Minimizing Associativity Conflicts in Morton Layout

Jeyarajan Thiyagalingali, Olav Beckmanh and Paul H. J. Kelly

1 Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, United Kingdom
www.doc.ic.ac.uk/ {"jeyan,"ob3, phjk }
2 Harrow School of Computer Science, University of Westminster,
Watford Road, Northwick Park, Harrow HA1 3TP, United Kingdom
t.jeyan@wmin.ac.uk

Abstract. Hierarchically-blocked non-linear storage layouts, such as the Mor-
ton ordering, have been shown to be a potentially attractive comprontisedre
row-major and column-major for two-dimensional arrays. When doetbwith
appropriate optimizations, Morton layout offers some spatial locality vereth-
versed row- or column-wise. However, for linear algebra routines \sither
problem sizes, the layout shows diminishing returns. It is our hypotlikats
associativity conflicts between Morton blocks cause this behavior andhave s
that carefully arranging the Morton blocks can minimize this effect. Wéoegp
one such arrangement and report our preliminary results.

1 Introduction

For dense multidimensional arrays, programming languaggsdate one of the two
canonical layouts — row-major and column-major. Travegsam array in its major
order results in excellent spatial locality; however, &naing an array in opposite order
to its major order can lead to an order-of-magnitude worspaance.

In our earlier work [7] we considered whether Morton layoahde an alternative
storage layout to canonical layouts. Although Morton layafters equal spatial locality
both in row- and column-major order traversals, our earlykwno the area suggested
that the performance of standard Morton layout may be dsiatipg. Following this
observation, we proposed two optimization schemes for doerrays — unrolling
and alignment. By exhaustively evaluating these optinorat we demonstrated that
unrolling combined with strength-reduction of the Mortodéx calculation and correct
alignment of the base address of Morton arrays can lead gn#isant improvement
in performance [7]. A key remaining weakness which we addieshis paper is that
the performance of Morton layout tends to deteriorate vathér problem sizes.

Contributions of this Paper.In this paper we discuss how minimizing associativity
conflicts in the two-dimensional Morton layout may lead tetfier improvements in
performance. The main contributions of this paper are:

— We perform an in-depth analysis of associativity confliot&fiorton layout.
— We propose a hybrid layout scheme to minimize associatogtyflicts in Morton
arrays, and we discuss combining this scheme with a modesiraof padding.

— We demonstrate the effectiveness of our proposed schemegtihen experimental
evaluation, using a suite of non-tiled micro-benchmarks.

This work differs from other work in this area, which maintclused on optimizing for
temporal locality through hierarchical tiling, by targedi spatial locality of non-tiled
applications.

Structure of the Remainder of this Papém Section 2 we discuss related and previous
work relevant to this paper. We illustrate the impact of agsovity conflicts in Morton
arrays and we propose a variant of Morton layout to addrésetbblem in Section 3.
Following this, we evaluate and report performance redaiteur proposed scheme in
Section 4. Section 5 concludes the paper and discusses futuk.

2 Previous Work

Many authors have studied recursive layouts in the contegedormance optimiza-
tion. Notably, Wiseet al.[8], Chatterjeeet al.[1, 2], and Gustavson [4] pioneered these
layouts, focusing on optimizing for temporal locality. Thienplementations are either
tiled or recursively formulated. In [4] Gustavson adoptdrailar approach to Chat-
terjee [1, 2]; however, Gustavson’s work is focused on degioptimal layouts for
particular problems rather than a generic solution.

Recursive layouts, by definition, require a complete deamsitipn up to the ele-
ment level. Many authors [1-3] have identified that such aglete decomposition may
lead to increased conflict misses between different blaokd,have proposed different
variants to fully recursive layouts. Chatterjetal. [1] propose a family of non-linear
alternative layouts, called 4D layouts, which intermixuesive and linear layouts. In
one such variant, Chatterjet¢ al. divide two-dimensional arrays into linearly arranged
tiles, which are themselves blocked.

Drakenberget al.[3] propose a semi-hierarchical layout (called HAT) andnaér-
algebra framework to determine conflict misses at compietiTheir layout is very
similar to one of the 4D layouts mentioned in [1, 2]. Their Wosimilar to ours, also
considers non-tiled or non-recursive algorithms but dagsiiscuss padding.

3 Conflict Misses in Morton Layout

Associativity Conflicts in the Standard Morton Layo@ne of the advantages of us-
ing the standard Morton scheme, where blocking is appliedreively up to the el-
ement level, is its simplicity — there is no need to choosekily factors. This is
potentially useful for developing programs independenflyinderlying architectural
features. However, different sub-blocks within a Mortoragirmay conflict with each
other. We demonstrate this effect in Figure 1(a): For a gged direct-mapped cache,
every page-sized sub-block of a Morton array conflicts wittrg other sub-block. This
appears to suggest that complete decomposition is sulmalpti

In general, for av-way associative cache with capadilyaddresses aligned %)
bytes are mapped to the same set. If each wotdoigtes, each way hoId% words.

