
Minimizing Associativity Conflicts in Morton Layout

Jeyarajan Thiyagalingam1,2, Olav Beckmann1, and Paul H. J. Kelly1

1 Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, United Kingdom

www.doc.ic.ac.uk/ {˜jeyan,˜ob3,˜phjk }
2 Harrow School of Computer Science, University of Westminster,
Watford Road, Northwick Park, Harrow HA1 3TP, United Kingdom

t.jeyan@wmin.ac.uk

Abstract. Hierarchically-blocked non-linear storage layouts, such as the Mor-
ton ordering, have been shown to be a potentially attractive compromise between
row-major and column-major for two-dimensional arrays. When combined with
appropriate optimizations, Morton layout offers some spatial locality whether tra-
versed row- or column-wise. However, for linear algebra routines withlarger
problem sizes, the layout shows diminishing returns. It is our hypothesisthat
associativity conflicts between Morton blocks cause this behavior and we show
that carefully arranging the Morton blocks can minimize this effect. We explore
one such arrangement and report our preliminary results.

1 Introduction

For dense multidimensional arrays, programming languagesmandate one of the two
canonical layouts — row-major and column-major. Traversing an array in its major
order results in excellent spatial locality; however, traversing an array in opposite order
to its major order can lead to an order-of-magnitude worse performance.

In our earlier work [7] we considered whether Morton layout can be an alternative
storage layout to canonical layouts. Although Morton layout offers equal spatial locality
both in row- and column-major order traversals, our early work in the area suggested
that the performance of standard Morton layout may be disappointing. Following this
observation, we proposed two optimization schemes for Morton arrays — unrolling
and alignment. By exhaustively evaluating these optimizations, we demonstrated that
unrolling combined with strength-reduction of the Morton index calculation and correct
alignment of the base address of Morton arrays can lead to a significant improvement
in performance [7]. A key remaining weakness which we address in this paper is that
the performance of Morton layout tends to deteriorate with larger problem sizes.

Contributions of this Paper.In this paper we discuss how minimizing associativity
conflicts in the two-dimensional Morton layout may lead to further improvements in
performance. The main contributions of this paper are:

– We perform an in-depth analysis of associativity conflicts in Morton layout.
– We propose a hybrid layout scheme to minimize associativityconflicts in Morton

arrays, and we discuss combining this scheme with a modest amount of padding.

– We demonstrate the effectiveness of our proposed scheme through an experimental
evaluation, using a suite of non-tiled micro-benchmarks.

This work differs from other work in this area, which mainly focused on optimizing for
temporal locality through hierarchical tiling, by targeting spatial locality of non-tiled
applications.

Structure of the Remainder of this Paper.In Section 2 we discuss related and previous
work relevant to this paper. We illustrate the impact of associativity conflicts in Morton
arrays and we propose a variant of Morton layout to address this problem in Section 3.
Following this, we evaluate and report performance resultsfor our proposed scheme in
Section 4. Section 5 concludes the paper and discusses future work.

2 Previous Work

Many authors have studied recursive layouts in the context of performance optimiza-
tion. Notably, Wiseet al. [8], Chatterjeeet al. [1,2], and Gustavson [4] pioneered these
layouts, focusing on optimizing for temporal locality. Their implementations are either
tiled or recursively formulated. In [4] Gustavson adopts a similar approach to Chat-
terjee [1, 2]; however, Gustavson’s work is focused on deriving optimal layouts for
particular problems rather than a generic solution.

Recursive layouts, by definition, require a complete decomposition up to the ele-
ment level. Many authors [1–3] have identified that such a complete decomposition may
lead to increased conflict misses between different blocks,and have proposed different
variants to fully recursive layouts. Chatterjeeet al. [1] propose a family of non-linear
alternative layouts, called 4D layouts, which intermix recursive and linear layouts. In
one such variant, Chatterjeeet al.divide two-dimensional arrays into linearly arranged
tiles, which are themselves blocked.

Drakenberget al. [3] propose a semi-hierarchical layout (called HAT) and a linear-
algebra framework to determine conflict misses at compile time. Their layout is very
similar to one of the 4D layouts mentioned in [1, 2]. Their work, similar to ours, also
considers non-tiled or non-recursive algorithms but does not discuss padding.

3 Conflict Misses in Morton Layout

Associativity Conflicts in the Standard Morton Layout.One of the advantages of us-
ing the standard Morton scheme, where blocking is applied recursively up to the el-
ement level, is its simplicity — there is no need to choose blocking factors. This is
potentially useful for developing programs independentlyof underlying architectural
features. However, different sub-blocks within a Morton array may conflict with each
other. We demonstrate this effect in Figure 1(a): For a page-sized direct-mapped cache,
every page-sized sub-block of a Morton array conflicts with every other sub-block. This
appears to suggest that complete decomposition is sub-optimal.

