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.i
.a
.ukAbstra
t. Two-dimensional arrays are generally arranged in memoryin row-major order or 
olumn-major order. Sophisti
ated programmers,or o

asionally sophisti
ated 
ompilers, mat
h the loop stru
ture to thelanguage's storage layout in order to maximise spatial lo
ality. Unsophis-ti
ated programmers do not, and the performan
e loss is often dramati
| up to a fa
tor of 20. With knowledge of how the array will be used,it is often possible to 
hoose between the two layouts in order to max-imise spatial lo
ality. In this paper we study the Morton storage layout,whi
h has substantial spatial lo
ality whether traversed in row-major or
olumn-major order. We present results from a suite of simple appli
a-tion kernels whi
h show that, on the AMD Athlon and Pentium III, forarrays larger than 256 � 256, Morton array layout, even implementedwith a lookup table with no 
ompiler support, is always within 61% ofboth row-major and 
olumn-major | and is sometimes faster.1 Introdu
tionEvery student learns that multidimensional arrays are stored in \lexi
ographi
"order: row-major (for Pas
al et
) or 
olumn-major (for Fortran). Modern pro-
essors rely heavily on 
a
hes and spatial lo
ality, and this works well when thea

ess pattern mat
hes the storage layout. However, a

essing a row-major arrayin 
olumn-major order leads to dismal performan
e (and vi
e-versa). The Mor-ton layout for arrays (for ba
kground and history see [13, 3℄) o�ers a 
ompromise,with some spatial lo
ality whether traversed in row-major or 
olumn-major or-der | although in neither 
ase is spatial lo
ality as high as the best 
ase forrow-major or 
olumn-major. A further disadvantage is the 
ost of 
al
ulating ad-dresses. So, should language implementors 
onsider using Morton layout for allmultidimensional arrays? This paper explores this question, and provides somequali�ed answers.Perhaps 
ontroversially, we 
on�ne our attention to \naively" written 
odes,where a mismat
h between a

ess order and layout is reasonably likely. We alsoassume that the 
ompiler does not help, neither by adjusting storage layout,nor by loop nest restru
turing su
h as loop inter
hange or tiling. Naturally, wefervently hope that users will be expert and that 
ompilers will su

essfully



analyse and optimise the 
ode, but we re
ognise that very often, neither is the
ase.The idea is this: if we know how the array is going to be used, we 
ould 
hooseoptimally between the two lexi
ographi
 layouts. If we don't know how the arraywill be used, we 
an guess. If we guess right, we 
an expe
t good performan
e.If wrong, we may su�er very badly.One way to evaluate the use of Morton layout to avoid su
h worst-
ase be-haviour is by analogy with 
ompetitive on-line algorithms. Suppose we have anoptimal array layout s
heme OPT. Following [9, 11℄, a memory layout s
hemeALG is 
-
ompetitive (for a 
onstant \eÆ
ien
y" fa
tor 
) if there exists a 
on-stant � su
h that for all utilisation s
enarios �,COSTALG(�) � 
 �COSTOPT(�) + �In this paper we evaluate experimentally whether the Morton layout is 
-
ompetitivewith respe
t to a s
heme OPT, in whi
h the faster of the two lexi
ographi
 lay-outs is 
hosen. The key issue is whether the 
ompetitive eÆ
ien
y 
 is low enoughin pra
ti
e.We use a small suite of simple appli
ation kernels to test this hypothesis,and evaluate the 
ompetitive eÆ
ien
y 
 for various 
omputer systems. We alsoevaluate the slowdown whi
h o

urs with these appli
ations when the wronglayout is 
hosen.2 Related workCompiler te
hniques Lo
ality 
an be enhan
ed by restru
turing loops to tra-verse the data in an appropriate order [14, 12℄. Tiling 
an su�er disappointingperforman
e due to asso
iativity 
on
i
ts, whi
h, in turn, 
an be avoided by
opying the data a