Standard Morton (MZ) Stop-at-page-Morton (SAPMZ) Padded Stop-at-page-Morton (PSAPMZ)

SJGH > $1BH
! !
n¥e ° ° ° WO O 0 0
? 1 2 | 8 /1 2| 8
|
'/4 /5 6 /7 '/4 S

]
oo
|
©
-
=
-
<
—
1\\00
~
AN \@\
=
=

(b)

Fig. 1. Conflict Misses in Morton Layout. We show three different variants of the Morton
scheme, where each location in the array represents a page-sizezhMtmck. In each case,
we also show the mapping of pages into linear memory and into a directed@ppage cache.
When accessing the standard Morton array (MZ) in row-major ordertdn pages 0 and 1 con-
flict with pages 4 and 5. Similarly, when accessing the MZ array in colurajoinorder, pages 0
and 2 conflict with pages 8 and 10. This generates 2 misses per roluarrcéor each traversal
order. However, when accessing the Morton variant (SAPMZ) in meeyjer order, traversal of
a single row is free from conflicts, but a column-major traversal ssiffieorse conflicts than the
MZ layout. The diagram on the far right (PSAPMZ) shows how paddinglmused to elimi-
nate systematically recurring conflicts for column-major traversal. &heesanalysis is valid for
caches with higher levels of associativity.

Note thatC, w and| are typically powers-of-two, s% will also be a power-of-two.

Two arbitrary word-addressesndt collide if [s—t| = % With row-major layout, this
happens withAfi,s] andA[iff , or for elements separated by a multiple|®f-t|.

With Z-Morton layout this happens with[i,u] andA[i,v] whenju—v| = ,/%, if

C : . . C “ a9 .
o1 1s an even power-of-twa.g., if i words form a “square”). I(% is an odd power-

of-two, addresseA[i,u] andA[i,v] collide if [u—v| =2,/ %

Example. As a practical example, consider the ADI algorithm. In alslig simplified
form, this contains the loop shown in Figure 2. For good penénce, this loop re-
quires row-to-row re-use: the refereng-1][j] should come from cache, having
been loaded on the previous iteration of theifdoop. At what datasize will associa-
tivity conflicts prevent this in a standard Morton array? éting to our analysis in the
preceding paragraph, on a Pentium 4 processor with an 8-gtagssociative 512KB
L2 cache, and an array of 8-byte double words, addresges andA[i,v] will

conflict (is odd in this case) whepu—v| = 2,/ 31222 — 128. With an 8-way set-
associative cache, this means that we begin to lose roavtoa-use at a row length of

o for(int i =1 0 <sz;++i)
2 for(int j =0, j <sz;++j)

3 A G] += AL T

Fig. 2. Simplified loop from the ADI algorithm, requiring row-to-row re-use favagl perfor-
mance.

128x 8 = 1024. This observation is confirmed by our experimentallte$or the Adi
algorithm on a Pentium 4 processor [6, 7] (see also Figure 3).

Stop-at-Page Morton Layout: A Hybrid Schemg&n alternative to standard Morton,
as suggested by Chatterjee al. [1] and Drakenberget al. [3], is to divide the ar-

ray into row-major or column-major ordered blocks and agmag the elements within
each block in Z-Morton order. Choosing page-sized Mortarcké guarantees unbi-
ased TLB behavior for both row-major and column-major trasés. We refer to this
scheme as Stop-at-Page-Morton (since we stop the blockpapa-level). This enables
us to utilize the compromise property of Morton layout andniaimize the effects of

associativity conflicts among Morton blocks at the same tiitee resulting effect on
associativity conflicts is shown in Figures 1(b).

Notice, however, the increased dilation effect and theaction of systematically
repeating conflicts for column-major traversal of SAPMZags. A simple method to
avoid these systematically recurring conflicts is to padheaw of the array by a Morton
block, whenever the number of Morton blocks in a row is eves.réfer to this tech-
niqgue as Padded Stop-at-Page-Morton scheme (PSAPMZ)ouwdthPSAPMZ does
not improve spatial locality for column-major traversaldoes minimize associativity
conflicts for column-major traversal. This is illustratedHigure 1(c).

Implementation Issue$:or standard Morton arrays, it is necessary to round up tlag ar
sizes of each dimension to the next power-of-two. For Stepage-Morton, padding is
only necessary up to the next page size and will never be wloasehe storage require-
ments for standard Morton, except for array sizes smaltar éhpage. The Padded-Stop-
at-Page-Morton pads the row-length by an additional péagddviorton block when the
number of such blocks in a row would otherwise be even.

