
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2004; 00:1–6 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Is Morton layout competitive for
large two-dimensional arrays,
yet?

Jeyarajan Thiyagalingam, Olav Beckmann,
Paul H. J. Kelly

Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, U.K.
Email: {jeyan,ob3,phjk}@doc.ic.ac.uk

SUMMARY

Two-dimensional arrays are generally arranged in memory in row-major order or column-major order.
Traversing a row-major array in column-major order, or vice-versa, leads to poor spatial locality. With
large arrays the performance loss can be a factor of 10 or more. This paper explores the Morton storage
layout, which has substantial spatial locality whether traversed in row-major or column-major order.

Using a small suite of dense kernels working on two-dimensional arrays, we have carried out an extensive
study of the impact of poor array layout and of whether Morton layout can offer an attractive compromise.
We show that Morton layout can lead to better performance than the worse of the two canonical layouts;
however, the performance of Morton layout compared to the better choice of canonical layout is often
disappointing. We further study one simple improvement of the basic Morton scheme: we show that
choosing the correct alignment for the base address of an array in Morton layout can sometimes significantly
improve the competitiveness of this layout.

KEY WORDS: Compilers, memory organisation, tiling, space-filling curves, Morton order, spatial locality

1. Introduction

Two-dimensional arrays are generally arranged in memory in row-major order (for C, Pascal etc)
or column-major order (for Fortran). Modern processors rely heavily on caches and prefetching,
which work well when the access pattern matches the storage layout. Sophisticated programmers,
or occasionally sophisticated compilers, match the loop structure to the language’s storage layout in
order to maximise spatial locality. Unsophisticated programmers do not, and the performance loss
is often dramatic — a factor of 10 or more. In this paper we study the Morton storage layout (for
background and history see [3, 19]). Morton layout is a compromise between row-major and column-
major, with some spatial locality whether traversed in row-major or column-major order — but in
neither case is spatial locality as high as the best case for row-major or column-major. Further, the
way that array elements are stored requires fairly complicated address calculation. So, should language

Received 19th April 2003
Copyright c© 2004 John Wiley & Sons, Ltd. Revised 24th March 2004

2 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

implementors still consider providing support for Morton layout for multidimensional arrays? In this
paper, we explore and analyse this question and provide some qualified answers.

Perhaps controversially, we confine our attention to “naively” written codes, where a mismatch
between access order and layout is reasonably likely. It is of course possible that the compiler might
help by adjusting storage layouts or by interchanging loops; however, in the examples which we studied
in this paper, we have not seen evidence of the compiler performing either of these transformations.
Providing a clear performance programming model is an important aspect of research into compilation;
the severe performance differences that can be observed depending on the traversal order of large
two-dimensional arrays represent a failure to provide such a model. Even if production compilers did
eliminate some loops accessing large arrays with poor stride by suitable transformations, the behaviour
of the compiler with respect to this optimisation would have to become part of the performance model
presented to the application programmer. In this paper, we have carried out an extensive study of
whether Morton order, when used as the default layout for large two-dimensional arrays, can deliver
predictable performance, and we quantify the performance penalty that such a choice would incur when
compared to an optimal choice of lexicographic layout.

1.1. Contributions of this paper

• We show that using lookup tables to calculate Morton layout addresses is remarkably effective. It
compares well with the dilated arithmetic scheme proposed by Wise et al. [19], and offers useful
flexibility (Section 4.2).

• We evaluate the hypothesis that Morton layout, implemented using lookup tables, is a useful
compromise between row-major and column-major layout. We present extensive experimental
results using five simple numerical kernels, running on five different processors (Section 6).

• For each processor and each kernel, we calculate the slowdown, over a range of problem sizes,
of using Morton layout compared with the better of the two lexicographic layouts (Section 6.2).

• We show that the effectiveness of Morton layout can often be significantly improved if the base
address of the array is page-aligned (Section 5).

The paper is organised as follows: Section 2 explains the relationship with our previous paper on this
topic, and puts this paper in the context of earlier research in the area. Section 3 introduces the Morton
storage layout. Section 4 discusses the address calculation strategies for Morton layout. Section 5
discusses the impact of the alignment of the base address of a Morton array and Section 6 reports the
detailed results of our experimental investigation into the effectiveness of Morton layout. Section 7
concludes the paper with future directions for research in this area.

2. Related work

In our earlier paper [18], we argued that Morton layout is an effective compromise storage layout,
with the evidence of experimental data on various architectures for various kernels, on power-of-two
problem sizes. Our later work on selected non-power-of-two sizes (presented at the CPC workshop in
January 2003) gave similar results. This paper improves on our earlier work:

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 3

• We use the best available compilers for each of the five processors, using the compiler flags
chosen by the vendors for their SPEC CFP2000 (base) reports [17] (see Table III in Section 6).

• We present an extensive and systematic study using random problem sizes. This shows a number
of interesting effects, and Morton layout appears less attractive. However, as we discuss at the
end of the paper, further improvements to the performance of Morton layout are possible.

• We analyse the importance of aligning base address of a Morton array to a cache line or page
boundary.

Compiler techniques. Locality can be enhanced by restructuring loops to traverse the data in an
appropriate order [13, 20]. Tiling can suffer disappointing performance due to associativity conflicts,
which, in turn, can be avoided by copying the data accessed by the tile into contiguous memory [12].
Copying can be avoided by building the array in this layout. More generally, storage layout can be
selected to match execution order [11]. While loop restructuring is limited by what the compiler can
infer about the dependence structure of the loops, adjusting the storage layout is always valid. However,
each array is generally traversed by more than one loop, which may impose layout constraint conflicts
which can be resolved only with foreknowledge of program behaviour. Anderson, Amarasinghe and
Lam [2] describe a compilation system for automatically parallelising sequential code for shared
memory multiprocessors which makes use of data layout transformations in order to reduce the adverse
effects of false sharing of cache lines between processors. Cierniak and Li [4] present a unified
algorithm for applying both iteration space and data layout transformations, which is shown to perform
better than applying the two transformations separately. For a compiler to change the storage layout
of an array in order to improve locality, it has to determine the impact of that transformation through
the entire program. Cierniak and Li [5] discuss compiler algorithms for deciding whether changing the
layout of an array is valid. Procedure cloning [6] can be used to dis-ambiguate array accesses, making
it easier to change the layout of individual arrays. Locally reshaped arrays are arrays that are accessed
inside a procedure in a different layout from the calling context. O’Boyle and Knijnenburg [14] describe
a static approach to calculating the effect of global data transformations such as partitioning for
parallelisation on locally reshaped arrays, as well as loop transformations that can be used to undo
locally adverse effects, such as poor stride, of such global data transformations.

Blocked and recursively-blocked array layout. Wise et al. [19] advocate Morton layout for
multidimensional arrays, and present a prototype compiler that implements the dilated arithmetic
address calculation scheme which we evaluate in Section 4. They found it hard to overcome
the overheads of Morton address calculation, and achieve convincing results only with recursive
formulations of the loop nests.

Chatterjee et al. [3] study Morton layout and a blocked “4D” layout (explained in Section 3.3). They
focus on tiled implementations, for which they find that the 4D layout achieves higher performance
than Morton layout because the address calculation problem is easier, while much or all the spatial
locality is still exploited. Their work has similar goals to ours, but all their benchmark applications
are tiled (or “shackled”) for temporal locality; they show impressive performance, with the further
advantage that performance is less sensitive to small changes in tile size and problem size, which can
result in cache associativity conflicts with conventional layouts. In contrast, the goal of our work is to
evaluate whether Morton layout can simplify the performance programming model for unsophisticated
programmers, without relying on very powerful compiler technology.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

4 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

3. Background

In this section, we briefly review various array mappings and their resulting spatial locality.

