
High-Performance SIMT Code Generation
in an Active Visual Effects Library

Jay L. T. Cornwall
Department of Computing,

Imperial College London, UK
jlc01@doc.ic.ac.uk

Lee Howes
Department of Computing,

Imperial College London, UK
lwh01@doc.ic.ac.uk

Paul H. J. Kelly
Department of Computing,

Imperial College London, UK
phjk@doc.ic.ac.uk

Phil Parsonage
The Foundry, UK

phil@thefoundry.co.uk

Bruno Nicoletti
The Foundry, UK

bruno@thefoundry.co.uk

ABSTRACT
SIMT (Single-Instruction Multiple-Thread) is an emerging
programming paradigm for high-performance computational
accelerators, pioneered in current and next generation GPUs
and hybrid CPUs. We present a domain-specific active-
library supported approach to SIMT code generation and
optimisation in the field of visual effects. Our approach uses
high-level metadata and runtime context to guide and to en-
sure the correctness of optimisation-driven code transforma-
tions and to implement runtime-context-sensitive optimisa-
tions. Our advanced optimisations require no analysis of the
original C++ kernel code and deliver 1.3x to 6.6x speedups
over syntax-directed translation on GeForce 8800 GTX and
GTX 260 GPUs with two commercial visual effects.

Categories and Subject Descriptors
D.2.11 [Software Architectures]; I.3.1 [Hardware Ar-
chitecture]: Graphics processors; I.4.0 [General]: Image
processing software

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
The Single-Instruction Multiple-Thread (SIMT) program-

ming model [9] is promoted in CUDA and OpenCL for pro-
gramming graphics processors. Automatic parallelisation
and optimisation of arbitrary affine loop nests for a SIMT
architecture is complex but carries large performance bene-
fits [2]. In this paper we demonstrate a domain-specific ap-
proach to SIMT parallelisation and optimisation that is both
simpler to implement and capable of more advanced optimi-
sations. We use high-level metadata to communicate data
dependence patterns from visual effects algorithms directly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’09, May 18–20, 2009, Ischia, Italy.
Copyright 2009 ACM 978-1-60558-413-3/09/05 ...$5.00.

to a source-to-source compiler, built upon the ROSE [13] in-
frastructure. These patterns are typically difficult to extract
from C implementations of the algorithms, creating a major
barrier to a domain-agnostic compiler approach. Our code
generation techniques benefit from the runtime context cap-
tured by an active library [5], enabling optimisations that
are specialised to sequences of kernels within a visual ef-
fects DAG. We present a case study of the performance of
two commercial visual effects algorithms, shown in Figure 1,
built from compositions of nine primitive operations of var-
ied complexity and data access requirements.

In previous work [4] we described a framework for con-
structing image processing algorithms from DAGs of prim-
itive operations and generating optimised code for a CPU
through cross-component loop and kernel transformations.
We revisit and extend this framework in Section 2 to sup-
port more complex primitives, but the fundamental princi-
ples involved in our earlier CPU optimisation work remain
unchanged for SIMT devices: a testament to the robustness
of a domain-specific metadata-supported approach.

The main contributions of this paper are:

• A metadata-enhanced data-parallel model for
visual effects. Section 2 outlines a C++ library for
writing reusable primitives and effects, encapsulating
static and dynamic algorithm metadata to assist code
generators in deploying loop and kernel optimisations.

• Domain-specific optimisations for SIMT archi-
tectures. Section 3 identifies the key performance
challenges in writing programs for a SIMT device. Sec-
tion 4 describes a set of optimisations targeted at vi-
sual effects algorithms on SIMT devices. Section 5
evaluates their effectiveness on two commercial effects
and identifies those that survive the transition to a pre-
viously untested generation of GPUs, and thus those
more likely to apply to a wider class of SIMT devices.

2. A METADATA-ENHANCED VISUAL
EFFECTS FRAMEWORK

In this section we describe the programming framework
in full. A visual effect is expressed as a DAG of primi-
tive operations connected by intermediate images. Images
are not fixed in size and, indeed, do not exist at the con-
struction level. They represent data sets which the back-
end code generators may instantiate and fill with real image

DWT1D

DWT1D DWT1D

[Point] [Point]

[Point]

DWT1D

Add2

Add2

DWT1D DWT1D

[Point] [Point]

[Point]

DWT1D

Add2

Add2

DWT1D DWT1D

[Point] [Point]

[Point]

DWT1D

Add2

Add2

DWT1D

DWT1D[Point] [Point]

[Point]

Add2

Add2

Add2

Add2

Add2

Add2

Sink

Grow

Source

[Point]

[1D Filter]

[2D Filter]

[1D Filter]

[Moving Average]

[Moving Average]

[Moving Average]

[Moving Average]

[Moving Average]

[Moving Average]

[Point]

Sink

Source

Grow

DWT1D DWT1D

Proprietary DWT1D

Add2

Add2

DWT1D

Proprietary

Proprietary

Proprietary Proprietary

Figure 1: DAGs of primitive operations for wavelet-based degraining (left) and diffusion filtering (right)
commercial visual effects. Each node represents a primitive operation and each edge carries image data.

data at runtime; or, through optimisations such as array
contraction [16], may not. The primitives permitted within
a DAG process whole images which are passed through a
dependence-preserving serialisation of the DAG. A complete
construction for a commercial wavelet-based degraining [17]
effect is shown in Listing 1. The C++ code calls methods
on primitive objects with input and output image handles
to connect them into a DAG. Delayed evaluation makes this
process flexible; in this example we make use of recursion to
generate the large DAG shown on the left of Figure 1 from
a repeating pattern of primitives.