essed by the tile into 
ontiguous memory [10℄. Copying 
anbe avoided by building the array in this layout. More generally, storage layout
an be sele
ted to mat
h exe
ution order [8℄. While loop restru
turing is limitedby what the 
ompiler 
an infer about the dependen
e stru
ture of the loops,adjusting the storage layout is always valid. However, ea
h array is generallytraversed by more than one loop, whi
h may impose layout 
onstraint 
on
i
tswhi
h 
an be resolved only with foreknowledge of program behaviour.Blo
ked and re
ursively-blo
ked array layout Wise et al. [13℄ advo
ate Mortonlayout for multidimensional arrays, and present a prototype 
ompiler that im-plements the dilated arithmeti
 address 
al
ulation s
heme whi
h we evaluatein Se
tion 4. They found it hard to over
ome the overheads of Morton address
al
ulation, and a
hieve 
onvin
ing results only with re
ursive formulations ofthe loop nests.Chatterjee et al. [3℄ study Morton layout and a blo
ked \4D" layout (ex-plained below). They fo
us on tiled implementations, for whi
h they �nd thatthe 4D layout a
hieves higher performan
e than the Morton layout be
ause theaddress 
al
ulation problem is easier, while mu
h or all the spatial lo
ality is



still exploited. Their work has similar goals to ours, but all their ben
hmark ap-pli
ations are tiled (or \sha
kled") for temporal lo
ality; they show impressiveperforman
e, with the further advantage that performan
e is less sensitive tosmall 
hanges in tile size and problem size, whi
h 
an result in 
a
he asso
iativ-ity 
on
i
ts with 
onventional layouts.In 
ontrast, the goal of our work is to evaluate whether Morton layout 
ansimplify the performan
e programming model for unsophisti
ated programmers,without relying on very powerful 
ompiler te
hnology.3 Ba
kgroundHere we brie
y review various array mappings and the resulting spatial lo
ality.3.1 Lexi
ographi
 array storageFor an M � N two dimensional array A, a mapping S(i; j) is needed, whi
hgives the memory o�set at whi
h array element Ai;j will be stored. Conventionalsolutions are row-major (for example in Pas
al) and Column-major (as used byFortran) mappings expressed byS(N;M)rm (i; j) = N � i+ j and S(N;M)
m (i; j) = i+M � jrespe
tively. We refer to row-major and 
olumn-major as lexi
ographi
 layouts,i.e. the sort order of the two indi
es (another term is \
anoni
al"). Histori
ally,array layout has been mandated in the language spe
i�
ation.3.2 Opaque array storage: array des
riptorsIn more modern languages, su
h as Fortran 90 (and notable earlier designs |Algol 68, APL), arrays are represented by a des
riptor whi
h provides run-timeinformation on how the address 
al
ulation should be done [5℄. This is neededto support multidimensional array sli
ing | where the array des
riptor hidesthe a
tual array representation, and allows the implementor freedom to sele
tstorage layout at will.Using a des
riptor allows a single fragment of sour
e 
ode to operate on arrayswhose layout varies from 
all to 
all | a form of \shape" polymorphism [7℄. Thisraises performan
e problems. The storage layout is not known at 
ompile-time |the stride of su

essive memory a

esses depends on how the fun
tion is 
alled.For optimal performan
e, di�erent variants of ea
h fun
tion need to be generatedfor ea
h 
ombination of array operand layouts. There may be many distin
t
ombinations requiring distin
t 
ode variants. The variants 
an be sele
ted byrun-time dispat
h. More aggressively, the appropriate pro
edure \
lone" 
an be
alled a

ording to 
all site 
ontext [4℄.



3.3 Blo
ked array storageHow 
an we redu
e the number of 
ode variants needed to a
hieve high perfor-man
e? An attra
tive strategy is to 
hoose a storage layout whi
h o�ers a 
om-promise between row-major and 
olumn-major. For example, we 
ould break theN �M array into small, P �Q row-major subarrays, arranged as a N=P �M=Qrow-major array. We de�ne the blo
ked row-major mapping fun
tion (this is the4D layout dis
ussed in [3℄) as:S(N;M)brm (i; j) = (P �Q)� S(N=P;M=Q)rm (i=P; j=P ) + S(P;Q)rm (i%P; j%Q)For example, 
onsider 16-word 
a
he blo
ks and P = Q = 4. Ea
h blo
k holdsa P � Q = 16-word subarray. The four iterations (0; 0), (0; 1), (0; 2) and (0; 3)a

ess lo
ations on the same blo
k. The remaining 12 lo
ations on this blo
kare not a

essed until later iterations of the outer loop. Thus, for a large array,the expe
ted 
a
he hit rate is 75%, sin
e ea
h blo
k has to be loaded four timesto satisfy 16 a

esses. The 
a
he hit rates 
al
ulated above apply whether thearray is a

essed in row-major or 
olumn-major order (i.e. whether the loop is\do j...do i" as shown, or \do i...do j").
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2        3        6        7       18      19      22      23
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8        9        12     13       24     25      28      29

