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implement a shared heap with near-ideal performance, but the number of processors is limited bycontention for the snooping bus.Meanwhile there have been numerous attempts to implement PGR on more scalable architectures,interesting examples being Alfalfa [19], Alice [23], GRIP [37], and George's Butter
y implemen-tation [18]. None of these has achieved performance nearly as satisfactory as Augustsson andJohnsson's h�;Gi-machine. A key reason for this has been the di�culty of communicating andsharing data structures.Recent developments in the design of large shared-memory machines o�er the prospect that anapproach like the h�;Gi-machine might be scaled to large con�gurations. Large shared-memorysystems, like the Kendall Square Research KSR1 [27], Stanford DASH [32] and DDM [21], relyon caches to reduce communications load, and use directory-based invalidation protocols to keeptrack of cached copies to prevent out-of-date copies from being used incorrectly. This paperstudies the e�ectiveness of such coherency protocols on multiprocessors when executing parallelfunctional programs using PGR and identi�es the factors limiting scalability. We investigatethe use of standard protocol extensions which relax coherency, and study a modi�ed protocolwhich exploits the characteristics of the PGR regime. We are particularly concerned with modernmultiprocessors which have relatively high latency and high bandwidth interconnection networkssince these characteristics greatly in
uence the behaviour and speedup of programs.Preliminary results from this work were given in [7], and have been presented in conference pa-pers [8, 9]. This paper reports results from a larger and more interesting benchmark suite, andincludes more detailed analyses of simulation results, weak consistency and interconnection net-work bandwidth issues.The remainder of the paper is structured as follows: graph reduction is reviewed in Section 2.The architecture of shared-memory multiprocessors and the major design issues are described inSection 3. The memory reference characteristics of PGR and our optimised coherency protocolare presented in Section 4. We then describe our simulation environment in Section 5. Simulationresults are presented and analysed in Section 6. Further issues and related work are reviewed inSection 7, and we present our conclusions in Section 8.2 Parallel graph reductionThe graph reduction model was �rst proposed by Wadsworth [45] and forms the basis of mostmodern compiled implementations of functional languages. Essentially the idea is that a parameterexpression can be represented in unevaluated form by a \closure": a heap cell containing a codepointer and pointers to the variables on which the expression depends. In general the variablesmay in turn be closures, leading to a graph structure representing many tasks together with theirdata dependence structure. When the parameter is �nally needed, the closure is activated: thecode pointer is used as an entry point, and the rest of the closure as the environment for theevaluation of the suspended parameter expression. After evaluation, the closure is updated witha copy of the result, so that re-evaluation is not needed if another reference to the parameter isencountered.Graph reduction implements a call-by-need parameter passing mechanism, i.e. the arguments ofa function are only evaluated when their values are required. This laziness allows programs tomanipulate in�nite data structures: only as much of the data structure is evaluated as is necessaryto produce the result of the program. Considerable e�orts have been directed towards creatingimplementations of lazy evaluation which are as e�cient as possible. However, it is usually thecase that call-by-need is more costly than call-by-value and call-by-reference used in imperativelanguages due to the overhead of allocating and updating closures in the heap. For this reason2



call-by-value is used in place of call-by-need whenever possible by using the results of programanalyses.Given this structure, parallelism is easily added. At any time a closure can be \sparked", i.e. addedto a pool of work to be distributed to threads executing on idle processors. The graph structurerepresented by the closures is then used to coordinate and communicate between evaluation pro-cesses. When a thread needs the value of some other closure, the closure is demanded. There arethree cases:� If the closure has already been evaluated its value can be read immediately.� If the closure has not been evaluated, it is marked busy and then evaluated by the threadwhich needs it.� If the closure is already marked busy, some other thread has begun to evaluate it, and thethread cannot proceed until it has been updated by its result. The thread blocks on theclosure. When evaluation of the closure has �nished, all such blocked threads are released.When a thread blocks, the processor on which it is running schedules another runnablethread, or assigns a new thread to another sparked closure from the work pool.Two aspects of an implementation of PGR require particular attention: scheduling and sharedheap support. Scheduling policies and techniques are discussed in Section 5.2. In this paper weconcentrate on supporting the shared heap required by PGR. It is essential that it is supportedwith high e�ciency in order to achieve speedups.3 Cache-coherent multiprocessorsThe performance of parallel programs operating under the PGR regime depends critically on theprovision of access to a shared heap with very high average performance. It is freedom from explicitconsiderations of data placement which gives the parallel graph reduction model its simplicity, andit must be supported at reasonable cost.The most straightforward way to implement shared-memory is to construct a high-performanceinterconnection network to route requests to read and write shared-memory to the appropriatememory bank. This approach has been taken in the BBN Butter
