Experiments with Parallelising Numerical Applications
via DESOLibraries
(extended abstract)

Olav Beckmann and Paul H J Kelly

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK
Email: {ob3,phjk}@doc.ic.ac.uk

August 1997

Abstract

DESOLibraries are “delayed evaluation, self-
optimising” parallel libraries of numerical rou-
tines. The aim is to allow users to parallelise
computationally expensive parts of numerical
programs by simply linking with a parallel rather
than sequential library of subroutines. The li-
brary performs interprocedural data placement
optimisation at runtime, which requires the op-
timiser itself to be very efficient. This paper out-
lines the techniques we use to achieve this and
describes the current state of our implementa-
tion. We show performance results for an im-
plementation of the conjugate gradient iterative
solver on the AP1000 that uses our library.

1 Introduction

This short paper outlines some aspects of our
approach to runtime interprocedural data place-
ment optimisation in the context of a DESOLi-
brary of parallel vector-matrix routines which we
are currently developing. The fundamental ideas
behind our approach have been outlined in pre-
vious publications [5, 2, 3]. Briefly, we provide a
library of parallel implementations for common
numerical problems which can be called from any
convenient top-level calling language (plain C,
spreadsheets, Mathematica etc.). The problem
with a naive implementation of such a library is
that we do not know the sequence in which li-
brary operators will be called and hence have no
scope for interprocedural data placement optimi-
sation to avoid unnecessary redistributions. We

use delayed evaluation to capture the dataflow
at runtime and optimise the resulting dataflow
graph (DFG) when a value is actually forced.

1.1 Structure of this Paper

Section 2 describes the basis of our strategy
for making the optimiser sufficiently efficient to
work at runtime. Next, Section 3 illustrates the
optimisation problem we have to solve and looks
at two issues that can complicate it. Section 4
shows performance figures for an implementa-
tion of the conjugate gradient algorithm using
our library. Finally, Section 5 looks at future
work, Section 6 at related work, and Section 7
concludes.

2 Basic Approach

Since we are optimising at runtime, the opti-
miser itself has to be very efficient. We achieve
this by

e working from aggregate loop nests which
have been optimised in isolation and by

e using a carefully constructed mathematical
formulation for data distributions and the
distribution requirements of library opera-
tors.

2.1 Data Distributions

Our formulation for data distributions is based
on sing a combination of affine transformation
functions (known as “alignment” directives in

P1-G-1

HPF [6]), folding functions (“distribution” di-
rectives in HPF) and a new type of function for
representing data copying.

e Affine transformation (alignment) functions
act on array-index vectors 7 and take the
form

f@)=A-7+t . (1)

If £ = 0, the function is fully described by
the matrix A.

e Fxample.
The affine transformation function for dis-
tributing a (1 x N) row vector v over the
columns (i.e. the first dimension) of a mesh
is

f(l?)):Av(l?))'l‘{
=(96)(§) + () (2)
= ()

e We can formulate affine placement con-
straints for library operators by stating re-
lationships between the placement matrices
A of their operands.

e We optimise with respect to affine transfor-
mation functions.

3 Optimisation

In this section, we illustrate the optimisation
problem we have to solve and discuss two issues
that can complicate it.

Consider the example shown in Figure 1. As
indicated in the diagram, we can write down
placement constraints for operands of all library
operators called: For the dot-product o = v.y, v
and y need to be aligned in the same way, hence
we have A, = AyQ. Similarly, we have Ap = A,
for y = B * x. However, the result y of the
vector-matrix product is generated in transposed
alignment to the input vector x, hence A, = A;.
We can in analogous fashion write down place-
ment constraints for all library operators called
in a DFG.

11f¢ + 0, we also state relationships for the translation
vectors t.

2We leave out the offset vectors i and assume they are
all zero.

v =B * u;
x =C * w;
y = B * x;
alpha = v * y;

output alpha

(81 Lu] [c] [w]

\ Scatter

Scatter

y A= AJ-
/ AB: Ax

Figure 1: DFG for example optimisation prob-
lem, showing library operators’ data-placement
constraints.

3.1 Placement Constraints and Equa-
tion Systems

The placement constraints we have shown in Fig-
ure 1 correspond to systems of linear equations,
as can be seen from the following derivation?.

Ay = A, (3)
Ay — Ay =0 (4)

00 00 —
a, —a, =0

01 01 _
o ah g (5)
0411,1—0431/1:0
1 =10 0 0 0 0 O a0
00 0000 0 O oy’
0 0 1 =10 0 0 0 adt
000 0 0 0 0 0 0f[e
fo] =0
0000 1 —-10 0 o
0 0000 0 0 0 all
00 000 0 1 —1 azl
00 00O 0O 0 0 0 all

(6)

This particular equation system is obviously
under-constrained.

