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Abstract. In this paper we study the use of idle cycles in a network okitgsworkstations under
unfavourable conditions: we aim to use idle cycles to imprthe responsiveness of interactive appli-
cations through parallelism. Unlike much prior work in thea our focus is on response time, not
throughput, and short jobs - of the order of a few seconds. Wfefore assume a high level of pri-
mary activity by the desktop workstations’ users, and airketep interference with their work within
reasonable limits.

We present a fault-tolerant, low-administration servimeidentifying idle machines, which can usually
assign a group of processors to a task in less than 200msubliyishe system has no job queue: each
job is started immediately with the resources which areipted to be available.

Using trace-driven simulation we study allocation policy & stream of parallel jobs. Results show
that even under heavy load it is possible to accommodatepteuttoncurrent guest jobs and obtain
good speedup with very small disruption of host application
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1 Introduction

This paper concerns the feasibility of on-the-fly recruitinef idle workstations to enable parallel ex-
ecution of short computationally-intensive phases of daractive application, as commonly arise in a
computer-aided design environment. In such applicatishgn the user is constructing the design, little
processing power is required, however when the user sé{getserate Photo-realistic Image’, the com-
putation required increases dramatically. Ideally, ther wgould not want to wait long for the image to be
produced, possibly grabbing spare processing time frorseshworkstations.

Our objective is to exploit the fact that (as we quantify béleven when a machine is actually being
used interactively (the “host” job), there are often pesiad inactivity lasting several seconds or more.
We focus on the challenging goal of using these brief peradddleness to execute short “guest” jobs in
parallel in order to enhance response time.

In addition to presenting a simple and effective softwad,tave explore the potential for achieving
this objective. We have chosen an extremely difficult envinent - a heavily-used student laboratory of 32
Linux PCs; see Figure 1. We show that a typical (albeit rasimaple) parallel task can reliably achieve a
speedup of 3 or more (reducing runtime to ca.14 seconds)e wtierfering with only 6-7% of host user
seconds. Furthermore, we evaluate a simple allocatiorypulhich handles intermittent arrival of such
tasks.

Cycle stealing on networks of desktop workstation§ he idea of making use of this wasted processing
power is attractive and exploiting idle workstations hasrba popular research area. Studies have shown
that in typical networks of workstations (NOWSs), most maes are idle most of the time [2, 1]. Batch
systems like Condor [9] have been in use for years to utilitte workstations for running independent
sequential jobs. There have also been studies on the gditgsithiusing idle workstations for parallel
processing on coarse grain parallel jobs. Arpal. [2] study the availability traces of a 60-workstation
pool using a job arrival trace for a 32 node CM-5 partitione¥ind that the pool is able to sustain the 32-
node parallel workload in addition to the sequential loagased by interactive tasks. Similarly, Acharya
et al. [1] show that for three non-dedicated pools of workstatibmss possible to achieve a performance
equal to that of a dedicated parallel machine between oretdhid three quarters the size of the pool. The
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Fig. 1. This graph shows (on a log scale), the hourly-averaged ptge utilisation (see Section 3.1) of our 32 Linux
PCs over two typical days. Although not always 100% busynthehines are essentially in continuous use.

results were achieved on relatively coarse gedaptive parallel applications which could dynamically
reconfigure to cope with changes in the pool of idle workstetiavailable.
Instant-access cycle-stealing for interactive responda contrast to this earlier work, we focus on in-
teractive applications with intermittent bursts of conmgiigtn load. This requires optimizing the average
response time for individual guest jobs and not the globatesy throughput. Second, our computation
bursts are quite short (10-20 seconds if executed in p§ralleis rules out the possibility of expensive
process migrations during computation and makes cruatsability to foresee idle times accurately. It is
impractical to ship code and data to distant specializecda@s happens in grid-oriented metacomputing
environments [4, 7, 12]. Finally, since the guest jobs drism interactive applications, we have to exploit
idle workstations during busy day hours and we are not isteckin patterns of idleness during nights or
weekends.

To our knowledge, this is the first attempt to investigate ibrkstation harvesting in this particular
setting. There are two, linked challenges:

1. Can we achieve a useful speedup? Parallel programs {@psbort-running ones) rely on all pro-
cessors making progress. If just one of the participatinghimes is poorly-chosen, the entire parallel
task will be delayed.

2. Is the interference with the host machines’ other uses(sgssive?

Contributions The main contributions of this paper are:

1. We present a low-overhead distributed recruitment serwihich automatically identifies the available
workstations on a local-area network. By autonomouslytigig@ leader, the service requires minimal
administration and handles failures gracefully.

2. We analyse traces of workstation utilisation, in ordequantify the idle time available on a network
of workstations, its predictability, and the potential tming idle time for parallel processing.

3. Using a simulation driven by these traces, we evaluatgulest job performance achievable, and the
amount of interference to host jobs.