y [14], and the IBM RP3prototype [38]. This has the problem that communication is incurred for all accesses to sharedmemory, whereas a cache-based scheme would allow programs which demonstrate some localityto bene�t from much lower memory access latencies, and a much lower network tra�c level.In a uniprocessor, a cache mechanism places commonly-used data in local fast memory rather thanin slower, bulk storage such as dynamic RAM. In a multiprocessor this is especially attractivesince communication paths to and from bulk storage are likely to su�er contention with activitygenerated by other processors.The cache coherency problem arises from the presence of multiple copies of the same datum indi�erent processors' caches. When a write occurs to the datum's address, some mechanism isneeded to prevent out-of-date cached copies from being used in the future. Cache coherencyprotocols consist of policies and distributed data structures to organise this. A survey of designissues in coherent cache multiprocessors is given in [40]. There are many design variables:1. Replication/migration vs. remote access: where no temporal or spatial locality exists, repli-cation or migration of the datum yields no bene�t.3



2. Cache line size: the unit of replication/migration is a compromise between bandwidth, thebene�t of spatial locality, and \false sharing". False sharing occurs when di�erent data onthe same cache line are subjected to the same migration decisions leading to coherency tra�cwhich could be avoided with a di�erent data placement (described in detail in Section 3.2).3. Invalidation vs. update: when a write occurs, updates could be sent to all remote copies.This is a bene�t if the remote copies are being actively read, but invalidating the remotecopies could avoid further coherency messages.4. Delayed (\weak") consistency: in order to increase parallelism and reduce network tra�c,some implementations allow coherency actions to be delayed. With strong consistency, thevalue read by a program is guaranteed to be the result of the most recent write to thataddress. If a process is allowed to proceed after a write before all invalidations or updateshave been acted upon, the semantics of the shared store may be compromised.5. Directory and ownership representation: with migratory ownership, complex distributeddata structures are involved.In this paper we concentrate on the �rst four issues outlined above. Results presented in Section 6are based on simulations of three forms of shared-memory: an ideal shared-memory in whichall accesses take some small constant time, a conventional invalidation shared-memory similar toschemes used in commercial multiprocessors, and a scheme based on a new optimised protocol.The invalidation protocol is described in the next section, and the new optimised protocol inSection 4.1.3.1 An invalidation protocolThe protocol we simulate is essentially similar to the Berkeley Ownership Illinois protocols [4],which have been used in commercial snooping-bus shared-memory machines such as the SequentSymmetry [34]. We describe the protocol as it is used in a bus-based multiprocessor, consistingof a set of processing elements (PEs), each comprising a processor and a cache interconnected bya simple bus. Further details of our simulation and our simplifying assumptions can be found inSection 5.3.The shared-memory region is divided into a number of cache lines of some constant size. Each lineis owned by a particular PE; ownership changes dynamically according to coherency transactions.When a PE attempts to read a line which is not in its local cache, it sends a read request tothe owner of the line (by broadcasting on the bus) which responds with a copy of the line. Therequesting PE adds it to its cache and proceeds to use it. In this way, multiple copies of lines comeinto existence in the system. A write to a line that is cached locally but not remotely can takeplace without using the network. The di�culty occurs when a write occurs to a line that exists inmultiple caches: before the write is allowed to proceed the remote copies must be invalidated toprevent them being used again. The requesting PE becomes the new owner of the line when thewrite has completed.Bus-based systems provide support for invalidating remote copies of lines using broadcast: allPEs monitor (\snoop") the bus and respond to transactions as necessary. Such systems have theadvantage that the identities of the PEs which have copies of each line (the \copy set") do notneed to be maintained. The bus quickly becomes a bottleneck as more PEs are added to thesystem since it cannot provide adequate bandwidth.The same protocol can be used on more general networks which do not provide such strong supportfor broadcasting, provided that: 4



� Directories are used to record the copy set of each line.� A mechanism to locate the owner of lines is adopted.Directory schemes are described and evaluated in [2]. See [21] and [33] for discussions of mecha-nisms used to locate the owner of lines.3.2 Cache line size, locality and false sharingThe size of cache lines is a critical issue in cache-based shared-memory implementations. Smallline sizes, of the order of a few tens of bytes, were usual in �rst-generation bus systems such as theSequent Balance [41]. Small lines had the advantage that few bus cycles were required to transfera copy of a line, allowing as many as 30 processors to be used without contention for the busbecoming a limiting factor. This is possible because bus arbitration is so fast. Larger line sizeswould have either required more bus cycles (resulting in increased latency of memory operationsand greater network contention) or a wider bus (which is more expensive). The situation withmodern multiprocessors with richer interconnection networks is quite di�erent: contention is lessof a problem since many separate links exist, and message latencies are dominated by the startuptime which is independent of the message size. Such architectures therefore favour the use of largemessages and cache line sizes.Large lines also improve the price/performance ratio of the cache since they require less space tostore the tag bits. Thus less expensive static RAM is required for a cache of a �xed size.For