42      43      46     47       58     59      62      63Fig. 1. Morton storage layout for 8� 8 array. Lo
ation of element A[4; 5℄ is 
al
ulatedby interleaving \dilated" representations of 4 and 5 bitwise: D0(4) = 0100002 , D1(5) =1000102 . Smz(5; 4) = D0(5) j D1(4) = 1100102 = 5010. A 4-word 
a
he blo
k holds a2 � 2 subarray; a 16-word 
a
he blo
k holds a 4 � 4 subarray. Row-order traversal ofthe array uses 2 words of ea
h 4-word 
a
he blo
k on ea
h sweep of its inner loop, and4 words of ea
h 16-word blo
k. Column-order traversal a
hieves the same hit rate.3.4 Larger 
a
he blo
ks and virtual memory pagesWith larger 
a
he blo
ks, we 
an get a higher hit rate. Although many 
urrentpro
essors have the same 
a
he blo
k size at all levels of the 
a
he, there are



ex
eptions (e.g. SunFire 6800 has a blo
ksize of 32 bytes at level 1, and 64 bytesat level 2). Virtual memory pages are also a major 
onsideration | a typi
al64-entry data TLB with 8KByte pages has an e�e
tive span of 64�8 = 512KB.3.5 Re
ursive blo
kingUnfortunately, if the blo
ked row-major array is traversed in row-major order,only one subarray per page is usable. Thus, we �nd that the blo
ked row-majorlayout is still biased towards 
olumn-major traversal. We 
an over
ome this byapplying the blo
king again, re
ursively. Thus, ea
h 8KByte page (1024 doubles)would hold a 16� 16 array of 2� 2-element subarrays.In general, modern systems have a deep memory hierar
hy, with blo
k size,
apa
ity and a

ess time in
reasing geometri
ally with depth [1℄. Blo
king shouldbe applied for ea
h level. However, we must now 
onsider the 
omplexity of
al
ulating array lo
ations.#define ONES_1 0x55555555#define ONES_0 0xaaaaaaaa#define INC_1(vx) (((vx + ONES_0) + 1) & ONES_1)#define INC_0(vx) (((vx + ONES_1) + 1) & ONES_0)void mm_ikj_da(double A[SZ*SZ℄, double B[SZ*SZ℄, double C[SZ*SZ℄){ int i_0, j_1, k_0;double r;int SZ_0 = Dilate(SZ);int SZ_1 = SZ_0 << 1;for (i_0 = 0; i_0 < SZ_0; i_0 = INC_0(i_0))for (k_0 = 0; k_0 < SZ_0; k_0 = INC_0(k_0)){unsigned int k_1 = k_0 << 1;r = A[i_0 + k_1℄;for (j_1 = 0; j_1 < SZ_1; j_1 = INC_1(j_1))C[i_0 + j_1℄ += r * B[k_0 + j_1℄;}}
Fig. 2. Morton-ordermatrix-multiply im-plementation usingdilated arithmeti
 forthe address 
al
ula-tion. Variables i 0 andk 0 are dilated repre-sentations of the loop
ontrol 
ounter D0(i)and D0(k). Counterj is represented byj 1= D1(j). The fun
-tion Dilate 
onverts anormal integer into adilated integer.3.6 Bit-interleavingAssume for the time being that, for an N �M array, N = 2n, M = 2m. Writethe array indi
es i and j asB(i) = in�1in�2 : : : i3i2i1i0 and B(j) = jn�1jn�2 : : : j3j2j1j0respe
tively. Now the lexi
ographi
 mappings 
an be expressed as bit-
on
atenation(written \k"):S(N;M)rm (i; j) = N � i+ j = B(i)kB(j)= in�1in�2 : : : i3i2i1i0jn�1jn�2 : : : j3j2j1j0S(N;M)
m (i; j) = i+M � j = B(j)kB(i)= jn�1jn�2 : : : j3j2j1j0in�1in�2 : : : i3i2i1i0



