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Abstract

This paper presents the results of a simulation study of cache coherency issues in parallel
implementations of functional programming languages. Parallel graph reduction uses a heap
shared between processors for all synchronisation and communication. We show that a high
degree of spatial locality is often present and that the rate of synchronisation is much greater
than for imperative programs. We propose a modified coherency protocol with static cache
line ownership and show that this allows locality to be exploited to at least the level of
a conventional protocol, but without the unnecessary serialisation and network transactions
this usually causes. The new protocol avoids false sharing, and makes it possible to reduce the
number of messages exchanged, but relies on increasing the size of the cache lines exchanged
to do so. It is therefore of most benefit with a high-bandwidth interconnection network with
relatively high communication latencies or message handling overheads.
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1 Introduction

Parallel graph reduction (PGR) uses a shared graph structure to manage and synchronise the
parallel execution of a functional program. It provides a simple model of communication and
synchronisation between processors. The performance of parallel programs operating under this
regime depends critically on the provision of access to the shared heap with very high average
performance. In this paper we investigate the hypothesis that its usage patterns display distinctive
properties of importance in the design and optimisation of multicache implementations of shared-
memory.

The most successful implementationsof PGR (e.g. Goldberg’s Buckwheat system [19] and Augusts-
son and Johnsson’s (v, G)-machine [5]) have used general-purpose shared-memory multiprocessors
based on snooping cache coherency protocols [4]. For modest numbers of processors these systems



implement a shared heap with near-ideal performance, but the number of processors is limited by
contention for the snooping bus.

Meanwhile there have been numerous attempts to implement PGR on more scalable architectures,
interesting examples being Alfalfa [19], Alice [23], GRIP [37], and George’s Butterfly implemen-
tation [18]. None of these has achieved performance nearly as satisfactory as Augustsson and
Johnsson’s (v, G)-machine. A key reason for this has been the difficulty of communicating and
sharing data structures.

Recent developments in the design of large shared-memory machines offer the prospect that an
approach like the (v, G)-machine might be scaled to large configurations. Large shared-memory
systems, like the Kendall Square Research KSR1 [27], Stanford DASH [32] and DDM [21], rely
on caches to reduce communications load, and use directory-based invalidation protocols to keep
track of cached copies to prevent out-of-date copies from being used incorrectly. This paper
studies the effectiveness of such coherency protocols on multiprocessors when executing parallel
functional programs using PGR and identifies the factors limiting scalability. We investigate
the use of standard protocol extensions which relax coherency, and study a modified protocol
which exploits the characteristics of the PGR regime. We are particularly concerned with modern
multiprocessors which have relatively high latency and high bandwidth interconnection networks
since these characteristics greatly influence the behaviour and speedup of programs.

Preliminary results from this work were given in [7], and have been presented in conference pa-
pers [8, 9]. This paper reports results from a larger and more interesting benchmark suite, and
includes more detailed analyses of simulation results, weak consistency and interconnection net-
work bandwidth issues.

The remainder of the paper is structured as follows: graph reduction is reviewed in Section 2.
The architecture of shared-memory multiprocessors and the major design issues are described in
Section 3. The memory reference characteristics of PGR and our optimised coherency protocol
are presented in Section 4. We then describe our simulation environment in Section 5. Simulation
results are presented and analysed in Section 6. Further issues and related work are reviewed in
Section 7, and we present our conclusions in Section 8.

2 Parallel graph reduction

The graph reduction model was first proposed by Wadsworth [45] and forms the basis of most
modern compiled implementations of functional languages. Essentially the idea is that a parameter
expression can be represented in unevaluated form by a “closure”: a heap cell containing a code
pointer and pointers to the variables on which the expression depends. In general the variables
may in turn be closures, leading to a graph structure representing many tasks together with their
data dependence structure. When the parameter is finally needed, the closure is activated: the
code pointer 1s used as an entry point, and the rest of the closure as the environment for the
evaluation of the suspended parameter expression. After evaluation, the closure is updated with
a copy of the result, so that re-evaluation is not needed if another reference to the parameter is
encountered.

Graph reduction implements a call-by-need parameter passing mechanism, i.e. the arguments of
a function are only evaluated when their values are required. This laziness allows programs to
manipulate infinite data structures: only as much of the data structure is evaluated as is necessary
to produce the result of the program. Considerable efforts have been directed towards creating
implementations of lazy evaluation which are as efficient as possible. However, it is usually the
case that call-by-need is more costly than call-by-value and call-by-reference used in imperative
languages due to the overhead of allocating and updating closures in the heap. For this reason



call-by-value is used in place of call-by-need whenever possible by using the results of program
analyses.

Given this structure, parallelismis easily added. At any time a closure can be “sparked” | i.e. added
to a pool of work to be distributed to threads executing on idle processors. The graph structure
represented by the closures is then used to coordinate and communicate between evaluation pro-
cesses. When a thread needs the value of some other closure, the closure is demanded. There are
three cases:

e If the closure has already been evaluated its value can be read immediately.

e If the closure has not been evaluated, it is marked busy and then evaluated by the thread
which needs it.

e If the closure is already marked busy, some other thread has begun to evaluate it, and the
thread cannot proceed until it has been updated by its result. The thread blocks on the
closure. When evaluation of the closure has finished, all such blocked threads are released.
When a thread blocks, the processor on which it is running schedules another runnable
thread, or assigns a new thread to another sparked closure from the work pool.

Two aspects of an implementation of PGR require particular attention: scheduling and shared
heap support. Scheduling policies and techniques are discussed in Section 5.2. In this paper we
concentrate on supporting the shared heap required by PGR. It is essential that it is supported
with high efficiency in order to achieve speedups.

3 Cache-coherent multiprocessors

The performance of parallel programs operating under the PGR regime depends critically on the
provision of access to a shared heap with very high average performance. It is freedom from explicit
considerations of data placement which gives the parallel graph reduction model its simplicity, and
1t must be supported at reasonable cost.

The most straightforward way to implement shared-memory is to construct a high-performance
interconnection network to route requests to read and write shared-memory to the appropriate
memory bank. This approach has been taken in the BBN Butterfly [14], and the IBM RP3
prototype [38]. This has the problem that communication is incurred for all accesses to shared
memory, whereas a cache-based scheme would allow programs which demonstrate some locality
to benefit from much lower memory access latencies, and a much lower network traffic level.

In a uniprocessor, a cache mechanism places commonly-used data in local fast memory rather than
in slower, bulk storage such as dynamic RAM. In a multiprocessor this is especially attractive
since communication paths to and from bulk storage are likely to suffer contention with activity
generated by other processors.