example, on the Meiko CS-2 the time required to exchange messages of various sizes are [6]:� 1 byte: 10�s� 500 bytes: 21�s� 2000 bytes: 50�sThe latency thus consists of a �xed startup time and a data transfer time which is a linear functionof the message size.Line size can signi�cantly a�ect the performance of a program. Large lines allow spatial localityto be exploited: fetching a line causes all objects located on it to be copied into the local cache,eliminating further requests if those objects are accessed whilst the copy of the line remains in thelocal cache. Unfortunately, large lines also increase the false sharing problem. This is the sharingof cache lines without sharing of data [17]. The root of the problem is that a line may containseveral objects which are used independently. For example, consider the case where processor Acreates four objects in shared-memory. Processors B, C, D and E each address one object, and readand write it several times over the same period of time. If each object is allocated on a di�erentline the �rst write made by each of processors B, C, D and E will invalidate the remote copy heldby processor A, allowing subsequent reads and writes to be served by local caches. However, ifall the objects are allocated on the same cache line, the coherency overhead will be signi�cantlygreater since each write will cause all other copies of the line to be invalidated, and subsequentreads will cause multiple copies of the line to created again, which will need to be invalidated bythe next write.We refer to this e�ect, in which unnecessary message exchanges take place, as line stealing . Thenet result is that considerable extra network tra�c and serialisation occurs which is not requiredby the data sharing behaviour of the program. The average latency of shared-memory accesses istherefore greater than necessary, resulting in extended execution times.5



3.3 Relaxing consistencyFalse sharing has been identi�ed as a major cause of unnecessary network transactions in studiesof imperative benchmarks, e.g. [20]. The conventional approach to reducing (but not eliminating)the impact of the false sharing problem is to relax consistency in a controlled way [42].Lamport formalised the term sequential consistency in which it is guaranteed that a read by anyprocessor of any location will return the last value written to that location [29]. Because of theunnecessary invalidation and serialisation this incurs, protocols which o�er weaker consistencyproperties have been proposed (e.g. [17]).These advanced protocols are based on the concept of weak ordering [1], and o�er performanceimprovements by allowing invalidations generated by a thread while inside a critical section tobe processed in parallel with computation. This increases concurrency by allowing the processorto continue executing the instructions following the write without waiting for the invalidation tocomplete. The number of unnecessary invalidations caused by false sharing is therefore reduced,and coherence is enforced at synchronisation points only. Such schemes have been shown to bee�ective on some imperative benchmark programs [42].Closures are small objects (about 20 bytes each in our implementation), a small fraction of thesize of cache lines favoured by modern multiprocessors, and therefore false sharing could be asigni�cant problem. In Section 6 we use simulation to quantify the line stealing e�ect caused byfalse sharing. In the next section we consider whether weak ordering can be used with PGR, andhow signi�cant the performance improvement could be.4 The memory reference characteristics of PGRThe performance of a multicache shared-memory depends heavily on the pattern of memory refer-ences made by a program. We have described above how large cache lines allow spatial locality tobe exploited. Sequential imperative programs exhibit signi�cant locality, e.g. temporal locality ofcode accesses in loops, spatial and temporal locality of stack accesses, and spatial locality of arrayaccesses. This is also present in parallel imperative programs, although it is inevitably applicationdependent. Previous work has indicated that locality is also present in sequential functional pro-grams: several simulation studies have shown the advantage of using large cache lines with graphreduction [28, 31].We present simulation results which quantify the opposing e�ects of locality and false sharing inSection 6. In the remainder of this section we discuss the synchronisation scheme of PGR anddetermine how consistency can be relaxed in order to reduce line stealing and thereby increase theperformance of the shared-memory.Objects in the shared-memory region are allocated, read, updated and shared quite di�erently inPGR than in typical imperative programs. For example, the following are inherent in the PGRmodel:� There is a high turnover of closures, i.e. many closures are not accessed again soon afterbeing created because they were only required for intermediate results.� Each closure is logically updated at most once (by its result). However, an implementationof PGR also requires a closure to be updated when a thread has gained the right to evaluateit (see below).� All writes to a shared object (updating it with its result and gaining the right to evaluateit) occur in critical sections. 6