If P = 2p and Q = 2q, the blo
ked row-major mapping isS(N;M)brm (i; j) = (P �Q)� S(N=P;M=Q)
m (i; j) + S(P;Q)rm (i%P; j%Q)= B(i)(n�1):::pkB(j)(m�1):::qkB(i)(p�1):::0kB(j)(q�1):::0Now, 
hoose P = Q = 2, and apply blo
king re
ursively:S(N;M)mz (i; j) = in�1jn�1in�2jn�2 : : : i3j3i2j2i1j1i0j0This mapping is 
alled the Morton Z-order, and is illustrated in Fig. 1.3.7 Ca
he performan
e with Morton-order layoutGiven a 
a
he with any even power-of-two blo
k size, with an array mappeda

ording to the Morton order mapping Smz, the 
a
he hit rate of a row-majortraversal is the same as the 
a
he-hit rate of a 
olumn-major traversal. In fa
t,this applies given any 
a
he hierar
hy with even power-of-two blo
k size at ea
hlevel. This is illustrated in Fig. 1. The problem of 
al
ulating the a
tual 
a
heperforman
e with Morton layout is somewhat involved; an interesting analysisfor matrix multiply is presented in [6℄.void mm_ikj_tb(double A[SZ*SZ℄, double B[SZ*SZ℄, double C[SZ*SZ℄,unsigned int MortonTabEven[℄,unsigned int MortonTabOdd[℄){ int i, j, k;double r;for (i = 0; i < SZ; i++)for (k = 0; k < SZ; k++){r = A[MortonTabEven[i℄ + MortonTabOdd[k℄℄;for (j = 0; j < SZ; j++)C[MortonTabEven[i℄ + MortonTabOdd[j℄℄+= r * B[MortonTabEven[k℄ + MortonTabOdd[j℄℄;}}
Fig. 3. Morton-ordermatrix-multiply imple-mentation using tablelookup for the ad-dress 
al
ulation. The
ompiler dete
ts thatMortonTabEven[i℄ andMortonTabEven[k℄ areloop invariant, leavingjust one table lookupin the inner loop.4 Morton-order address 
al
ulation4.1 Dilated arithmeti
Bit-interleaving is too 
omplex to exe
ute at every loop iteration. Wise et al. [13℄explore an intriguing alternative: represent ea
h loop 
ontrol variable i as a\dilated" integer, where the i's bits are interleaved with zeroes. De�ne D0 andD1 su
h thatB(D0(i)) = 0in�10in�20 : : : 0i20i10i0 and B(D1(i)) = in�10in�20 : : : i20i10i00
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Fig. 4. Matrix multiply (ikj) performan
e (in MFLOPs) of (left) dilated arithmeti
Morton address 
al
ulation (see Fig. 2) versus (right) table-based Morton address 
al
u-lation (see Fig. 3). The graphs show MFLOPs normalised to the performan
e a
hievedby the standard row-major ikj implementation at ea
h problem size on ea
h system.Details of the systems are given in Table 1. At worst, the table lookup s
heme is 46%slower than the dilated-arithmeti
 s
heme on P4. For problem sizes larger than 256 theworst �gure is 24% on PIII. On the SunFire 6800 the lookup table implementation isalways faster. Larger numbers are better.Now we 
an express the Morton address mapping as S(N;M)mz (i; j) = D0(i) j D1(j),where \j" denotes bitwise-or. At ea
h loop iteration we in
rement the loop 
ontrolvariable; this is fairly straightforward:D0(i+ 1) = ((D0(i) j Ones0) + 1) & Ones1D1(i+ 1) = ((D1(i) j Ones1) + 1) & Ones0where \&" denotes bitwise-and, andB(Ones0) = 01010 : : :10101 and B(Ones1) = 10101 : : :01010This is illustrated in Fig. 2, whi
h shows the ikj variant of matrix multiply.4.2 Morton-order address 
al
ulation using a lookup tableThe dilated arithmeti
 approa
h works when the array is a