The cache coherency problem arises from the presence of multiple copies of the same datum in
different processors’ caches. When a write occurs to the datum’s address, some mechanism is
needed to prevent out-of-date cached copies from being used in the future. Cache coherency
protocols consist of policies and distributed data structures to organise this. A survey of design
issues in coherent cache multiprocessors is given in [40]. There are many design variables:

1. Replication/migration vs. remote access: where no temporal or spatial locality exists, repli-
cation or migration of the datum yields no benefit.



2. Cache line size: the unit of replication/migration is a compromise between bandwidth, the
benefit of spatial locality, and “false sharing”. False sharing occurs when different data on
the same cache line are subjected to the same migration decisions leading to coherency traffic
which could be avoided with a different data placement (described in detail in Section 3.2).

3. Invalidation vs. update: when a write occurs, updates could be sent to all remote copies.
This is a benefit if the remote copies are being actively read, but invalidating the remote
copies could avoid further coherency messages.

4. Delayed (“weak”) consistency: in order to increase parallelism and reduce network traffic,
some implementations allow coherency actions to be delayed. With strong consistency, the
value read by a program is guaranteed to be the result of the most recent write to that
address. If a process 1s allowed to proceed after a write before all invalidations or updates
have been acted upon, the semantics of the shared store may be compromised.

5. Directory and ownership representation: with migratory ownership, complex distributed
data structures are involved.

In this paper we concentrate on the first four issues outlined above. Results presented in Section 6
are based on simulations of three forms of shared-memory: an ideal shared-memory in which
all accesses take some small constant time, a conventional invalidation shared-memory similar to
schemes used in commercial multiprocessors, and a scheme based on a new optimised protocol.
The invalidation protocol i1s described in the next section, and the new optimised protocol in
Section 4.1.

3.1 An invalidation protocol

The protocol we simulate is essentially similar to the Berkeley Ownership Illinois protocols [4],
which have been used in commercial snooping-bus shared-memory machines such as the Sequent
Symmetry [34]. We describe the protocol as it is used in a bus-based multiprocessor, consisting
of a set of processing elements (PEs), each comprising a processor and a cache interconnected by
a simple bus. Further details of our simulation and our simplifying assumptions can be found in
Section 5.3.

The shared-memory region is divided into a number of cache lines of some constant size. Each line
is owned by a particular PE; ownership changes dynamically according to coherency transactions.
When a PE attempts to read a line which is not in its local cache, it sends a read request to
the owner of the line (by broadcasting on the bus) which responds with a copy of the line. The
requesting PE adds it to its cache and proceeds to use it. In this way, multiple copies of lines come
into existence in the system. A write to a line that is cached locally but not remotely can take
place without using the network. The difficulty occurs when a write occurs to a line that exists in
multiple caches: before the write is allowed to proceed the remote copies must be invalidated to
prevent them being used again. The requesting PE becomes the new owner of the line when the
write has completed.

Bus-based systems provide support for invalidating remote copies of lines using broadcast: all
PEs monitor (“snoop”) the bus and respond to transactions as necessary. Such systems have the
advantage that the identities of the PEs which have copies of each line (the “copy set”) do not
need to be maintained. The bus quickly becomes a bottleneck as more PEs are added to the
system since it cannot provide adequate bandwidth.

The same protocol can be used on more general networks which do not provide such strong support
for broadcasting, provided that:



e Directories are used to record the copy set of each line.

e A mechanism to locate the owner of lines is adopted.

Directory schemes are described and evaluated in [2]. See [21] and [33] for discussions of mecha-
nisms used to locate the owner of lines.

3.2 Cache line size, locality and false sharing

The size of cache lines 1s a critical issue in cache-based shared-memory implementations. Small
line sizes, of the order of a few tens of bytes, were usual in first-generation bus systems such as the
Sequent Balance [41]. Small lines had the advantage that few bus cycles were required to transfer
a copy of a line, allowing as many as 30 processors to be used without contention for the bus
becoming a limiting factor. This is possible because bus arbitration is so fast. Larger line sizes
would have either required more bus cycles (resulting in increased latency of memory operations
and greater network contention) or a wider bus (which is more expensive). The situation with
modern multiprocessors with richer interconnection networks is quite different: contention is less
of a problem since many separate links exist, and message latencies are dominated by the startup
time which is independent of the message size. Such architectures therefore favour the use of large
messages and cache line sizes.

Large lines also improve the price/performance ratio of the cache since they require less space to
store the tag bits. Thus less expensive static RAM is required for a cache of a fixed size.

For example, on the Meiko CS-2 the time required to exchange messages of various sizes are [6]:

e 1 byte: 10us
e 500 bytes: 21us
e 2000 bytes: b0us

The latency thus consists of a fixed startup time and a data transfer time which is a linear function
of the message size.

Line size can significantly affect the performance of a program. Large lines allow spatial locality
to be exploited: fetching a line causes all objects located on it to be copied into the local cache,
eliminating further requests if those objects are accessed whilst the copy of the line remains in the
local cache. Unfortunately, large lines also increase the false sharing problem. This is the sharing
of cache lines without sharing of data [17]. The root of the problem is that a line may contain
several objects which are used independently. For example, consider the case where processor A
creates four objects in shared-memory. Processors B, C, D and E each address one object, and read
and write it several times over the same period of time. If each object is allocated on a different
line the first write made by each of processors B, C, D and E will invalidate the remote copy held
by processor A, allowing subsequent reads and writes to be served by local caches. However, if
all the objects are allocated on the same cache line, the coherency overhead will be significantly
greater since each write will cause all other copies of the line to be invalidated, and subsequent
reads will cause multiple copies of the line to created again, which will need to be invalidated by
the next write.

We refer to this effect, in which unnecessary message exchanges take place, as line stealing. The
net result is that considerable extra network traffic and serialisation occurs which 1s not required
by the data sharing behaviour of the program. The average latency of shared-memory accesses is
therefore greater than necessary, resulting in extended execution times.



3.3 Relaxing consistency

False sharing has been identified as a major cause of unnecessary network transactions in studies
of imperative benchmarks, e.g. [20]. The conventional approach to reducing (but not eliminating)
the impact of the false sharing problem is to relax consistency in a controlled way [42].

Lamport formalised the term sequential consistency in which it is guaranteed that a read by any
processor of any location will return the last value written to that location [29]. Because of the
unnecessary invalidation and serialisation this incurs, protocols which offer weaker consistency
properties have been proposed (e.g. [17]).

These advanced protocols are based on the concept of weak ordering [1], and offer performance
improvements by allowing invalidations generated by a thread while inside a critical section to
be processed in parallel with computation. This increases concurrency by allowing the processor
to continue executing the instructions following the write without waiting for the invalidation to
complete. The number of unnecessary invalidations caused by false sharing is therefore reduced,
and coherence is enforced at synchronisation points only. Such schemes have been shown to be
effective on some imperative benchmark programs [42].

