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Abstract. Morton layout is a compromise storage layout between thgraro-
ming language mandated layouts row-major and column-mgjoriding sub-
stantial locality of reference when traversed in eitheection. This paper ex-
plores the performance of Morton, row-major and columnemkgyouts in detail
on some representative architectures. Using a small suitersse kernels work-
ing on two-dimensional arrays, we have carried out an ekterstudy of the
impact of poor array layout and of whether Morton layout cfaran attractive
compromise. Whether Morton layout is better than traveraisolumn-major ar-
ray in row-major order (or vice versa) depends on problera aiml architecture.
Morton layout generally leads to much more consistent perdmce and only a
small improvement in its performance could make it an atira@lternative.

1 Introduction

Two-dimensional arrays are generally arranged in memorgwimajor order (for C,
Pascal etc) or column-major order (for Fortran). Moderncpesors rely heavily on
caches and prefetching, which work well when the accessmpattatches the storage
layout. Sophisticated programmers, or occasionally stighited compilers, match the
loop structure to the language’s storage layout in order aximise spatial locality.
Unsophisticated programmers do not, and the performaseddmften dramatic — a
factor of 10 or more. In this paper we study the Morton stoltageut (for background
and history see [2,11]).

Morton layout is a compromise between row-major and columajer, with some
spatial locality whether traversed in row-major or columajor order — but in neither
case is spatial locality as high as the best case for row+majlumn-major. Further,
the way that array elements are stored requires fairly cimateld address calculation.
So, should language implementors still consider providingport for Morton layout
for multidimensional arrays? In this paper, we explore analyse this question and
provide some qualified answers.

Perhaps controversially, we confine our attention to “rigiweritten codes, where
a mismatch between access order and layout is reasonadlly NKe also assume that
the compiler does not help, neither by adjusting storageugyor by loop nest restruc-
turing such as loop interchange or tillhdNaturally, we fervently hope that users will

1n the examples which we studied, we have not seen evidenteeafompiler either inter-
changing loops or changing storage layout in order to imptbe stride of memory access.



be expert and that compilers will successfully analyse gstianise the code, but we
recognise that very often, neither is the case. In this papesvaluate the hypothesis
that Morton layout, implemented using lookup tables, isefulscompromise between
row-major and column-major layout. We present extensiyeedrental results using
five simple numerical kernels, running on five different mssors (Section 4).

2 Related work

In our earlier paper [10], we argued that Morton layout is #i@ative compromise stor-
age layout, with the evidence of experimental data on vararahitectures for various
kernels, on power-of-two problem sizes. Our later work dected non-power-of-two
sizes (presented at the CPC workshop in January 2003) gailarsiesults. This paper
improves on our earlier work:

— We use the best available compilers for each of the five psocesusing the com-
piler flags chosen by the vendors for their SPEC CFP2000 )ltesechmark re-
ports [9] (see Table 3 in Section 4).

— We present an extensive and systematic study using allgmobizes in the range
100x 100 to 2048. This shows a number of interesting effects, anddi lay-
out appears less attractive. However, as we discuss at thefehe paper, further
improvements to the performance of Morton layout might besjiue.

In [10], we included a discussion about related work in treaasf compiler tech-
niques [4-6, 12], blocked and recursively-blocked arrgglas [2, 3, 11].

3 Background

Lexicographic array storage. For anM x N two dimensional arra, a mappings(i, j)
is needed, which gives the memory offset at which array ettrg will be stored.
Conventional solutions are row-major (for example in C aaddal) and column-major
(as used by Fortran) mappings expressed by

SMNG )y =Nxi+] and SV, j)=i+Mx ]
respectively. We refer to row-major and column-major asclegraphic, i.e. elements
are arranged by the sort order of the two indices (another i®fcanonical”).

Blocked array storage. Traversing a row-major array in column-major order, or vice
versa, leads to poor performance due to poor spatial lgcalit attractive strategy is
to choose a storage layout which offers a compromise betvewemajor and column-
major. For example, we could break thex N array into smallP x Q row-major sub-
arrays, arranged asM/P x N/Q row-major array. We define the blocked row-major
mapping function (this is the 4D layout discussed in [2]) as:

St (:1) = (Px Q) x s/ ™2/ /P) 4 S (194P, j96Q)
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Column-major traversal: one in four accesses
hits a new cache line.