3.1. Lexicographic array storage

For an M × N two dimensional array A, a mapping S(i, j) is needed, which gives the memory offset
at which array element Ai,j will be stored. Conventional solutions are the row-major (for example in
C and Pascal) and column-major (as used by Fortran) mappings expressed by

S(M,N)
rm (i, j) = N × i + j and S(M,N)

cm (i, j)= i + M × j (1)

respectively. We refer to row-major and column-major as lexicographic, i.e. elements are arranged by
the sort order of the two indices (another term is “canonical”).

3.2. Opaque array storage: array descriptors

In more modern languages, such as Fortran 90 (and notable earlier designs — Algol 68 and APL),
arrays are represented by a descriptor which provides run-time information on how the address
calculation should be done [9]. This is needed to support multidimensional array slicing — where
the array descriptor hides the actual array representation, and allows the implementor freedom to select
storage layout at will.

Using a descriptor allows a single fragment of source code to operate on arrays whose layout varies
from call to call — a form of “shape” polymorphism [10]. This raises performance problems since
the storage layout is not known at compile-time — the stride of successive memory accesses depends
on how a function is called. For optimal performance, different variants of each function need to be
generated for each combination of array operand layouts. There may be many distinct combinations
requiring distinct code variants. The variants can be selected by run-time dispatch. More aggressively,
the appropriate procedure “clone” can be called according to call site context [6].

3.3. Blocked array storage

How can we reduce the number of code variants needed to achieve high performance? An attractive
strategy is to choose a storage layout which offers a compromise between row-major and column-
major. For example, we could break the M×N array into small, P ×Q row-major subarrays, arranged
as a M/P ×N/Q row-major array. We define the blocked row-major mapping function (this is the 4D
layout discussed in [3]) as:

S
(M,N)
brm (i, j) = (P × Q) × S(M/P,N/Q)

rm (i/P, j/Q) + S(P,Q)
rm (i%P, j%Q)

For example, consider 16-word cache blocks and P = Q = 4, as illustrated in Figure 1. Each block
holds a P ×Q = 16-word subarray. In row-major traversal, the four iterations (0, 0), (0, 1), (0, 2) and
(0, 3) access locations on the same block. The remaining 12 locations on this block are not accessed
until later iterations of the outer loop. Thus, for a large array, the expected cache hit rate is 75%, since
each block has to be loaded four times to satisfy 16 accesses. Notice that the same cache hit rate results

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 5

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

0 1 2

7

8

4 5 6

3

13 15

9 10 11

14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 3837 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

12

Row−major traversal: one in four
accesses hits a new cache line

hits a new cache line.

1

2

3

4

5

6

7

j

i 0

0 1 2 3 4 5 6 7

Column−major traversal: one in four accesses

Figure 1. Blocked row-major (“4D”) layout S(8,8)
brm

(i, j) with block-size parameters P = Q = 4. The diagram
illustrates that with 16-word cache lines, illustrated by different shadings, the cache hit rate is 75% whether the

array is traversed in row-major or column-major order.

with column-major traversal, i.e. when the loop structure is “do i...do j” rather than the “do
j...do i” loop of row-major traversal.

3.4. Recursive blocking

The impact of virtual memory pages on blocked array storage. Modern computer systems rely on a
TLB to cache address translations: a typical 64-entry data TLB with 8 KB pages has an effective span
of 64×8 = 512KB. Unfortunately, as illustrated in Figure 2, if a blocked row-major array is traversed
in column-major order, only one subarray per page is usable. Thus, we find that the blocked row-major
layout is still biased towards row-major traversal. We can overcome this by applying the blocking again,
recursively: Each 8 KB page (1024 doubles) would hold a 16× 16 array of 2 × 2-element subarrays.

Memory hierarchies. Modern systems often have a deep memory hierarchy, with block size, capacity
and access time increasing geometrically with depth [1]. Blocking should therefore be applied for each
level. Note, however, that this becomes very awkward if larger blocksizes are not whole multiples of
the next smaller blocksize.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

6 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�
�������

�������
�������
�������

�������
�������
�������
�������

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

...

...

...

...

...

...

...

...

...

15 31

496 5120 16 528 1008 1024 1040 1536 1552 1568 2032

3584 3600 3616 4080

4096 4112 4592

4607

2048 2064 2544 2560 2576 3056 3072 3088
158310551023543 1039 1551 1567 2047

2063 2079 2559 2575 2591 3071 3087 3103 3599 3615 3631 4095

Each 1024−word page holds 64 4x4 blocks

4x4 row−major blocks, arranged in row−major order

With column−major traversal, each new block is on a fresh page

41274111

511 527

Figure 2. Blocked row-major layout for large array. If a large blocked row-major array is traversed in column-
major order, only one subarray per page is usable. The diagram shows an array with rows of 2048 doubles, using
the blocked row-major layout with 4×4 blocks. Each 8 KB page holds 1024 doubles, in 64 blocks. When traversed
in row-major order, one fresh page is accessed every 256 accesses (a hit rate of 1 − 1/256 = 99.6%), but when

traversed in column-major order, a fresh page is accessed every 4 accesses (a hit rate of 1 − 1/4 = 75%).

3.5. Bit-interleaving

Assume that for an M × N array, M = 2m, N = 2n. Write the array indices i and j as

B(i) = im−1im−2 . . . i2i1i0 and B(j) = jn−1jn−2 . . . j2j1j0 (2)

respectively. From this point onwards, we restrict our analysis to square arrays (where M = N ; we
address non-square arrays in Section 4.2). Now the lexicographic mappings can be expressed as bit-
concatenation (written “‖”):

S(M,N)
rm (i, j) = N × i + j = B(i)‖B(j)

= in−1in−2 . . . i2i1i0jn−1jn−2 . . . j2j1j0 (3)

S(M,N)
cm (i, j) = i + M × j = B(j)‖B(i)

= jn−1jn−2 . . . j2j1j0in−1in−2 . . . i2i1i0 (4)

If P = 2p and Q = 2q, the blocked row-major mapping is

S
(M,N)
brm (i, j) = (P × Q) × S(M/P,N/Q)

cm (i, j) + S(P,Q)
rm (i%P, j%Q)

= B(i)(n−1)...p‖B(j)(m−1)...q‖B(i)(p−1)...0‖B(j)(q−1)...0 (5)

Now, choose P = Q = 2, and apply blocking recursively:

S(N,M)
mz (i, j) = in−1jn−1in−2jn−2 . . . i2j2i1j1i0j0 (6)

This mapping is called the Morton Z-order, and is illustrated in Figure 3.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 7

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������
�������
�������
�������

�������
�������
�������
�������

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

S (5,4)
(8,8)

mz

j

i

8 9 12 13 24 25 28 29

42 43 46 47 58 59 62 63

Figure 3. Morton storage layout for an 8 × 8 array. Location of element A[5, 4] is calculated by interleaving
“dilated” representations of 5 and 4 bitwise: D 1(5) = 1000102 , D0(4) = 0100002 . Smz(5, 4) = D1(5) |
D0(4) = 1100102 = 5010 . A 4-word cache block holds a 2 × 2 subarray; a 16-word cache block holds a 4 × 4
subarray. Row-order traversal of the array uses 2 words of each 4-word cache block on each sweep of its inner

loop, and 4 words of each 16-word block. Column-order traversal achieves the same hit rate.

3.6. Morton-order layout is an unbiased compromise between row-major and column-major

The key property which motivates our study of Morton layout is the following:

• Given a cache with any even power-of-two block size, with an array mapped according to the
Morton order mapping Smz, the cache hit rate of a row-major traversal is the same as the cache-
hit rate of a column-major traversal.

• This applies given any cache hierarchy with even power-of-two block size at each level. This is
illustrated in Figure 3.

• The cache hit rate for a cache with block size 22k is 1 − (1/2k).