essed using anindu
tion variable whi
h 
an be in
remented using dilated addition. We foundthat a mu
h simpler s
heme often works nearly as well: we simply pre-
ompute atable for the two mappings D0(i) and D1(i). We illustrate this for the ikj matrixmultiply variant in Fig. 3. Note that the table a

esses are very likely 
a
he hits,as their range is small and they have unit stride.One small but important detail: we use addition instead of logi
al \or". Thismay improve instru
tion sele
tion. It also allows the same loop to work on lexi
o-graphi
 layout using suitable tables. If the array is non-square, 2n� 2m, n < m,we 
onstru
t the table so that the j index is dilated only up to bit n.
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Fig. 5. Performan
e of table-lookup-based implementation of Morton layout for various
ommon dense kernels. In the upper graph we show how mu
h slower Morton layout
an be 
ompared with row-major layout (whi
h for our ben
hmarks is usually fastest).In ea
h 
ase we show the maximum and minimum slowdown over a range of problemsizes from 256 � 256 to 2048 � 2048. In the lower graph, we show how mu
h fasterMorton layout 
an be 
ompared with 
olumn-major layout. In ea
h 
ase we show themaximum and minimum speedup over the same range of problem sizes.Fig. 4 shows the performan
e of these two variants on a variety of 
omputersystems. In the remainder of the paper, we use the table lookup s
heme ex
lu-sively. With 
ompiler support, many appli
ations 
ould bene�t from the dilatedarithmeti
 approa
h, leading in many 
ases to more positive 
on
lusions.5 Experimental resultsWe have argued that Morton layout is a good 
ompromise between row-majorand 
olumn-major. The notion of 
-
ompetitiveness provides a way to quantifythis 
laim. The 
ompetitive eÆ
ien
y 
 is the maximum slowdown we shouldsu�er relative to making the best layout 
hoi
e.To test this experimentally, we have 
olle
ted a suite of simple implementa-tions of standard numeri
al kernels operating on two-dimensional arrays:MMijk Matrix multiply, ijk loop nest order (usually poor due to large stride)MMikj Matrix multiply, ikj loop nest order (usually best due to unit stride)LU LU de
omposition with pivoting (based on Numeri
al Re
ipes)Ja
obi2D Two-dimensional four-point sten
il smootherADI Alternating-dire
tion impli
it kernel, ij,ij orderCholesky k variant (usually poor due to large stride)



Alpha Alpha 21264 (EV6) 500MHz,Compaq L1 D-
a
he: 2-way, 64KB, 64B 
a
he blo
kAlphaServer ES40 L2 
a
he: dire
t mapped, 4MB. Compiler: Compaq C V6.1-020 \-fast"Sun UltraSpar
 III (v9) 750MHzSunFire 6800 L1 D-
a
he: 4-way, 64KB, 32B 
a
he blo
kL2 
a
he: dire
t-mapped, 8MB.Compiler: Sun Workshop 6 \-xO5" (update 1 C 5.2 Pat
h 109513-07)PIII Intel Pentium III Coppermine, 1GHzL1 D-
a
he: 4-way, 16KB, 32B 
a
he blo
kL2 
a
he: 8-way 256KB, se
tored 32B 
a
he blo
k512MB SDRAM. Compiler \g

-2.95 -O3"P4 Pentium 4, 1.3 GHzL1 D-
a
he: 8-way, 8KB, se
tored 64B 
a
he blo
kL2 
a
he: 8-way, 256KB, se
tored 64B 
a
he blo
k256MB RDRAM. Compiler \g

-2.95 -O3"AMD AMD Athlon Thunderbird, 1.4GHZL1 D-Ca
he: 2-way, 64KB, 64B 
a
he blo
kL2 
a
he: 8-way, 256KB, 64B 
a
he blo
k512MB DDR RAM. Compiler \g