Image DeGrainRecurse(Image input , int level = 0) {
Image HY, LY, HH, HL, LH, LL, HHP , HLP , LHP , LLP;
Image pSum1 , pSum2 , output;

DWT1D hDWT(eHorizontal , 1 << level);
DWT1D vDWT(eVertical , 1 << level);
hDWT(input , HY, LY);
vDWT(HY, HH, LH);
vDWT(LY, LH, LL);

Proprietary prop;
prop(HH, HHP);
prop(LH, LHP);
prop(HL, HLP);

Sum sum;
sum(HHP , LHP , pSum1);
sum(HLP , pSum1 , pSum2);

/* Go to the next level of recursion. */
LLP = (level <3) ? DeGrainRecurse(LL, level +1) : LL;

sum(pSum2 , LLP , output);
return output;

}

Listing 1: The recursive degrain algorithm in C++.
Indexed functors are chained with images to form a
DAG. Primitives do not execute as they are called
but are recorded through delayed evaluation.

Primitives are data parallel expressions of algorithms with
constrained global memory access and high-level metadata.
They are implemented as C++ classes, analogous to func-

tion objects, providing a method which is called repeatedly
to process all of the data elements within a set of images.
Special member objects, which we call indexers, simplify and
constrain reads and writes to global image data. We call the
complete construction an indexed functor. Listing 2 shows
an indexed functor which implements the one-dimensional
discrete wavelet transform primitive, which is used in the
degraining visual effect. An indexed functor may be embar-
rassingly parallel, evident in this case by the eParallel tem-
plate metadata, or it may have parallelism along a single
axis – with a loop-carried dependence along the perpendic-
ular axis – by specifying an additional template parameter.
Indexed functors with a loop-carried dependence are called
moving averages, although they do not necessarily compute
a mean. This specification of parallelism, expressed as class
metadata, is sufficient to optimise the two commercial visual
effects studied in this paper for SIMD and SIMT devices.

class DWT1D : public Functor <DWT1D , eParallel > {
Indexer <eInput , eComponent , e1D > Input;
Indexer <eOutput , eComponent > HighOutput;
Indexer <eOutput , eComponent > LowOutput;
mFunctorIndexers(Input , HighOutput , LowOutput);

DWT1D(IndexerAxis axis , IndexerRadius radius)
: Input(axis , radius) {}

void Kernel () {
float centre = Input ();
float high = (centre - (Input(Input.Radius)

+ Input(-Input.Radius)) * 0.5f) * 0.5f;

HighOutput () = high;
LowOutput () = centre - high;

}
};

Listing 2: The one-dimensional discrete wavelet
transform as a C++ indexed functor implementa-
tion. It is valid, compilable code and operates in the
runtime-parameterised horizontal or vertical axis.
Static and dynamic metadata is underlined. Dy-
namic metadata is provided by the client at runtime
during object construction.

0D 1D 2D

HorizontalVertical

Figure 2: Indexers for global memory access with lo-
cal offsets in different degrees of freedom and spatial
orientations.

An indexed functor may contain small amounts of read-
only (const) member data but may only access large images
through indexers. An indexer’s purpose is twofold: it cen-
tralises accesses over the region of an image that a single
thread is responsible for and constrains the spatial freedom
of local offsets. In Listing 2 the Input(Input.Radius) and
HighOutput() component accesses, for example, do not refer
to an (x,y) location in the image. Rather, they are centred
over some point in the image and it is up to the code gener-
ator to iterate the kernel over the full range of coordinates.
The Input(Input.Radius) access is parameterised with an off-
set which is used to locally shift the data access along some
axis of freedom. Static template metadata in the indexer’s
declaration specifies its number of degrees of freedom: e.g.
the e1D template parameter in Listing 2. Indexers are ad-
ditionally constructed with dynamic information about the
axis of freedom and limits upon the size of permissible local
offsets. The different kinds of indexers supported within the
framework are shown in Figure 2. Input is a 1D indexer
so by parameterising accesses with an offset it can read to
the left and right or above and below the centred coordi-
nate depending on the axis with which it was constructed
at runtime. This makes it easy to combine horizontal and
vertical filter primitives into a single indexed functor imple-
mentation. Finally, an indexer may provide access to more
than one data element from different image planes – red,
green, blue, etc. – if they are needed together. Those in
Listing 2 access single planes of input/output images at a
time, evident by their static eComponent metadata. It is
more efficient to process a single plane from all images at a
time, in terms of kernel complexity and working set size, but
some algorithms are dependent on chromatic information.

In summary, the complete set of metadata consists of:

• DAG construction from indexed functors and
images. Static expression of the visual effect construc-
tion from primitives, such as that shown in Listing 1,
captured through delayed evaluation.

• Indexed functor dependence. Static choice of em-
barrassingly parallel or loop-carried dependence along
an axis, with dynamic selection of the axis in the latter
case. See underlined features of Listing 2.

• Indexer access patterns. Static choice of per- com-
ponent or per-pixel granularity and 0D, 1D or 2D spa-
tial offset freedom. Spatial offsets are bounded by dy-
namic radii. See underlined features of Listing 2.

Once an effect has been constructed it is passed through
an optimising code generator, embedded in the framework
library, for a computational device of interest. An example

of a simpler kernel optimised for a SIMT device is shown in
Listing 3. Poor memory access patterns in the indexed func-
tor are identified from its metadata and rectified through a
staged realignment optimisation, described in detail in Sec-
tion 4.4. Writing and maintaining optimised kernels like
these by hand is very difficult and error-prone, and requires
consideration of vastly different performance characteristics
for each device. Given the metadata collected so far, our
contribution is an optimising SIMT code generation back-
end for this framework. The remainder of the paper shows
how this metadata is used to deploy advanced kernel op-
timisations and construct high-performance SIMT kernels
for arbitrary indexed functors, with no analysis of the C++
kernel or construction code.