Page size may vary from architecture to architecture, angl moa always corre-
spond to an even power-of-two number of words. For most x8@nes (including the
systems we used to test our hypothesis) the page size is 4KBya chose a 16 16
array of 8-byte doubles (half a page) as the largest Mortookbl

4 Experimental Evaluation

Benchmark kernels and architecture®o test our proposed Stop-at-Page-Morton and
Padded Stop-at-Page-Morton layouts, we have collectedeacfisimple implementa-
tions of standard, non-tiled numerical kernels operatimgwe-dimensional arrays and
carried out experiments on the Pentium 4 architecture eTaldummarizes the details

ProcessorOperating|L1/L2/Memory Compiler
System |Parameters and Flags Used
Pentium 4Linux L1 D-cache: 4-way, 8KB, 64B cache lingntel C/C++
2.0GHz [2.4.26 L2 cache: 8-way, 512KB, 128B cache I[@mpiler v8.1
Page size: 4KB -XW -ipo

Main Memory: 512MB DDR-RAM -O3 -static

Table 1. Cache and CPU configuration used in the experiment€ompiler and compiler flags
match those used by the vendor in their SPEC CFP2000 (base) bekaempants [5].

MMijk [Matrix multiply, ijk loop nest order (usually poor due to large stride)
MMikj |Matrix multiply, ikj loop nest order (usually best due to unit stride)
Jacobi2DTwo-dimensional four-point stencil smoother
ADI Alternating-direction implicit kernel, ij,ij order
CholeskyK-variant (usually poor due to large stride)

Table 2. Numerical kernels used in our experimental evaluation [6].

of the architecture. The kernels used in our experimentstawe/n in Table 2. We car-
ried out measurements over a full range of problem sizesdalwhied the experimental
approach detailed in [6] to minimize the effects of exteintdrference.

Performance ResultsFigure 3 shows our results in detail, and we make some com-

ments directly in the figure. For each experiment, we givecadrcharacterization of
the performance of the different Morton schemes we tested.

Impact of the Padded and Non-Padded Stop-at-Page-MortbarSe. For Adi, MMijk
and Cholesky-k kernels our theoretical conclusions froetiSe 3 are supported by our
experimental data. For MMijk and Cholesky, the SAPMZ schelmes not offer an im-
provement over standard Morton; however, padding the Stdpage-Morton scheme
does help in these benchmarks. For the remaining benchniasshi2D and MMikj,
neither SAPMZ nor Padded SAPMZ offer an improvement overdsded Morton.

5 Conclusions and Future Work

Our hypothesis of how conflict misses in Morton layout can baimmized by the
SAPMZ and Padded SAPMZ layouts is supported by some but hekpérimental
results. The padded SAPMZ scheme, in contrast to the SAPM&nse, has consis-
tently improved performance. Further, the reduction irpessgivity conflicts offered
by padded SAPMZ results in both row-major and column-magordrsals of hierarchi-
cal arrays being yet closer in performance to row-majorersal of row-major arrays.
There are number of interesting issues that remain to becasield:

— Exploring large arrays. Our experimental results are &ohiio a range of problem
sizes where the performance gain by SAPMZ/Padded SAPMZrsatose to the

upper limit of the problem sizes we consider. We would likeekbend our work
such that it covers a larger range of problem sizes.

— Hardware performance counters: Some features in the graplgsbe explained

with the help of hardware performance counters. We plan pdoe this further by
using one of the available hardware performance countesunement tools.

— Mixed Morton layouts: So far, we have only considered Z-Maras the underlying

layout. Mixing this with other members of the Morton layoanfily, which may
have complementary effects, may lead to lower associtanflicts.

References

(1]

(2]

(3]

(4]

(5]
(6]

Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Muadand Mithuna Thot-
tethodi. Nonlinear array layouts for hierarchical memory system#C#&'99: Proceedings
of the 13th International Conference on Supercompuliages 444—453, 1999.

Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, anculgti hottethodi. Re-
cursive array layouts and fast parallel matrix multiplication SPPAA '99: Eleventh Annual
ACM Symposium on Parallel Algorithms and Architectupeges 222—-231, 1999.

Peter Drakenberg, Fredrik Lundevall, andBj Lisper. An efficient semi-hierarchical array
layout. InProceedings of the Workshop on Interaction between Compilers angp@em
ArchitecturesKluwer, January 2001. Available viavw.mrtc.mdh.se

Fred G. Gustavson. New generalized data structures for matriadsdea variety of high
performance algorithms. In R. Wyrzykowski, J. Dongarra, M. Pagki, and J. Waniewski,
editorsPPAM 2001: Proceedings of the 4th International Conference on PaRiiteessing
and Applied Mathemati¢solume 2328 o NCS pages 418-436. Springer-Verlag, Septem-
ber 2002.