Closures are small objects (about 20 bytes each in our implementation), a small fraction of the
size of cache lines favoured by modern multiprocessors, and therefore false sharing could be a
significant problem. In Section 6 we use simulation to quantify the line stealing effect caused by
false sharing. In the next section we consider whether weak ordering can be used with PGR, and
how significant the performance improvement could be.

4 The memory reference characteristics of PGR

The performance of a multicache shared-memory depends heavily on the pattern of memory refer-
ences made by a program. We have described above how large cache lines allow spatial locality to
be exploited. Sequential imperative programs exhibit significant locality, e.g. temporal locality of
code accesses in loops, spatial and temporal locality of stack accesses, and spatial locality of array
accesses. This is also present in parallel imperative programs, although 1t is inevitably application
dependent. Previous work has indicated that locality is also present in sequential functional pro-
grams: several simulation studies have shown the advantage of using large cache lines with graph
reduction [28, 31].

We present simulation results which quantify the opposing effects of locality and false sharing in
Section 6. In the remainder of this section we discuss the synchronisation scheme of PGR and
determine how consistency can be relaxed in order to reduce line stealing and thereby increase the
performance of the shared-memory.

Objects in the shared-memory region are allocated, read, updated and shared quite differently in
PGR than in typical imperative programs. For example, the following are inherent in the PGR
model:

e There is a high turnover of closures, 7.e. many closures are not accessed again soon after
being created because they were only required for intermediate results.

e Fach closure is logically updated at most once (by its result). However, an implementation
of PGR also requires a closure to be updated when a thread has gained the right to evaluate
it (see below).

o All writes to a shared object (updating it with its result and gaining the right to evaluate
it) occur in critical sections.



e There is a high rate of synchronisation (far greater than more widely-studied program types
such as the sPLASH suite [20]).

These characteristics are a direct result of the synchronisation scheme used in PGR. During a
closure’s lifetime, it may exist in three different states:

INACTIVE: The closure has not been evaluated, and no thread has yet gained the right to evaluate
it.

ACTIVE: The closure has not been evaluated, but a thread has gained the right to evaluate it and
will update it with its result at some time in the future.

EVALUATED: The closure has been evaluated and will not be updated again.

Some closures are created in the EVALUATED state, but others, created INACTIVE, will become
ACTIVE when they are first demanded, and then EVALUATED when finished. The state transitions
from INACTIVE to ACTIVE, and from ACTIVE to EVALUATED both require mutual exclusion: the
former to prevent more than one thread from evaluating a closure, the latter to eliminate a potential
race condition when a thread blocks on a closure which is in the process of being updated with its
result by another thread. A state field and a spin lock are added to each closure in order to achieve
this when using a conventional shared-memory. Each state transition requires write accesses to

both the lock and the state field.

Unfortunately weak consistency protocols have very little potential benefit due to the high rate
of synchronisation exhibited by PGR. For example, consider a thread attempting to acquire the
right to evaluate a closure on a cache line which is owned by another PE. This requires a read, a
lock acquire, a write, and a lock release. In a delayed consistency protocol (e.g. [17]) the first read
would obtain a copy of the cache line. The lock acquire 1s implemented by a write operation which
therefore takes place on a line which is present in more than one cache, requiring an invalidation to
be issued. The weak ordering model allows this invalidation to be sent and performed in parallel
with the instructions following the write. However, the subsequent write is immediately followed
by a lock release operation which will block until any pending invalidations have been performed.
Little will be gained by not blocking when the lock acquire takes place. The key problem is
that the number of memory references between the lock acquire and release is too small to allow
invalidations to take place in parallel with computation.

The case when a closure is updated is similar: the closure is first locked, the update takes place
(a single write) and then the closure is unlocked. Again the write burst is very short.

Although a number of simulation studies of imperative programs have shown that significant
improvements in performance can be achieved using delayed consistency protocols (e.g. [42]), the
potential improvement is negligible in this case due to the high rate of synchronisation inherent

in the PGR model.

4.1 The two-level ownership protocol

Although the high rate of synchronisation inherent in PGR results in only a small potential benefit
from using delayed consistency, the synchronisation scheme can still be used as the basis of an
optimised protocol.

The optimised protocol is called two-level ownership because the ownership of cache lines is sepa-
rated from the ownership of the closures stored on them. In fact line ownership is static: the PE
which allocates closures on a particular line is designated the owner of that line, and remains so for



the entire execution of the program. It is assumed that other PEs can identify the owner of a line
quickly (7.e. it is either implicit in the address, or it can be found in a small local data structure).
The copy of a line held by its owner is the “master” copy which is always coherent. Copies of lines
are made whenever a PE accesses the master copy. Note that all copies of a line other than the
master are neither updated nor invalidated when subsequent writes occur, as explained below.

A new memory instruction, “acquire”, is used to drive the state transitions of closures, and the
PE which gains the right to evaluate a closure becomes its owner. The action that results from
issuing acquire on the state field of a closure in each of the three possible states are:

INACTIVE: The field of the master copy of the closure is atomically set to ACTIVE, and the old
value returned.

ACTIVE: The value of the field of the master copy is returned.

EVALUATED: The value of the field is returned (from any copy of the line).

A “write-through” instruction is used to update an ACTIVE closure by its result. The master copy
of a line must be accessed whenever a state transition of a closure may occur, ¢.e. if a PE initiates
a transition on a closure it did not create, a network transaction is required, and the requesting
PE receives a new copy of the line. However, reading the value of an EVALUATED closure can still
be satisfied by a local copy of the line if the closure is in the EVALUATED state. This 1s the only
situation in which an operation can be satisfied by a PE other than that which owns the line.

Incoherent copies of lines come into existence when a line which resides in more than one cache
is updated: only the master copy is updated. This can be done safely since any access to an
incoherent copy will result in a network transaction with the owner of the line (whose copy is
always fully coherent) if the closure is not in the EVALUATED state. Evaluated closures can be
read from any copy of a line since they are never updated.

How can spatial and temporal locality be exploited in such a scheme? Accesses made by a PE
to closures it created can be served by the local cache. Since EVALUATED closures can be read
from cached copies of lines, spatial locality of reads can be exploited by using large lines. Note
that spatial and temporal locality of writes to remote lines cannot be exploited. False sharing still
occurs, but line stealing 1s eliminated entirely since invalidation is not used.

There is a complication relating to reading from cached copies of lines. A copy of a line may have
been taken by a PE before the closure being accessed was created, i.e. the local copy of the line
does not contain a copy of the closure at all. This is resolved by associating a counter with each
cache line which records how much of the line has been allocated. Since allocation is incremental,
a single counter per cache line will suffice. As the owner of the line allocates new closures on it,
the counter 1s incremented to reflect the extent of the line that has been used so far. When a copy
of a line is taken the value of the counter is also copied. A read to a cached copy of a line which
exceeds the counter value will automatically initiate a network transaction to obtain a new copy
of the line.