__global__ void DWT1D_HM(float *Input ,int Input_YStr ,
int Input_PStr ,int Input_Radius ,int Input_Misalign ,
float *HighOutput ,float *LowOutput ,int _dyStr ,
int _dpStr ,int _xElems ,int _yElems)

{
__shared__ extern float _sMem [];
const int _blkX=__mul24(blockIdx.x,blockDim.x);
const int _blkY=__mul24(blockIdx.y,blockDim.y);
const int _thrX=_blkX+threadIdx.x;
const int _thrY=_blkY+threadIdx.y;

Stage1DRealign (&Input[_thrY*Input_YStr+_blkX
-Input_Radius],_sMem ,blockDim.x+
__mul24(Input_Radius ,2), _xElems+
__mul24(2, Input_Radius)-_blkX ,Input_Misalign);

__syncthreads ();

if(_thrX <_xElems &&_thrY <_yElems) {
float centre=_sMem[threadIdx.x+Input_Radius];
float high =((centre -((_sMem[threadIdx.x

+Input_Radius+Input_Radius]+_sMem[threadIdx.x
+Input_Radius +(- Input_Radius)])*0.5F))*0.5F);

HighOutput[_thrY*_dyStr+_thrX]=high;
LowOutput[_thrY*_dyStr+_thrX]=(centre -high);

}
}
__device__ inline void Stage1DRealign(float *from ,

float *to,int nElems ,int guardX ,int amount)
{

for(int i = (threadIdx.x+amount) & (blockDim.x-1);
i<nElems && i<guardX; i+= blockDim.x)

{
to[i] = from[i];

}
}

Listing 3: An automatically generated, optimised
horizontal DWT kernel expressed in CUDA. Shared
memory staging and realignment optimisations, de-
scribed in Sections 4.1 and 4.4, have been applied to
localise shared data in high-bandwidth memory and
to improve the efficiency of DRAM transactions.

3. CHALLENGES IN SIMT CODE
GENERATION

In our study of the SIMT model we focus on the Com-
pute Unified Device Architecture (CUDA) [10] on NVIDIA
GPUs. Of competing standards only the Open Compute
Language (OpenCL) has gained significant industry sup-
port. OpenCL is based heavily upon CUDA and positioned
as a hardware-independent standardisation of tools for the
SIMT programming model. NVIDIA, AMD and Intel have
pledged support for this standard on their GPUs and hybrid
CPU/GPUs. Our research, then, should apply well to both
current and next generation high-performance architectures.

CUDA is programmed with thread-centric kernels. Syn-
tax -directed translation of a C++ indexed functor kernel is
sufficient to produce a correct SIMT implementation of the
algorithm. Stripwise parallelisation, as employed by scalar
and SIMD code generation, or even pointwise parallelisation
is sufficient to exploit the massive parallelism of SIMT ar-
chitectures. However, the performance of this approach has
a number of shortcomings:

• Threads do not cooperate. Substantial throughput
gains can be made by sharing the data retrieved from
global memory amongst threads. There is significant
overlap in the reads issued by neighbouring threads
within a stencil operation, for example. SIMT archi-
tectures with very limited hardware-managed caches –
such as NVIDIA and AMD GPUs – rely on explicit co-
operation through shared memory and synchronisation
primitives. The hardware-managed cache-dependent
C++ kernel does not have support for these features.

• Memory accesses may not coalesce. The global
memory systems of SIMT architectures can deliver an
order of magnitude higher performance when the reads
and writes of groups of threads meet alignment and
ordering criteria, a feature referred to as coalescing.
These are similar to the alignment and blocked read-
/write constraints of SIMD architectures but are dis-
tinguished by being unenforced in the programming
model. Explicit realignment and coordinated staging
into shared memory can increase coalescing opportu-
nities.

• Thread management costs may dominate. SIMT
architectures are designed to keep thousands of threads
in flight with little overhead. A 1:1 mapping of threads
to data elements on large data sets, however, can re-
quire levels of thread management that dominate the
performance of simpler kernels. A more efficient 1:N
mapping cannot be derived through syntax-directed
translation alone.

Control loops that drive a kernel over the domain of a set
of output images must also be mapped to the SIMT archi-
tecture. CUDA assigns a three-dimensional thread ID and a
two-dimensional block ID to each thread. The range of these
IDs is set before a computation is launched and determines
the total number of threads that will be spawned. Mapping
these IDs to different data elements allows the workload to
be distributed amongst the threads. A simple 1:1 mapping of
two-dimensional (x,y) pairs to linear combinations of thread
and block ID is sufficient to process a dense data set. There
are some caveats to this approach, however:

• Thread block size and shape impacts perfor-
mance. Maintaining a balance between the number
of threads per block and the number of blocks is im-
portant to achieve high occupancy on a SIMT architec-
ture. Higher thread counts must be traded off against
increased register and shared memory requirements.
The shape of a thread block can affect the potential
for spatial thread cooperation on a data set. Both the
size and shape of a thread block can alter the ”over-
hang” of edge blocks beyond the boundaries of a data
set. Finally, the shape of a thread block may be con-
strained by data dependencies in either dimension.

• Blocks and grids are limited in size. Thread
blocks may contain a maximum of 512 threads, while
grids are limited to 65535 blocks in each dimension.
Redundant memory accesses between thread blocks,
where threads cannot cooperate, become significant in
larger stencils where the thread block size cannot be
increased to compensate. Furthermore, a reduction in
threads per block may increase performance because
the occupancy limit of N threads per multiprocessor
might not divide evenly by the number of threads per
block. Limitations in grid size make one-dimensional
flattening of a two-dimensional data set, done to re-
duce linear index computation overheads, more diffi-
cult without 1:N mappings of threads to data elements.

• Grids must be rectangular and dense. A key bar-
rier to mapping fragmented, imperfectly nested loop
structures onto a SIMT architecture is that it cannot
be achieved with a linear mapping of thread and block
IDs to data elements. These structures typically arise
during loop fusion optimisations. Such loop fragments
may be simulated with multiple program invocations
but the startup overheads involved become significant.

Once kernels and loops have been mapped to the SIMT
architecture, all that remains is to add control and mar-
shalling code. Large data sets must be transferred to and
from device global memory by the host. Other parameters
to the kernel, such as variables and small collections, may
be marshalled into faster areas of memory, such as shared or
constant memory. Control code manages both on- and off-
device resources, kernel initialisation and thread launches
according to the precomputed DAG serialisation for a vi-
sual effect.

