
Experiments with Parallelising Numerical Applicationsvia DESOLibraries(extended abstract)Olav Beckmann and Paul H J KellyDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, UKEmail: fob3,phjkg@doc.ic.ac.ukAugust 1997AbstractDESOLibraries are \delayed evaluation, self-optimising" parallel libraries of numerical rou-tines. The aim is to allow users to parallelisecomputationally expensive parts of numericalprograms by simply linking with a parallel ratherthan sequential library of subroutines. The li-brary performs interprocedural data placementoptimisation at runtime, which requires the op-timiser itself to be very e�cient. This paper out-lines the techniques we use to achieve this anddescribes the current state of our implementa-tion. We show performance results for an im-plementation of the conjugate gradient iterativesolver on the AP1000 that uses our library.1 IntroductionThis short paper outlines some aspects of ourapproach to runtime interprocedural data place-ment optimisation in the context of a DESOLi-brary of parallel vector-matrix routines which weare currently developing. The fundamental ideasbehind our approach have been outlined in pre-vious publications [5, 2, 3]. Brie
y, we provide alibrary of parallel implementations for commonnumerical problems which can be called from anyconvenient top-level calling language (plain C,spreadsheets, Mathematica etc.). The problemwith a naive implementation of such a library isthat we do not know the sequence in which li-brary operators will be called and hence have noscope for interprocedural data placement optimi-sation to avoid unnecessary redistributions. We

use delayed evaluation to capture the data
owat runtime and optimise the resulting data
owgraph (DFG) when a value is actually forced.1.1 Structure of this PaperSection 2 describes the basis of our strategyfor making the optimiser su�ciently e�cient towork at runtime. Next, Section 3 illustrates theoptimisation problem we have to solve and looksat two issues that can complicate it. Section 4shows performance �gures for an implementa-tion of the conjugate gradient algorithm usingour library. Finally, Section 5 looks at futurework, Section 6 at related work, and Section 7concludes.2 Basic ApproachSince we are optimising at runtime, the opti-miser itself has to be very e�cient. We achievethis by� working from aggregate loop nests whichhave been optimised in isolation and by� using a carefully constructed mathematicalformulation for data distributions and thedistribution requirements of library opera-tors.2.1 Data DistributionsOur formulation for data distributions is basedon sing a combination of a�ne transformationfunctions (known as \alignment" directives inP1-G-1

HPF [6]), folding functions (\distribution" di-rectives in HPF) and a new type of function forrepresenting data copying.� A�ne transformation (alignment) functionsact on array-index vectors ~{ and take theform f(~{) = A �~{+ ~t . (1)If ~t = ~0, the function is fully described bythe matrix A.� Example.The a�ne transformation function for dis-tributing a (1 � N) row vector v over thecolumns (i.e. the �rst dimension) of a meshis f (i0) = Av � (i0) + ~t= (0 11 0) (i0) + (00)= (0i) (2)� We can formulate a�ne placement con-straints for library operators by stating re-lationships between the placement matricesA1 of their operands.� We optimise with respect to a�ne transfor-mation functions.3 OptimisationIn this section, we illustrate the optimisationproblem we have to solve and discuss two issuesthat can complicate it.Consider the example shown in Figure 1. Asindicated in the diagram, we can write downplacement constraints for operands of all libraryoperators called: For the dot-product � = v.y, vand y need to be aligned in the same way, hencewe have Av = Ay2. Similarly, we have AB = Axfor y = B * x. However, the result y of thevector-matrix product is generated in transposedalignment to the input vector x, hence Ax = ATy .We can in analogous fashion write down place-ment constraints for all library operators calledin a DFG.1If t 6= ~0, we also state relationships for the translationvectors t.2We leave out the o�set vectors ~t and assume they areall zero.

v = B * u;x = C * w;y = B * x;alpha = v * y;output alpha
u w

Scatter Scatter Scatter Scatter

α = v.y

T=

=A v

A =

B C

x = C * w

y = B * x

v = B * u

xA

Ay

xA Ay

BFigure 1: DFG for example optimisation prob-lem, showing library operators' data-placementconstraints.3.1 Placement Constraints and Equa-tion SystemsThe placement constraints we have shown in Fig-ure 1 correspond to systems of linear equations,as can be seen from the following derivation3.Av = Ay (3)Av �Ay = 0 (4)���������00v � �00y = 0�01v � �01y = 0�10v � �10y = 0�11v � �11y = 0�������� (5)0BBBBBBBBBB@
1 �1 0 0 0 0 0 00 0 0 0 0 0 0 00 0 1 �1 0 0 0 00 0 0 0 0 0 0 00 0 0 0 1 �1 0 00 0 0 0 0 0 0 00 0 0 0 0 0 1 �10 0 0 0 0 0 0 0

