compiler can infer about the dependence structure of the loops,
adjusting the storage layout is always valid. However, each array is generally
traversed by more than one loop, which may impose layout constraint conflicts
which can be resolved only with foreknowledge of program behaviour.

Blocked and recursively-blocked array layout Wise et al. [13] advocate Morton
layout for multidimensional arrays, and present a prototype compiler that im-
plements the dilated arithmetic address calculation scheme which we evaluate
in Section 4. They found it hard to overcome the overheads of Morton address
calculation, and achieve convincing results only with recursive formulations of
the loop nests.

Chatterjee et al. [3] study Morton layout and a blocked “4D” layout (ex-
plained below). They focus on tiled implementations, for which they find that
the 4D layout achieves higher performance than the Morton layout because the
address calculation problem is easier, while much or all the spatial locality is

still exploited. Their work has similar goals to ours, but all their benchmark ap-
plications are tiled (or “shackled”) for temporal locality; they show impressive
performance, with the further advantage that performance is less sensitive to
small changes in tile size and problem size, which can result in cache associativ-
ity conflicts with conventional layouts.

In contrast, the goal of our work is to evaluate whether Morton layout can
simplify the performance programming model for unsophisticated programmers,
without relying on very powerful compiler technology.

3 Background

Here we briefly review various array mappings and the resulting spatial locality.

3.1 Lexicographic array storage

For an M x N two dimensional array A, a mapping S(i,j) is needed, which
gives the memory offset at which array element A; ; will be stored. Conventional
solutions are row-major (for example in Pascal) and Column-major (as used by
Fortran) mappings expressed by

SNMG V=Nxi+j and SHM(i,j)=i+Mxj

respectively. We refer to row-major and column-major as lexicographic layouts,
i.e. the sort order of the two indices (another term is “canonical”). Historically,
array layout has been mandated in the language specification.

3.2 Opaque array storage: array descriptors

In more modern languages, such as Fortran 90 (and notable earlier designs —
Algol 68, APL), arrays are represented by a descriptor which provides run-time
information on how the address calculation should be done [5]. This is needed
to support multidimensional array slicing — where the array descriptor hides
the actual array representation, and allows the implementor freedom to select
storage layout at will.

Using a descriptor allows a single fragment of source code to operate on arrays
whose layout varies from call to call — a form of “shape” polymorphism [7]. This
raises performance problems. The storage layout is not known at compile-time —
the stride of successive memory accesses depends on how the function is called.
For optimal performance, different variants of each function need to be generated
for each combination of array operand layouts. There may be many distinct
combinations requiring distinct code variants. The variants can be selected by
run-time dispatch. More aggressively, the appropriate procedure “clone” can be
called according to call site context [4].

3.3 Blocked array storage

How can we reduce the number of code variants needed to achieve high perfor-
mance? An attractive strategy is to choose a storage layout which offers a com-
promise between row-major and column-major. For example, we could break the
N x M array into small, P x () row-major subarrays, arranged as a N/P x M/Q
row-major array. We define the blocked row-major mapping function (this is the
4D layout discussed in [3]) as:

S (i) = (P x Q) x SGIPMID(i[P, j|P) + SUEO (%P, 1%Q)

brm

For example, consider 16-word cache blocks and P = @ = 4. Each block holds
a P x @ = 16-word subarray. The four iterations (0,0), (0,1), (0,2) and (0,3)
access locations on the same block. The remaining 12 locations on this block
are not, accessed until later iterations of the outer loop. Thus, for a large array,
the expected cache hit rate is 75%, since each block has to be loaded four times
to satisfy 16 accesses. The cache hit rates calculated above apply whether the
array is accessed in row-major or column-major order (i.e. whether the loop is
“do j...do i” as shown, or “do i...do j”).

(G5
mz

(54)

Fig. 1. Morton storage layout for 8 x 8 array. Location of element A[4, 5] is calculated
by interleaving “dilated” representations of 4 and 5 bitwise: Dy(4) = 0100002, D1 (5) =
1000102. Sm=(5,4) = Do(5) | D1(4) = 1100102 = 5010. A 4-word cache block holds a
2 x 2 subarray; a 16-word cache block holds a 4 x 4 subarray. Row-order traversal of
the array uses 2 words of each 4-word cache block on each sweep of its inner loop, and
4 words of each 16-word block. Column-order traversal achieves the same hit rate.