� There is a high rate of synchronisation (far greater than more widely-studied program typessuch as the splash suite [20]).These characteristics are a direct result of the synchronisation scheme used in PGR. During aclosure's lifetime, it may exist in three di�erent states:inactive: The closure has not been evaluated, and no thread has yet gained the right to evaluateit.active: The closure has not been evaluated, but a thread has gained the right to evaluate it andwill update it with its result at some time in the future.evaluated: The closure has been evaluated and will not be updated again.Some closures are created in the evaluated state, but others, created inactive, will becomeactive when they are �rst demanded, and then evaluated when �nished. The state transitionsfrom inactive to active, and from active to evaluated both require mutual exclusion: theformer to prevent more than one thread from evaluating a closure, the latter to eliminate a potentialrace condition when a thread blocks on a closure which is in the process of being updated with itsresult by another thread. A state �eld and a spin lock are added to each closure in order to achievethis when using a conventional shared-memory. Each state transition requires write accesses toboth the lock and the state �eld.Unfortunately weak consistency protocols have very little potential bene�t due to the high rateof synchronisation exhibited by PGR. For example, consider a thread attempting to acquire theright to evaluate a closure on a cache line which is owned by another PE. This requires a read, alock acquire, a write, and a lock release. In a delayed consistency protocol (e.g. [17]) the �rst readwould obtain a copy of the cache line. The lock acquire is implemented by a write operation whichtherefore takes place on a line which is present in more than one cache, requiring an invalidation tobe issued. The weak ordering model allows this invalidation to be sent and performed in parallelwith the instructions following the write. However, the subsequent write is immediately followedby a lock release operation which will block until any pending invalidations have been performed.Little will be gained by not blocking when the lock acquire takes place. The key problem isthat the number of memory references between the lock acquire and release is too small to allowinvalidations to take place in parallel with computation.The case when a closure is updated is similar: the closure is �rst locked, the update takes place(a single write) and then the closure is unlocked. Again the write burst is very short.Although a number of simulation studies of imperative programs have shown that signi�cantimprovements in performance can be achieved using delayed consistency protocols (e.g. [42]), thepotential improvement is negligible in this case due to the high rate of synchronisation inherentin the PGR model.4.1 The two-level ownership protocolAlthough the high rate of synchronisation inherent in PGR results in only a small potential bene�tfrom using delayed consistency, the synchronisation scheme can still be used as the basis of anoptimised protocol.The optimised protocol is called two-level ownership because the ownership of cache lines is sepa-rated from the ownership of the closures stored on them. In fact line ownership is static: the PEwhich allocates closures on a particular line is designated the owner of that line, and remains so for7



the entire execution of the program. It is assumed that other PEs can identify the owner of a linequickly (i.e. it is either implicit in the address, or it can be found in a small local data structure).The copy of a line held by its owner is the \master" copy which is always coherent. Copies of linesare made whenever a PE accesses the master copy. Note that all copies of a line other than themaster are neither updated nor invalidated when subsequent writes occur, as explained below.A new memory instruction, \acquire", is used to drive the state transitions of closures, and thePE which gains the right to evaluate a closure becomes its owner. The action that results fromissuing acquire on the state �eld of a closure in each of the three possible states are:inactive: The �eld of the master copy of the closure is atomically set to active, and the oldvalue returned.active: The value of the �eld of the master copy is returned.evaluated: The value of the �eld is returned (from any copy of the line).A \write-through" instruction is used to update an active closure by its result. The master copyof a line must be accessed whenever a state transition of a closure may occur, i.e. if a PE initiatesa transition on a closure it did not create, a network transaction is required, and the requestingPE receives a new copy of the line. However, reading the value of an evaluated closure can stillbe satis�ed by a local copy of the line if the closure is in the evaluated state. This is the onlysituation in which an operation can be satis�ed by a PE other than that which owns the line.Incoherent copies of lines come into existence when a line which resides in more than one cacheis updated: only the master copy is updated. This can be done safely since any access to anincoherent copy will result in a network transaction with the owner of the line (whose copy isalways fully coherent) if the closure is not in the evaluated state. Evaluated closures can beread from any copy of a line since they are never updated.How can spatial and temporal locality be exploited in such a scheme? Accesses made by a PEto closures it created can be served by the local cache. Since evaluated closures can be readfrom cached copies of lines, spatial locality of reads can be exploited by using large lines. Notethat spatial and temporal locality of writes to remote lines cannot be exploited. False sharing stilloccurs, but line stealing is eliminated entirely since invalidation is not used.There is a complication relating to reading from cached copies of lines. A copy of a line may havebeen taken by a PE before the closure being accessed was created, i.e. the local copy of the linedoes not contain a copy of the closure at all. This is resolved by associating a counter with eachcache line which records how much of the line has been allocated. Since allocation is incremental,a single counter per cache line will su�ce. As the owner of the line allocates new closures on it,the counter is incremented to re
ect the extent of the line that has been used so far. When a copyof a line is taken the value of the counter is also copied. A read to a cached copy of a line whichexceeds the counter value will automatically initiate a network transaction to obtain a new copyof the line.In summary, the two-level ownership protocol eliminates invalidation (and thereby line stealing)which can cause unnecessary coherency tra�c and serialisation. The protocol is unusual in that,although replication is used, it is restricted to data which will not be updated again. In this respectit is similar to subblock placement: only certain parts (i.e. subblocks) of a line are useable [25].However, its performance relative to a conventional invalidation protocol is inevitably programdependent. In the next section we describe our simulation environment and benchmark programs,and in Section 6 we analyse simulation results in order to determine which protocol o�ers the bestperformance, and under what conditions. 8