For cache blocks of 32 bytes (4 double words, k = 1) this gives a hit rate of 50%. For cache blocks
of 128 bytes (16 double words, k = 2) the hit rate is 75% as illustrated earlier. For 8 KB pages (1024
words, k = 5), the hit rate is 96.875%. In Table I, we contrast these hit rates with the corresponding
theoretical hit rates that would result from row-major and column-major layout. Notice that traversing
the same array in column-major order would result in a swap of the row-major and column-major
columns, but leave the hit rates for Morton layout unchanged. In Section 5, we show that this desirable
property of Morton layout is conditional on choosing a suitable alignment for the base address of the

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

8 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

Row-major layout Morton layout Column-major layout
32B cache line 75% 50% 0%

128B cache line 93.75% 75% 0%
8 KB page 99.9% 96.875% 0%

Table I. Theoretical hit rates for row-major traversal of a large array of double words on different levels of
memory hierarchy. Possible conflict misses or additional hits due to temporal locality are ignored. This illustrates

the compromise nature of Morton layout.

array. In our conclusion in Section 7, we also point out that non-square cache blocks and pages lead to
a more complicated picture.

4. Morton-order address calculation

4.1. Dilated arithmetic

Bit-interleaving is too complex to execute at every loop iteration. Wise et al. [19] explore an intriguing
alternative: represent each loop control variable i as a “dilated” integer, where the i’s bits are interleaved
with zeroes. Define D0 and D1 such that

B(D0(i)) = 0in−10in−20 . . . 0i20i10i0 and B(D1(i))= in−10in−20 . . . i20i10i00 (7)

Now we can express the Morton address mapping as S (N,M)
mz (i, j) = D1(i) | D0(j), where “|” denotes

bitwise-or. At each loop iteration we increment the loop control variable; this is fairly straightforward.
Let “&” denote bitwise-and. Then:

D0(i + 1) = ((D0(i) | Ones0) + 1) & Ones1 (8)

D1(i + 1) = ((D1(i) | Ones1) + 1) & Ones0 (9)

where

B(Ones0) = 10101 . . .01010

B(Ones1) = 01010 . . .10101 .

This is illustrated in Figure 4, which shows the ikj variant of matrix multiply. Note that the strength-
reduction in equations 8 and 9 can only be used when an array is accessed in unit stride. Most current
processors do not offer instruction-level support for dilated arithmetic; if Morton layout can be seen
to be competitive in terms of spatial locality for application programs, this would be an interesting
architectural feature to investigate.

4.2. Morton-order address calculation using a lookup table

The dilated arithmetic approach works when the array is accessed using an induction variable which
can be incremented using dilated addition. We found that a much simpler scheme often works nearly as
well: we simply pre-compute a table for the two mappings D0(i) and D1(i). We illustrate this for the

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 9

#define ONES_0 0xaaaaaaaa
#define ONES_1 0x55555555
#define INC_0(vx) (((vx + ONES_0) + 1) & ONES_1)
#define INC_1(vx) (((vx + ONES_1) + 1) & ONES_0)

void mm_ikj_da(double A[SZ*SZ], double B[SZ*SZ],
double C[SZ*SZ])

{
int i_1, j_0, k_0;
double r;
int SZ_0 = Dilate(SZ);
int SZ_1 = SZ_0 << 1;
for (i_1 = 0; i_1 < SZ_1; i_1 = INC_1(i_1))

for (k_0 = 0; k_0 < SZ_0; k_0 = INC_0(k_0)){
unsigned int k_1 = k_0 << 1;
r = A[i_1 + k_0];
for (j_0 = 0; j_0 < SZ_0; j_0 = INC_0(j_0))

C[i_1 + j_0] += r * B[k_1 + j_0];
}

}

Figure 4. Morton-order matrix-multiply implementation using dilated arithmetic for the address
calculation. Variables i 1 and k 0 are dilated representations of the loop control counter Di(i) and D0(k).
Counter j is represented by j 0= D0(j). The function Dilate converts a normal integer into a dilated integer.

void mm_ikj_tb(double A[SZ*SZ], double B[SZ*SZ],
double C[SZ*SZ],
unsigned int MortonTab0[],
unsigned int MortonTab1[])

{
int i, j, k;
double r;
for (i = 0; i < SZ; i++)

for (k = 0; k < SZ; k++){
r = A[MortonTab1[i] + MortonTab0[k]];
for (j = 0; j < SZ; j++)

C[MortonTab1[i] + MortonTab0[j]]
+= r * B[MortonTab1[k] + MortonTab0[j]];

}
}

Figure 5. Morton-order matrix-multiply implementation using table lookup for the address calculation.
MortonTab0 is initialised with the values taken by function D0, MortonTab1 is initialised with the values
taken by function D1. The compiler detects that MortonTab0[i] and MortonTab0[k] are loop invariant,

leaving just one table lookup in the inner loop.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

10 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

ikj matrix multiply variant in Figure 5. Note that for programs with regular stride, the table accesses
are very likely cache hits, as their range is small and the tables themselves are accessed in unit stride.
One small but important detail: we use addition instead of logical “or”. This may improve instruction
selection. It also allows the same loop to work on lexicographic layout using suitable tables. If the array
is non-square, 2n × 2m, n < m, we construct the table so that the j index is dilated only up to bit n.

Figure 6 shows the performance of these two variants on a variety of computer systems. This shows
that the dilated arithmetic implementation is almost always faster; however, the difference is usually
less than 20%. In the remainder of the paper, we use the table lookup scheme exclusively. We comment
on this decision further in Section 7. With compiler support, many applications could benefit from the
dilated arithmetic approach, leading in many cases to more positive conclusions.

5. Effect of Memory Alignment in Morton Layouts

With lexicographic layout, it is often important to pad the row (respectively column) length to avoid
associativity conflicts [15]. With Morton layout, it turns out to be important to consider padding the
base address of the array.

In our previous discussion of the cache hit rate resulting from Morton order arrays, we have
implicitly assumed that the base address of the array will be mapped to the start of a cache line.
For a 32 byte, i.e. 2 × 2 double word cache line, this means that the base address of the Morton array
needs to be 32-byte aligned. As we have illustrated previously in Section 3.6, such an allocation is
unbiased towards any particular order of traversal. However, in Figure 7 we show that if the allocated
array is offset from this “perfect” alignment, Morton layout may no longer be an unbiased compromise
storage layout. Furthermore, the actual average hit rates over the entire array can be significantly worse
compared with perfect alignment of the base address. In Figure 8, we consider the case where the size
of a cache line does not match a square tile of array elements. This is the case, for example with 64
byte cache lines and arrays of double word floating point numbers. As shown in the figure, this means
that the symmetry property of Morton order is lost. It still appears, however, that perfect alignment of
the base address of the Morton array, 64-byte alignment in this case, leads to the best hit rates in both
traversal orders. A similar effect is replicated on each level of the memory hierarchy.

In our experimental evaluation, we have studied the impact on actual performance of the alignment
of the base address of Morton arrays. For each architecture and each benchmark, we have measured
the performance of Morton layout both when using the system’s default alignment (i.e. addresses as
returned by malloc()) and when aligning arrays to each significant size of memory hierarchy. The
results, which are included in Figures 9–18 and discussed in more detail in the next section, broadly
confirm our theoretical conclusion.