3.1 Syntax-Directed Translation
The process of transforming C++ indexed functor ker-

nels into CUDA kernels is now examined in more detail.
CUDA kernels are written in a language that is very close
to C++. Our syntax-directed translation phase walks the
AST and translates unsupported constructs into equivalent
CUDA statements whilst leaving the remainder untouched.
Key features that must be translated include:

• Indexer accesses. Accesses to the C++ indexing ob-
jects must be translated into array accesses from their
corresponding image base pointers. The array access
is formed partly from a mapping of thread and block
ID to an (x,y) coordinate pair, denoting the central
location of the thread’s workload. An optional local
offset consisting of (x,y), in per-component indexers,
or (x,y,c), in per-pixel indexers is then added to this
central index to select the desired location and image
plane. The (x,y) or (x,y,c) index is subsequently flat-
tened to a linear offset via the image’s row and plane
stride parameters.

• Member variables. C++ indexed functor objects
may contain user- and library-defined parameters, such
as filter radii and sparse stencil coordinate lists, and
state variables, such as partial sums. Accesses through
this–> in the AST are translated into parameter ac-
cesses or, for state variables, local variable accesses.

Shared Memory

Global Memory

Registers

Figure 3: Coordinated staging of shared data from
global memory into shared memory to localise the
overlap.

The goal of this phase is to produce a correct CUDA kernel
implementation for the other phases to transform through
various optimisations. It is used as the ”unoptimised” im-
plementation benchmarked in Section 5.

4. DOMAIN-SPECIFIC SIMT CODE
OPTIMISATIONS

The result of syntax-directed translation is a correct SIMT
implementation of an indexed functor. In this section we dis-
cuss the key domain-specific optimisations needed to achieve
high performance on a SIMT device. Each subsection iden-
tifies a phase in our source-to-source compiler responsible
for a specific optimisation.

4.1 Shared Memory Staging
Staging is a cooperative process in which threads that

read overlapping regions of global memory coordinate to
read each element exactly once into a faster, shared memory
where the overlapped reads can benefit from higher band-
width. The only sources of overlapped reads in our frame-
work are the one- and two-dimensional filter indexers. Fig-
ure 3 illustrates the staging process for a 3-tap horizontal
filter. There are two cases in which a filter indexer will not
be staged:

• The indexed functor is not embarrassingly par-
allel. Threads do not normally share data in a mov-
ing average indexed functor because a single thread
processes the data elements that would otherwise be
shared in the direction of the dependence. One could
construct an indexed functor where a filter indexer’s
axis is at 90◦ to the dependence axis, but this is an
unlikely case and we choose not to optimise it.

• There is insufficient space in shared memory.
Either a single large filter indexer or several filter in-
dexers may exceed the amount of shared memory avail-
able for staging. In this case one might try to choose
a subset of indexers that best fits into the available
space and stage only those.

Staging is implemented in two steps. Firstly, function
calls are inserted to perform a block copy of each filter in-
dexer’s access region, bounded by known limits from the
runtime metadata, into a subregion of shared memory. The
copy’s reads and writes are distributed amongst the available
threads and barrier synchronisation ensures the copy is com-
pleted before threads begin reading from shared memory.
Array accesses are then redirected from the staged global

Threads

T
h

re
a

d
s

Horizontal Moving Average Vertical Moving Average

Threads

Split Column Parallelism

Figure 4: The contiguous access region in a vertical
moving average indexed functor permits coalescing,
whilst the disjoint horizontal case does not. The two
configurations can be interchanged through transpo-
sition.

memory region to shared memory. Since the shared mem-
ory contains only the subregion of interest, the (x,y) spatial
offset is replaced by a local offset inside the staged block.

4.2 Indexed Functor Transposition
Global reads through an indexer in a horizontal moving

average indexed functor will not coalesce. Coalescing de-
pends upon a group of threads coordinating to read a con-
tiguous region of memory. Dependence in the horizontal
axis forbids multiple threads to run along the axis where
the contiguous reads would otherwise take place. Contrast
this with the vertical moving average, which achieves per-
fect coalescing as shown in Figure 4. Each thread issues
a single read in the diagram. The combined region is dis-
contiguous in the horizontal case, and thus not coalesced,
but contiguous in the vertical case. In practice it is often
faster to simply spawn one thread per pixel, each initialis-
ing its state by reading the whole filter region beneath it,
and to treat the indexed functor as if it had no dependence
or state at all. We use this approach in the unoptimised
case as the higher thread count helped to hide the latency
of uncoalesced global accesses.

It is strongly in our interests to prefer vertical moving av-
erages over their horizontal counterparts. A simple way to
achieve this is to transpose the input data sets to a hor-
izontal moving average indexed functor, executing it with
the equivalent but faster vertical implementation, and then
transpose the results back. This would pay off if the total
runtime of the three stages – transpose, execute, transpose
– was less than the horizontal indexed functor’s runtime.
There is an opportunity for further optimisation here if the
context of the indexed functor is known. Sequences of hor-
izontal moving averages – e.g. a series of box blurs making
up the horizontal part of a Gaussian blur approximation –
may be optimised by noting the redundant double transpo-
sition at the boundaries between them. By eliminating pairs
of transposes at the graph level the effect’s performance can
be increased.

A similar problem arises in the case of embarrassingly par-
allel indexed functors with vertical filter indexers. There is
a trade-off between using a vertical thread block to stage
the overlapped region into shared memory, suffering discon-
tiguous column-wise global memory reads, or running the
threads horizontally to achieve coalescing but sharing no
data at all. In practice we find the latter is faster. However,
transposing the entire indexed functor is a better option as
it enables both coalescing and shared memory staging.

Region of Interest

Input Image

Coalescing Alignment Boundaries

Misaligned

Realignment through Thread Renumbering

1 2 3 4 5 6 7 8 9 10 11 12N-1 0N-2N-3

Figure 5: Global memory load misalignment occurs when the region of interest is smaller than the input
image. Coalescing can be fixed by reassigning work to threads so that thread 0 is aligned to a boundary.