Fig.1. Blocked row-major (“4D”) layout Fig-2. Morton storage layout for an 8x 8 ar-
Sé?;ﬁ)(i, i) with block-size P=Q = 4. The ray. Location of elemenf[5, 4] is calculated by

diagram illustrates that with 16-word cach interleaving “dilated” representations of 5 and 4

lines, illustrated by different shadings, th:b'tW'se: Do(5) = 10001Q, Dy(4) = 01000Q.

cache hit rate is 75% whether the array is irame(5,4) = Do(5) | P1(4) = 110016 = 5050.
versed in row-major or column-major order.

For example, consider 16-word cache blocks Bnd Q = 4, as illustrated in Figure 1.
Each block holds & x Q = 16-word subarray. In row-major traversal, the four itevas
(0,0), (0,1), (0,2) and (0,3) access locations on the same block. The remaining 12
locations on this block are not accessed until later iteratiof the outer loop. Thus,
for a large array, the expected cache hit rate is 75%, sindeldack has to be loaded
four times to satisfy 16 accesses. The same cache hit ratisresth column-major
traversal, i.e. when the loop structure f0“i...do j” rather than thedo j...do

i " loop of row-major traversal.

Recursive blocking. Modern computer systems rely on a TLB to cache address &ansl
tions: a typical 64-entry data TLB with 8KByte pages has deative span of 64 8 =
512K B. Unfortunately, as illustrated in Figure 3, if a blocked ravajor array is tra-
versed in column-major order, only one subarray per pagsdbla. Thus, we find that
the blocked row-major layout is still biased towards rowjon#&raversal. We can over-
come this by applying the blocking again, recursively. Traech 8KByte page (1024
doubles) would hold a 1& 16 array of 2x 2-element subarrays.

Modern systems often have a deep memory hierarchy, withkkdare, capacity
and access time increasing geometrically with depth [1fcBing should therefore
be applied for each level. Note, however, that this beconeeg awkward if larger
blocksizes are not whole multiples of the next smaller béimd

Morton-order layout is an unbiased compromise between row-major and column-major.
The key property which motivates our study of Morton layauthie following:



Each 1024-word page holds 64 4x4 blocks
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mumn—major traversal, each new block is on a fresh page

Fig. 3. Blocked row-major layout for large array. If a large blocked row-major array is tra-
versed in column-major order, only one subarray per pagsabla. The diagram shows an array
with rows of 2048 doubles, using the blocked row-major laywith 4 x 4 blocks. Each 8KByte
page holds 1024 doubles, in 64 blocks. When traversed imnayor order, one fresh page is ac-
cessed every 256 accesses (a hit rate-011256 = 99.6%), but when traversed in column-major
order, a fresh page is accessed every 4 accesses (a hit fatelgft = 75%).

Row-major layout|Morton layout|Column-major layout

32B cache ling 75% 50% 0%
128B cache ling 93.75% 75% 0%
8KB page 99.9% 96.875% 0%

Table 1. Theoretical hit rates for row-major traversal of a large array of double words on
different levels of memory hierarchy. Possible conflict misses or additional hits due to temporal
locality are ignored. This illustrates the compromise ratf Morton layout.

— Given a cache with any even power-of-two block size, with ayamapped ac-
cording to the Morton order mappit¥y., the cache hit rate of a row-major traversal
is the same as the cache-hit rate of a column-major traversal

— This applies given any cache hierarchy with even powemafilock size at each
level. This is illustrated in Figure 2.

— The cache hit rate for a cache with block siZ&i8 1— (1/2).

For cache blocks of 32 bytes (4 double workls; 1) this gives a hit rate of 50%. For
cache blocks of 128 bytes (16 double workis; 2) the hit rate is 75% as illustrated
earlier. For 8KB pages (1024 words= 5), the hit rate is 96.875%. In Table 1, we
contrast these hit rates with the corresponding theotdiiicates that would result from
row-major and column-major layout. Notice that traverding same array in column-
major order would result in a swap of the row-major and columajor columns, but
leave the hit rates for Morton layout unchanged.

Morton-order address calculation. The offselSEnNz"N) (i,]) of an elementin Morton lay-
out can be calculated by bitwise interleaving of the bin&gjtsl representing and j.
This can be calculated incrementally using "dilated arighiof, but in our earlier pa-



MMijk  |Matrix multiply, ijk loop nest order (usually poor due todgr stride
MMikj  |Matrix multiply, ikj loop nest order (usually best due to tsiride)
Jacobi2DTwo-dimensional four-point stencil smoother

ADI Alternating-direction implicit kernel, ij,ij order
CholeskyK-variant (usually poor due to large stride)

Table 2. Numerical kernels used in our experimental evaluabn.