4. We investigate scheduling policies to deal with a worBllgansisting of multiple users generating
occasional computationally-intensive guest jobs.

The paper is organized as follows. Section 2 gives an owergfahe architecture of the system pro-
posed, Section 3 reports on the experimental results aatalection 4 discusses some related work and
Section 5 concludes.

2 System overview

The system is organized as a network of daemon processefroeech workstation. Daemons monitor
local load, provide job startup services and cooperateddiptfuture load and to schedule incoming guest
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Fig. 2. Distribution of time between idle periods (left) and dibtriion of length of idle periods (right).
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Fig. 3. Likelihood of havingz idle workstations at the same time (left) and expectedififetof a group of 15 idle
workstations (right).

jobs. As the guest jobs are fairly short (10-20 seconds) estict our attention to clients and servers on a
single LAN running under the same administration/domain.

The mpidled monitor processAllocation is orchestrated by keader daemon which acts as a central
server. The leader is elected using the distributed protogdsarcia-Molina [8]. The protocol ensures
automatic substitution of a leader in case of suspectedr&ilWhen a client wants to spawn a new guest
job it makes a recruitment request to the leader which, gfterying the daemon processes, returns a list of
machines predicted to be idle for the near future. Then, ltetecan contact the daemon on each machine
to inform it of the program to be executed. Each daemon peisagsponsible for monitoring the system
status and computing a load prediction (Section—3.1). €adér, which may be any one of the daemons,
is responsible for allocating resources (Section—3.2).

The mpidle application and API A client can initiate a request for resources using a comninaditility

(mpi dI e) which produces a list of idle workstations, as a paramdtandPI job. Alternatively, a lower-
overhead API is provided for direct invocation from withilient applications.

3 Experimental evaluation

Overview Section 3.1 quantifies the amount of idle time likely to berfdin a typical LAN environment
during the day. Section 3.2 discusses and evaluates ourmplaatiction strategy. Section 3.3 evaluates
the time spent in finding a suitable workstation pool to exeaew guest jobsrécruitment overhead).
Section 3.4 presents the simulation results under varichestailing strategies.
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Fig. 4. Likely length of idle periods for different group sizes ()edind distribution of load prediction errors (right).

3.1 Idle workstation recruitment

We consider a workstatioile if it is not executing user processes and has a significantiatraf spare
CPU time. More precisely we define a workstationdle if, over a one second period, less than 10% of
CPU time is spent executing user processes, and at least DGR time could be devoted to a new
process.
Experimental environment To measure idleness patterns using our recruitment pokcgawried out ob-
servations of load traces collected over two weeks on a d&% wery similar non-dedicated workstations
(300MHz and 350MHz Pentium I, 128MB, Redhat Linux 6.1) ltemhat Imperial College London. This
is a uniform pool of publicly available machines used fainiensively by undergraduate computer science
students for course assignments, software developmejgctspweb browsing and email. Traces were
collected during the busy daytime hours, weekdays 9am ta 6pm
Pattern of workstation utilisation Of all the one-second samples, 86% were idle. Idle periodarocery
frequently. Figure 2eft shows the distribution of time between idle periods — 55%nbérivals are 4
or less. Figure 2ight shows the distribution of length of idle periods over all k&tations. 50% of idle
periods last for at least 3330ne quarter of all idle periods last for longer thars:1iglle workstations
often remain idle long enough to perform another useful.téidite the small inflection in the plot at 60
indicating that there are occasionally ‘periodic’ pro@sssunning on the workstations that cut-short idle
periods that would have otherwise exceeded 60

To evaluate scope for parallel guest jobs, we studied thenpat of idleness acroggsoups of work-
stations. Figure 8eft shows the probability of having a group of workstations of\eeg size at any given
time. A group of 15 idle workstations is very nearly guaractéo be available at any time, and a group
of 22 is available with a rather high probability. The stapibf such groups is shown in Figurerht. A
group of 15 idle workstations is unlikely to remain idle fary long - there is only a 15% chance of them
lasting for more than 5 seconds. Smaller groups are normadhe robust (Figure #eft).

3.2 Predicting short term workstation load

Each daemon process monitors its CPU load once every sedfiveh an availability request is received
from the leader a load prediction is computed and returneddLlis predicted using a windowed mean
of recent load measurements to predict the load over thefeexseconds. Previous studies [5, 14] have
shown that accurate short-term load prediction is possihtkethat good predictions can be made simply by
taking the mean of recent load measurements. However, dldehetric considered in [5, 14] (UNIX ‘Load
Average’ - the average length of the run-queue) is diffefearh the metric being considered here (CPU
activity) and so we evaluated the accuracy of their prealicticheme with our metric. The windowed-mean
prediction scheme was applied to our load traces, and thtqpign errors were computed. Figureight
shows that the error obtained using a window of 5 measurenigensually very small - 35% of predictions
correctly forecast the average load over the following. MVe also studied the relationship between the
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Fig. 5. Effect of window size on mean absolute error (left) and optimwindow size for forecast length (right).

window size and the length of the period for which the prédicis needed. Figure [&ft shows the effects
of window length on the mean absolute error for a particuésired prediction length (in this cases)0
Figure 5right shows optimal window sizes for different forecast lengthiqus.