5 Experimental designThe performance and behaviour of a set of benchmark programs executing under PGR with threetypes of shared-memory (ideal, invalidation, and two-level ownership) was studied using a seriesof simulation experiments. A comprehensive description of the experimental design can be foundin [7]. Here the most important aspects are summarised.We have chosen to use simulation rather than an implementation on real hardware since it o�ersa number of distinct advantages: it allows the behaviour of the system to be closely monitoredwithout a�ecting its behaviour, permitting, for example, counts of important events to be madewithout changing the schedule of the computation or its simulated execution time. In additionit allows important design parameters of the parallel machine to be changed easily which is notpossible on real hardware, e.g. the latency and bandwidth of the interconnection network. Finally,simulation provides a deterministic environment in which unusual or erroneous behaviour can berepeated simply be repeating the run. Validation of the simulation, in the form of comparisonsbetween simulated performance and actual performance on a Sequent Balance multiprocessor, canbe found in [7].Our complete implementation consists of an optimising compiler for a functional language thatgenerates an executable when linked with a parallel run-time system, which contains proceduresto build and enter closures, the code for primitive functions, etc. The source language is a lazy,higher-order functional language in the tradition of SASL and Haskell [26]. The primary objectivein building an optimising compiler for a lazy functional language is to reduce the frequency atwhich claims and references are made to the heap. It is therefore of great importance that thecompiler used in our experiments should perform well. We have adopted the compiler developedfor the FAST project [13], and although comparing compilers is di�cult, we are con�dent thatthe system is competitive with the state of the art [24]. It also, conveniently, generates C, makinggenerated code very easy to instrument and modify.Each processor allocates closures from its own independent part of the heap, and therefore com-munication is never required when closures are created.Note that a number of assumptions and simpli�cations have been made in our experimental design:it is a compromise between the need to model the important e�ects, and the need to study thesee�ects in isolation. Our objective is to learn general lessons about a large class of systems, andwe are therefore less concerned that the experiments predict the actual performance of someproduction system, as to do so we would have to introduce many factors that are orthogonal tothe issues we intend to study. These simpli�cations are outlined in Sections 5.2 and 5.3.5.1 Simulation techniqueThe most obvious way to simulate an application program on some target architecture is by a fullemulation of the program, one instruction at a time. A scheme of this type has the advantage ofbeing highly reliable, i.e. the results of the simulation can be expected to correspond closely toan implementation of the architecture having the same speci�cation as that being modelled. Thechief drawback is the huge computational resources required for the simulation.An address trace is commonly used to evaluate memory hierarchy designs. The trace-drivensimulation technique extends naturally to parallel systems, but its validity is questionable fora number of reasons. The root of the problem is that trace-driven multiprocessor simulationgenerally cannot represent interacting processes correctly. The sequence of instruction and datareferences made by a program on a uniprocessor architecture is independent of that architecture,but this is not the case for a multiprocessor since di�erent architectural designs can change the9



relative timing of competing requests for a resource. This can be resolved in statically-scheduledapplication programs (see [16]), but not in dynamically-scheduled systems such as parallel graphreduction, where the relative timing of events determines the allocation of work to CPUs.To avoid the validity issues of trace-driven simulation, we have adopted execution-driven simula-tion, which does not su�er from these problems since it accurately models process interactions.The execution of the application program is interleaved with the simulation of the target archi-tecture. Each processor is represented by a process, and sequences of application instructions aredirectly executed on the simulation host until a \global event" is generated. A global event is aprocess interaction (i.e. an action that can alter the execution of another simulated processor),such as accesses to the shared heap and scheduling operations (such as sparking a closure, andunblocking a thread). Between consecutive global events generated by a processor, the actionsof that processor cannot a�ect the others. These local events are only important in that theya�ect the timing of global events. Unlike trace-driven simulation, the execution-driven approachrequires reexecution of the program for each set of simulation parameters.5.2 SchedulingParallel graph reduction is inherently dynamically scheduled, and mechanisms are required todistribute sparked tasks around the machine. Logically a single shared task pool is used, butthis will inevitably become a source of contention in a large-scale system if implemented as asingle queue. The usual approach taken in a large system is to equip each processor with a localtask queue to which closures it sparks are added and from which new work can be