In general, for aw-way associative cache with capacityC, addresses aligned at(C
w)

bytes are mapped to the same set. If each word isl bytes, each way holdsCwl words.

� � � � � � � � �
2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

	
��

�� ��������������������
4 5 6 7

8 9 10 11

0 1 2 3

 12 13 14 15 � � � � � ! " #
$% $%

&'()*

+,-./0,/.012/3-4,-56+7839:
4 5 6 7

8 9 10 11

12 13 14 15 ;<=>>?@@A<=>>?@@B C D E F G H I J
0 1 2 3

KL KLMNOO?OPQRSTNQTSNU?T<RVQRWXMP=M<YZ

[\] _̂
(a) (b) (c)

Fig. 1. Conflict Misses in Morton Layout. We show three different variants of the Morton
scheme, where each location in the array represents a page-sized Morton block. In each case,
we also show the mapping of pages into linear memory and into a direct-mapped 4-page cache.
When accessing the standard Morton array (MZ) in row-major order, Morton pages 0 and 1 con-
flict with pages 4 and 5. Similarly, when accessing the MZ array in column-major order, pages 0
and 2 conflict with pages 8 and 10. This generates 2 misses per row or column for each traversal
order. However, when accessing the Morton variant (SAPMZ) in row-major order, traversal of
a single row is free from conflicts, but a column-major traversal suffers worse conflicts than the
MZ layout. The diagram on the far right (PSAPMZ) shows how padding can be used to elimi-
nate systematically recurring conflicts for column-major traversal. The same analysis is valid for
caches with higher levels of associativity.

Note thatC, w and l are typically powers-of-two, soCwl will also be a power-of-two.
Two arbitrary word-addressessandt collide if |s− t|= C

wl . With row-major layout, this
happens withA[i,s] andA[i,t] , or for elements separated by a multiple of|s− t|.

With Z-Morton layout this happens withA[i,u] andA[i,v] when|u− v| =
√

C
lw , if

C
wl is an even power-of-two (i.e., if C

wl words form a “square”). IfCwl is an odd power-

of-two, addressesA[i,u] andA[i,v] collide if |u−v| = 2
√

C
2lw .

Example.As a practical example, consider the ADI algorithm. In a slightly simplified
form, this contains the loop shown in Figure 2. For good performance, this loop re-
quires row-to-row re-use: the referenceA[i-1][j] should come from cache, having
been loaded on the previous iteration of the for-i loop. At what datasize will associa-
tivity conflicts prevent this in a standard Morton array? According to our analysis in the
preceding paragraph, on a Pentium 4 processor with an 8-way set-associative 512KB
L2 cache, and an array of 8-byte double words, addressesA[i,u] and A[i,v] will

conflict (C
wl is odd in this case) when|u− v| = 2

√

512×210

2×8×8 = 128. With an 8-way set-
associative cache, this means that we begin to lose row-to-row re-use at a row length of

1 for(int i = 1; i < sz ; ++ i)
2 for(int j = 0; j < sz ; ++ j)
3 A[i][j] += A[i -1][j];

Fig. 2. Simplified loop from the ADI algorithm, requiring row-to-row re-use for good perfor-
mance.

128×8 = 1024. This observation is confirmed by our experimental results for the Adi
algorithm on a Pentium 4 processor [6,7] (see also Figure 3).

Stop-at-Page Morton Layout: A Hybrid Scheme.An alternative to standard Morton,
as suggested by Chatterjeeet al. [1] and Drakenberget al. [3], is to divide the ar-
ray into row-major or column-major ordered blocks and arranging the elements within
each block in Z-Morton order. Choosing page-sized Morton blocks guarantees unbi-
ased TLB behavior for both row-major and column-major traversals. We refer to this
scheme as Stop-at-Page-Morton (since we stop the blocking at page-level). This enables
us to utilize the compromise property of Morton layout and tominimize the effects of
associativity conflicts among Morton blocks at the same time. The resulting effect on
associativity conflicts is shown in Figures 1(b).

Notice, however, the increased dilation effect and the introduction of systematically
repeating conflicts for column-major traversal of SAPMZ arrays. A simple method to
avoid these systematically recurring conflicts is to pad each row of the array by a Morton
block, whenever the number of Morton blocks in a row is even. We refer to this tech-
nique as Padded Stop-at-Page-Morton scheme (PSAPMZ). Although PSAPMZ does
not improve spatial locality for column-major traversal, it does minimize associativity
conflicts for column-major traversal. This is illustrated in Figure 1(c).