1CCCCCCCCCCA
0BBBBBBBBBB@
�00v�00y�01v�01y�10v�10y�11v�11y

1CCCCCCCCCCA = 0
(6)This particular equation system is obviouslyunder-constrained.3Let �ijv denote element (i; j) of matrix Av.P1-G-2

The optimisation problem we need to solve isprecisely equivalent to the union of all such sys-tems of equations derived from the placementconstraints. That union can be� under-constrained | in which case we canavoid all redistributions and have some free-dom to choose the distributions of operands,� over-constrained | in which case we cannoteliminate all placement con
icts and have toperform some redistributions, or� have a unique solution | in which casethere is precisely one placement for alloperands that will avoid having to performredistributions.The most interesting cases are those where theequation system is over-constrained. Here, wehave to �nd a set of placements that minimisethe cost of the redistributions we have to per-form. This can no longer be solved by consid-ering the placement constraints alone. Instead,we have to calculate what redistributions haveto be performed and we require a function thatwill estimate the cost of such redistributions.3.2 Shared NodesOne situation that can result in a more com-plicated optimisation problem is the existenceof shared nodes in a DFG. This can be illus-trated from the DFG in Figure 1 if we considerwhat happens when the value � is forced into anidentity-distribution (A� = (1 00 1)). We have:A� = (1 00 1) (7)(1 00 1) = Av = Ay (8)Au = ATv Ax = ATy (9)AB = Au Aw = ATx (10)AC = Aw (11)AB = Ax . (12)� C is not a shared node, and we can easilyderive a unique placement for it:AC = Aw = ATx = (ATy)T = Ay = (1 00 1)(13)

� B is a shared node, and we have two di�erentways of deriving a placement for it:AB = Ax = ATy = (0 11 0) (14)or AB = Au = ATv = (0 11 0) (15)In this case, we obtain the same result forboth derivations, but this need not be thecase.The problem of shared nodes in DFGs is wellunderstood in principle [7]. The three commonlysuggested solutions to a situation where con
ict-ing placements are obtained are as follows.1. Choose a placement that satis�es one setof constraints. The other operators have touse the data item in a layout that does notsatisfy their constraints.2. Choose a compromise layout. This meansthat no operator uses that data item in itspreferred placement, but the resulting \re-mote access" costs may be smaller than ifone set of constraints had been entirely sat-is�ed.3. Duplicate the data item in di�erent place-ments.It seems that solutions 1 and 2 are unlikely to bee�cient for distributed-memory multiprocessorsbecause of the hight cost of \remote reads". Thisleaves solution 3. Mace [7] only considers thecost of generating the duplicate copy in assessingthis option. It seems likely, however, that avail-able memory will often be the true constrainingfactor for this option.We will have to develop a solution that takesthe amount of memory available into account.3.3 Alternative Operator Implemen-tationsSo far, we have assumed that each operator hasone implementation with one set of placementconstraints, such that for examplex = B * w (16)=) Ax = ATw=) 0 = Ax �ATw (17)P1-G-3

If, however, we have alternative implementationsfor operators with alternative constraints, wemight obtain the following.Ax = ATw or Ax = Aw (18)and �Ax �ATw� (Ax �Aw) = 0 . (19)This is a non-linear system. Therefore, the pres-ence of alternative operator implementations tochoose from will signi�cantly increase the com-plexity of the optimisation problem, even thoughit might o�er redistribution-free solutions wherethat would not have been possible with just oneimplementation per operator.4 PerformanceThe implementation of our library is based onMPI and runs both on the Fujitsu AP1000 atImperial College and on workstation networksunder mpich. We have implemented a simple(non-preconditioned) conjugate gradient [1] it-erative solver for large systems of sparse linearequations using our library. The pseudo-code forthe conjugate gradient algorithm can be found inFigure 2 and a slightly cut-down version of thesource code of our implementation, showing ourlibrary operators, is in Figure 3. The conver-gence test aside, it consists of one matrix-vectorproduct, three vector updates and 2 dot prod-ucts.Figure 4 shows performance results we haveobtained for the conjugate gradient solver on theAP1000.� Two out of three vector transpose opera-tions are eliminated by the optimiser.� There is a reduction of about 20% in com-munication time and of about 10% in overallruntime.� The runtime overhead appears quite high,and we are working on reducing it. How-ever, it is independent of the size of dataobjects and will therefore become less sig-ni�cant with larger problem sizes.� The optimisation time is small and is onlyincurred on the �rst iteration.