4.3 Split Row/Column Parallelism
Moving averages have a further performance problem. Be-

cause they constrain parallelism to a single axis only, there
is frequently insufficient remaining parallelism to saturate
the multiprocessors of a SIMT device. e.g. A modern GPU
with 28 multiprocessors and 1024 threads per multiprocessor
would need an image with 28K pixels along the parallel axis,
or multiple images of a smaller size, to reach maximum oc-
cupancy. Additional parallelism along the dependence axis
may be created by stopping the thread part-way and starting
a new one from that point, thus breaking the data depen-
dence chain, as illustrated on the right of Figure 4. This
method creates a small overhead from state recomputation
at each boundary but it multiplies with row-/ column-wise
parallelism to double, triple, etc. the total available paral-
lelism when it is required.

4.4 Realignment
The factors discussed so far have been mostly independent

of the context in which the indexed functor is used. An im-
portant consideration of this context must be made in the
case of coalescing. Satisfying the alignment constraints for
coalescing has so far been under the implicit assumption that
the base address of input images is aligned. Indeed, CUDA
will guarantee that allocated regions begin on an aligned
boundary for this reason. However, the base addresses of an
indexed functor’s regions of interest (ROI) do not necessar-
ily coincide with the base address of the associated images.
A second indexed functor may share one of the input im-
ages with a potentially larger ROI. The size of the image
will satisfy the largest ROI of an indexed functor that uses
it. Unfortunately, the offset of the ROI in an indexed func-
tor is not predictably aligned. In most cases the difference
between image size and ROI can be statically compared as
expressions of radial terms and determined to be identical
or not. The remainder can be checked at runtime with dy-
namic instantiations of filter radii, but we must still handle
the misaligned cases.

Realignment is a staging transformation that attempts to
reconcile coalescing within a thread block. A first attempt
would be to redistribute work amongst the available threads
so that thread 0 begins on an aligned boundary, as shown in
Figure 5. This restores coalesced reads but has the unfortu-
nate side effect of misaligning writes in the output, negat-
ing any benefit. Our solution is to use thread renumbering
to first stage data into shared memory, and then use the
original thread layout to process it. An example of a fully
realigned kernel was shown earlier in Listing 3. Realign-

ment cannot achieve 100% coalescing within a thread block
because the first and last groups of threads are not large
enough for a full coalesced read. It is most effective when
the thread block is one-dimensional and large, thus minimis-
ing the constant overheads.

4.5 Thread Block Minimisation
A 1:1 mapping of data elements to threads creates consid-

erable overheads for hardware schedulers in simpler indexed
functors, particularly those composed from point indexers.
An alternative is to spawn a fixed number of thread blocks
and use a 1:N mapping of threads to data elements. We re-
fer to this technique, illustrated in Figure 6, as thread block
minimisation. The two-dimensional images are indexed with
a single flattened index to avoid complex mapping calcula-
tions. Each thread processes a set of data elements separated
by the total number of threads. Uneven mappings may re-
sult in underutilisation of some threads towards the end of
the data set, but with a sufficient number of thread blocks
the impact is insignificant. A summation kernel with thread
block minimisation applied is shown in Listing 4.

T1 T1 T1T2 T2 T2

T3 T3 T3T4 T4 T4
2D Data Set

Flatten to 1D

1:4 Thread:Work Mapping

Figure 6: 1:N mapping of threads to data elements
in a 2D data set to reduce thread block scheduling
overheads.

__global__ void Add(float *Input1 , float *Input2 ,
float *Output , int nElems)

{
for(int _off = __mul24(blockIdx.x, blockDim.x)

+ threadIdx.x;_off < _nElems;
_off += __mul24(gridDim.x, blockDim.x))

{
Output[_off] = Input1[_off] + Input2[_off];

}
}

Listing 4: A summation kernel with thread block
minimisation optimisation. Scheduling overheads
are reduced by assigning multiple work elements
per thread. The for loop selects elements from the
work set separated by the total number of threads,
beginning from a thread-unique offset.

4.6 Thread Block Size, Shape and Count Se-
lection

Choosing a thread block and grid configuration can dras-
tically alter performance. These factors can even decide
whether a program can run at all under the resource con-
straints of a given device. It is worth beginning by noting
the hard limits constraining our choices of thread block size,
shape and count. CUDA specifies five relevant parameters
in each version of its Compute Capability (CC). Tmax is the
maximum number of threads per thread block. Tmpm is the
maximum number of threads that can be managed concur-
rently on a multiprocessor. Rmax is the total number of
registers available to a multiprocessor. Smax is the number
of bytes of shared memory per multiprocessor. Our study
focuses on CC 1.0, but note that our selection techniques
scale to newer versions by simply using different parameter-
isations of these factors. For CC 1.0 the parameters are:

Tmax = 512, Tmpm = 768, Rmax = 8192, Smax = 16000

For CC 1.3 the parameters are:

Tmax = 512, Tmpm = 1024, Rmax = 16384, Smax = 16000

Tmax is a hard limit on the number of threads per block,
but we are additionally constrained by the availability of
registers (Rmax) for those threads to use and by the shared
memory requirements of a particular kernel. Focusing just
on the register requirement for now, the maximum number
of threads per block Tpb for a given kernel is related to the
number of registers the kernel uses Rpt. The latter value
can be extracted from the compiled kernel metadata. Equa-
tion 1 relates these two factors. The floor notation ba, bc
denotes a rounded down to the next integer multiple of b.
This equation is undocumented but used in the CUDA Oc-
cupancy Calculator spreadsheet. It has value in choosing
optimal thread block configurations and thus we have listed
it. Tphw is the number of threads per half-warp, 16 for all
current versions of CC.

Tpb = min(Tmax,

—
Rmax

Tphw ×Rpt
, 4

�
× Tphw) (1)

Per-kernel shared memory requirements are a little harder to
formalise. Each kernel uses a fixed amount of shared mem-
ory for parameters and internal use Spk, advertised in the
compiled kernel metadata. The remaining shared memory
consumption arises from the staging optimisations discussed
in Section 4. These can be broadly classified as shared mem-
ory per-thread Spt and a constant amount per-block inde-
pendent of the block size Scpb. Thus the maximum number
of threads per block for a given kernel is additionally con-
strained by Equation 2.