-2.95 -O3"Table 1. Ca
he and CPU 
on�gurations used in the experiments.In ea
h 
ase we run the 
ode on square arrays of various sizes, repeating the 
al-
ulation if ne
essary to ensure adequate timing resolution. The system 
on�gu-rations are detailed in Table 1. Table 2 shows the baseline performan
e a
hievedby ea
h ma
hine using standard row-major layout. Results using Morton layoutare summarised in Fig. 5 and shown in more detail in Figures 6 and 7.ADI Chol-K Ja
obi2D LU MMijk MMikjmin max min max min max min max min max min maxAMD 33.81 34.72 11.05 47.61 195.84 199.25 16.76 83.02 10.05 32.18 90.27 92.72PIII 21.17 23.71 16.05 26.99 122.21 128.90 32.44 69.32 27.44 37.19 58.90 59.20SunFire 37.64 40.35 16.12 21.62 140.69 411.78 44.48 77.08 16.16 69.90 125.57 137.24Alpha 49.77 63.47 12.02 41.90 120.23 245.53 30.22 112.28 14.41 95.34 148.78 254.13P4 65.04 67.56 23.05 43.15 410.16 419.32 41.72 73.98 32.35 34.98 293.51 297.92Table 2. Performan
e of various kernels on di�erent systems. For ea
h kernel, for ea
hma
hine, we show performan
e range in MFLOPs for row-major array layout, for arraysizes ranging from 256� 256 to 1024� 1024.Our results show that Morton layout is not e�e
tive for arrays smaller than256 � 256. We therefore 
on�ne our attention to larger problem sizes. On theAMD Athlon PC and Pentium III, we �nd that Morton layout is often fasterthan both row-major and 
olumn-major, and is never more than 61% slower.Furthermore, the 
osts of poor layout 
hoi
e on these ma
hines are parti
ularlya
ute - in extreme 
ases a fa
tor of 20. We have only studied up to 2048� 2048(32MB), and further investigation is needed for very large problems.On the other ma
hines, the pi
ture is less 
lear. Kernels with high spatiallo
ality, su
h as MMikj and Ja
obi2D, run 
lose to the ma
hine's peak perfor-man
e; so bandwidth to L1 
a
he for table a

ess is probably a major fa
tor.



6 Con
lusions and dire
tions for further resear
hThe main 
ontributions of this paper are:{ Using a small suite of dense kernels working on two-dimensional arrays, westudied the impa
t of poor array layout/array traversal order. If an array'slayout does not mat
h the traversal order, performan
e is poor, with a slow-down of more than 20 (Matrix multiply, ikj variant, on the AMD Athlon).{ On the AMD Athlon and Pentium III, for arrays larger than 256� 256, wefound that Morton array layout, even implemented with a lookup table withno 
ompiler support, is always within 61% of both row-major and 
olumn-major. In fa
t, it is sometimes faster.{ On other ma
hines, the bene�ts 
an also be very large | but further workis needed to avoid serious slowdown for some high-performan
e kernels.{ Using a lookup-table for address 
al
ulation allows 
exible sele
tion of �ne-grain non-linear array layout, while still o�ering attra
tive performan
e 
om-pared with lexi
ographi
 layouts, on untiled loops.The advantage of Morton layout on existing 
odes is unlikely to be large as usersnormally do avoid worst-
ase performan
e. However, simplifying the performan
emodel should allow programmers to fo
us on building fun
tionally-robust soft-ware. Furthermore, if a loop 
an be tiled (or sha
kled, or exe
uted in a re
ursiveform with high temporal reuse) the overheads of our lookup table s
heme areex
essive. Layout then has to be sele
ted in 
ombination with loop restru
turing.{ The next step is building Morton layout into a 
ompiler, or perhaps a self-optimizing BLAS library [2℄ (whi
h would allow run-time layout sele
tion).{ It should be possible to a
hieve better results using 
ompetitive redistri-bution - i.e. instrument memory a

esses and 
opy the array into a moreappropriate distribution if indi
ated.{ We should evaluate adding hardware support for non-linear layouts.{ We have not used non-square arrays in this paper, but the approa
h handlesthem reasonably e�e
tively (see Se
tion 4.2), at the 
ost of padding ea
hdimension to the next power of two.{ In our brief analysis of spatial lo
ality using Morton layout (Se
tion 3.7,Fig. 1), we assumed that 
a
he blo
ks and VM pages are a square (even)power of two. This depends on the array's element size, and is often not the
ase. Then, row-major and 
olumn-major traversal of Morton layout lead todi�ering spatial lo
ality. A more subtle non-linear layout 
ould address this.{ It seems less likely that Morton layout 
an o�er a 
ompetitive 
ompromisefor arrays with more than two dimensions.A
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