6. Experimental setup and experimental results

Benchmark kernels and architectures. To test our hypothesis that Morton layout, implemented using
lookup tables, is a useful compromise between row-major and column-major layout experimentally,
we have collected a suite of simple implementations of standard numerical kernels operating on two-

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 11

0

20

40

60

80

100

120

140

200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Athlon: Performance in MFLOP/s

Morton Default Alignment (Table)
Morton Default Alignment (DA)

0

10

20

30

40

50

60

200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Alpha: Performance in MFLOP/s

Morton Default Alignment (Table)
Morton Default Alignment (DA)

0

5

10

15

20

25

30

200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P3: Performance in MFLOP/s

Morton Default Alignment (Table)
Morton Default Alignment (DA)

0

50

100

150

200

250

300

350

200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P4: Performance in MFLOP/s

Morton Default Alignment (Table)
Morton Default Alignment (DA)

0

10

20

30

40

50

60

70

80

200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Sparc: Performance in MFLOP/s

Morton Default Alignment (Table)
Morton Default Alignment (DA)

Figure 6. Matrix multiply (ikj) performance in MFLOPs of dilated arithmetic Morton address calculation
(see Figure 4) compared against the table-based Morton address calculation (see Figure 5). The graphs show
performance in MFLOPs achieved by the implementations at each problem size on each system. Details of the
systems are given in Table III. On nearly all systems , the dilated-arithmetic implementation performs relatively

better than the table implementation. However the difference is usually less than 20%.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

12 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

2

2

2

2

2 2 2 2

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���
���

0 1 4 5

2 3 6 7

8 9 12 13

151410 11

3

2

2

3

4 42 2 Misses per column

Misses per row

Average Hit Rate
RM CM
50% 50%

Average Hit Rate
RM CM

37.5% 25%

���������
���������
���������

	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�������
�������

0 1 4 5

2 3 6 7

8 9

10 11 14 15

12 13

2

2

2

2

4 4 4 4

���
���
���

�

�

�

�������
�������
�������
�������

�������
�������
�������
�������

6

54

12 13

1411 15

8 9

7

10

0 1

2 3

2

3

2

3

4 42 2

Average Hit Rate
RM CM
50% 0%

Average Hit Rate
RM CM

37.5% 25%

Figure 7. Alignment of Morton order arrays I: Figures illustrate how the cache performance can change when
the alignment is varied (in the order of perfectly aligned at 32-byte boundary and offset from there by 8, 16 and
24 bytes) for a part of a larger Morton array. The numbers next to each row and below each column indicate
the number of misses encountered when traversing a row (column) of the block in row-major (column-major)
order, considering only spatial locality. Underneath each diagram, we show the average theoretical hit rate for the
entire Morton array for both row-major (RM) and colum-major (CM) traversal. As can be seen by the illustrations,
when an array is imperfectly aligned, in addition to losing the symmetry of the Morton layout, spatial locality also

worsened.

MMijk Matrix multiply, ijk loop nest order (usually poor due to large stride)
MMikj Matrix multiply, ikj loop nest order (usually best due to unit stride)
Jacobi2D Two-dimensional four-point stencil smoother
ADI Alternating-direction implicit kernel, ij,ij order
Cholesky K-variant (usually poor due to large stride)

Table II. Numerical kernels used in our experimental evaluation.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 13

��

��

���

��

��� ��
	�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�	

8 9

0 1

32 7

3130

292825

56

58

60

10

32

34

40

42

11

33

35

41

43

14

12

6

4

36

38

44

46

5

13

15

37

39

45

47

16

18

24

26

48

17

19

49

51

27

57

59

22

20

52

54

62 63

61

55

53

23

21

50

2

2

2

2

2

2

2

2

4 4 4 4 4 4 4 4

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���������������
���������������
���������������
���������������
���������������
���������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���������������
���������������
���������������
���������������

���
���
���
���

���

���

�����������������������������
�����������������������������
�����������������������������
�����������������������������

���������������������������
���������������������������
���������������������������
���������������������������

�������
�������
�����
�����

8 9

0 1

32 7

3130

292825

56

58

60

10

32

34

40

42

11

33

35

41

43

14

12

6

4

36

38

44

46

5

15

37

39

45

47

16

18

24

26

48

50

17

19

49

51

27

57

59

22

20

52

54

62 63

61

55

53

23

21

13

2

4

2

4

2

4

2

4

6 4 4 4 6 4 4 4

Average Hit Rate
RM CM
75% 50%

Average Hit Rate
RM CM

62.5% 43.75%

��

��

���

���

���

���

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�"

#�#�#�#�#�#�#�#�#�#�##�#�#�#�#�#�#�#�#�#�##�#�#�#�#�#�#�#�#�#�##�#�#�#�#�#�#�#�#�#�##�#�#�#�#�#�#�#�#�#�#

$�$�$�$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$�$�$�$

8 9

0 1

32 7

3130

292825

56

58

60

10

32

34

40

42

11

33

35

41

43

14

12

6

4

36

38

44

46

5

15

37

39

45

47

16

18

24

26

50

17

19

49

51

27

57

59

22

20

52

54

62 63

61

55

53

23

21

13

48

4

4

4

4

4

4

4

4

4 6 4 4 4 6 4 4

%�%�%�%�%�%�%%�%�%�%�%�%�%%�%�%�%�%�%�%%�%�%�%�%�%�%%�%�%�%�%�%�%

&�&�&�&�&�&�&&�&�&�&�&�&�&&�&�&�&�&�&�&&�&�&�&�&�&�&&�&�&�&�&�&�&

'�'�'�'�'�'�'�'�''�'�'�'�'�'�'�'�''�'�'�'�'�'�'�'�''�'�'�'�'�'�'�'�''�'�'�'�'�'�'�'�''�'�'�'�'�'�'�'�''�'�'�'�'�'�'�'�''�'�'�'�'�'�'�'�'

(�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�(

)�)�)�)�)�)�))�)�)�)�)�)�))�)�)�)�)�)�))�)�)�)�)�)�))�)�)�)�)�)�)

��*�*�*�*�**�*�*�*�*�*�**�*�*�*�*�*�**�*�*�*�*�*�**�*�*�*�*�*�* +�+�+�++�+�+�++�+�+�++�+�+�+

,�,�,�,,�,�,�,,�,�,�,,�,�,�,

-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-

.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.

/�/�/�/�/�/�/�/�/�/�/�//�/�/�/�/�/�/�/�/�/�/�//�/�/�/�/�/�/�/�/�/�/�//�/�/�/�/�/�/�/�/�/�/�//�/�/�/�/�/�/�/�/�/�/�/

0�0�0�0�0�0�0�0�0�0�0�00�0�0�0�0�0�0�0�0�0�0�00�0�0�0�0�0�0�0�0�0�0�00�0�0�0�0�0�0�0�0�0�0�00�0�0�0�0�0�0�0�0�0�0�0
8 9

0 1

32 7

3130

292825

56

58

60

10

32

34

40

42

11

33

35

41

43

14

12

6

4

36

38

44

46

5

15

37

39

45

47

16

18

24

26

50

17

19

49

51

27

57

59

22

20

52

54

62 63

61

55

53

23

21

13

48

4

4

4

4

4

4

4

4

4 4 6 4 4 4 6 4

Average Hit Rate
RM CM
50% 43.75%

Average Hit Rate
RM CM
50% 43.75%

Figure 8. Alignment of Morton order arrays II: For a non-square cache block, such as 64 bytes or 8 double
words, this figure illustrates how cache performance varies with the alignment of the base address of the array,
in the order of perfectly aligned at 64 bytes, and offset by 8, 24 and 40 bytes. Although, there are 7 possible
misalignments, we show only some interesting examples. Numbers next to (below) each row (column) show the
number of misses encountered when traversing a row (column) of the block in row-major (column-major) order,
considering only spatial locality. Underneath each diagram, we show the average theoretical hit rate for the entire
Morton array for both row-major (RM) and colum-major (CM) traversal. When the array is imperfectly aligned,

in addition to losing the symmetry of the Morton Layout we get worse spatial locality.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

14 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

Alpha Alpha 21264 (EV6) 500MHz
Compaq Operating System: OSF1 V5.0
AlphaServer ES40 L1 D-cache: 2-way, 64 KB, 64B cache line.