Spk + Scpb + Spt × Tpb ≤ Smax (2)

The factors discussed so far are hard limits. In fact, per-
formance can often be increased by substantially undercut-
ting them. By reducing Tpb the shared memory Smax can
be divided amongst multiple blocks. Additionally, CC 1.0
specifies a maximum number of threads per multiprocessor
Tmpm of 768. A Tpb of 512 could not fully saturate a mul-
tiprocessor on this architecture because there is an insuffi-
cient number of free threads to process a second block on the
multiprocessor. In this case reducing Tpb to 256 may permit
three blocks to run on the multiprocessor – if shared memory

and register constraints are satisfied – potentially increasing
performance further than the 512 thread block could have
through its more efficient intra-block communication.

Once Tpb has been chosen it must be virtualised into a
two-dimensional thread block Tpbx × Tpby. This could be a
horizontal or vertical line, a square or something in-between.
The shape of a thread block primarily affects the ratio of in-
formation shared amongst threads to the incommunicable
but logically shared information at the boundaries of thread
blocks. Maximising this ratio requires different shapes in dif-
ferent cases. Additionally, the shape of a thread block may
be constrained by dependence in the horizontal or vertical
axis.

Tpbx = Tpb , Tpby = 1 (a horizontal line) is required by ver-
tical moving average indexed functors and the thread block
minimised indexed functors described in Section 4.5. It is
also used to maximise shared information in horizontal one-
dimensional filter indexers: the shared information is Tpb el-
ements and incommunicable information is only (2 x radius)
elements. On the other hand, Tpbx = 1, Tpby = Tpb (a ver-
tical line) is required by horizontal moving average indexed
functors. Note that we expect vertical one-dimensional fil-
ter indexers to have been transposed by this point, thus they
would also use a horizontal thread block.

Tpbx =
¨p

Tpb

˝
, Tpby =

¨p
Tpb

˝
is a compromise of the

two approaches. It is used for two-dimensional filters and
for mixes of horizontal and vertical filters. It is suboptimal
in both axes but maximises the shared data ratio in the 2D
filter. Rectangular variations can be used when the horizon-
tal and vertical filter radii differ.

Once a thread block size has been chosen, the grid size
Bpgx ×Bpgy is fixed. In most cases this is given by Bpgx =l

dodWidth
Tpbx

m
, Bpgy =

l
dodHeight

Tpby

m
. Thread block minimised

kernels are a special case where we set Bpgx = 160, Bpgy =
1. This block count is tuned experimentally: it is small to
minimise block management overheads but large enough to
keep all multiprocessors occupied at reasonable thread block
sizes.

5. EXPERIMENTAL RESULTS
The optimisations described in this work were tested on a

CUDA CC 1.0 device: the GeForce 8800 GTX with 768MB
of video RAM. As a measure of the rapid progress in this
emerging field of hardware, and to assess the generality of
our optimisations, we also present results for a CC 1.3 de-
vice: the GeForce GTX 260 (Core 216) with 892MB of video
RAM. Throughout this section we focus solely on the exe-
cution time of CUDA kernels. In particular we do not mea-
sure host/device data transfer times because their relevance
is dependent on wider application memory management is-
sues and a hardware organisation that is rapidly evolving.
All results were generated on Ubuntu Linux 8.10 64-bit sys-
tems with the 188.08 NVIDIA driver and CUDA 2.1 beta
compiler.

Figure 7 presents performance results for the two commer-
cial visual effects outlined in Figure 1 – degraining and dif-
fusion filtering – on a CC 1.0 device. Each effect has a stock
input image and parameters configured to perform a realis-
tic image processing operation. The effect DAG is first seri-
alised with an NP-complete algorithm to optimally minimise
peak memory consumption; we are exploring faster algo-
rithms but this completes within milliseconds. Kernel tim-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

T
im

e
(m

s)

Functor # in serialisation

Unoptimised
+ Staging

+ Thread Block Minimisation
+ Realignment

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s)

Functor # in serialisation

Unoptimised
+ Transposition

+ Staging
+ Double Transpose Elimination

+ Split Column Parallelism
+ Thread Block Minimisation

Figure 7: Degraining a 2063x1545x3 SP floating-point image (left) and diffusion filtering a 3072x2304x3 SP
floating-point image (right) in CUDA on an 8800 GTX (CC 1.0). Kernel execution times are cumulative across
the DAG serialisation and optimisations are applied incrementally down the graph to improve performance.
Gaps indicate transpose primitives that are not present in a particular composition of optimisations.

ings are accumulated as each indexed functor in the serialisa-
tion is executed. The uppermost line of each graph, with the
longest execution time, represents a syntax-directed trans-
lation of the C++ indexed functors with the best thread
block and grid configurations we could find. Optimisations
are then applied successively, in order of greatest effect first,
to produce the remaining set of lines. Where optimisations
do not improve performance they are omitted from the graph
and discussed in the accompanying text.

In degraining we are able to achieve an approximate 1.75x
performance improvement. The shared memory staging op-
timisation improves data reuse in the DWT filter kernels, re-
ducing round trips to global memory, and coordinated loads
for coalescing. Thread block minimisation reduces the small
but frequently incurred overheads of hardware scheduling in
the effect’s summation and proprietary point indexed func-
tors. Finally, realignment improves coalescing opportunities
in the DWT kernels that read subregions of larger images
by introducing staging with renumbered threads. The gains
made from the sum of these optimisations are modest but
significant and representative of the potential gains in many
simpler visual effects, which are built mainly from point-
based operations and small filters. Transposition and split
row/column optimisations do not apply.