In summary, the two-level ownership protocol eliminates invalidation (and thereby line stealing)
which can cause unnecessary coherency traffic and serialisation. The protocol is unusual in that,
although replication is used, 1t is restricted to data which will not be updated again. In this respect
it is similar to subblock placement: only certain parts (i.e. subblocks) of a line are useable [25].
However, its performance relative to a conventional invalidation protocol is inevitably program
dependent. In the next section we describe our simulation environment and benchmark programs,
and in Section 6 we analyse simulation results in order to determine which protocol offers the best
performance, and under what conditions.



5 Experimental design

The performance and behaviour of a set of benchmark programs executing under PGR with three
types of shared-memory (ideal, invalidation, and two-level ownership) was studied using a series
of simulation experiments. A comprehensive description of the experimental design can be found
in [7]. Here the most important aspects are summarised.

We have chosen to use simulation rather than an implementation on real hardware since it offers
a number of distinct advantages: it allows the behaviour of the system to be closely monitored
without affecting its behaviour, permitting, for example, counts of important events to be made
without changing the schedule of the computation or its simulated execution time. In addition
it allows important design parameters of the parallel machine to be changed easily which is not
possible on real hardware, e.g. the latency and bandwidth of the interconnection network. Finally,
simulation provides a deterministic environment in which unusual or erroneous behaviour can be
repeated simply be repeating the run. Validation of the simulation, in the form of comparisons
between simulated performance and actual performance on a Sequent Balance multiprocessor, can

be found in [7].

Our complete implementation consists of an optimising compiler for a functional language that
generates an executable when linked with a parallel run-time system, which contains procedures
to build and enter closures, the code for primitive functions, etc. The source language is a lazy,
higher-order functional language in the tradition of SASL and Haskell [26]. The primary objective
in building an optimising compiler for a lazy functional language 1s to reduce the frequency at
which claims and references are made to the heap. It is therefore of great importance that the
compiler used in our experiments should perform well. We have adopted the compiler developed
for the FAST project [13], and although comparing compilers is difficult, we are confident that
the system is competitive with the state of the art [24]. Tt also, conveniently, generates C, making
generated code very easy to instrument and modify.

Each processor allocates closures from its own independent part of the heap, and therefore com-
munication 1s never required when closures are created.

Note that a number of assumptions and simplifications have been made in our experimental design:
it is a compromise between the need to model the important effects, and the need to study these
effects in isolation. Our objective is to learn general lessons about a large class of systems, and
we are therefore less concerned that the experiments predict the actual performance of some
production system, as to do so we would have to introduce many factors that are orthogonal to
the issues we intend to study. These simplifications are outlined in Sections 5.2 and 5.3.

5.1 Simulation technique

The most obvious way to simulate an application program on some target architecture is by a full
emulation of the program, one instruction at a time. A scheme of this type has the advantage of
being highly reliable, z.e. the results of the simulation can be expected to correspond closely to
an 1mplementation of the architecture having the same specification as that being modelled. The
chief drawback 1s the huge computational resources required for the simulation.

An address trace is commonly used to evaluate memory hierarchy designs. The trace-driven
simulation technique extends naturally to parallel systems, but its validity is questionable for
a number of reasons. The root of the problem is that trace-driven multiprocessor simulation
generally cannot represent interacting processes correctly. The sequence of instruction and data
references made by a program on a uniprocessor architecture is independent of that architecture,
but this is not the case for a multiprocessor since different architectural designs can change the



relative timing of competing requests for a resource. This can be resolved in statically-scheduled
application programs (see [16]), but not in dynamically-scheduled systems such as parallel graph
reduction, where the relative timing of events determines the allocation of work to CPUs.

To avoid the validity issues of trace-driven simulation, we have adopted execution-driven simula-
tion, which does not suffer from these problems since it accurately models process interactions.
The execution of the application program is interleaved with the simulation of the target archi-
tecture. Each processor is represented by a process, and sequences of application instructions are
directly executed on the simulation host until a “global event” is generated. A global event is a
process interaction (i.e. an action that can alter the execution of another simulated processor),
such as accesses to the shared heap and scheduling operations (such as sparking a closure, and
unblocking a thread). Between consecutive global events generated by a processor, the actions
of that processor cannot affect the others. These local events are only important in that they
affect the timing of global events. Unlike trace-driven simulation, the execution-driven approach
requires reexecution of the program for each set of simulation parameters.

5.2 Scheduling

Parallel graph reduction is inherently dynamically scheduled, and mechanisms are required to
distribute sparked tasks around the machine. Logically a single shared task pool is used, but
this will inevitably become a source of contention in a large-scale system if implemented as a
single queue. The usual approach taken in a large system is to equip each processor with a local
task queue to which closures it sparks are added and from which new work can be fetched when
necessary. Mechanisms are therefore required to distribute tasks around the machine on demand.
Policies relating to this form of scheduling are described and evaluated experimentally in [19].

We have adopted such a work stealing scheme, except that we model ideal behaviour when a PE
needs to find a sparked task and none is availablelocally: the oldest sparked task is used. We do not
account for the communications traffic involved in locating the oldest sparked task in the machine,
only the cost of transfering it to the local PE. Simulating this ideal behaviour is reasonable because
local task queues are usually empty only at the start and end of the computation; between these
times all PEs are busy and have surpluses of sparked tasks. The ideal scheme is therefore only
unrealistic at the start of the computation, which is a relatively small proportion of the execution
time of the benchmark programs used.

If a PE cannot find another task anywhere 1t is removed from the set of processes under simulation
and added to a queue of idle processors. It is either resumed later when work becomes available,
or remains in this state until evaluation of the functional program has been completed and the
simulation system terminates.

5.8 Simulated architecture

A simple model of a shared-memory parallel architecture has been adopted: the system consists
of a set of processing elements (each comprising a processor and a large cache) interconnected by
a network. The processor model is based on a simple 32-bit RISC (i.e. load/store) device. Tt is
assumed that stack, private data and code regions of each process are served by separate perfect
cache systems; each read or write to these areas has a latency of one cycle.

Between consecutive global events produced by an application process, an amount of time is spent
accessing local memory, performing primitive arithmetic operations and in other local operations:
the clock associated with each application process must be altered to account for this time in order
to maintain a correct ordering of global events. Compiler generated code and the runtime system

10



are annotated with cycle counting code, which assigns a cost to each local event instruction.

In order to isolate the essential communications incurred by the applications and the cache-
coherency protocol, we simulate caches large enough to hold all the data so that no replacement
or capacity-related communications occur. This simplification has been made since we wish to
concentrate on the performance of the protocols themselves, i.e. the network traffic generated
when maintaining the coherence of the heap. For similar reasons we simulate a contention free
interconnection network.