L2 cache: direct mapped, 4MB.
Page size: 8 KB.
Main Memory: 4GB RAM
Compiler: Compaq C V6.1-020
Flags: -arch ev6 -fast -O4

Sun UltraSparc III (v9) 750MHz
SunFire 6800 Operating System: SunOS 5.8

L1 D-cache: 4-way, 64 KB, 32B cache line.
L2 cache: direct-mapped, 8MB.
Page size: 8 KB.
Main Memory: 24GB
Compiler: Sun Workshop 6
Flags: -fast -xcrossfile -xalias level=std

PIII Intel Pentium III Coppermine, 450MHz
Operating System: Linux 2.4.20
L1 D-cache: 4-way, 16 KB, 32B cache line.
L2 cache: 4-way 512 KB, sectored 32B cache line.
Page size: 4 KB.
Main Memory: 256MB SDRAM.
Compiler: Intel C/C++ Compiler v7.00 For Linux.
Flags: -xK -ipo -O3 -static

P4 Pentium 4, 2.0 GHz
Operating System: Linux 2.4.20
L1 D-cache: 4-way, 8 KB, sectored 64B cache line.
L2 cache: 8-way, 512 KB, sectored 128B cache line.
Page size: 4 KB.
Main Memory: 512MB DDR-RAM.
Compiler: Intel C/C++ Compiler v7.00 For Linux.
Flags: -xW -ipo -O3 -static

AMD AMD Athlon XP 2100+, 1.8GHz
Operating System: Linux 2.4.20
L1 D-Cache: 2-way, 64 KB, 64B cache line
L2 cache: 16-way, 256 KB, 64B cache line
Page size: 4 KB.
Main Memory: 512MB DDR RAM.
Compiler: Intel C/C++ Compiler v7.00 For Linux.
Flags : -xK -ipo -static

Table III. Cache and CPU configurations used in the experiments. Compilers and compiler flags
match those used by the vendors in their SPEC CFP2000 (base) benchmark reports [17].

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 15

dimensional arrays and carried out experiments on five different architectures. The benchmarking
kernels used are shown in Table II and the platforms in Table III.

Problem sizes. As mentioned in Section 2, our previous paper [18] reported performance results for
power-of-two problem sizes. For this paper, we decided to carry out an exhaustive study, collecting
performance data, where possible, for all problem sizes between 200× 200 and 2048× 2048. In some
cases, the running-time of the benchmarks was such that we were not able yet to collect data up to
2048× 2048. In those cases, we report data up to 1024× 1024; however, we are continuing to collect
measurements. In all cases, we used square arrays.

Experimental methodology. Most of the architectures we used for experiments were multi-user
platforms. In the case of the x86 architectures (Pentium III, Pentium 4 and Athlon), we used clusters of
identical teaching machines. The absence of a fully-controlled environment, and our desire to collect
data for a full range of problem sizes (which implies running experiments for a very long time in total),
led us to design carefully an experimental methodology aimed at minimising the impact of external
interferences in our results.

• During off-peak hours, we ran a script for collecting measurements on each available platform.
In order to minimise the impact of any transient effects on particular ranges of experiments,
the scripts are programmed to repeatedly make a random choice of benchmark kernel (from the
list in Table II), array layout (i.e. row-major, column-major or Morton), alignment of the base
address of the array (from a list of all significant sizes in the memory hierarchy, i.e. cache line
lengths and page size) and problem size.

• Once a kernel, layout, alignment and problem size are chosen, the kernel is run once and the
time recorded in a shared file structure using suitable locking.

• Over time, we accumulated a total of more than 23 million measurements. In our evaluation,
we proceeded as follows: For each tuple of platform, experiment (kernel), layout, alignment
and problem size, we gather all timing results obtained. Notice that due to the random choice
of parameters, the number of samples for each point varies. We first use the Dixon Test [7] to
eliminate up to one outlier. Following that, we calculate various statistical parameters, such as
mean, standard deviation, median and 90% confidence intervals.

• The performance numbers we report in the following figures and tables are all based on the
median of measurements taken. The reason for this is that the median is less liable to interference
from outliers than the mean [16]. Although we do not show these in the paper, we have calculated
and plotted 90% confidence intervals for all data we report.

6.1. Performance results

Table IV shows the baseline performance achieved by each machine using standard row-major layout.
Figures 9–18 show our results in detail. We make some comments on each graph directly in the figures.
For each experiment / architecture pair, we give a broad characterisation of whether Morton layout is a
useful compromise between row-major and column-major in this setting by annotating the figures with
win, lose, etc. As an overview, we record wins for

• Adi: Alpha, P3 and Sparc over column-major but not over row-major.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

16 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

Adi Cholk Jacobi2D MMijk MMikj
min max min max min max min max min max

Alpha 25.1 84.5 4.8 40.6 26.8 167.1 5.8 139.5 52.7 177.0
Athlon 43.8 210.4 8.8 308.5 150.6 1078.6 10.1 655.2 117.4 884.2
P3 21.8 46.6 3.9 42.1 51.7 141.5 14.8 134.1 45.9 153.8
P4 46.1 134.1 4.8 266.1 126.6 1337.3 17.9 766.0 281.4 939.1
Sparc 14.6 54.5 3.5 78.4 33.2 139.2 2.9 131.9 32.0 145.1

Table IV. Baseline performance of various kernels on different systems. For each kernel, for each
machine, we show the performance range in MFLOPs for row-major array layout over all problem

sizes covered in our experiments (as shown in Figures 9–18).

• Jacobi2D: Alpha, Sparc over column-major but not over row-major.
• MMikj: Alpha, Sparc over column-major but not over row-major.
• MMijk: Alpha, Sparc over both row-major and column-major.

Notice that for kernels with high spatial locality, such as MMikj and Jacobi2D, which run close to the
machine’s peak performance, bandwidth to L1 cache for table access may be a major factor. Our results
also confirm that for row-major layout, padding the length of the rows of an array can significantly
improve performance. The amount of padding required is small, but needs to be chosen very carefully.
In Section 6.2, which follows the detailed performance graphs, we evaluate the competitiveness of
Morton layout in overview by calculating the slowdown of Morton order over the best lexicographic
layout.

6.2. Competitive efficiency of Morton layout

If we know how an array is going to be accessed, and if there are no conflicting access patterns to
that array, we could choose optimally between the two lexicographic layouts for that array. If we have
only partial or no information about the access patterns, we would like to choose a layout which is
competitive with the optimum layout. If we do not know how arrays in a program might be aliased, we
probably need to choose one default layout for all arrays in that program, and we want this choice to
compare well to an optimal decision.

One way to evaluate the use of the Morton layout as such a default-choice is by analogy with
competitive online algorithms. Suppose we have an optimal array layout scheme OPT. Following [8],
a memory layout scheme ALG is c-competitive (for a constant “efficiency” factor c) if there exists a
constant α such that for all utilisation scenarios (or access sequences) σ,

COSTALG(σ) ≤ c · COSTOPT(σ) + α

It is not generally possible to find an optimum layout efficiently — specifically if there are
conflicting access patterns for arrays. Therefore, in order to quantify our hypothesis that Morton layout

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 17

 0

 20

 40

 60

 80

 100

 120

 100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 8192-Byte Aligned

Adi on Alpha: Win over Column-Major

• Notice upper limit is 1024 × 1024.
• The fall-off in RM performance occurs at

725 × 725 when the total datasize
exceeds L2 cache size (4MB, direct
mapped). This assumes a working set of
725 × 725 doubles.

• RM below about 725 × 725 has a
bimodal distribution.

• Notice the sharp drop in CM performance
at around 360 × 360.

• Alignment does not change Morton
performance, the three lines coincide.

 0

 10

 20

 30

 40

 50

 60

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned
Morton 64-Byte Aligned

Morton 8192-Byte Aligned

Adi on Sparc: Win over Column-Major

• The fall-off in RM performance occurs at
1024 × 1024 when the total datasize
exceeds the L2 cache size (8MB, direct
mapped). This assumes a working set of
1024 × 1024 doubles.

• Notice the drop in CM performance
which occurs after 720 × 720.

• All Morton versions have high variation
between problem sizes (confidence
intervals for the measurements are also
larger than on other machines).

Figure 9. ADI performance in MFLOPs on Alpha and Sparc. We compare row-major (RM), column-major
(CM) and Morton implemented using lookup tables. For Morton, performance is shown for default alignment and

significant sizes in the memory hierarchy (cache line lengths and page size).

implemented using table lookup is a competitive default choice, we compare against the better of the
two lexicographic layouts. The constant α is designed so that a constant overhead cost could be taken
into account (such as the cost of filling lookup tables). However, in our experiments, we have simply
measured the time of the numerical kernels, and we therefore set α = 0 in the above equation.