3Let a¥/ denote element (7,7) of matrix A,.

P1-G-2

The optimisation problem we need to solve is
precisely equivalent to the union of all such sys-
tems of equations derived from the placement
constraints. That union can be

o under-constrained — in which case we can
avoid all redistributions and have some free-
dom to choose the distributions of operands,

e owver-constrained — in which case we cannot
eliminate all placement conflicts and have to
perform some redistributions, or

e have a unique solution — in which case
there is precisely one placement for all
operands that will avoid having to perform
redistributions.

The most interesting cases are those where the
equation system is over-constrained. Here, we
have to find a set of placements that minimise
the cost of the redistributions we have to per-
form. This can no longer be solved by consid-
ering the placement constraints alone. Instead,
we have to calculate what redistributions have
to be performed and we require a function that
will estimate the cost of such redistributions.

3.2 Shared Nodes

One situation that can result in a more com-
plicated optimisation problem is the existence
of shared nodes in a DFG. This can be illus-
trated from the DFG in Figure 1 if we consider
what happens when the value « is forced into an
identity-distribution (4, = (4 9)). We have:

Ao =(57) (7)
(61) =4y =4, (8)
Au:AZ szAZ ®

)
Ay, = AT (10)
Ao = Ay (11)
Ap=A, . (12)

e C is not a shared node, and we can easily
derive a unique placement for it:

Ac=A,=A0 =AD" =4,=(}")

e Bis a shared node, and we have two different
ways of deriving a placement for it:

Ap=A:= A = (1)) (14)
or
Ap=Ay=A7=(15) (1)

In this case, we obtain the same result for
both derivations, but this need not be the
case.

The problem of shared nodes in DFGs is well
understood in principle [7]. The three commonly
suggested solutions to a situation where conflict-
ing placements are obtained are as follows.

1. Choose a placement that satisfies one set
of constraints. The other operators have to
use the data item in a layout that does not
satisfy their constraints.

2. Choose a compromise layout. This means
that no operator uses that data item in its
preferred placement, but the resulting “re-
mote access” costs may be smaller than if
one set of constraints had been entirely sat-
isfied.

3. Duplicate the data item in different place-
ments.

It seems that solutions 1 and 2 are unlikely to be
efficient for distributed-memory multiprocessors
because of the hight cost of “remote reads”. This
leaves solution 3. Mace [7] only considers the
cost of generating the duplicate copy in assessing
this option. It seems likely, however, that avail-
able memory will often be the true constraining
factor for this option.

We will have to develop a solution that takes
the amount of memory available into account.

3.3 Alternative Operator Implemen-
tations

So far, we have assumed that each operator has
one implementation with one set of placement
constraints, such that for example

x =B *w (16)
A, = AT

-
— 0=A, — AT (17)

If, however, we have alternative implementations
for operators with alternative constraints, we
might obtain the following.

A, =AT or A, =A, (18)
and
(A, — AD) (4, — A,) =0 . (19)

This is a non-linear system. Therefore, the pres-
ence of alternative operator implementations to
choose from will significantly increase the com-
plexity of the optimisation problem, even though
it might offer redistribution-free solutions where
that would not have been possible with just one
implementation per operator.

4 Performance

The implementation of our library is based on
MPI and runs both on the Fujitsu AP1000 at
Imperial College and on workstation networks
under mpich. We have implemented a simple
(non-preconditioned) conjugate gradient [1] it-
erative solver for large systems of sparse linear
equations using our library. The pseudo-code for
the conjugate gradient algorithm can be found in
Figure 2 and a slightly cut-down version of the
source code of our implementation, showing our
library operators, is in Figure 3. The conver-
gence test aside, it consists of one matrix-vector
product, three vector updates and 2 dot prod-
ucts.

Figure 4 shows performance results we have
obtained for the conjugate gradient solver on the
AP1000.

e Two out of three vector transpose opera-
tions are eliminated by the optimiser.

e There is a reduction of about 20% in com-
munication time and of about 10% in overall
runtime.

e The runtime overhead appears quite high,
and we are working on reducing it. How-
ever, it is independent of the size of data
objects and will therefore become less sig-
nificant with larger problem sizes.

e The optimisation time is small and is only
incurred on the first iteration.