3.3 Recruitment overhead

Theworkstation recruitment overhead is the time spent in finding a suitable workstation pool tocexe a

new guest job. Figure &ft shows the measured recruitment time during our experirii&ietvast majority

of recruitment requests are answered within a very shor {h 0.15s), however a small number of
requests can be delayed to anything up tos2This happens when requests occur when the leader is
executing a periodic check to ensure that there is no othelelein the cluster. During this time it cannot
claim to be the leader and any request must wait until thegercheck is finished [8].

3.4 Evaluating scheduling strategies

Trace-driven simulation To ensure reproducibility of results and allow for closesigit of the system
behavior, we constructed a simulation using the load trdessissed in Section 3.1, varying various pa-
rameters. We tested the system with a sample renderingapiph which takes 42on a single workstation.
Figure 6 shows its speedup behavior when executed on a tiediidaster of the workstations.

The simulation uses the application’s speedup curve toigiréte expected completion time of each
task on the resources available. It also accounts for thesydeturred (to all participating processors) when
a guest process contends with a host process for CPU timecdritention which occurs is determined
from the load traces, which record the number of running @sses during each second so that a process’s
CPU time share can be computed.

The simulated usage regimé@o exercise the resource allocation mechanism, we simalli@iely intensive
situation in which clients request execution of renderivigsjat random intervals. The rendering jobs are
all of the same size (42on one processor). Requests arrive with an exponentiailisbn, with a mean
inter-arrival time of 20.

Scheduling strategiesNe experimented with three different scheduling strategendom, no reserve
andz-reserve The results are shown in Table 1. For each scheduling girate measured the following:

Jobs Refused the proportion of submitted guest jobs for which there weravailable participants;
Idle Seconds Used the proportion of idle seconds in the day that were put to gemlby the system;
Mean Group Sze the mean size of the group of workstations allocated to inogrguest jobs;

Mean Speedup the mean speedup for guest jobs including those for whichartistations were avail-
able (i.e. those that were forced to execute sequentially);

Seconds Disrupted the proportion of busy seconds that were disrupted by theutiam of guest jobs,
i.e. how often did a misprediction lead to disruption of oty workstation applications.
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|Scheduling stratedyand [no res|10-req20-req30-reg40-reg50-reg60-reg
Jobs Refused nil [16.3% 3.3%| 1.5%]| 2.0%| 0.5%]| 0.2%| 0.1
Idle Seconds Use@5.0%421.6%423.3%423.29%422.6%422.1%421.5%421.0%
Mean Group Sizg 17.0| 17.2|15.24| 13.6| 12.0| 10.3| 87 | 7.1
Mean Speedup | 3.68 | 3.58 | 4.58 | 4.88 | 4.96 | 4.82| 4.46 | 3.92
Seconds Disrupted4.4%45.28% 6.3%)| 6.5%| 5.9%| 6.0%| 5.9%| 6.2%

Table 1. System behavior results for different scheduling stragi

The random policy We show the performance of a random allocation policy as &abexperiment. A
constant number of workstations is recruited for every job this set is chosen at random among all the
workstations regardless to their load. We used a constanpggize of 17, which is near to the mean which
results under the no-reserve policy.

The “no-reserve” policy The no-reserve policy allocates all the idle workstatiorelable to each recruit-
ment request. Should a second request arrive shortly aftdsyno idle workstations will be left.

— This led to a slightly worse speedup than random allocaBosg)).

— However, a large proportion (84%) of recruitment requessvgatisfied.

— 20% idle seconds were exploited, out of the average 25% @fnskscbelonging to periods of at least
10 seconds. This could be improved, especially since jolve vedused.

— The proportion of seconds that were disrupted by inappatpllocation of jobs was low (5.3%),
although not low enough for the system to be considered catelglnon-intrusive.

The z-reserve policiesThe z-reserve strategies try to saw®& of the resources available at any given
time for (near) future requests in order to have a betteribigton of the group sizes and to lower the
percentages of guest jobs refused. With no-reserve, a fagmortion of jobs were executed on small
numbers of workstations or were forced to be executed gebalcause no workstation was available.
Table 1 shows the results obtained witlieserve strategies keeping a different proportiaf reserve at
each allocation (the no-reserve strategy is the same d@sréeerve strategy). The results are as follows:

By choosing the right reserve percentage we can achieveegiageyspeedup of up to 4.96.
Furthermore, this increase in speedup is achieved withguificantly increasing the proportion of the
seconds disrupted.