5.4 Benchmark functional programs

The suite of programs we have been using are as follows:

nfib compute the n'® Fibonacci number

nqueens  compute a safe arrangement of queens on an n x n chess board
quad find the integral of a cubic function using adaptive quadrature
matmult multiply two n x n matrices

wave simulation of tidal flow in an estuary

db a “pipelined” database transaction processor

The first four are standard small benchmark programs taken from Goldberg’s thesis [19]. Results
from these programs can be found in our earlier papers [8, 9]. Of these four, only the results of
matmult are shown here. It is only included since its behaviour is particularly easy to understand.
It is very much a best case program — it is highly parallel, and its inputs are large data structures
which are not updated, and clearly significant opportunities exist for exploiting locality. The
algorithm is naive: the problem 1s subdivided at runtime into tasks which each multiply a row by
a column. The matrices used are 10 squared.

The estuary simulation, wave, divides an estuary into a square matrix of sub-areas and the action
of tides i1s simulated for some number of iterations. The results of each iteration are represented
by three matrices which are consumed by the following iteration [44]. The generation of the three
matrices can be done concurrently, and requires elements of each input matrix to be read. Three
iterations over bxb matrices were used.

The transaction processing program is the largest of our programs and is based upon Trinder’s
pipelined database system [43]. The program uses a database represented by a binary tree.
Database operations (i.e. lookups and updates) are grouped into transactions which either com-
mit or abort. One hundred transactions, each of ten operations are used, and the tree contains
10000 leaf nodes (i.e. database records). It is an interesting program for a number of reasons:
its high rate of synchronisation reflects a fundamental requirement of the algorithm, unlike many
benchmarks (e.g. matrix multiply). Tt displays spatial locality, yet this is not because it has a
statically-predictable access pattern. The operation of the program is described in detail in [10].

We have chosen these programs because they have different data sharing characteristics and there-
fore exercise the protocols in different ways. They are representative of several classes of functional
programs (e.g. wave is a typical iterative scientific program), but it cannot be assumed that all
functional programs will show similar results.

5.5 Garbage collection

When storage allocated from the shared heap becomes free, it should be recycled for reuse. In
a parallel system a parallel garbage collector is needed, and the area is the subject of intensive

11



research. The behaviour of the garbage collector may interfere with normal program execution in
two ways: firstly, it may change the relative timing of processes, depending on when 1t is activated,
and whether all processors collect concurrently. Secondly, garbage collection may substantially
change the pattern in which store is allocated.

An important simplification has been made here: no garbage collection is done at all. Instead,
each processor is allocated a large contiguous segment of the shared address space, from which it
allocates closures as required.

The motivation for this decision is as follows: to introduce a garbage collector into the simulation
would require the selection of one of the available algorithms, and the results would then be
applicable only when a similar collector is in use. Unfortunately, there is no obvious candidate:
there 1s no consensus on how garbage collection should be done in large shared-memory systems.
However, any copying or compacting collector would finish by handing the application program
a contiguous segment of free store. Thus, there is a significant period during which heap closure
allocation proceeds in a simple pattern (incremental allocation is used). The assumption is that
this is the case all the time. Although we do not simulate garbage collection, it i1s an important
issue which we return to in Section 7.

6 Simulation results

Simulations were made of each program operating with an ideal shared-memory, the invalidation
protocol, and the two-level ownership protocol using the following simulation parameters: 1, 2, 4,
8, 16 and 32 PEs, and cache line sizes of 1, 2, 4, 8, 16, 32, 64, 128 and 256 closures. For most of our
simulations we assumed a low-latency interconnection network in which shared-memory references
which cannot be satisfied by the local cache have a latency of 10 cycles, whereas those that can
take 1 cycle. Note that, in order to make results easier to interpret, transaction latencies have
been kept constant despite varying the cache line size. The influence of the latency and bandwidth
of the network is addressed in Section 6.4.

6.1 Ideal shared-memory

An ideal shared-memory is defined to be one in which all accesses have some small constant latency.
Specifically the processor never stalls due to memory accesses. Results from ideal shared-memory
are useful for several reasons, e.g. they allow scheduling mechanisms and policies to be studied
without being affected by the performance of the shared-memory. We use the results here to set
performance standards against which results from more realistic shared-memory implementations
can be compared.

Relative performance curves (for up to 64 PEs) are shown in Figure 1. Each program shows near
linear speedup when only a small number of processors are used. The speedup curves diverge
from the 1deal curve when more processors are used since most processors are idle at the start and
end of the computation, which now forms a larger part of the execution time. The transaction
processor db shows an asymptotic speedup of 20, which is achieved with 22 PEs; the amount of
parallelism present is limited by the transaction structure as described in [10].

These curves indicate that each program scales well with the number of processors, given the
amount of parallelism present, i.e. the scheduling policies have been effective. Instrumentation
of the simulator shows that speedup is non-linear solely due to startup and shutdown effects,
demonstrating that the optimal speedup has nearly been achieved. Minor scheduling variations
can increase the shutdown period, but the resulting impact on execution time is relatively small.
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Figure 1: Relative performance of the benchmark programs with ideal shared-memory

This can be seen in Figure 1 for wave with 16 processors.

6.2 Network usage in multicache shared-memory

The simulated execution time of a program is determined to a large extent by the latency of
network transactions. Consequently, relative performance figures can be confusing. Since we want
to compare the performance of the two cache coherency protocols in a way that is independent
of network latency, we have adopted the metric of “cache transaction ratio”, defined to be the
proportion of shared-memory accesses made by a program which require use of the network.
Multicache schemes are designed to minimise average memory reference latency by minimising
the cache transaction ratio. For example, for the invalidation protocol, a read to a line which 1s
present in the local cache does not require use of the network, but a write to a line which is present
in more than one cache does.

The graphs in Figure 2 show cache transaction ratio plotted against cache line size for a variety
of processor configurations for each benchmark program. The graphs in the left column were pro-
duced from simulations of the invalidation protocol, the right column from the two-level ownership
protocol.