+0) — p_ AzO

for i1=1,... ,%ma
pPi—1 = r(i_l)TT(i_l)
if 1=1
p) = (O

else ;1 =pi_1/pi2
pli) = p(i=1) 4 ﬁ(i,l)p(ifl)
endif
¢ = Ap(
a; = pi1/p®" ¢
2 = 20D 4 q;p®)
r(0) = p(=1) — ;¢
check convergence
end

Figure 2: Pseudo-code for the Conjugate Gradi-
ent Algorithm.

for(i = 1; i <= max_iter; i++) {
if (i '=1)
L_S_Copy(rho, &rho_pre);
L_VV_Dot(r, r, &rho);

L_SS_Divide(rho, rho_pre, &beta);
L_DAXPY(beta, p, 1, r, &p);

L_DGEMV(A, p, 0, q, &q);
L_VV_Dot(q, p, &alpha);
L_SS_Divide(rho, alpha, &alpha);

L_DAXPY(alpha, p,
L_DAXPY(alpha, q,

1, x, &x);
-1, r, &r);

L_DGEMV(A, x, -1, b, &resid);
L_V_Norm(resid, &norm_res);
err = L_S_Return_Value(&norm_res);

Figure 3: Source code for conjugate gradient
solver using our libraries (slightly cut down).

P1-G4

200+

. Optimisation
Communication
Overhead

Memory

Computation

128 192 256 320 384 448 512 N
Number of Processors Scaled at P = (N /64)"2

Figure 4: Performance of the conjugate gradi-
ent iterative solver on the AP1000. Performance
figures are based on 10 iterations. Notice that
the number of processors used is scaled with the
problem size.

5 Future Work

e “Caching” of optimisation results so that we
don’t re-optimise in loops.

e Parallel as well as sequential composition of
library operators. That means we need to
worry about scheduling.

e Explore application to adaptive multigrids.

6 Related work

Our optimisation algorithm is most similar to
that of Feautrier [4] in that we perform opti-
misation with respect to affine placement func-
tions. The key differences are that by working
with aggregate data structures and operators, we
greatly reduce the complexity of the problem to
be solved.

Mace [7] gives a precise formulation of our op-
timisation problem in its fullest sense and shows
it to be NP-complete. However, a key differ-
ence with our approach is that due to our mathe-
matical representation for data distributions and
costs, we can calculate the information which
Mace enumerates, thus reducing the complexity
to proportions that can be handled in a runtime
optimiser.

7 Conclusion

Our approach makes interprocedural data place-
ment optimisation available for use at runtime
and with any convenient top-level calling lan-
guage for numerical operators, such as spread-
sheets.

We capture the runtime dataflow by using lazy
evaluation.

We achieve the necessary efficiency for work-
ing at runtime by

e working from aggregate loop nests and

e using an efficient mathematical representa-
tion for data distributions.

Acknowledgements

This work was partially supported by the EP-
SRC, under the Futurespace and CRAMP pro-
jects (refs. GR/J 87015 and GR/J 99117). We
extend special thanks to Fujitsu and the Impe-
rial/Fujitsu Parallel Computing Research Centre
for providing access to their AP1000 and AP3000
multicomputers. Thanks also to Steven New-
house of ITmperial’s Department of Aeronautics
who very kindly allowed us access to their C++
matrix library.

References

[1] Richard Barrett, Mike Berry, Tony Chan,
Jim Demmel, June Donato, Jack Dongar-
-ra, Victor Eijkhout, Roldan Pozo, Chuck
Romine, and Henk van der Vorst. Templates
for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Society for In-
dustrial and Applied Mathematics (STAM),
Philadelphia, PA, USA, 1994.

[2] Olav Beckmann and Paul H J Kelly. Au-
tomatic data distribution optimisation in a
lazy, self-optimising parallel matrix library
(extended abstract). In PCW ’96, Proceed-
ings of the Sixzth Parallel Computing Work-
shop, Kawasaki, Japan, November 12-13
1996.

[3] Olav Beckmann and Paul H. J. Kelly. Run-
time interprocedural data placement optimi-
sation for lazy parallel libraries (extended ab-

P1-G-5

stract), August 1997. To appear in Euro-Par
’97, Springer-Verlag Lecture Notes in Com-
puter Science.

Paul Feautrier. Toward automatic distribu-
tion. Parallel Processing Letters, 4(3):233~
244, 1994.

Simon Govier and Paul H. J. Kelly. A
lazy, self-optimising parallel matrix library.
In David N. Turner et al., editor, Glas-
gow Functional Programming Workshop, Ul-
lapool, July 1995. Springer-Verlag.

High Performance Fortran Forum. High Per-
formance Fortran language specification, ver-
sion 1.1. Technical Report CRPC-TR92225,
Center for Research on Parallel Computa-
tion, Rice University, Houston, TX, Novem-
ber 1994.

Mary E. Mace. Storage Patterns in Parallel
Processing. Kluwer Academic Press, 1987.

P1-G-6