System Processor Operating |L1/L2/Memory Compiler
‘ ‘ ‘System ‘Parameters and Flags Used
Alpha Alpha 21264 OSF1 V5.0 [L1 D-cache: 2-way, 64KB, 64B cache line Compaq C
Compag (EV6) 500MHz L2 cache: direct mapped, 4MB Compiler V6.1-02
AlphaServer Page size: 8KB -arch ev6 -fast -O4
ES40 Main Memory: 4GB RAM
Sun UltraSparclll(v9) [SunOS 5.8 |L1 D-cache: 4-way, 64KB, 32B cache line Sun Workshop 6
SunFire 6800750MHz L2 cache: direct-mapped, 8MB -fast -xcrossfile
Page size: 8KB -xaliaslevel=std
Main Memory: 24GB
Pl Pentiumlll Linux 2.4.20QL1 D-cache: 4-way, 16KB, 32B cache line Intel C/C++
Coppermine L2 cache: 4-way 512KB, sectored 32B cache lin€ompiler v7.00
450MHz Page size: 4KB -xK -mp -ipo
Main Memory: 256MB SDRAM -O3 -static
P4 Pentium 4 Linux 2.4.2QL1 D-cache: 4-way, 8KB, sectored 64B cache IiPateI C/C++
2.0GHz L2 cache: 8-way, 512KB, sectored 128B cache|i@empiler v7.00
Page size: 4KB -XW -mp -ipo
Main Memory: 512MB DDR-RAM -O3 -static
AMD AMD Athlon Linux 2.4.2QL1 D-Cache: 2-way, 64KB, 64B cache line Intel C/C++
XP 2100+ 1.8GHg L2 cache: 16-way, 256KB, 64B cache line Compiler v7.00
Page size: 4KB -xK -mp -ipo
Main Memory: 512MB DDR-RAM -static

Table 3. Cache and CPU configurations used in the experiment€ompilers and compiler
flags match those used by the vendors in their SPEC CFP2086€)(banchmark reports [9].

per [10], we found a simple table lookup scheme works rentdykaell. We use two
tables,Dg andD;, which mapi and j to their dilated representations (that is, bitwise
interleaved with zeroes, whef®Dg(i)) = Oin_1...0ig whereB(x) is the binary repre-
sentation okandDy (i) = Do(i) << 1). The Morton offse&am™ (i, j) = Do(i) +D1(j).
The tables are small and are traversed with unit stride.iénper, we exclusively use
the table lookup scheme.

4 Experimental setup and experimental results

Benchmark kernelsand architectures. To test our hypothesis that Morton layout, imple-
mented using lookup tables, is a useful compromise betwagmrajor and column-
major layout experimentally, we have collected a suite ofpgé implementations of
standard numerical kernels operating on two-dimensiomalya and carried out ex-
periments on five different architectures. The benchmarkarnels used are shown in
Table 2 and the platforms in Table 3.

Problem sizes. As mentioned in Section 2, our previous paper [10] reportedop-
mance results for power-of-two problem sizes. For this pape decided to carry out



Adi Cholk | Jacobi2D | MMijk MMikj
min max;mn max| mn max; mn max| mn max

Alpha |[27.0 84.5 24.0 167.1 6.0 139.5 42.7 177.
Athlon||43.8 210.4 8.8 308.5150.6 1078.5 9.5 262.$118.2 884.
P3 13.7 46.64.1 42.2 38.7 122.315.5 92.3 45.5173.%
P4 46.2 134.14.8 266.1159.6 1337.312.6 147.8281.4 939.
Sparc (|11.3 54.43.5 78.4 33.2 139.2 4.8 131.9 22.7 142.

=TI

Table 4. Baseline performance of various kernels on differet systems.For each kernel, for
each machine, we show the performance range in MFLOPs formajer array layout over all
problem sizes covered in our experiments (as shown in Fgl#e).

an exhaustive study, collecting performance data, whessiple, for all problem sizes
between 10& 100 and 204& 2048. In some cases, the running-time of the benchmarks
was such that we were not able yet to collect data up to 202@48. In those cases, we
report data up to 1024 1024; however, we are continuing to collect measurememts. |
all cases, we used square arrays.

Performanceresults. The performance numbers we reportin this paper are all based
the median of measurements taken. See [7] for more details on expetaheethod-
ology/framework. Table 4 shows the baseline performanbé&ged by each machine
using standard row-major layout. In figures 4—7 we show ot@r@sting/important re-
sults in detail. The full range of results and annotatiomslwafound in [7].