3.4 Larger cache blocks and virtual memory pages

With larger cache blocks, we can get a higher hit rate. Although many current
processors have the same cache block size at all levels of the cache, there are

exceptions (e.g. SunFire 6800 has a blocksize of 32 bytes at level 1, and 64 bytes
at level 2). Virtual memory pages are also a major consideration — a typical
64-entry data TLB with 8KByte pages has an effective span of 64 x 8 = 512K B.

3.5 Recursive blocking

Unfortunately, if the blocked row-major array is traversed in row-major order,
only one subarray per page is usable. Thus, we find that the blocked row-major
layout is still biased towards column-major traversal. We can overcome this by
applying the blocking again, recursively. Thus, each 8KByte page (1024 doubles)
would hold a 16 x 16 array of 2 x 2-element subarrays.

In general, modern systems have a deep memory hierarchy, with block size,
capacity and access time increasing geometrically with depth [1]. Blocking should
be applied for each level. However, we must now consider the complexity of
calculating array locations.

#define ONES_1 0x55555555 Fig. 2. Morton-order
#define ONES_O Oxaaaaaaaa

#define INC_1(vx) (((vx + ONES_0) + 1) & ONES_1) . .
#define INC_O(vx) (((vx + ONES_1) + 1) & ONES_O) plementation using

dilated arithmetic for
the address calcula-

matrix-multiply im-

void mm_ikj_da(double A[SZ*SZ], double B[SZ*SZ], double C[SZ*SZ])

{
int i_0, j_1, k_0; tion. Variables i_0 and
double r; k_0 are dilated repre-
int SZ_0 = Dilate(SZ); .
int SZ_1 = SZ.0 << 1: sentations of the loop
for (i_0 = 0; i_0 < SZ_0; i_0 = INC_0(i_0)) control counter Do(i)
for (L.(_O =0; k0 <52.0; k0 = INC_0(k_0)){ and Do(k). Counter
unsigned int k_1 = k_0 << 1; L.
r=A[i 0 + k_11; j is represented by
for (j_1 =0; j_1 < Sz_1; j_1 = INC_1(j_1)) j1= Dl(j)- The func-
3 L0+ j-1) +=x » Bk O + j1I; tion Dilate converts a
} normal integer into a

dilated integer.

3.6 Bit-interleaving

Agsume for the time being that, for an N x M array, N = 2", M = 2™. Write
the array indices ¢+ and j as

B(i) = in—1in—2 .. .i3i2i1%0 and B(j) = jn—1jn—2---Jsj2J1jo

respectively. Now the lexicographic mappings can be expressed as bit-concatenation
(written “||”):

SN, 5) = N x i+ j = B(i)||B(j)
=ip_10n—2...930201%0 n—1Jn—2 - - - J3J271J0
SN (3, 5) =i+ M x j = B(j)||1B(3)

= Jn—1Jn—2---J3j2J1Join—1tn—2 - . .i3i2%1%0

If P =2P and Q = 24, the blocked row-major mapping is

SN (i, j) = (P x Q) x SIN/PMIQ) (i, jy + SCP (i% P, j%Q)
= B(i)(n—l)...p“B(j)(m—l)...q||B(i)(p—1)...0||B(j)(q—1)...0

Now, choose P = (Q = 2, and apply blocking recursively:

SNM (i, §) = in 1jn1in_2jn 2 - -i3j3i2j201j100]0

This mapping is called the Morton Z-order, and is illustrated in Fig. 1.