SPEC 2000 CPU Benchmarkigtp://www.specbench.org/ , 2000.

Jeyarajan ThiyagalingamAlternative Array Storage Layouts for Regular Scientific Pro-
grams PhD thesis, Department of Computing, Imperial College, London,.,Ul&nhuary
2005.

[7] Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kellprdwing the performance

(8]

of Morton layout by array alignment and loop unrolling reducing the poteaivety. In
Lawrence Rauchwerger, editéroceedings of 16th International Workshop on Languages
and Compilers for Parallel Computingolume 2958 ofLNCS pages 241-257. Springer-
Verlag, October 2003.

David S. Wise, Jeremy D. Frens, Yuhong Gu, and Gregory A. &heber. Language sup-
port for morton-order matrices. IRPoPP '01: Proceedings of the Eighth ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programmpragies 24-33, 2001.

Adi on P4: Performance in MFLOP/s

Row Najor Default Algnmert @) — Standard Morton performs almost as well
Column-Major Default Alignment (b) ——— .
200 | Z-Morton Page-Aligned Unrolled (c) 4 as rOW—maJOF.
" Padded-SaP-Z-Morton Page-Aligned Unrolled (d) ——
g Stop-at-Page-Z-Morton Page-Aligned Unrolled (e) — The performance of standard Morton be-
L o) gins to deteriorate around 16@QL600.
— Both SAPMZ and Padded SAPMZ sus-
g tain the performance for problem sizes
5 larger than 160& 1600.
260 460 62)0 860 1(;00 12‘00 14‘00 1é00 18‘00 2(;00
Square Root of Datasize
Cholk on P4: Performance in MFLOP/s B th SAPMZ d P dd d SAPMZ
- - : - - - — bo an aade never
ot el Defagk Anment () ——
250 D g o8 1 perform worse than stand_ard Mort_on.
£ ool o a2 Moo P A aned Unrolled (5 — SAPMZ does not result in a noticeable
L improvement over standard Morton.
£ 150 W — For a sub-range of problem sizes between
g ol 900x 900 and 190G« 1900, the padded
5 ™ . SAPMZ scheme out-performs standard
o7 ‘ ‘*T"Wwww " Hiliiwinun Morton and SAPMZ.
2(‘)0 460 660 860 1(;00 12‘00 14‘00 léOO léOO 2[;00
Square Root of Datasize
MMijk on P4: Performance in MFLOP/s
0 Row-Mdor Default Algnment @) — Both SAPMZ and Padded SAPMZ never
Column-Major Default Alignment (b) ———
600 Z'Morton Page-Aligned Unrolled (c)] perform worse than standard Morton.
® Padded-SaP-Z-Morton Page-Aligned Unrolled (d) —— . .
3 500l Stop-at-Page-Z-Morton Page-Aligned Unrolled (e) — SAPMZ does not result in a noticeable
£ ol improvement over standard Morton.
- — For problem sizes larger than about 542
§ 512, Padded SAPMZ out-performs stan-
5 20r dard Morton and SAPMZ.
100 W
22)0 460 660 860 1(;00 12‘00 14‘00 1(;00 léOO 2600
Square Root of Datasize
Jacobi2D on P4: Performance in MFLOP/s MMikj on P4: Performance in MFLOP/s
1000 Réw»Mafur Deféull Ali‘gnmen‘l (a) ! 900 R"ow-Ma‘jor DefaultAIignmeHl (a) !
Fhiorion bage Alignea Uniohed (¢ —— 800y Fhioron bage Algned Unolea @ —— |
» 800 Padded-SaP-%—lugggrq ggg:-ﬁlilgrqu Unrolled (d) —— 4 © 700 - Padded-SaP-Z-Morton Page-Aligned Unrolled (d) —— |
g Stop-at-Page-Z-Morton Page-Aligned Unrolled (e) g Stop-at-Page-Z-Morton Page-Aligned Unrolled (e)
par] = 600
% 600 %
< = 500
8 8
g 400 * 5 07
£ \ E a0t
£ A <3
\ 100 b v . .
0 L L L L L ﬁrﬁw*_'\‘"’_'“v' 0 T‘Ty\%‘(\W:T‘ \T“w?‘w";]"‘v‘fﬁ’

200 400 600 800 1000 1200 1400 1600 1800 2000
Square Root of Datasize

200 400 600 800 1000 1200 1400 1600 1800 2000
Square Root of Datasize

— For the Jacobi2D and MMikj benchmarks, SAPMZ and Padded SAPM&mse do not offer
a performance improvement over standard Morton.

Fig. 3. Performance of different layouts using a suite of micro-benchmanksing on the Pen-

tium 4 system described in Table 1.

