
Runtime Interprocedural Data PlacementOptimisation for Lazy Parallel Libraries(extended abstract)Olav Beckmann and Paul H J KellyDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, U.K.Email: fob3,phjkg@doc.ic.ac.ukAbstract. We are developing a lazy, self-optimising parallel library ofvector-matrix routines. The aim is to allow users to parallelise certaincomputationally expensive parts of numerical programs by simply link-ing with a parallel rather than sequential library of subroutines. The li-brary performs interprocedural data placement optimisation at runtime,which requires the optimiser itself to be very e�cient. We achieve this�rstly by working from aggregate loop nests which have been optimisedin isolation, and secondly by using a carefully constructed mathemati-cal formulation for data distributions and the distribution requirementsof library operators, which allows us largely to replace searching withcalculation in our algorithm.1 IntroductionThis paper describes an approach to interprocedural data placement optimisa-tion in the context of a parallel numerical library. The idea for such a library,as described in our previous paper [4], is to make it easy for users to paral-lelise a program incrementally using parallel versions of numerical subroutines.Since, from the library implementor's point of view, we cannot analyse the user'ssource code, interprocedural optimisation of data distributions cannot be doneat compile-time. Lazy evaluation is proposed as a way to do the optimisation atrun-time. Rather than executing each library operation immediately, we returnand store a recipe for the result that it de�nes. In that way, we build up a data-
ow graph (DFG) for a sequence of operations. When we can delay evaluation nofurther, the accumulated DFG is available for devising an optimised executionplan.An Example. Consider the simple sequence of operations shown in Figure 1. Itdemonstrates how in a straightforward implementation, where we scatter A andu, calculate v, then scatter B and w and calculate x, we then have to redistributex for the third library call. If, however, we capture the information about how xis used before we execute the �rst two operations, we can choose a transposedlayout for B and do not have to perform any redistributions. This illustrative



v = A * u;x = B * w;y = A * x;
A u B w

v = A * u x = B * w

y = A * x

Scatter

Transpose!

(Transposed)Scatter Scatter Scatter

(no Communication)

A u

v = A * u

Scatter Scatter

B w

x = B * w

Scatter

(Transposed)

Scatter

y = A * x

(no Communication) (no Communication)Fig. 1. Unoptimised (left) and optimised DAG for our exampleexample is simple enough that well-known compile-time analyses could achievethis optimisation; by doing the optimisation at run-time, we are able to use anyconvenient calling language (such as a spreadsheet or computer algebra system),and we can optimise the actual data 
ow exercised for a particular probleminstance.Work described in this paper. Since we are performing optimisation at runtime,the performance of the optimiser itself is crucial. Hence, our approach has beento seek to calculate optimal distributions, rather than search for them. Space heredoes not allow a full discussion of this approach; instead, we brie
y state its maintheoretical components and then show some performance �gures obtained withour library.2 Theoretical Components of Our ApproachRepresenting Data Distributions. Our representation for data distributions al-lows us to calculate both any redistributions required between given distributionsand new distributions that result from changes to data placements made by ouroptimisation algorithm.Estimating redistribution costs. We derive a cost model from the mathematicalrepresentations for redistributions that are required in a DFG. We use this modelas a `weight' function for guiding our optimisation algorithm.Optimising using library function distribution requirements. Our optimisationalgorithm seeks to optimise the execution of a DFG by changing the distri-bution of some data structures in order to obtain a more compatible overallset of distributions. We follow the approach of Feautrier [3], but do this using



placement constraints expressed by means of our model for data distributions.Essentially, assembling the constraints expressed by the DFG leads to a systemof linear equations.3 PerformanceOur implementation is based on MPI, and has been calibrated for the 128-processor Fujitsu AP1000 at Imperial College. Figure 2 shows performance re-sults from a simple conjugate gradient solver (transcribed from [1]). The his-togram shows execution time for 10 iterations using an n � n matrix, where nranges from 128 to 512 and the number of processors in use is scaled proportion-ately from 4 to 64. These preliminary results show a promising reduction in theredistribution costs due to avoiding two of the three vector transpose operationsinvolved per iteration. The time spent by the optimiser is small, and is onlyincurred on the �rst iteration of the loop.

0

50

100

150

200

250

300

350

400

450

4 9 16 25 36 49 64

Number of Processors (P), Problem Size Scaled at 64 * P

T
im

e 
in

 M
ill

is
ec

o
n

d
s

Optimisation

Communication

Remainder

Fig. 2. Unoptimised (Left) and Optimised (Right) Performance of Conjugate GradientMethod using our Library.4 Related workOur optimisation algorithm is most similar to that of Feautrier [3] in that weperform optimisation with respect to a�ne placement functions. The key dif-



ferences are that by working with aggregate data structures and operators, wegreatly reduce the complexity of the problem to be solved.Mace [5] gives a precise formulation of our optimisation problem in its fullestsense and shows it to be NP-complete. However, a key di�erence with our ap-proach is that due to our mathematical representation for data distributions andcosts, we can calculate the information which Mace enumerates, thus reducingthe complexity to proportions that can be handled in a runtime optimiser.5 ConclusionsThis extended abstract has introduced our approach to interprocedural dataplacement optimisation in a parallel numerical library: We have demonstratedthat lazy evaluation can be used to expose opportunities for data distributionoptimisation at run-time. For applications for which our library is suitable, thereis promising evidence that much of the bene�t of compile-time optimisation canbe achieved without compile-time analysis of the calling program.Although developed for optimisation of calls to manually-constructed libraryroutines, the techniques we have developed should also be applicable to interpro-cedural optimisation of compiler-generated procedures in for example an HPFimplementation, whether at compile-time or at run-time.Acknowledgements. This work was partially supported by the EPSRC, under theFuturespace and CRAMP projects (refs. GR/J 87015 and GR/J 99117). We extendspecial thanks to Fujitsu and the Imperial/Fujitsu Parallel Computing Research Centrefor providing access to their AP1000 multicomputer. Thanks also to Steven Newhouseof Imperial's Department of Aeronautics who very kindly allowed us access to theirC++ matrix library and furnished us with examples and advice.References1. Richard Barrett, Mike Berry, Tony Chan, Jim Demmel, June Donato, Jack Don-garra, Victor Eijkhout, Roldan Pozo, Chuck Romine, and Henk van der Vorst. Tem-plates for the Solution of Linear Systems: Building Blocks for Iterative Methods.Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA,1994.2. Olav Beckmann. A lazy, self-optimising parallel matrix library. Master's thesis,Department of Computing, Imperial College, London SW7 2AZ, U.K., 1996.3. Paul Feautrier. Toward automatic distribution. Parallel Processing Letters,4(3):233{244, 1994.4. Simon Govier and Paul H. J. Kelly. A lazy, self-optimising parallel matrix library.In David N. Turner et al., editor, Glasgow Functional Programming Workshop, Ul-lapool, July 1995. Springer-Verlag.5. Mary E. Mace. Storage Patterns in Parallel Processing. Kluwer Academic Press,1987.