3.7 Cache performance with Morton-order layout

Given a cache with any even power-of-two block size, with an array mapped
according to the Morton order mapping S,,., the cache hit rate of a row-major
traversal is the same as the cache-hit rate of a column-major traversal. In fact,
this applies given any cache hierarchy with even power-of-two block size at each
level. This is illustrated in Fig. 1. The problem of calculating the actual cache
performance with Morton layout is somewhat involved; an interesting analysis
for matrix multiply is presented in [6].

void mm_ikj_tb(double A[SZ*SZ], double B[SZ*SZ], double C[SZ*SZ] Fig_ 3. Morton-order
unsigned int MortonTabEven[],

unsigned int MortonTab0dd[]) ma‘trlx_mlﬂtlply lmple_

{ mentation using table
int i, J, k; lookup for the ad-
double r; .
for (i = 0; i < SZ; i++) dress calculation. The

for (k = 0; k < SZ; k++){ compiler detects that

r = A[MortonTabEven[i] + MortonTab0dd[k]];

for (G = 0; j < §Z; j+4) MortonTabEven[i] and

C[MortonTabEven[i] + MortonTab0dd[j]1] MortonTabEven [k] are
+= r * B[MortonTabEven[k] + MortonTab0dd[j1]1; loop invariant, leaving
} } just one table lookup

in the inner loop.

4 Morton-order address calculation

4.1 Dilated arithmetic

Bit-interleaving is too complex to execute at every loop iteration. Wise et al. [13]
explore an intriguing alternative: represent each loop control variable i as a
“dilated” integer, where the i’s bits are interleaved with zeroes. Define Dy and
Dy such that

B(Do(i)) = 0in—10in_20...0i20i10ip and B(Di(3)) = in—10in_20...i20i10ic0

180 180

160 160
140 140 /\\,\
120 120

40 40

20 20

- AMD
=Pl
—e—sUN
o= ALPHA
——PIV
=+ Baseline

32 64 128 256 512 1024 204 32 64 128 256 512 1024
size sSize

2048

Fig. 4. Matrix multiply (ikj) performance (in MFLOPs) of (left) dilated arithmetic
Morton address calculation (see Fig. 2) versus (right) table-based Morton address calcu-
lation (see Fig. 3). The graphs show MFLOPs normalised to the performance achieved
by the standard row-major ikj implementation at each problem size on each system.
Details of the systems are given in Table 1. At worst, the table lookup scheme is 46%
slower than the dilated-arithmetic scheme on P4. For problem sizes larger than 256 the
worst figure is 24% on PIII. On the SunFire 6800 the lookup table implementation is
always faster. Larger numbers are better.

Now we can express the Morton address mapping as SNM) (1,7) = Do(i) | D1(j),
where “|” denotes bitwise-or. At each loop iteration we increment the loop control
variable; this is fairly straightforward:

Do(i +1) = ((Do(%) | Onesp) + 1) & Ones;
Di(i+1) = ((D1(7) | Ones;) + 1) & Onesy

where “&” denotes bitwise-and, and
B(Onesg) = 01010...10101 and B(Ones;) = 10101...01010

This is illustrated in Fig. 2, which shows the ikj variant of matrix multiply.

4.2 Morton-order address calculation using a lookup table

The dilated arithmetic approach works when the array is accessed using an
induction variable which can be incremented using dilated addition. We found
that a much simpler scheme often works nearly as well: we simply pre-compute a
table for the two mappings Dy (i) and D4 (7). We illustrate this for the ikj matrix
multiply variant in Fig. 3. Note that the table accesses are very likely cache hits,
as their range is small and they have unit stride.

One small but important detail: we use addition instead of logical “or”. This
may improve instruction selection. It also allows the same loop to work on lexico-
graphic layout using suitable tables. If the array is non-square, 2" x 2™ n < m,
we construct the table so that the j index is dilated only up to bit n.

AMD
Pl
Sun
Alpha
P4

NEZE

Slowdownrelativetobestlayout
N w
i
B
: §
!

Speeduprelativetoworstlayout

MMikj W
i] RN

ADI
Jac2D

L
MMijk
MMikj

Chol-K
LU

P o
Jac2D
w|
MMk
MMikj
ADI
Jac2D Ezi}:zq
MMk
MMikj
ADI
Jac2p | R
LU
MMijk
ADI
Chol-K

Chol-K
Chal-K

Fig. 5. Performance of table-lookup-based implementation of Morton layout for various
common dense kernels. In the upper graph we show how much slower Morton layout
can be compared with row-major layout (which for our benchmarks is usually fastest).
In each case we show the maximum and minimum slowdown over a range of problem
sizes from 256 x 256 to 2048 x 2048. In the lower graph, we show how much faster
Morton layout can be compared with column-major layout. In each case we show the
maximum and minimum speedup over the same range of problem sizes.