Diffusion filtering sees a more dramatic improvement of
approximately 6.6x. This algorithm is dominated by an
intensive sparse 2D filter at position five in the serialisa-
tion, causing the steepest growth in execution time. Graph-
level transposition optimisations alleviate the heavy perfor-
mance penalties incurred in horizontal moving average in-
dexed functors by enabling coalesced global reads. Shared
memory staging helps to reduce the massively redundant
global memory accesses in the 2D filter and improves coa-
lescing through coordinated reads. A graph-level optimisa-
tion to remove redundant pairs of transpose kernels achieves
a further small improvement. Split column parallelism in
moving averages is largely ineffective due to the CC 1.0 de-
vice’s relatively small multiprocessor count. The gains from
thread block minimisation are the same as those in degrain-
ing, but there is only one indexed functor that benefits from

it and the relative performance improvement is insignificant.
The effect remains dominated by the 2D filter but its inher-
ent memory and computational complexity justifies this.

We now move on to the CC 1.3 device to see which of
our optimisations still apply and how well they perform.
Figure 8 presents results again for degraining and diffu-
sion filtering. In degraining our best efforts achieve only
a 1.3x speedup. Thread block minimisation applies here
as well as it did on the CC 1.0 device. The staging and
realignment optimisations, however, no longer improve per-
formance. Alignment as a requirement for coalescing was
dropped in CC 1.2; accesses within a half-warp merely need
to be in the same segment of memory in order to coalesce.
The sequential data access pattern is likely to result in few
segments being accessed and thus the overhead of realign-
ment – staging and additional register usage – dominates
and reduces the overall performance. The staging optimisa-
tion causes a small slowdown for the DWT indexed functors,
which touch only three points of their 3, 5, 9 and 17 element
wide access regions. Neighbouring threads will have some
overlap into these regions but the amount of reuse is con-
siderably less than in a dense filter. We would still expect
a small speed-up from staging but there are evidently over-
heads which we have not yet identified.

In diffusion filtering the effects of relaxed coalescing rules
are obvious: one- and two-dimensional filters that do not
coalesce on a CC 1.0 device run 5.6x faster before any op-
timisations have been applied. Transposition of horizontal
moving average indexed functors sees the largest improve-
ment, as the concurrent global memory reads are always in
different segments and coalescing cannot take place. Staging
again has a reduced effect in improving coalescing but still
makes small gains by reducing round trips to global memory.
Eliminating pairs of transpositions at the graph level makes
the same gains as before. Split column parallelism helps to
saturate the larger number of multiprocessors on the CC 1.3
device: 28 vs 16 before. As with the CC 1.0 device, thread
block minimisation has a negligible impact here. The overall
performance gain remains a respectable 2.0x.

In summary, our optimisations effectively target the per-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40

T
im

e
(m

s)

Functor # in serialisation

Unoptimised
+ Thread Block Minimisation

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s)

Functor # in serialisation

Unoptimised
+ Transposition

+ Staging
+ Double Transpose Elimination

+ Split Column Parallelism
+ Thread Block Minimisation

Figure 8: Degraining a 2063x1545x3 SP floating-point image (left) and diffusion filtering a 3072x2304x3 SP
floating-point image (right) in CUDA on a GTX 260 (CC 1.3). Kernel execution times are cumulative across
the DAG serialisation and optimisations are applied incrementally down the graph to improve performance.
Gaps indicate transpose primitives that are not present in a particular composition of optimisations.

formance problems identified on the CC 1.0 device. These
were primarily concerned with achieving coalesced global
memory access. The CC 1.3 device has a different set of per-
formance limiting factors – or perhaps a differently weighted
set of the same factors – and more work is needed to better
target our optimisations. In spite of this some of our opti-
misations continued to work well on the CC 1.3 device and
we expect that these will be more useful to SIMT devices as
a whole.

6. RELATED WORK
A domain-agnostic C++ framework with generic depen-

dence specifications for efficient code generation on the Cell
is presented in [7]. The approach is able to specify depen-
dence more precisely than our framework but this level of
detail is not yet exploited. A parallelising compiler for the
SIMT architecture is described in [2] through static code
analysis. Results are presented for an optimised matrix
multiply kernel, exceeding the performance of a vendor-
optimised library, but it has not yet been demonstrated
on more complex kernels. The CUDA-Lite [18] source-to-
source compiler uses source code annotations, another form
of metadata, to optimise shared and global memory access
in a CUDA program. The results are comparable to hand-
optimised code. Many features of the optimisation space
in CUDA programs, including the thread and grid choices
that we touch upon, are identified in [12] and subjected to
exhaustive and heuristic searches in order to better under-
stand them.

Other notable abstract data-parallel frameworks include
RapidMind [6] and PeakStream [11], two commercial toolk-
its with code generators for the CPU, GPU and Cell. Rapid-
Mind implements a SPMD programming model, upon which
SIMT is built, and uses runtime code generation to adapt
compiled programs to dynamic context. This includes cross-
component loop fusions. PeakStream began as the academic
Brook project [3], with similar goals, but its runtime func-
tionality was weaker than RapidMind’s before the project
was acquired by Google in 2007. Brook+ is another exten-

sion to the Brook framework. The programming model is
simple but requires substantial work on the programmer’s
part to optimise for the backend architecture [1]. OpenCL
is expected to supersede much of this functionality in the
near future. It fits the SIMT model [10] precisely and per-
forms runtime code generation on AMD and NVIDIA GPUs
and on Intel’s Larrabee hybrid CPU/GPU.

Looking beyond the SIMT model, domain-specific frame-
works for image processing have been studied for many years,
driven mainly by performance demands in computer vision.
In [14] the authors describe a library for shared and dis-
tributed memory CPU parallelisation of computer vision al-
gorithms expressed in image algebra, which encompasses the
functionality of our point and filter indexers. Complete ef-
fects are similarly built from primitive operations into DAGs
from straight-line code. The SKIPPER project [15] pursued
similar performance goals with algorithmic skeletons, upon
which our theme of indexers is based, abstracting the com-
mon patterns of parallel computations found in computer
vision algorithms. The authors opted for a static code anal-
ysis approach. Earlier work in [8] again built upon the idea
of patterns in communication and computation as program-
ming abstractions for algorithms. The paper discusses the
problem of task scheduling, for which we use an NP-complete
optimal algorithm, which they solve with heuristic-guided
graph isomorphism algorithms in order to reuse subgraph
architectural mappings that are known to work well.