6.2.1 Invalidation protocol

The invalidation protocol graphs clearly show the locality and false sharing effects described in
Section 3.2. For example, consider db with 32 PEs: for the smallest line size, the cache transaction
ratio is about 11%. As the line size is increased to 2 closures, the cache transaction ratio is reduced
to 8%. This is a direct result of spatial locality: sometimes the extra closure which is copied on a
read miss is referred to, and when this occurs it does not need to be copied across the network. Note
that the reduction in cache transaction ratio is very significant: more than a quarter of shared-

13



matmult - invalidation protocol matmult - two-level protocol
14 . . 14 T T

Cache transaction ratio (%)
Cache transaction ratio (%)

0 10 0
Cache line size (closures) Cache line size (closures)
wave - invalidation protocol wave - two-level protocol
14 . : 14 T T
< 12 ¢ 1 g 12 | 7
Py 2PEs| o
8 10 1 g 10 1
c c
9o 8 r 1 9o 8 I 1
g 16 PEs g
2 6] 1 g e f
g s
© 4t 8PEs { o 4 ]
Ny Ny
Q Q
o 2\\%&?’/4PE57 o zmeEs
2PEs R e————
) GHND GEND GEEEED SRS
0 n 0 n T 2 PEs

1 10 100 1000 1 10 100 1000
Cache line size (closures) Cache line size (closures)
db - invalidation protocol db - two-level protocol
14 . : 14 T T
g 127 32PEs| & 12 ]
° 16 PEs| o
8 10 1 8 10 1
c c
o 8 1 o gt ]
] 8 PEs S
2 6 1 g ef f
g 4 PEs g
o 4 B o 4t |
4‘:% > PES 4‘:% 32 PEs
2+ 1 2+ 1
© © 2 PEs
0 1 1 0 1 1
1 10 100 1000 1 10 100 1000
Cache line size (closures) Cache line size (closures)

Figure 2: Cache transaction ratio as a function of cache line size for the invalidation protocol (left
column) and the two-level ownership protocol (right column)

memory references which required use of the network at the minimum line size can now be satisfied
by the local cache. As line size 1s increased again, a further reduction in cache transaction ratio
occurs. However, after the line size exceeds 16 closures the trend reverses: the cache transaction
ratio begins to increase. This occurs when the magnitude of the line stealing effect outweighs the
gain from locality.

Similar trends are seen for db with different numbers of processors. Notice that, as the number of
processors is increased from two:
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e The cache transaction ratio increases, and

e The line size at which the minimum cache transaction ratio is observed decreases.

The first effect is caused by essentially the same amount of data being shared by more processors:
it becomes more likely that a line will be referred to by another PE, and therefore more likely
that a write hit will require some remote invalidations, and that subsequent reads will miss in the
cache due to an invalidation by another processor.

Since using more processors results in more invalidation and reduced execution times, the rate of
invalidation increases, i.e. lines remain in caches for shorter periods of time and it becomes less
likely that the extra closures which are copied on a read miss will be referred to before the line 1s
invalidated. That 1s, it is harder to exploit spatial locality. Consequently the point at which false
sharing begins to outweigh spatial locality occurs at a smaller line size.

Similar trends are seen for matmult and wave: in each case the interaction between locality and
false sharing is seen. However, some differences are apparent: matmult can easily benefit from
using large cache lines since each thread multiplies a row and a column, and therefore significant
reductions in cache transaction ratio are seen as the line size is increased. The line stealing effect
is not severe in this case because the input matrices are not updated, and the corresponding cache
lines can be copied into each cache and will not be invalidated. Since the line stealing effect is not
severe, the cache transaction ratio falls until the cache line size reaches about 64 closures for the
invalidation protocol, and after this point only a negligible increase is seen.

It appears to be harder to exploit locality with wave since only relatively small reductions in
cache transaction ratio are seen. This is due to the small size of the shared data structures used.
However, false sharing still occurs: the optimum line size is about 8 closures.

Note that, for a fixed cache size, increasing line size will result in increased conflict misses, thereby
reducing the optimum line size. Since we have used infinite caches, we have not measured this
effect. Conflicts might affect both caching schemes in similar ways. If conflicts are considerably
more frequent with the two-level protocol for a certain cache size, the invalidation protocol may
offer better performance.

In summary, we have used cache transaction ratio to measure the effectiveness of the invalidation
protocol. Simulation results have shown the interaction between spatial locality and false sharing.
Spatial locality is application dependent, but can be significant. Line stealing has been shown to
be a major problem with all programs with large lines.

6.2.2 Two-level ownership protocol

Cache transaction ratio graphs for the two-level ownership protocol are shown in the right column
of Figure 2. It is immediately clear that increasing line size always reduces cache transaction
ratio: line stealing has been entirely eliminated. Improvements due to locality can now take place
unhindered. The reduction in cache transaction ratio under the invalidation protocol as the line
size 1s increased is initially significant but line stealing acts to reduce the improvement. The new
protocol shows a similar reduction in cache transaction ratio as the line size is increased to about
8 closures, but it continues to fall as the cache line size is increased.

Although the line stealing effect has been eliminated, the cache transaction ratio recorded for the
minimum line sizes is often higher than the corresponding value for the invalidation protocol. For
example, at the minimum line size, db with 32 PEs has a cache transaction ratio of 13.5% with
the new protocol, but only 11% with the invalidation protocol. We will see why this occurs in
Section 6.3.2.
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Although the cache transaction ratio is often small (e.g. 5%) the effect it has on simulated execution
time is determined by the latencies of the coherency transactions which are many times greater
than the latency of a read-hit for the class of architecture we envisage. Therefore even relatively
small variations produced by changing line size can have a significant effect on performance.

These results indicate that we have succeeded in exploiting spatial locality to at least the same
extent as under the invalidation protocol and have also succeeded in eliminating unnecessary
coherency transactions due to line stealing.

6.3 Quantifying spatial locality and line stealing

It 1s apparent that line size does affect performance, but the contributions of spatial locality
and line stealing are not clear. Although line stealing can be eliminated, it is at the expense
of requiring that all writes to remotely created objects use the network. The simulator uses
monitoring information to enable these effects to be measured separately. For each protocol, a
classification of heap references is produced, allowing any gains from spatial locality and losses
due to line stealing to be quantified. Monitoring information associated with each closure records
the elapsed simulated time at which the closure was last written, the set of PEs that have accessed
the closure since that time, and the last PE to write to the closure. Information stored with each
line describes the time at which each PE last took a copy of that line, the PE that owns it, etc.
This information allows the simulator to classify each heap reference. In the following section we
study reads, leaving writes for Section 6.3.2.

6.3.1 Reads
Heap read references for the invalidation protocol are classified as follows:

Simple-read: the PE has accessed an up-to-date copy of the closure before, and has a coherent
copy of the associated cache line.

Mandatory-read: the PE has never had an up-to-date copy of the closure in its cache, and
communication must take place. Either the PE has not accessed the closure before, or it has
been updated by a remote PE since it did. This is necessary communication required by the
data sharing characteristics of the program.

Gain-read: the PE has not accessed an up-to-date copy of the closure before, but has a coherent
copy of the cache line, i.e. a gain from spatial locality.

Loss-read: the PE had an up-to-date copy of the closure in its cache at some time in the past,
but the line has been invalidated, z.e. a loss from line stealing caused by false sharing.

The classification for the two-level protocol is similar except that the loss-read class is eliminated
because invalidation does not take place.

Graphs of read access types for 32 PE simulations with both protocols are shown in Figure 3. On
each graph the solid line separates read references not requiring network use (simple-reads and
gain-reads below) from those that do (mandatory-reads and loss-reads above).