In Figures 19–23, we show the range of slowdown factors c over the best lexicographic layout. For
each problem size, we select from our performance data the better of the two lexicographic layouts and
then calculate the slowdown of Morton over this “optimal” time. We show the data as box-and-whisker
plots, indicating maximum minimum, median values and the range in which 50% of all data points lie.
From these plots, we offer the following tentative conclusions about the competitiveness of Morton
layout.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

18 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

 0

 50

 100

 150

 200

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 4096-Byte Aligned

Adi on Athlon: Conditional Win over
Column-Major

• There is a cross-over between default
Morton and page-aligned Morton at
around 900 × 900.

• For large datasizes, page-aligned is the
best Morton version.

• Notice some very bad performance drops
on CM for individual problem sizes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned

Morton 4096-Byte Aligned
Adi on Pentium III: Win over Column-Major

• Morton with default alignment virtually
coincides with CM.

• Morton aligned to either L2 cache line
length (32 bytes) or page size leads to a
clear improvement.

• Only becomes a win with alignment.

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P4: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 128-Byte Aligned
Morton 4096-Byte Aligned

Adi on Pentium 4: Lose

• Morton generally performs no better than
CM.

• Notice, however, some really bad drops
in CM performance for some datasizes,
which Morton does not suffer.

• For large problem sizes, L2 aligned is
slightly faster than page-aligned Morton.
However, page-aligned has lower
variance.

Figure 10. ADI performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM), column-major
(CM) and Morton implemented using lookup tables. For Morton, performance is shown for default alignment and

significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 19

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 8192-Byte Aligned

Jacobi2D on Alpha: Win over Column-Major

• Alignment to page or L2 cache line
length improves Morton performance.

• RM performance drops off after
512 × 512. Assuming a working set of
two arrays of 512 × 512 doubles, this is
the point where the working set exceeds
L2 cache size (4MB, direct mapped). RM
performance levels off after 725 × 725,
which appears to be when one single
725 × 725 array of doubles exceeds the
L2 cache size.

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned
Morton 64-Byte Aligned

Morton 8192-Byte Aligned

Jacobi2D on Sparc: Win over Column-Major

• There is a sharp drop in Morton
performance occurs at 512 × 512.

• There is a cross-over between
page-aligned Morton and all other
Morton versions at 512 × 512.

• Morton only becomes a win when arrays
are page-aligned.

• RM performance drops off after
725 × 725. Assuming a working set of
two arrays of 725 × 725 doubles, this is
the point where the working set exceeds
L2 cache size (8MB, direct mapped).

Figure 11. Jacobi2D performance in MFLOPs on Alpha and Sparc. We compare row-major (RM), column-
major (CM) and Morton implemented using lookup tables. For Morton, performance is shown for default

alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

20 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

 0

 200

 400

 600

 800

 1000

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 4096-Byte Aligned
Jacobi2D on Athlon: Lose

• Notice there is a cross-over between the
default and L2-/page-aligned Morton
versions at around 450 × 450.

• For large problem sizes, page-aligned
Morton is very slightly better than
default-aligned.

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned

Morton 4096-Byte Aligned

Jacobi2D on Pentium III: No Win

• L2- and page-aligned Morton is slightly
better than default-aligned.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on P4: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 128-Byte Aligned
Morton 4096-Byte Aligned

Jacobi2D on Pentium 4: Conditional Win over
Column-Major

• Page-aligned and L2-aligned Morton are
slightly better than default-aligned.

• Morton becomes a win for very large
problem sizes.

Figure 12. Jacobi2D performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM), column-
major (CM) and Morton implemented using lookup tables. For Morton, performance is shown for default

alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 21

 0

 50

 100

 150

 200

 100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 8192-Byte Aligned

MMikj on Alpha: Win over Column-Major

• Notice upper limit is 1024 × 1024.
• Alignment makes little difference to the

overall Morton performance.
• The drop in RM (and Morton)

performance occurs at 725 × 725. This
corresponds to the datasize where one
array of 725 × 725 doubles exceeds the
L2 cache size (4 MB, direct mapped).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned
Morton 64-Byte Aligned

Morton 8192-Byte Aligned

MMikj on Sparc: Win over column-Major

• Page-aligned Morton is slightly faster
than the other versions.

• The drop in RM (and Morton)
performance occurs at 1024 × 1024. This
corresponds to the datasize where one
array of 1024 × 1024 doubles exceeds
the L2 cache size (8MB, direct mapped).

Figure 13. MMikj performance in MFLOPs on Alpha and Sparc. We compare row-major (RM), column-major
(CM) and Morton implemented using lookup tables. For Morton, performance is shown for default alignment and

significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

22 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 4096-Byte Aligned

MMikj on Athlon: Lose

• Notice there is a cross-over between the
default and L2-/page-aligned Morton
versions at around 500 × 500.

• For large problem sizes, page-aligned
Morton is very slightly better than
default-aligned.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned

Morton 4096-Byte Aligned

MMikj on Pentium III: No Win

• For large problem sizes, L2- and
page-aligned Morton is very slightly
better than default-aligned.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P4: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 128-Byte Aligned
Morton 4096-Byte Aligned

MMikj on Pentium 4: Slight Win

• L2 (128 byte) and page-aligned Morton is
better than Morton with default
alignment.

• L1 (64 byte) alignment is slightly worse
than default-aligned.

Figure 14. MMikj performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM), column-
major (CM) and Morton implemented using lookup tables. For Morton, performance is shown for default

alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 23

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 8192-Byte Aligned

MMijk on Alpha: Win over both Row-Major and
Column-Major

• Notice upper limit is 1024 × 1024.
• Notice the sharp drop in RM and CM

performance around 360 × 360.
• Page-aligned Morton is faster than

default, but L2-aligned is faster than
page-aligned.

• For Morton on problem sizes
832(= 26 ∗ 32) – 864(= 27 ∗ 32) and
992(= 31 ∗ 32) – 1024(= 32 ∗ 32) we
see a noticeable drop in performance,
presumably due to some self- or
inter-array interference effect in the
direct-mapped L2 cache.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned
Morton 64-Byte Aligned

Morton 8192-Byte Aligned MMijk on Sparc: Potential Win over both
Row-Major and Column-Major

• Notice upper limit is 1024 × 1024.
• Notice the sharp drop in RM and CM

performance around 720 × 720.
• Notice for large problem sizes Morton is

faster than either lexicographic layout.

Figure 15. MMijk performance in MFLOPs on Alpha and Sparc. We compare row-major (RM), column-major
(CM) and Morton implemented using lookup tables. For Morton, performance is shown for default alignment and

significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

24 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

 0

 100

 200

 300

 400

 500

 600

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 4096-Byte Aligned

MMijk on Athlon: Lose

• Default Morton is faster than L2- or
page-aligned for smaller problem sizes.

• RM data is trimodal.

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned

Morton 4096-Byte Aligned
MMijk on Pentium III: Lose

• The RM and CM performance across the
range of data sizes is very close.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on P4: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 128-Byte Aligned
Morton 4096-Byte Aligned

MMijk on Pentium 4: Lose

• L2 (128 byte) and page-aligned Morton is
slightly better than Morton with default
alignment.

• L1 (64 byte) alignment is slightly worse
than default-aligned.

• Notice that for some individual problem
sizes, both RM and CM drop drastically
below Morton.

Figure 16. MMijk performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM), column-
major (CM) and Morton implemented using lookup tables. For Morton, performance is shown for default

alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Cholk on Alpha: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment

Cholk on Alpha: Win

• Notice upper limit is 1024 × 1024.
• For data sizes larger than around

550 × 550, Morton is faster than either
column-major or row-major.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Cholk on Sparc: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Cholk on Sparc: Potential Win

• Notice upper limit is 1024 × 1024.
• For data sizes larger than around

950 × 950, Morton is faster than either
column-major or row-major.