r(0) = b�Ax(0)for i = 1; : : : ; imax�i�1 = r(i�1)T r(i�1)if i = 1p(1) = r(0)else �i�1 = �i�1=�i�2p(i) = r(i�1) + �(i�1)p(i�1)endifq(i) = Ap(i)�i = �i�1=p(i)T q(i)x(i) = x(i�1) + �ip(i)r(i) = r(i�1) � �iq(i)check convergenceendFigure 2: Pseudo-code for the Conjugate Gradi-ent Algorithm.
for(i = 1; i <= max_iter; i++) {if (i != 1)L_S_Copy(rho, &rho_pre);L_VV_Dot(r, r, &rho);L_SS_Divide(rho, rho_pre, &beta);L_DAXPY(beta, p, 1, r, &p);L_DGEMV(A, p, 0, q, &q);L_VV_Dot(q, p, &alpha);L_SS_Divide(rho, alpha, &alpha);L_DAXPY(alpha, p, 1, x, &x);L_DAXPY(alpha, q, -1, r, &r);L_DGEMV(A, x, -1, b, &resid);L_V_Norm(resid, &norm_res);err = L_S_Return_Value(&norm_res);};Figure 3: Source code for conjugate gradientsolver using our libraries (slightly cut down).P1-G-4

| ||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

|260
 E

xe
cu

ti
o

n
 T

im
e

in
 M

ill
is

ec
o

n
d

s

Optimisation

Communication

Overhead

Memory

Computation

Number of Processors Scaled at P = (N / 64)^2

128 192 256 320 384 448 512 NFigure 4: Performance of the conjugate gradi-ent iterative solver on the AP1000. Performance�gures are based on 10 iterations. Notice thatthe number of processors used is scaled with theproblem size.5 Future Work� \Caching" of optimisation results so that wedon't re-optimise in loops.� Parallel as well as sequential composition oflibrary operators. That means we need toworry about scheduling.� Explore application to adaptive multigrids.6 Related workOur optimisation algorithm is most similar tothat of Feautrier [4] in that we perform opti-misation with respect to a�ne placement func-tions. The key di�erences are that by workingwith aggregate data structures and operators, wegreatly reduce the complexity of the problem tobe solved.Mace [7] gives a precise formulation of our op-timisation problem in its fullest sense and showsit to be NP-complete. However, a key di�er-ence with our approach is that due to our mathe-matical representation for data distributions andcosts, we can calculate the information whichMace enumerates, thus reducing the complexityto proportions that can be handled in a runtimeoptimiser.

7 ConclusionOur approach makes interprocedural data place-ment optimisation available for use at runtimeand with any convenient top-level calling lan-guage for numerical operators, such as spread-sheets.We capture the runtime data
ow by using lazyevaluation.We achieve the necessary e�ciency for work-ing at runtime by� working from aggregate loop nests and� using an e�cient mathematical representa-tion for data distributions.AcknowledgementsThis work was partially supported by the EP-SRC, under the Futurespace and CRAMP pro-jects (refs. GR/J 87015 and GR/J 99117). Weextend special thanks to Fujitsu and the Impe-rial/Fujitsu Parallel Computing Research Centrefor providing access to their AP1000 and AP3000multicomputers. Thanks also to Steven New-house of Imperial's Department of Aeronauticswho very kindly allowed us access to their C++matrix library.References[1] Richard Barrett, Mike Berry, Tony Chan,Jim Demmel, June Donato, Jack Dongar--ra, Victor Eijkhout, Roldan Pozo, ChuckRomine, and Henk van der Vorst. Templatesfor the Solution of Linear Systems: BuildingBlocks for Iterative Methods. Society for In-dustrial and Applied Mathematics (SIAM),Philadelphia, PA, USA, 1994.[2] Olav Beckmann and Paul H J Kelly. Au-tomatic data distribution optimisation in alazy, self-optimising parallel matrix library(extended abstract). In PCW '96, Proceed-ings of the Sixth Parallel Computing Work-shop, Kawasaki, Japan, November 12{131996.[3] Olav Beckmann and Paul H. J. Kelly. Run-time interprocedural data placement optimi-sation for lazy parallel libraries (extended ab-P1-G-5

stract), August 1997. To appear in Euro-Par'97, Springer-Verlag Lecture Notes in Com-puter Science.[4] Paul Feautrier. Toward automatic distribu-tion. Parallel Processing Letters, 4(3):233{244, 1994.[5] Simon Govier and Paul H. J. Kelly. Alazy, self-optimising parallel matrix library.In David N. Turner et al., editor, Glas-gow Functional Programming Workshop, Ul-lapool, July 1995. Springer-Verlag.[6] High Performance Fortran Forum. High Per-formance Fortran language speci�cation, ver-sion 1.1. Technical Report CRPC-TR92225,Center for Research on Parallel Computa-tion, Rice University, Houston, TX, Novem-ber 1994.[7] Mary E. Mace. Storage Patterns in ParallelProcessing. Kluwer Academic Press, 1987.

P1-G-6