First, consider db with the invalidation protocol:

e When the line size is 1 closure, clearly there is no opportunity to exploit spatial locality, but
also false sharing cannot occur. Therefore all reads are either simple-reads or mandatory-
reads (only about 15% of references are mandatory-reads).
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Figure 3: Distribution of reads for the invalidation protocol (left column) and the two-level own-

ership protocol (right column) with 32 PEs

e As the line size is increased, spatial locality gains are made, and the number of mandatory-

read accesses decreases.

mandatory-reads to about 2%.

This trend continues for larger line sizes, ultimately reducing

e Line stealing occurs even when the line size is 2 closures, and increases steadily for larger
line sizes.

e Read references not requiring network use peak at a line size of 32 closures.
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The corresponding graph for db with the two-level protocol is similar: again 15% of reads are
mandatory-reads at the minimum line size, and again, as line size is increased the replacement of
mandatory-reads by gain-reads occurs. However this time no losses occur. Note in particular that
the mandatory-read regions are almost the same: this means that the loss-reads of the invalidation
protocol have all been replaced by cheaper gain-reads and simple-reads. Both matmult and wave
show similar results; only the magnitude of each region is different.

These results show that the two-level ownership protocol can exploit locality of reads to at least
the same extent as the invalidation protocol, but without losses due to false sharing.

6.3.2 Writes

The classification scheme for write references for the invalidation protocol concentrates on relating
the sharing activity of lines to that of the closures allocated on them. In particular it quantifies
both the advantage and disadvantage of invalidation.

Allocation-write: a write-miss caused by allocating a new closure on an unused cache line. It
can be serviced simply by allocating a new line and writing to it, 7.e. no communication is
required.

Simple-write: a write-hit which is either an allocation of a closure, or an update of a closure
which has not been accessed by another PE. In either case communication is not required.

Mandatory-write: a write-hit or a write-miss, but in either case a coherent copy of this closure
has been accessed by another PE, and communication is required.

Gain-write: a write-hit which does not require invalidation, although coherent copies of the
closure have been accessed by other PEs.

Loss-write: a write-hit or a write-miss, which is either an allocation, or an update of a closure
which has not been accessed by another PE, but communication is required.

The corresponding classification for the two-level protocol is:

Allocation-write: a write-miss caused by allocating a new closure on an as yet unused cache
line. Again, a fresh line can be allocated quickly without communication.

Local-write: a write to a cache line owned by the PE, ¢.e. no communication required.

Remote-write: a write to an object owned by a remote PE, thus requiring use of the network.

Graphs of write accesses for 32 PE simulations with both protocols are shown in Figure 4. Again,
the solid line separates write references not requiring network use from those that do.

Under the invalidation protocol,

e The vast majority of writes are to newly-allocated memory, and are classified either as
“simple” or “allocation” depending on whether a fresh cache line is used.

When large lines are used, fewer writes refer to completely fresh (“allocation”) cache lines.
However, large lines lead to an increased risk that a remote read will result in a remote copy
being taken. Because of this false sharing, a subsequent write would cause an invalidation,
and be classified as a “loss”. However, later writes to the line would benefit from this
invalidation and be counted as “gain”.
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Figure 4: Distribution of writes for the invalidation protocol (left column) and the two-level

ownership protocol (right column) with 32 PEs

e Gain writes arise when the first of a spatially-related series of writes performs the invalidation
needed to allow several writes to proceed with exclusive access.

Gain writes increase as cache line size increases, reflecting spatial locality for writes.

Note that there is evidence of no write gain due to temporal locality; this is why no gains
occur at very short cache lines

e Mandatory writes are almost constant, as expected. These are writes to a closure which itself
has been referred to by another processor, so, regardless of cache line size, an invalidation
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will be needed (some small variation may occur due to dynamic scheduling).

e Losses are caused by false sharing, as in the read case. Since the same amount of data is
stored in fewer lines it is more likely that an individual line will be copied into more than
one cache, and therefore more likely that a write will require communication.

As indicated by the solid curve, only loss and mandatory writes involve communication.
In all three benchmarks it is clear that losses due to false sharing are a major cause of
unnecessary communication.

The two-level protocol operates at a higher level than reads and writes so direct comparison is not
meaningful. However:

e “Local” and “allocation” writes behave in much the same way as “simple” and “allocation”
under the invalidation protocol. Note that the “local” class includes writes to closures of
which copies do exist elsewhere (i.e. writes by the owner of the line). In the new protocol
no broadcast of invalidations or updates is needed.

For this reason, “local” subsumes some references which would be classified as mandatory
or even gains in the invalidation protocol.

e Remote writes involve closures created by another processor. In the new protocol, there is no
migration of ownership so these always involve communication in order to keep the creator’s
copy up to date.

It 1s sometimes possible for the invalidation protocol to honour these writes without com-
munication, since the processor issuing the write may already have exclusive access to the
cache line (this is the “gain” case).

e The new protocol may get worse write miss rates than the invalidation protocol, but this is
compensated for by improved read miss rates. This effect would be largest at large cache
line sizes, but invalidations due to false sharing interfere.

In summary, the new protocol is marginally worse at very small cache lines because it lacks
migration of ownership, but for medium and large cache lines it achieves a reduction in the
number of messages by exploiting spatial locality without unnecessary communications due to
spurious invalidations.

6.4 Relative performance

Large cache lines are useful when communication performance is dominated by latency, rather
than by bandwidth. In this section we briefly illustrate how bandwidth affects the performance
of both protocols by studying a simple interconnection network model in which message transfer
time consists of a latency and a function of the message size.

In the results presented so far, we have compared the performance and behaviour of the two
protocols by counting the number of network transactions required (the cache transaction ratio).
This has the advantage that it allows us to compare the protocols in a general way. The effect that
cache transaction ratio has on the execution time and speedup of an application depends on the
speed of processors, the latency and bandwidth of the interconnection network, etc. For example,
minor variations in cache transaction ratio will have little effect on a system with slow processors
and a fast network since execution time will be dominated by CPU time, whereas it would have a
major impact when fast processors and a slow network are used. The results presented above are
therefore independent of CPU and network speeds.
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To illustrate how varying bandwidth might affect performance, we have chosen to simulate a
multiprocessor with very fast processors and a high bandwidth network. The processor speed and
network bandwidths used are optimistic by today’s standards and do not represent a particular
machine, but have instead been chosen to clearly illustrate that the advantages gained by using
large cache lines with any protocol are reduced by increased network latency.

Figure 5 shows what happens with the db benchmark with 8 PEs under the two-level ownership
protocol. For simplicity we assume a fully-connected interconnection network with no blocking or
contention for cache controllers. The graph shows the relative speedup with increasing bandwidth.
Messages which do not carry data take 20 cycles, whereas those that do take 20 cycles, plus 0.3,
0.2, 0.1, 0.02, 0.01 and 0 cycles per closure (i.e. about 3, 5, 10, 50, 100 closures per cycle).