Fig. 4 shows the performance of these two variants on a variety of computer
systems. In the remainder of the paper, we use the table lookup scheme exclu-
sively. With compiler support, many applications could benefit from the dilated
arithmetic approach, leading in many cases to more positive conclusions.

5 Experimental results

We have argued that Morton layout is a good compromise between row-major
and column-major. The notion of c-competitiveness provides a way to quantify
this claim. The competitive efficiency ¢ is the maximum slowdown we should
suffer relative to making the best layout choice.

To test this experimentally, we have collected a suite of simple implementa-
tions of standard numerical kernels operating on two-dimensional arrays:

MMijk Matrix multiply, ijk loop nest order (usually poor due to large stride)
MMikj Matrix multiply, ikj loop nest order (usually best due to unit stride)

LU LU decomposition with pivoting (based on Numerical Recipes)
Jacobi2D Two-dimensional four-point stencil smoother
ADI Alternating-direction implicit kernel, ij,ij order

Cholesky k variant (usually poor due to large stride)

Alpha Alpha 21264 (EV6) 500MHz,

Compaq L1 D-cache: 2-way, 64KB, 64B cache block

AlphaServer ES40|L2 cache: direct mapped, 4MB. Compiler: Compaq C V6.1-020 “-fast”
Sun UltraSparc III (v9) 7T50MHz

SunFire 6800 L1 D-cache: 4-way, 64KB, 32B cache block

L2 cache: direct-mapped, 8MB.

Compiler: Sun Workshop 6 “-xO5” (update 1 C 5.2 Patch 109513-07)
Intel Pentium III Coppermine, 1GHz

L1 D-cache: 4-way, 16KB, 32B cache block

L2 cache: 8-way 256KB, sectored 32B cache block
512MB SDRAM. Compiler “gcc-2.95 -03”
Pentium 4, 1.3 GHz

L1 D-cache: 8-way, 8KB, sectored 64B cache block
L2 cache: 8-way, 256KB, sectored 64B cache block
256MB RDRAM. Compiler “gce-2.95 -O3”

AMD Athlon Thunderbird, 1.4GHZ

L1 D-Cache: 2-way, 64KB, 64B cache block

L2 cache: 8-way, 256KB, 64B cache block

512MB DDR RAM. Compiler “gcc-2.95 -03”

PIII

P4

AMD

Table 1. Cache and CPU configurations used in the experiments.

In each case we run the code on square arrays of various sizes, repeating the cal-
culation if necessary to ensure adequate timing resolution. The system configu-
rations are detailed in Table 1. Table 2 shows the baseline performance achieved
by each machine using standard row-major layout. Results using Morton layout
are summarised in Fig. 5 and shown in more detail in Figures 6 and 7.

ADI Chol-K Jacobi2D LU MMijk MMikj
min max|min max{min maz|min maz|min maz|min maz,
AMD 33.81 34.72|11.05 47.61|{195.84 199.25|16.76 83.02|10.05 32.18({90.27 92.72
PIIT 21.17 23.71{16.05 26.99({122.21 128.90(32.44 69.32(27.44 37.19(58.90 59.20
SunFire |[37.64 40.35{16.12 21.62(140.69 411.78|44.48 77.08|16.16 69.90(125.57 137.24
Alpha [|49.77 63.47|12.02 41.90|120.23 245.53|30.22 112.28|14.41 95.34|148.78 254.13
P4 65.04 67.56(23.05 43.15|410.16 419.32|41.72 73.98|32.35 34.98(293.51 297.92

Table 2. Performance of various kernels on different systems. For each kernel, for each
machine, we show performance range in MFLOPs for row-major array layout, for array
sizes ranging from 256 x 256 to 1024 x 1024.