fetched whennecessary. Mechanisms are therefore required to distribute tasks around the machine on demand.Policies relating to this form of scheduling are described and evaluated experimentally in [19].We have adopted such a work stealing scheme, except that we model ideal behaviour when a PEneeds to �nd a sparked task and none is available locally: the oldest sparked task is used. We do notaccount for the communications tra�c involved in locating the oldest sparked task in the machine,only the cost of transfering it to the local PE. Simulating this ideal behaviour is reasonable becauselocal task queues are usually empty only at the start and end of the computation; between thesetimes all PEs are busy and have surpluses of sparked tasks. The ideal scheme is therefore onlyunrealistic at the start of the computation, which is a relatively small proportion of the executiontime of the benchmark programs used.If a PE cannot �nd another task anywhere it is removed from the set of processes under simulationand added to a queue of idle processors. It is either resumed later when work becomes available,or remains in this state until evaluation of the functional program has been completed and thesimulation system terminates.5.3 Simulated architectureA simple model of a shared-memory parallel architecture has been adopted: the system consistsof a set of processing elements (each comprising a processor and a large cache) interconnected bya network. The processor model is based on a simple 32-bit RISC (i.e. load/store) device. It isassumed that stack, private data and code regions of each process are served by separate perfectcache systems; each read or write to these areas has a latency of one cycle.Between consecutive global events produced by an application process, an amount of time is spentaccessing local memory, performing primitive arithmetic operations and in other local operations:the clock associated with each application process must be altered to account for this time in orderto maintain a correct ordering of global events. Compiler generated code and the runtime system10



are annotated with cycle counting code, which assigns a cost to each local event instruction.In order to isolate the essential communications incurred by the applications and the cache-coherency protocol, we simulate caches large enough to hold all the data so that no replacementor capacity-related communications occur. This simpli�cation has been made since we wish toconcentrate on the performance of the protocols themselves, i.e. the network tra�c generatedwhen maintaining the coherence of the heap. For similar reasons we simulate a contention freeinterconnection network.5.4 Benchmark functional programsThe suite of programs we have been using are as follows:n�b compute the nth Fibonacci numbernqueens compute a safe arrangement of queens on an n � n chess boardquad �nd the integral of a cubic function using adaptive quadraturematmult multiply two n� n matriceswave simulation of tidal 
ow in an estuarydb a \pipelined" database transaction processorThe �rst four are standard small benchmark programs taken from Goldberg's thesis [19]. Resultsfrom these programs can be found in our earlier papers [8, 9]. Of these four, only the results ofmatmult are shown here. It is only included since its behaviour is particularly easy to understand.It is very much a best case program { it is highly parallel, and its inputs are large data structureswhich are not updated, and clearly signi�cant opportunities exist for exploiting locality. Thealgorithm is naive: the problem is subdivided at runtime into tasks which each multiply a row bya column. The matrices used are 10 squared.The estuary simulation, wave, divides an estuary into a square matrix of sub-areas and the actionof tides is simulated for some number of iterations. The results of each iteration are representedby three matrices which are consumed by the following iteration [44]. The generation of the threematrices can be done concurrently, and requires elements of each input matrix to be read. Threeiterations over 5x5 matrices were used.The transaction processing program is the largest of our programs and is based upon Trinder'spipelined database system [43]. The program uses a database represented by a binary tree.Database operations (i.e. lookups and updates) are grouped into transactions which either com-mit or abort. One hundred transactions, each of ten operations are used, and the tree contains10000 leaf nodes (i.e. database records). It is an interesting program for a number of reasons:its high rate of synchronisation re
ects a fundamental requirement of the algorithm, unlike manybenchmarks (e.g. matrix multiply). It displays spatial locality, yet this is not because it has astatically-predictable access pattern. The operation of the program is described in detail in [10].We have chosen these programs because they have di�erent data sharing characteristics and there-fore exercise the protocols in di�erent ways. They are representative of several classes of functionalprograms (e.g. wave is a typical iterative scienti�c program), but it cannot be assumed that allfunctional programs will show similar results.5.5 Garbage collectionWhen storage allocated from the shared heap becomes free, it should be recycled for reuse. Ina parallel system a parallel garbage collector is needed, and the area is the subject of intensive11