The curve for the infinite bandwidth shows the expected behaviour: increasing line size reduces
execution time, and thereby increasing speedup. For any given limited bandwidth there is an
optimum cache line size. For comparison, we show the same experiment using the invalidation
protocol in Figure 6. This shows lower performance, and the benefit of large cache lines i1s not
fully realised.

When the network bandwidth is relatively low, the optimum cache line size is quite small and the
relative benefit of the two-level protocol over the invalidation protocol is minimal. The two-level
protocol is most valuable when network bandwidth is high compared to the message latency or
start-up overhead. These results demonstrate that, although the contention problems inherent in
invalidation have been solved, other factors must be taken into consideration when determining
the line size to be used.
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Figure 5: Speedup of db as a function of bandwidth, two-level protocol
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7 Discussion and related work

We have shown that a careful implementation of parallel graph reduction can use substantially
fewer messages than an implementation based on a conventional shared memory multiprocessor.
This is shown by our experimental results for a invalidation cache coherency protocol. A non-
cached shared memory machine such as the BBN Butterfly would be worse, since every read would
incur communication. It is also easy to see that an update protocol would involve more messages
since updates would have to be multicast to every processor holding a copy of each cache line
whether or not the value is actually read.

This would be academic if special-purpose hardware were required to support the new protocol
efficiently, but this is not so. Communication occurs only when a processor performs an acquire or
update operation on a closure, and in both cases a test is already needed by the PGR algorithm.
Some support for memory management may prove useful in order to locate a local cached copy of a
line; both hardware MMU and hash table schemes can be used effectively. Thus an implementation
on a message-passing machine would be fairly natural and we have been investigating various
approaches. Interestingly, it is also possible to use a shared-memory machine: each processor
would be allocated a separate region of the address space, and copying would be used instead of
message passing.

The new protocol works because of the single-assignment property of closures in the PGR. graph.
Garbage collection is therefore important, and has not been addressed in this study. Garbage
collection can be used to improve the cache hit rate by reusing addresses (thereby avoiding re-
placement of useful data; see, for example, [46]). More awkwardly, garbage collection changes the
way data is laid out in memory, and therefore influences spatial locality. Copying collectors are
widely used, and these tend to improve spatial locality by copying in a depth-first fashion (see for
example [12]).

Arguably, our results form part of an argument in favour of writing programs in a functional,
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single assignment style for performance reasons. Avoiding mutable objects allows updates and
invalidations to be eliminated, so avoiding false sharing. The garbage collection involved would
be an unwelcome overhead, but not necessarily large, and it may lead to better locality. The
overhead of building and inspecting closures is unfortunate, but it too can be controlled — for
example, sophisticated run-time mechanisms can be used to ensure that closures are only built
when parallelism is needed, and otherwise efficient sequential, closure-free code can be used (see [39]

and [35]).

Finally, we should search for other situations (i.e. shared abstract data types) where cache co-
herency can be optimised.

7.1 Related work

Several authors have studied the cache performance issues with heaps and garbage collection, most
interestingly Wilson et al [46] and Appel [3]. Our work concentrates instead on coherency.

The GRIP machine [37] uses a kind of cache mechanism: nodes are built in local memory and a
subgraph is flushed to the globally-accessible memory only when another processor might access
it. In the Glasgow group’s more recent work (see for example, [22]) they propose a more cache-like
scheme where, when a node is referenced by a remote processor, a large message is packed with as
much of the subgraph of which it is the root as will fit. This is similar in objective to our work, but
should use network bandwidth more efficiently at the cost of much higher processing overheads.

Langendoen, Muller and Vree [30] avoided coherency problems in their parallel functional language
system by a different means: their “sandwich” parallelism annotation ensures that the sub-tasks
need refer only to read-only subgraphs.

A similar approach to ours has been proposed in a dataflow context by Dennis and Gao [15], but
they have not evaluated the scheme. The idea is applicable in dataflow-related contexts such as
Nikhil’s Cid [36] (where related cache-related ideas are discussed) and Blumofe et al’s Cilk [11].

7.2 Further work
This work has raised many issues deserving further investigation:

e Improvements in the two-level ownership protocol, such as a more flexible ownership policy
to reduce contention for access to the processor that owns a cache line. We have assumed
that a memory unit (or cache) can handle accesses from all other processors simultaneously.
This is overly optimistic and warrants further study.

e Investigation into the overheads of garbage collection.

e A more complex architectural model, including network and cache controller contention
effects, and finite capacity effects.

8 Conclusions

We have investigated a conventional parallel functional language implementation which uses a heap
shared between processors for all synchronisation and communication. Parallelism was introduced
manually using the “spark” model used in parallel graph reduction. We have executed a range
of simple parallel functional programs, and we have studied their memory sharing behaviour
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using a simulator. After using an ideal memory system to establish the potential performance
of each benchmark, we studied an invalidation protocol (as used in most modern shared-memory
multiprocessors), and this led us to formulate a novel two-level ownership protocol.

Our main goal was to reduce the number of messages exchanged between processors. We found
that this can be done by using large cache lines — when a processor requests a remote graph node,
we transfer the entire cache line in which the requested node falls. This works because storage is
allocated contiguously and most of our example programs display substantial spatial locality.

Unfortunately, using the invalidation protocol this reduction is limited because processors contend
for exclusive ownership of each cache line in order to ensure consistency when writes occur. With
large cache lines, this “false sharing” effect happens increasingly often, and our results show that
this leads to poor performance.

Our new protocol is specially designed for the nodes of the PGR. graph, which are accessed in a
disciplined way. This allows large cache lines to be replicated in many processors’ caches without
the need for invalidations or updates to be sent when a write occurs. Instead, when a processor
reads a cell it checks a “valid” flag to decide whether to refer to the line’s owner. Each line is
owned by the processor which first allocates it.

This protocol avoids the false sharing problem and allows spatial locality of reads to be exploited
without limit. Our simulation results illustrate this property. The new protocol is less powerful
than the invalidation protocol in that it provides no means for ownership to migrate on demand.
Our simulations show that this leads to an increase in write misses but this is insignificant compared
with the benefit of avoiding false sharing.

The protocol makes it possible to reduce the number of messages exchanged, but relies on in-
creasing the size of the cache lines exchanged to do so. It is therefore of most benefit with a
high-bandwidth interconnection network with relatively high communication latencies or message
handling overheads. The benefits are minimal when bandwidth is relatively low, since the optimal
cache line size is small and incurs little false sharing.

Our simulation involves simplifications in many areas, some of which might be interesting to
investigate in further work. Nonetheless the results are sufficient to support the conclusion that our
special-purpose coherence protocol has a substantial advantage over conventional cache-coherence
protocols.
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