Our results show that Morton layout is not effective for arrays smaller than
256 x 256. We therefore confine our attention to larger problem sizes. On the
AMD Athlon PC and Pentium III, we find that Morton layout is often faster
than both row-major and column-major, and is never more than 61% slower.
Furthermore, the costs of poor layout choice on these machines are particularly
acute - in extreme cases a factor of 20. We have only studied up to 2048 x 2048
(32MB), and further investigation is needed for very large problems.

On the other machines, the picture is less clear. Kernels with high spatial
locality, such as MMikj and Jacobi2D, run close to the machine’s peak perfor-
mance; so bandwidth to L1 cache for table access is probably a major factor.

6 Conclusions and directions for further research

The main contributions of this paper are:

— Using a small suite of dense kernels working on two-dimensional arrays, we
studied the impact of poor array layout/array traversal order. If an array’s
layout does not match the traversal order, performance is poor, with a slow-
down of more than 20 (Matrix multiply, ikj variant, on the AMD Athlon).

— On the AMD Athlon and Pentium III, for arrays larger than 256 x 256, we
found that Morton array layout, even implemented with a lookup table with
no compiler support, is always within 61% of both row-major and column-
major. In fact, it is sometimes faster.

— On other machines, the benefits can also be very large — but further work
is needed to avoid serious slowdown for some high-performance kernels.

— Using a lookup-table for address calculation allows flexible selection of fine-
grain non-linear array layout, while still offering attractive performance com-
pared with lexicographic layouts, on untiled loops.

The advantage of Morton layout on existing codes is unlikely to be large as users
normally do avoid worst-case performance. However, simplifying the performance
model should allow programmers to focus on building functionally-robust soft-
ware. Furthermore, if a loop can be tiled (or shackled, or executed in a recursive
form with high temporal reuse) the overheads of our lookup table scheme are
excessive. Layout then has to be selected in combination with loop restructuring.

— The next step is building Morton layout into a compiler, or perhaps a self-
optimizing BLAS library [2] (which would allow run-time layout selection).

— It should be possible to achieve better results using competitive redistri-
bution - i.e. instrument memory accesses and copy the array into a more
appropriate distribution if indicated.

— We should evaluate adding hardware support for non-linear layouts.

— We have not used non-square arrays in this paper, but the approach handles
them reasonably effectively (see Section 4.2), at the cost of padding each
dimension to the next power of two.

— In our brief analysis of spatial locality using Morton layout (Section 3.7,
Fig. 1), we assumed that cache blocks and VM pages are a square (even)
power of two. This depends on the array’s element size, and is often not the
case. Then, row-major and column-major traversal of Morton layout lead to
differing spatial locality. A more subtle non-linear layout could address this.

— It seems less likely that Morton layout can offer a competitive compromise
for arrays with more than two dimensions.

Acknowledgements. This work was partly supported by mi2g Software, and a Uni-
versities UK Overseas Research Scholarship. We also thank Imperial College Parallel
Computing Centre (ICPC) for access to their equipment.

References

10.

11.

12.

13.

14.

. Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The uniform memory

hierarchy model of computation. Algorithmica, 12(2/3):72-109, 1994.

Olav Beckmann and Paul H. J. Kelly. Efficient interprocedural data placement
optimisation in a parallel library. In LOR98: Languages, Compilers and Run-time
Systems for Scalable Computers, number 1511 in LNCS, pages 123-138. Springer-
Verlag, May 1998.

Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and
Mithuna Thottethodi. Nonlinear array layouts for hierarchical memory systems.
In International Conference on Supercomputing, pages 444-453, 1999.

. K. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In Proceedings of the

1992 IEEE International Conference on Computer Language, Oakland, CA, 1992.
Leo J. Guibas and Douglas K. Wyatt. Compilation and delayed evaluation in
APL. In Conference record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, pages 1-8. ACM Press, January 1978.

P. J. Hanlon, D. Chung, S. Chatterjee, D. Genius, A. R. Lebeck, , and E. Parker.
The combinatorics of cache misses during matrix multiplication. 2000. to appear
in the Journal of Computer Sciences and Systems.