research. The behaviour of the garbage collector may interfere with normal program execution intwo ways: �rstly, it may change the relative timing of processes, depending on when it is activated,and whether all processors collect concurrently. Secondly, garbage collection may substantiallychange the pattern in which store is allocated.An important simpli�cation has been made here: no garbage collection is done at all. Instead,each processor is allocated a large contiguous segment of the shared address space, from which itallocates closures as required.The motivation for this decision is as follows: to introduce a garbage collector into the simulationwould require the selection of one of the available algorithms, and the results would then beapplicable only when a similar collector is in use. Unfortunately, there is no obvious candidate:there is no consensus on how garbage collection should be done in large shared-memory systems.However, any copying or compacting collector would �nish by handing the application programa contiguous segment of free store. Thus, there is a signi�cant period during which heap closureallocation proceeds in a simple pattern (incremental allocation is used). The assumption is thatthis is the case all the time. Although we do not simulate garbage collection, it is an importantissue which we return to in Section 7.6 Simulation resultsSimulations were made of each program operating with an ideal shared-memory, the invalidationprotocol, and the two-level ownership protocol using the following simulation parameters: 1, 2, 4,8, 16 and 32 PEs, and cache line sizes of 1, 2, 4, 8, 16, 32, 64, 128 and 256 closures. For most of oursimulations we assumed a low-latency interconnection network in which shared-memory referenceswhich cannot be satis�ed by the local cache have a latency of 10 cycles, whereas those that cantake 1 cycle. Note that, in order to make results easier to interpret, transaction latencies havebeen kept constant despite varying the cache line size. The in
uence of the latency and bandwidthof the network is addressed in Section 6.4.6.1 Ideal shared-memoryAn ideal shared-memory is de�ned to be one in which all accesses have some small constant latency.Speci�cally the processor never stalls due to memory accesses. Results from ideal shared-memoryare useful for several reasons, e.g. they allow scheduling mechanisms and policies to be studiedwithout being a�ected by the performance of the shared-memory. We use the results here to setperformance standards against which results from more realistic shared-memory implementationscan be compared.Relative performance curves (for up to 64 PEs) are shown in Figure 1. Each program shows nearlinear speedup when only a small number of processors are used. The speedup curves divergefrom the ideal curve when more processors are used since most processors are idle at the start andend of the computation, which now forms a larger part of the execution time. The transactionprocessor db shows an asymptotic speedup of 20, which is achieved with 22 PEs; the amount ofparallelism present is limited by the transaction structure as described in [10].These curves indicate that each program scales well with the number of processors, given theamount of parallelism present, i.e. the scheduling policies have been e�ective. Instrumentationof the simulator shows that speedup is non-linear solely due to startup and shutdown e�ects,demonstrating that the optimal speedup has nearly been achieved. Minor scheduling variationscan increase the shutdown period, but the resulting impact on execution time is relatively small.12
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Figure 1: Relative performance of the benchmark programs with ideal shared-memoryThis can be seen in Figure 1 for wave with 16 processors.6.2 Network usage in multicache shared-memoryThe simulated execution time of a program is determined to a large extent by the latency ofnetwork transactions. Consequently, relative performance �gures can be confusing. Since we wantto compare the performance of the two cache coherency protocols in a way that is independentof network latency, we have adopted the metric of \cache transaction ratio", de�ned to be theproportion of shared-memory accesses made by a program which require use of the network.Multicache schemes are designed to minimise average memory reference latency by minimisingthe cache transaction ratio. For example, for the invalidation protocol, a read to a line which ispresent in the local cache does not require use of the network, but a write to a line which is presentin more than one cache does.The graphs in Figure 2 show cache transaction ratio plotted against cache line size for a varietyof processor con�gurations for each benchmark program. The graphs in the left column were pro-duced from simulations of the invalidation protocol, the right column from the two-level ownershipprotocol.6.2.1 Invalidation protocolThe invalidation protocol graphs clearly show the locality and false sharing e�ects described inSection 3.2. For example, consider db with 32 PEs: for the smallest line size, the cache transactionratio is about 11%. As the line size is increased to 2 closures, the cache transaction ratio is reducedto 8%. This is a direct result of spatial locality: sometimes the extra closure which is copied on aread miss is referred to, and when this occurs it does not need to be copied across the network. Notethat the reduction in cache transaction ratio is very signi�cant: more than a quarter of shared-13
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32 PEsFigure 2: Cache transaction ratio as a function of cache line size for the invalidation protocol (leftcolumn) and the two-level ownership protocol (right column)memory references which required use of the network at the minimum line size can now be satis�edby the local cache. As line size is increased again, a further reduction in cache transaction ratiooccurs. However, after the line size exceeds 16 closures the trend reverses: the cache transactionratio begins to increase. This occurs when the magnitude of the line stealing e�ect outweighs thegain from locality.Similar trends are seen for db with di�erent numbers of processors. Notice that, as the number ofprocessors is increased from two: 14