Implementation Issues.For standard Morton arrays, it is necessary to round up the array
sizes of each dimension to the next power-of-two. For Stop-at-Page-Morton, padding is
only necessary up to the next page size and will never be worsethan the storage require-
ments for standard Morton, except for array sizes smaller than a page. The Padded-Stop-
at-Page-Morton pads the row-length by an additional page-sized Morton block when the
number of such blocks in a row would otherwise be even.

Page size may vary from architecture to architecture, and may not always corre-
spond to an even power-of-two number of words. For most x86 variants (including the
systems we used to test our hypothesis) the page size is 4KB, and we chose a 16×16
array of 8-byte doubles (half a page) as the largest Morton block.

4 Experimental Evaluation

Benchmark kernels and architectures.To test our proposed Stop-at-Page-Morton and
Padded Stop-at-Page-Morton layouts, we have collected a suite of simple implementa-
tions of standard, non-tiled numerical kernels operating on two-dimensional arrays and
carried out experiments on the Pentium 4 architecture. Table 1 summarizes the details

ProcessorOperating L1/L2/Memory Compiler
System Parameters and Flags Used

Pentium 4Linux L1 D-cache: 4-way, 8KB, 64B cache lineIntel C/C++
2.0 GHz 2.4.26 L2 cache: 8-way, 512KB, 128B cache lineCompiler v8.1

Page size: 4KB -xW -ipo
Main Memory: 512MB DDR-RAM -O3 -static

Table 1. Cache and CPU configuration used in the experiments.Compiler and compiler flags
match those used by the vendor in their SPEC CFP2000 (base) benchmark reports [5].

MMijk Matrix multiply, ijk loop nest order (usually poor due to large stride)
MMikj Matrix multiply, ikj loop nest order (usually best due to unit stride)
Jacobi2DTwo-dimensional four-point stencil smoother
ADI Alternating-direction implicit kernel, ij,ij order
CholeskyK-variant (usually poor due to large stride)

Table 2. Numerical kernels used in our experimental evaluation [6].

of the architecture. The kernels used in our experiments areshown in Table 2. We car-
ried out measurements over a full range of problem sizes and followed the experimental
approach detailed in [6] to minimize the effects of externalinterference.

Performance Results.Figure 3 shows our results in detail, and we make some com-
ments directly in the figure. For each experiment, we give a broad characterization of
the performance of the different Morton schemes we tested.

Impact of the Padded and Non-Padded Stop-at-Page-Morton Scheme.For Adi, MMijk
and Cholesky-k kernels our theoretical conclusions from Section 3 are supported by our
experimental data. For MMijk and Cholesky, the SAPMZ schemedoes not offer an im-
provement over standard Morton; however, padding the Stop-at-Page-Morton scheme
does help in these benchmarks. For the remaining benchmarks, Jacobi2D and MMikj,
neither SAPMZ nor Padded SAPMZ offer an improvement over standard Morton.

5 Conclusions and Future Work

Our hypothesis of how conflict misses in Morton layout can be minimized by the
SAPMZ and Padded SAPMZ layouts is supported by some but not all experimental
results. The padded SAPMZ scheme, in contrast to the SAPMZ scheme, has consis-
tently improved performance. Further, the reduction in associativity conflicts offered
by padded SAPMZ results in both row-major and column-major traversals of hierarchi-
cal arrays being yet closer in performance to row-major traversal of row-major arrays.
There are number of interesting issues that remain to be addressed:

– Exploring large arrays. Our experimental results are limited to a range of problem
sizes where the performance gain by SAPMZ/Padded SAPMZ occurs close to the

upper limit of the problem sizes we consider. We would like toextend our work
such that it covers a larger range of problem sizes.

– Hardware performance counters: Some features in the graphsmay be explained
with the help of hardware performance counters. We plan to explore this further by
using one of the available hardware performance counter measurement tools.

– Mixed Morton layouts: So far, we have only considered Z-Morton as the underlying
layout. Mixing this with other members of the Morton layout family, which may
have complementary effects, may lead to lower associativity conflicts.

References

[1] Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and Mithuna Thot-
tethodi. Nonlinear array layouts for hierarchical memory systems. InICS ’99: Proceedings
of the 13th International Conference on Supercomputing, pages 444–453, 1999.