C. Barry Jay. Shape in computing. ACM Computing Surveys, 28(2):355-357, 1996.
Mahmut T. Kandemir, Alok N. Choudhary, J. Ramanujam, N. Shenoy, and Prithvi-
raj Banerjee. Enhancing spatial locality via data layout optimizations. In European
Conference on Parallel Processing, pages 422-434, 1998.

A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching.
Algorithmica, 3(1), 1988.

Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance
and optimizations of blocked algorithms. SIGPLAN Notices, 26(4):63-74, 1991.
Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive algorithms for
on-line problems. In Proceedings of the 1988 Twentieth Annual ACM Symposium
on Theory of Computing, pages 322-333. ACM Press New York, NY, USA, 1988.
Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Transactions on Programming Languages and
Systems, 18(4):424-453, July 1996.

David S. Wise, Jeremy D. Frens, Yuhong Gu, , and Gregory A. Alexander. Lan-
guage support for Morton-order matrices. In Proc. 2001 ACM Symp. on Principles
and Practice of Parallel Programming, SIGPLAN Not. 36, 7, 2001.

Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
Proceedings of ACM SIGPLAN ’91 Conference on Programming Language Design
and Implementation, 1991.

160 1200
A
140 / \[_\. 1000
120 / / \ D
800 - -
100 + =PIl
=< SunFire
c\° 4 4
80 600 — Alpha
60 - ——BaseLine
o 400 opa
20 | 200
0 T 0
32 64 128 256 512 1024 2048 256 2048
ADI Size Size
300 400
250 350 1
300 - AMD
-
200 250 - Plll
—~¢ SunFire
R 150 A 200 A
© - Alpha
150 + P4
100 1 100 ——baseline
50 | —
%0 &7
0 0 T
32 64 128 256 512 256 1024
Chol-k Size Size
180 1200
160 -
1000
140 1
120 1 800 - :’;I"I’:D
X A\ —)
- 100 1 600 | = SunFire
80 - Alpha
P4
607 400 7 ——BaseLine
40 A
200 -
20
0 T T 0 T T
32 64 128 256 512 1024 2048 256 1024 2048
Jacobi2d Size Size

Fig. 6. Various common dense kernels: The left-hand graphs show performance of the
Morton layout version relative to the performance (at each problem size) with all arrays
in row-major layout. The right-hand graphs show performance of the Morton layout
version relative to the (usually much lower) performance with all arrays in column-
major. Note the scales of each graph are different. (included for refereeing only; see

Section 5)

120 200
180 A
100 A 160 1 //7&
80 | 140 = AMD
120 4 =PIl
X 604 < 100 4 - -4 SunFire
- Alpha
40 = P4
60 - ——Baseline
20 - 40 +
20 +
0 0
32 64 128 256 512 1024 32 64 128 256 512 1024
LU Size Size
800 900
700 4 800 1
600 | 7007 A
600 -+ AMD
500 | N, =P
< 400 | © 5001 = SunFire
° < 400 1 —*Alpha
300 + -e-P4
3001 ——BaseLine
200 | 200 M >
1001 & re /4 * v i 100 4 [—" =
0 : : : : 0 : : : :
32 64 128 256 512 1024 32 64 128 256 512 1024
Matrix multiply, ijk size size
180 + 2500 +
160 -
140 | 2000 -
120 4 -=AMD
 — 1500 + =PIl
- 100 1 o - SunFire
< g0 \X ° - Alpha
w0l 1000 1 oPs4
——Baseline
40 A 500 4
20 , g
0 T 0 T T T
32 64 128 256 512 1024 2048 32 64 128 256 512 1024 2048
Matrix multiply, ikj size size

Fig. 7. Various common dense kernels, continued: As in Fig. 6, the left-hand graphs
show performance of the Morton layout version relative to the performance (at each
problem size) with all arrays in row-major layout. The right-hand graphs show perfor-
mance of the Morton layout version relative to the (usually much lower) performance
with all arrays in column-major. Note the scales of each graph are different. (included
for refereeing only; see Section 5)