Figure 17. Cholesky k-variant performance in MFLOPs on Alpha and Sparc. We compare row-major (RM),
column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown for default

alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

26 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

 0

 50

 100

 150

 200

 250

 300

 350

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Cholk on Athlon: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 4096-Byte Aligned

Chol-k on Athlon: Lose

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Cholk on P3: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 32-Byte Aligned

Morton 4096-Byte Aligned

Chol-k on Pentium III: Lose

• Notice upper limit is 1024 × 1024.

 0

 50

 100

 150

 200

 250

 500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Cholk on P4: Performance in MFLOP/s (Alignment)

Row-Major Default Alignment
Column-Major Default Alignment

Morton Default Alignment
Morton 64-Byte Aligned

Morton 128-Byte Aligned
Morton 4096-Byte Aligned

Chol-k on Pentium 4: Marginal Lose

Figure 18. Cholesky k-variant performance in MFLOPs on Athlon, P3 and P4. We compare row-major (RM),
column-major (CM) and Morton implemented using lookup tables. For Morton, performance is shown for default

alignment and significant sizes in the memory hierarchy (cache line lengths and page size).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 27

Competitive Efficiency for ADI

0

2

4

6

8

A
lp

ha
 -

 D
ef

au
lt

A
lp

ha
 -

 6
4

A
lp

ha
 -

81
92

A
th

lo
n

-
D

ef
au

lt

A
th

lo
n

-
64

A
th

lo
n

-
40

96

P
3

-
D

ef
au

lt

P
3

 -
 3

2

P
3

-4
09

6

P
4

-D
ef

au
lt

P
4

-
64

P
4

 -
 1

28

P
4

 -
 4

09
6

S
pa

rc
 -

 D
ef

au
lt

S
pa

rc
 -

 3
2

S
pa

rc
 -

 6
4

S
pa

rc
 -

 8
19

2

S
lo

w
d

o
w

n
 c

 o
ve

r
B

es
t

C
an

o
n

ic
al

Figure 19. Range of slowdown factors c over the best lexicographic layout for Adi. For each machine / layout
pair, we show the range of all c factors as a box-and-whisker plot: The gray box indicates the area where 50%
of the datapoints lie while the “whiskers” indicate the maximum and minimum points. The line in the middle of
the grey box indicates the median. Most median slowdown factors for Adi are around or below 2. The very high

maximum factors encountered on Athlon and P3 occur for small datasizes.

Competitive Efficiency for Jacobi2D

0

2

4

6

8

10

12

14

16

18

A
lp

ha
 -

 D
ef

au
lt

A
lp

ha
 -

 6
4

A
lp

ha
 -

81
92

A
th

lo
n

-
D

ef
au

lt

A
th

lo
n

-
64

A
th

lo
n

-
40

96

P
3

-
D

ef
au

lt

P
3

 -
 3

2

P
3

-4
09

6

P
4

-D
ef

au
lt

P
4

-
64

P
4

 -
 1

28

P
4

 -
 4

09
6

S
pa

rc
 -

 D
ef

au
lt

S
pa

rc
 -

 3
2

S
pa

rc
 -

 6
4

S
pa

rc
 -

 8
19

2

S
lo

w
d

o
w

n
 c

 o
ve

r
B

es
t

C
an

o
n

ic
al

Figure 20. Range of slowdown factors c over the best lexicographic layout for Jacobi2D. For each machine /
layout pair, we show the range of all c factors as a box-and-whisker plot: The gray box indicates the area where
50% of the datapoints lie while the “whiskers” indicate the maximum and minimum points. The line in the middle
of the grey box indicates the median. Using page-aligned arrays, the median slowdown factor on Alpha, P3 and
Sparc is close to 2. The high maximum on Athlon for default-alignment occurs for very small datasizes; note

however, that alignment improves this considerably.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

28 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

Competitive Efficiency for MMikj

0

2

4

6

8

10

12

14

16

18

20

A
lp

ha
 -

 D
ef

au
lt

A
lp

ha
 -

 6
4

A
lp

ha
 -

81
92

A
th

lo
n

-
D

ef
au

lt

A
th

lo
n

-
64

A
th

lo
n

-
40

96

P
3

-
D

ef
au

lt

P
3

 -
 3

2

P
3

-4
09

6

P
4

-D
ef

au
lt

P
4

-
64

P
4

 -
 1

28

P
4

 -
 4

09
6

S
pa

rc
 -

 D
ef

au
lt

S
pa

rc
 -

 3
2

S
pa

rc
 -

 6
4

S
pa

rc
 -

 8
19

2

S
lo

w
d

o
w

n
 c

 o
ve

r
B

es
t

C
an

o
n

ic
al

Figure 21. Range of slowdown factors c over the best lexicographic layout for MMikj. For each machine /
layout pair, we show the range of all c factors as a box-and-whisker plot: The gray box indicates the area where
50% of the datapoints lie while the “whiskers” indicate the maximum and minimum points. The line in the middle
of the grey box indicates the median. On i386 architectures, Morton suffers a disappointingly large slowdown. In
particular on the Pentium 4, the stride-1 traversal of arrays in the MMikj algorithm is handled very well by the
memory system. In contrast, Morton almost certainly does not benefit from features such as the P4’s hardware

prefetching mechanism, which is based on detecting regular access strides.

Impact of Alignment of Morton Arrays. For all experiments, except for MMijk and Cholesky on
Athlon, our theoretical conclusions from Section 5 are supported by our experimental data: Padding
the base address of Morton order arrays to a significant size in the memory hierarchy, such as cache
line size or page size can significantly improve performance.

Considering spatial locality alone, we would expect alignment to the largest significant size, i.e. page
size, to have the greatest benefit. This is supported in most, but not all cases by our experimental data,
and we assume that where this is not the case (such as MMijk on Alpha), this is due to interference
effects.

In some cases, specifically Adi on Athlon, Jacobi on Sparc and MMikj on P4, the improvement with
page-alignment is quite significant.

Morton layout can outperform both lexicographic layouts. Notice that there are cases where the
minimum, and occasionally (MMijk on Alpha) also the mean slowdown is less than 1, meaning that
Morton layout performs better than the best lexicographic layout.

Worst slowdown. Although we have shown that proper alignment can reduce the maximum slowdown
factors found, and therefore increase the competitiveness of the basic Morton scheme, the maximum
slowdown factors are still very high — the worst probably around 11 for MMikj on P4. In our
conclusion, we discuss some further ways in which we hope to improve these figures.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 29

Competitive Efficiency for MMijk

0

2

4

6

8

A
lp

ha
 -

 D
ef

au
lt

A
lp

ha
 -

 6
4

A
lp

ha
 -

81
92

A
th

lo
n

-
D

ef
au

lt

A
th

lo
n

-
64

A
th

lo
n

-
40

96

P
3

-
D

ef
au

lt

P
3

 -
 3

2

P
3

-4
09

6

P
4

-D
ef

au
lt

P
4

-
64

P
4

 -
 1

28

P
4

 -
 4

09
6

S
pa

rc
 -

 D
ef

au
lt

S
pa

rc
 -

 3
2

S
pa

rc
 -

 6
4

S
pa

rc
 -

 8
19

2

S
lo

w
d

o
w

n
 c

 o
ve

r
B

es
t

C
an

o
n

ic
al

Figure 22. Range of slowdown factors c over the best lexicographic layout for MMijk. For each machine /
layout pair, we show the range of all c factors as a box-and-whisker plot: The gray box indicates the area where
50% of the datapoints lie while the “whiskers” indicate the maximum and minimum points. The line in the middle
of the grey box indicates the median. The MMijk loop suffers from severe performance drops for specific datasizes
on most architectures for both row-major and column-major layout. Morton layout does not incur this problem,
and the minimum slowdown on all architectures here is less than 1 — i.e. on all architectures there are problem
sizes where Morton out-performs the better of the two lexicographic layouts. On Alpha, Morton out-performs both

lexicographic layouts for all datasizes larger than 360 × 360, hence the median slowdown of less than 1.