7. CONCLUSIONS AND FURTHER WORK
In this paper an extension to a domain-specific active li-

brary was developed to tackle key SIMT architectural per-
formance problems in commercial visual effects software.
The dominating issues concerned efficient use of the global
and shared memory subsystems. To alleviate these prob-
lems black-box code transformations, requiring no kernel
analysis, were identified and implemented in a source-to-
source compiler. High-level metadata, captured from static
class decorations and runtime context through delayed eval-
uation, provided sufficient information to select and imple-

ment each transformation automatically. The full suite of
optimisations was tested on two visual effects, donated by
our industrial partners, and delivered speedups of between
1.3x and 6.6x on both our development NVIDIA GPU and a
previously untested NVIDIA device with substantial archi-
tectural modifications. We showed that our optimisations
are necessary for high performance and that, at least in this
case study, we are able to synthesise complex data movement
code automatically. A subset of optimisations survived the
generational transition and we expect them to apply to a
wider set of SIMT devices.

The kernel-blindness of our techniques suggests that a set
of metadata-dependent rules may underpin effective CUDA
code generation for arbitrary indexed functors. Certainly,
the metadata identified in Section 2 and used throughout
Section 4 was sufficient to achieve large speed-ups on the
indexed functors considered in this paper. Node neighbours
in the DAG, data dependence and memory access patterns
were all used to identify appropriate optimisations for each
indexed functor. Further work is needed to determine if this
information alone is sufficient to support the key optimi-
sations across all possible indexed functors. Furthermore,
the scope of indexed functors requires expansion to express
the complex data dependence and memory access patterns
found in more advanced visual effects algorithms, such as un-
structured and structured grid computations, Fourier trans-
forms, dense and sparse linear algebra, particle simulations
and Monte Carlo methods. We plan to explore these do-
mains with single-source, high-performance code generation
research on SIMD and SIMT architectures in the near fu-
ture.

8. ACKNOWLEDGMENT
We would like to thank our Industrial CASE sponsors

at The Foundry for contributing commercial visual effects
software for this study. This work was partly funded by the
EPSRC (ref EP/E002412).

9. REFERENCES
[1] AMD. Stream computing user guide. pages 50–53,

October 2008.

[2] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. A
compiler framework for optimization of affine loop
nests for GPGPUs. In ICS ’08: Proceedings of the
22nd annual international conference on
Supercomputing, pages 225–234, New York, NY, USA,
2008. ACM.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman,
K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: stream computing on graphics hardware.
ACM Trans. Graph., 23(3):777–786, 2004.

[4] J. L. T. Cornwall, P. H. J. Kelly, P. Parsonage, and
B. Nicoletti. Explicit dependence metadata in an
active visual effects library. In LCPC, volume 5234 of
Lecture Notes in Computer Science, pages 172–186.
Springer, 2007.

[5] K. Czarnecki, U. W. Eisenecker, R. Glück,
D. Vandevoorde, and T. L. Veldhuizen. Generative
programming and active libraries. In Selected Papers
from the International Seminar on Generic

Programming, pages 25–39, London, UK, 2000.
Springer-Verlag.

[6] S. du Toit and M. McCool. RapidMind: C++ meets
multicore. In Dr. Dobbs Journal, June 2007.

[7] L. W. Howes, A. Lokhmotov, A. F. Donaldson, and
P. H. Kelly. Deriving efficient data movement from
decoupled access/execute specifications. In Proceedings
of the 4th International Conference on High
Performance and Embedded Architectures and
Compilers (HiPEAC), volume 5409 of Lecture Notes
in Computer Science, pages 168–182. Springer, 2009.

[8] L. H. Jamieson, E. J. Delp, C.-C. Wang, J. Li, and
F. J. Weil. A software environment for parallel
computer vision. Computer, 25(2):73–77, 1992.

[9] E. Lindholm, J. Nickolls, S. Oberman, and
J. Montrym. NVIDIA Tesla: A unified graphics and
computing architecture. IEEE Micro, 28(2):39–55,
2008.

[10] J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with CUDA. Queue,
6(2):40–53, 2008.

[11] PeakStream. High productivity software development
for multi-core processors. In WinHEC, 2007.

[12] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S.
Baghsorkhi, S.-Z. Ueng, J. A. Stratton, and W.-m. W.
Hwu. Program optimization space pruning for a
multithreaded gpu. In CGO ’08: Proceedings of the
sixth annual IEEE/ACM international symposium on
Code generation and optimization, pages 195–204,
New York, NY, USA, 2008. ACM.

[13] M. Schordan and D. Quinlan. A source-to-source
architecture for user-defined optimizations. In
Proceedings of the Joint Modular Languages
Conference (JMLC’03), Lecture Notes in Computer
Science, volume 2789, pages 214–223, 2003.

[14] F. J. Seinstra and D. Koelma. User transparency: a
fully sequential programming model for efficient data
parallel image processing: Research articles. Concurr.
Comput. : Pract. Exper., 16(6):611–644, 2004.

[15] J. Sérot and D. Ginhac. Skeletons for parallel image
processing: an overview of the SKIPPER project.
Parallel Comput., 28(12):1685–1708, 2002.

[16] Y. Song, R. Xu, C. Wang, and Z. Li. Data locality
enhancement by memory reduction. In ICS ’01:
Proceedings of the 15th International Conference on
Supercomputing, pages 50–64. ACM Press, 2001.

[17] A. D. Stefano, B. Collis, and P. White. Synthesising
and reducing film grain. Journal of Visual
Communication and Image Representation,
17(1):163–182, 2005.

[18] S.-Z. Ueng, S. Baghsorkhi, M. Lathara, and W. mei
Hwu. CUDA-lite: Reducing GPU programming
complexity. In LCPC, volume 5335 of Lecture Notes in
Computer Science. Springer, 2008.