On nearly all systems, the results clearly show the impadt2ofache and TLB
span on overall performance. Frequently, when either thelewvorking set or some
part thereof exceeds the capacity of a particular level ahorg hierarchy, a substantial
drop in performance can be observed. For example, a sudderirdthe performance
of MMijk with the column-major layout oAlpha, near the problem size 350 coincides
with the working set exceeding the size of the TLB span. (Alplas 128—entry Data
TLB, each entry pointing to an 8KB page: This matches the aizz362x 362 array
of doubles). Similar observations can be made for othetdafdhe memory hierarchy
as well. Further, row-major and column-major layouts shddewariations in perfor-
mance with small changes in problem sizes whereas the psafare of Morton layout
remains very consistent. Although padding the length ofrtives/columns of an ar-
ray can significantly improve performance, the amount oftigagirequired needs to be
chosen very carefully.

For each experiment/architecture pair, we state whethatdvidayout is a useful
compromise between row-major and column-major in thisregetby annotating the
figures withwin, lose, etc. As an overview, we recomdns for

— Adi: Alpha, P3 and Sparc over column-major but not over roajon
— Jacobi2D: Alpha, Sparc over column-major but not over roajan
— MMikj: Alpha, Sparc over column-major but not over row-mijo



— MMijk: Alpha, Sparc over both row-major and column-major.

This suggests that Morton layout performs well on machiniéls large L2 caches.

5 Conclusions and directions for further research

Using a small suite of dense kernels working on two-dimeradiarrays, we have car-
ried out an extensive study of row-major, column-major anortigin layouts and the
impact of poor array layout on performance, covering nowgreof-two problem sizes
within a substantial range. On some machines, we found tloatdv array layout, even
implemented with a lookup table with no compiler supponteimarkably competitive to
both row-major and column-major layouts. We also found tisittg a lookup-table for
address calculation allows flexible selection of fine-grain-linear array layout, while
offering attractive performance on some architecturegaared with lexicographic lay-
outs on untiled loops. Although the overall performancehef basic Morton scheme,
as described in this paper, is only attractive for some sechires and kernels, a small
improvement in its performance could make it a promisingrakitive to lexicographic
layouts. A number of interesting issues remain:

— Non-square cache blocks and pagek our brief analysis of spatial locality using
Morton layout (Section 3), we assumed that cache blocks etui/memory pages
are asguare (even) power of two. This depends on the array’s element sizé
is often not the case. In these cases, Morton layout can tediffering spatial
locality, when traversed in row-major or column-major ardle more subtle non-
linear layout might address this.

— Base address alignmentn our implementation, we have only considered the de-
fault alignment, as returned bl | oc(), of the base address of Morton arrays.
For large arrays, we have found this to be page-aligned plyses on several sys-
tems. Our studies show that alignment of the base addresodbMarrays can
make a significant difference in performance (especiallgmvtine alignment is of
cache line length or of page size). Further study and expatisrare needed in this
aspect.

— Unrolling. The results presented here are based on code which useokup lo
table for every address calculation. By strip-mining theeimmost loop (which is
always valid) by a small square power-of-two factor such ag & possible to
replace some lookup table accesses with constant offsgtstfre base of a 2
block. This should give higher performance for the Mortoyolat, at the loss of
some of the addressing flexibility which the lookup tableesok allows.

— Associativity conflicts within and between Morton arrays. Associativity con-
flicts have been studied extensively for lexicographic lagde.g. [8]). Our results
show evidence that associativity conflicts also impactqrerince with Morton
layout, and further study of the effect is needed.

— Cache contention between arrays and lookup tableghe lookup table scheme
relies for its performance on the tables, which are acces#tadinit stride, occu-
pying first-level cache. However, array accesses can dispekup table entries.
We believe this effect may explain some features of our perémce graphs and
plan to investigate further.
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Fig. 4. ADI performance in MFLOPs on different platforms. We compare row-major (RM),
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Fig. 5. Jacobi2D performance in MFLOPs on different platforms. We compare row-major
(RM), column-major (CM) and Morton implemented using lopkables.



Win over CM for problem sizes
larger than about 330x 330
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Fig. 6. MMikj performance in MFLOPs on different platforms. We compare row-major (RM),
column-major (CM) and Morton implemented using lookup égbl



Wn Win over both RM and CM for problem
sizeslarger than about 750x 750
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— Prefetching. Most modern processors have both autonomous prefetchingiof
form address streams, and explicit prefetching instrastioNith lexicographic
layout, fixed-stride accesses are common and autonomofetgirenechanisms
should work well. With Morton layout, the access patternriswn in advance but
is not uniform. To sustain memory access bandwidth we neeésste prefetch
instructions carefully.

It seems unlikely that Morton layout can offer a competita@mpromise for three-
dimensional arrays, since a given lexicographic travessalld use only ® words of
each 3-word cache block.
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