The speedup falls when too many workstations are kept invess the average group size drops.
Keeping reserves reduces the percentage of jobs refuskding the variance of the speedup experi-
enced by different guest jobs.

The effect of the reserve percentage on the distributiomafgsizes is illustrated in Figure 7. As expected,
for small reserves, groups are either very large or verylIsmhlle for larger reserves the group sizes are
close to the mean.
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4 Related work

With Condor [9], the aim is to speed up independent sequeguiest jobs using idle workstations in a
LAN. Usually, the jobs require a large amount of computafleours more than seconds) and a network
of monitor daemons is used to collect information on the enirfoad of machines on the net. Disruption
of host jobs is minimised by migrating the guest job as soath@dost jobs need a workstation. Linger-
Longer [11] works in the same scenario but allows a guestgobrnain on a host machine when it ceases
to be idle. To avoid disruption it employs a set of Linux kdretensions which use a new guest process
priority to prevent guest processes from stealing time frawst processes and a new page replacement
policy which limits the slow down caused by guest pages irvittaal page system. With this new scheme,
the authors claim a much effective usage of workstatiotswalg gains up to 60% in the total compute
time with respect to Condor. Although the techniques usebiése systems can be used in our setting, the
focus of our work is oninteractive parallel guest jobs posing a quite different set of chakeng

As mentioned in the Introduction, the use of idle workstatito execute a batch queue of parallel
jobs has been studied by Acharstaal. and Arpaciet al. [1, 2]. With the longer-running jobs they study,
processes can be migrated from machine to machine durirgigxe. Furthermore, their objective was to
minimize the execution time of a whole batch, which can mesay long execution time for single jobs in
order to achieve better global resource arrangement.

Some of the problems addressed in our research, such agatmkdoad prediction and load sensitive
guest job scheduling have been addressed recently in thdd&réramework of WAN scale metacomputing
systems [7, 4, 12]. This setting is much more complex thas and requires network load prediction to
be addressed. Moreover, the higher overhead due to nonjédcatheduling is more suitable for coarser
grain guest jobs than the ones addressed in this study.

Finally, scheduling parallel computations on batch patalystems has attracted considerable attention
[3,6,13,10]. The usual metric to be optimized here is glbl#th throughput. However, Subhaiial. [13]
proposes strategies to minimize response time for indalidpplications. They take both communication
load and computation load into account and select a pool okstation and communication links to be
used. Our research addresses LAN environments in which aahyputational load is relevant for node
selection. The strategy proposed by Subheblél. for our specific problem corresponds to our no-reserve
policy. As we discussed in Section 3 this strategy penafigtese jobs and leads to smaller average speedup
figure with respect ta:-reserve. Although more experiments are needed, we bealatein our setting,

a strategy aiming to optimize the average speedup expexdedmng competing guest jobs leads to better
resource usage and more reliable behavior than optimikmgasponse time of a guest job in isolation.

5 Conclusions and directions for further research

We have provided evidence that interactive performanceppfi@ations with intermittent computational
demands can be substantially enhanced through oppoitypésallel execution on other instantaneously-
idle workstations on the same LAN. Some interference witkt tasks is incurred, but the effect is small.
When guest job requests arrive frequently, much betteppmdnce is achieved by holding back some of
the available resource on each allocation.



While there is enormous scope for further work, this papserdemonstrated “mpidled” to be a simple

yet surprisingly effective tool. The software is in regulee at Imperial College and a public release is
planned. Further research is needed:

— How would our results change with different levels of hosid8 We have taken a fairly extreme

situation of essentially continuous utilisation - manylisgec environments would give better results.
Our simple policy of holding back some resources for futwguests appears fairly stable, but we
would like to characterise how the policy should be adjustedask arrival rate and host load are
varied. Some kind of adaptive scheme looks attractive.

Our definition of “idle” is somewhat arbitrary (Section 3.1¥e need to evaluate how lowering the
idleness threshold would reduce interference, and recheedsip. In our environment, external users
(and Windows users) often connect to our Linux systems relpato some level of interference to
desktop responsiveness is already tolerated. Other @agéons have a different culture.

We used a rather simple parallel application to exerciseyktem. Although our rendering application
has less-than ideal speedup, it is relatively loosely-Byomised. We have been using mpidled to run a
tightly-synchronised CFD solver and have positive prattixperience but have not yet been able to
guantify the resulting performance.

Realistic applications often (like the CFD solver) havegy&amput and output files. This is easily ad-
dressed by using the local filesystem on the machines aflddat mpidled - but the next interactive
use of the application (which uses the results from the presaun) is likely to be allocated a differing
set of machines. We plan to explore strategies for achiepargllel file access while retaining the
necessary scheduling flexibility.
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