[2] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and Mithuna Thottethodi. Re-
cursive array layouts and fast parallel matrix multiplication. InSPAA ’99: Eleventh Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 222–231, 1999.

[3] Peter Drakenberg, Fredrik Lundevall, and Björn Lisper. An efficient semi-hierarchical array
layout. InProceedings of the Workshop on Interaction between Compilers and Computer
Architectures. Kluwer, January 2001. Available viawww.mrtc.mdh.se .

[4] Fred G. Gustavson. New generalized data structures for matrices lead to a variety of high
performance algorithms. In R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Waniewski,
editors,PPAM 2001: Proceedings of the 4th International Conference on Parallel Processing
and Applied Mathematics, volume 2328 ofLNCS, pages 418–436. Springer-Verlag, Septem-
ber 2002.

[5] SPEC 2000 CPU Benchmarks.http://www.specbench.org/ , 2000.
[6] Jeyarajan Thiyagalingam.Alternative Array Storage Layouts for Regular Scientific Pro-

grams. PhD thesis, Department of Computing, Imperial College, London, U.K., January
2005.

[7] Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly. Improving the performance
of Morton layout by array alignment and loop unrolling reducing the priceof naivety. In
Lawrence Rauchwerger, editor,Proceedings of 16th International Workshop on Languages
and Compilers for Parallel Computing, volume 2958 ofLNCS, pages 241–257. Springer-
Verlag, October 2003.

[8] David S. Wise, Jeremy D. Frens, Yuhong Gu, and Gregory A. Alexander. Language sup-
port for morton-order matrices. InPPoPP ’01: Proceedings of the Eighth ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming, pages 24–33, 2001.

 0

 50

 100

 150

 200

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P4: Performance in MFLOP/s

Row-Major Default Alignment (a)
Column-Major Default Alignment (b)
Z-Morton Page-Aligned Unrolled (c)

Padded-SaP-Z-Morton Page-Aligned Unrolled (d)
Stop-at-Page-Z-Morton Page-Aligned Unrolled (e)

– Standard Morton performs almost as well
as row-major.

– The performance of standard Morton be-
gins to deteriorate around 1600×1600.

– Both SAPMZ and Padded SAPMZ sus-
tain the performance for problem sizes
larger than 1600×1600.

 0

 50

 100

 150

 200

 250

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Cholk on P4: Performance in MFLOP/s

Row-Major Default Alignment (a)
Column-Major Default Alignment (b)
Z-Morton Page-Aligned Unrolled (c)

Padded-SaP-Z-Morton Page-Aligned Unrolled (d)
Stop-at-Page-Z-Morton Page-Aligned Unrolled (e)

– Both SAPMZ and Padded SAPMZ never
perform worse than standard Morton.

– SAPMZ does not result in a noticeable
improvement over standard Morton.

– For a sub-range of problem sizes between
900× 900 and 1900× 1900, the padded
SAPMZ scheme out-performs standard
Morton and SAPMZ.

 0

 100

 200

 300

 400

 500

 600

 700

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on P4: Performance in MFLOP/s

Row-Major Default Alignment (a)
Column-Major Default Alignment (b)
Z-Morton Page-Aligned Unrolled (c)

Padded-SaP-Z-Morton Page-Aligned Unrolled (d)
Stop-at-Page-Z-Morton Page-Aligned Unrolled (e)

– Both SAPMZ and Padded SAPMZ never
perform worse than standard Morton.

– SAPMZ does not result in a noticeable
improvement over standard Morton.

– For problem sizes larger than about 512×
512, Padded SAPMZ out-performs stan-
dard Morton and SAPMZ.

 0

 200

 400

 600

 800

 1000

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on P4: Performance in MFLOP/s

Row-Major Default Alignment (a)
Column-Major Default Alignment (b)
Z-Morton Page-Aligned Unrolled (c)

Padded-SaP-Z-Morton Page-Aligned Unrolled (d)
Stop-at-Page-Z-Morton Page-Aligned Unrolled (e)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P4: Performance in MFLOP/s

Row-Major Default Alignment (a)
Column-Major Default Alignment (b)
Z-Morton Page-Aligned Unrolled (c)

Padded-SaP-Z-Morton Page-Aligned Unrolled (d)
Stop-at-Page-Z-Morton Page-Aligned Unrolled (e)

– For the Jacobi2D and MMikj benchmarks, SAPMZ and Padded SAPMZ scheme do not offer
a performance improvement over standard Morton.

Fig. 3. Performance of different layouts using a suite of micro-benchmarksrunning on the Pen-
tium 4 system described in Table 1.