7. Conclusions and directions for further research

Using a small suite of dense kernels working on two-dimensional arrays, we have studied the impact
of poor array layout. On some machines, we found that Morton array layout, even implemented with a
lookup table with no compiler support, is remarkably competitive to both row-major and column-major
layouts. We also found that using a lookup-table for address calculation allows flexible selection of fine-
grain non-linear array layout, while offering attractive performance on some architectures compared
with lexicographic layouts on untiled loops. A number of interesting issues remain:

• Non-square cache blocks and pages
In our brief analysis of spatial locality using Morton layout (Section 3.6, Figure 3), we assumed
that cache blocks and virtual memory pages are a square (even) power of two. This depends on
the array’s element size, and is often not the case. As we showed in Figure 8, row-major and
column-major traversal of Morton layout then lead to differing spatial locality. A more subtle
non-linear layout might address this.

• Unrolling
The results presented here are based on code which uses the lookup table for every address
calculation. By strip-mining the innermost loop (which is always valid) by a small square power-
of-two factor such as 4, it is possible to replace some lookup table accesses with constant offsets

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

30 JEYARAJAN THIYAGALINGAM, OLAV BECKMANN, PAUL H. J. KELLY

Competitive Efficiency for Cholk

0

1

2

3

4

A
th

lo
n

-
D

ef
au

lt

A
th

lo
n

-
64

A
th

lo
n

-
40

96

P
3

-
D

ef
au

lt

P
3

 -
 3

2

P
3

-4
09

6

P
4

-D
ef

au
lt

P
4

-
64

P
4

 -
 1

28

P
4

 -
 4

09
6

S
pa

rc
 -

 D
ef

au
lt

S
pa

rc
 -

 3
2

S
pa

rc
 -

 6
4

S
pa

rc
 -

 8
19

2

S
lo

w
d

o
w

n
 c

 o
ve

r
B

es
t

C
an

o
n

ic
al

Figure 23. Range of slowdown factors c over the best lexicographic layout for Cholk. For each machine /
layout pair, we show the range of all c factors as a box-and-whisker plot: The gray box indicates the area where
50% of the datapoints lie while the “whiskers” indicate the maximum and minimum points. The line in the middle

of the grey box indicates the median. Median slowdown for all architectures is less than factor 2.

from the base of a 2 × 2 block. This should give higher performance for the Morton layout, at
the loss of some of the addressing flexibility which the lookup table scheme allows.

• Associativity conflicts within and between Morton arrays
Associativity conflicts have been studied extensively for lexicographic layouts (e.g. [15]). Our
results show evidence that associativity conflicts also impact performance with Morton layout,
and further study of the effect is needed.

• Cache contention between arrays and lookup tables
The lookup table scheme relies for its performance on the tables, which are accessed with unit
stride, occupying first-level cache. However, array accesses can displace lookup table entries. We
believe this effect may explain some features of our performance graphs and plan to investigate.

• Prefetching
Most modern processors have both autonomous prefetching of uniform address streams, and
explicit prefetching instructions. With lexicographic layout, fixed-stride accesses are common
and autonomous prefetch mechanisms should work well. With Morton layout, the access pattern
is known in advance but is not uniform. To sustain memory access bandwidth we need to issue
prefetch instructions carefully.

• Performance analysis using performance counters
We plan to use performance counter instrumentation in order to better understand and analyse
why we see the performance patterns that we have reported in this paper.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

MORTON LAYOUT FOR LARGE TWO-DIMENSIONAL ARRAYS 31

It seems unlikely that Morton layout can offer a competitive compromise for three-dimensional arrays,
since a given lexicographic traversal would use only 2k words of each 23k-word cache block.

ACKNOWLEDGEMENTS

This work was partly supported by mi2g Software, a Universities UK Overseas Research Scholarship and by
the United Kingdom EPSRC-funded OSCAR project (GR/R21486). We also thank Imperial College Parallel
Computing Centre (ICPC) for access to their equipment. We are very grateful for helpful discussions with Susanna
Pelagatti and Scott Baden, whose visits were also funded by the EPSRC (GR/N63154 and GR/N35571). We thank
the anonymous reviewers for their constructive suggestions on improving the paper.

REFERENCES

1. Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The uniform memory hierarchy model of computation.
Algorithmica, 12(2/3):72–109, 1994.

2. Jennifer M. Anderson, Saman P. Amarasinghe, and Monica S. Lam. Data and computation transformations for
multiprocessors. In PPoPP ’95: Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
volume 30(8) of ACM SIGPLAN Notices, pages 166–178, August 1995.

3. Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and Mithuna Thottethodi. Nonlinear array
layouts for hierarchical memory systems. In ICS ’99: International Conference on Supercomputing, pages 444–453, June
20–25, 1999.

4. Michal Cierniak and Wei Li. Unifying data and control transformations for distributed share d-memory machines. In
PLDI ’95: ACM SIGPLAN ’95 Conference on Programming Language Design and Implementation, June 1995.

5. Michal Cierniak and Wei Li. Validity of interprocedural data remapping. Technical Report 642, University of Rochester,
Computer Science Department, November 1996.

6. Keith D. Cooper, Mary W. Hall, and Ken Kennedy. Procedure cloning. In IEEE International Conference on Computer
Languages, pages 96–105, March 1992.

7. W. J. Dixon. Ratios involving extreme values. The Annals of Mathematical Statistics, 22(1):68–78, March 1951.
8. Amos Fiat, Richard Karp, Mike Luby, Lyle McGeoch, Daniel Sleator, and Neal E. Young. Competitive paging algorithms.

Journal of Algorithms, 12(4):685–699, December 1991.
9. Leo J. Guibas and Douglas K. Wyatt. Compilation and delayed evaluation in APL. In POPL ’78: Fifth Annual ACM

Symposium on Principles of Programming Languages, pages 1–8, January 1978.
10. C. Barry Jay. Shape in computing. ACM Computing Surveys, 28(2):355–357, 1996.
11. Mahmut T. Kandemir, Alok N. Choudhary, J. Ramanujam, N. Shenoy, and Prithviraj Banerjee. Enhancing spatial locality

via data layout optimizations. In Proceedings of Euro-Par’98, number 1470 in LNCS, pages 422–434, September 1998.
12. Monica S. Lam, Edward E. Rothenberg, and Michael E. Wolf. The cache performance and optimizations of blocked

algorithms. In ASPLOS ’91: Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 63–74, April 1991.

13. Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality with loop transformations. ACM
Transactions on Programming Languages and Systems, 18(4):424–453, July 1996.

14. Michael F. P. O’Boyle and Peter M. W. Knijnenburg. Integrating loop and data transformantions for global optimisation.
Journal of Parallel and Distributed Computing, 62:563–590, 2002.

15. Gabriel Rivera and Chau-Wen Tseng. Data transformations for eliminating conflict misses. In PLDI ’98: ACM
SIGPLAN ’98 Conference on Programming Language Design and Implementation, pages 38–49, June 1998.

16. Lothar Sachs. Statistische Methoden. Springer Verlag, 5
th edition, 1982.

17. http://www.specbench.org/.
18. Jeyarajan Thiyagalingam and Paul H. J. Kelly. Is Morton layout competitive for large two-dimensional arrays? In Euro-Par

2002: 8
th International Euro-Par Conference, number 2400 in LNCS, pages 280–288, August 2002.

19. David S. Wise, Jeremy D. Frens, Yuhong Gu, and Gregory A. Alexander. Language support for Morton-order matrices.
In PPoPP 01: Principles and Practice of Parallel Programming, volume 36(7) of ACM SIGPLAN Notices, July 2001.

20. Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In PLDI ’91: ACM SIGPLAN ’91 Conference
on Programming Language Design and Implementation, volume 26(6) of ACM SIGPLAN Notices, pages 30–44, June 1991.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–6
Prepared using cpeauth.cls