� The cache transaction ratio increases, and� The line size at which the minimum cache transaction ratio is observed decreases.The �rst e�ect is caused by essentially the same amount of data being shared by more processors:it becomes more likely that a line will be referred to by another PE, and therefore more likelythat a write hit will require some remote invalidations, and that subsequent reads will miss in thecache due to an invalidation by another processor.Since using more processors results in more invalidation and reduced execution times, the rate ofinvalidation increases, i.e. lines remain in caches for shorter periods of time and it becomes lesslikely that the extra closures which are copied on a read miss will be referred to before the line isinvalidated. That is, it is harder to exploit spatial locality. Consequently the point at which falsesharing begins to outweigh spatial locality occurs at a smaller line size.Similar trends are seen for matmult and wave: in each case the interaction between locality andfalse sharing is seen. However, some di�erences are apparent: matmult can easily bene�t fromusing large cache lines since each thread multiplies a row and a column, and therefore signi�cantreductions in cache transaction ratio are seen as the line size is increased. The line stealing e�ectis not severe in this case because the input matrices are not updated, and the corresponding cachelines can be copied into each cache and will not be invalidated. Since the line stealing e�ect is notsevere, the cache transaction ratio falls until the cache line size reaches about 64 closures for theinvalidation protocol, and after this point only a negligible increase is seen.It appears to be harder to exploit locality with wave since only relatively small reductions incache transaction ratio are seen. This is due to the small size of the shared data structures used.However, false sharing still occurs: the optimum line size is about 8 closures.Note that, for a �xed cache size, increasing line size will result in increased con
ict misses, therebyreducing the optimum line size. Since we have used in�nite caches, we have not measured thise�ect. Con
icts might a�ect both caching schemes in similar ways. If con
icts are considerablymore frequent with the two-level protocol for a certain cache size, the invalidation protocol mayo�er better performance.In summary, we have used cache transaction ratio to measure the e�ectiveness of the invalidationprotocol. Simulation results have shown the interaction between spatial locality and false sharing.Spatial locality is application dependent, but can be signi�cant. Line stealing has been shown tobe a major problem with all programs with large lines.6.2.2 Two-level ownership protocolCache transaction ratio graphs for the two-level ownership protocol are shown in the right columnof Figure 2. It is immediately clear that increasing line size always reduces cache transactionratio: line stealing has been entirely eliminated. Improvements due to locality can now take placeunhindered. The reduction in cache transaction ratio under the invalidation protocol as the linesize is increased is initially signi�cant but line stealing acts to reduce the improvement. The newprotocol shows a similar reduction in cache transaction ratio as the line size is increased to about8 closures, but it continues to fall as the cache line size is increased.Although the line stealing e�ect has been eliminated, the cache transaction ratio recorded for theminimum line sizes is often higher than the corresponding value for the invalidation protocol. Forexample, at the minimum line size, db with 32 PEs has a cache transaction ratio of 13.5% withthe new protocol, but only 11% with the invalidation protocol. We will see why this occurs inSection 6.3.2. 15



Although the cache transaction ratio is often small (e.g. 5%) the e�ect it has on simulated executiontime is determined by the latencies of the coherency transactions which are many times greaterthan the latency of a read-hit for the class of architecture we envisage. Therefore even relativelysmall variations produced by changing line size can have a signi�cant e�ect on performance.These results indicate that we have succeeded in exploiting spatial locality to at least the sameextent as under the invalidation protocol and have also succeeded in eliminating unnecessarycoherency transactions due to line stealing.6.3 Quantifying spatial locality and line stealingIt is apparent that line size does a�ect performance, but the contributions of spatial localityand line stealing are not clear. Although line stealing can be eliminated, it is at the expenseof requiring that all writes to remotely created objects use the network. The simulator usesmonitoring information to enable these e�ects to be measured separately. For each protocol, aclassi�cation of heap references is produced, allowing any gains from spatial locality and lossesdue to line stealing to be quanti�ed. Monitoring information associated with each closure recordsthe elapsed simulated time at which the closure was last written, the set of PEs that have accessedthe closure since that time, and the last PE to write to the closure. Information stored with eachline describes the time at which each PE last took a copy of that line, the PE that owns it, etc.This information allows the simulator to classify each heap reference. In the following section westudy reads, leaving writes for Section 6.3.2.6.3.1 ReadsHeap read references for the invalidation protocol are classi�ed as follows:Simple-read: the PE has accessed an up-to-date copy of the closure before, and has a coherentcopy of the associated cache line.Mandatory-read: the PE has never had an up-to-date copy of the closure in its cache, andcommunication must take place. Either the PE has not accessed the closure before, or it hasbeen updated by a remote PE since it did. This is necessary communication required by thedata sharing characteristics of the program.Gain-read: the PE has not accessed an up-to-date copy of the closure before, but has a coherentcopy of the cache line, i.e. a gain from spatial locality.Loss-read: the PE had an up-to-date copy of the closure in its cache at some time in the past,but the line has been invalidated, i.e. a loss from line stealing caused by false sharing.The classi�cation for the two-level protocol is similar except that the loss-read class is eliminatedbecause invalidation does not take place.Graphs of read access types for 32 PE simulations with both protocols are shown in Figure 3. Oneach graph the solid line separates read references not requiring network use (simple-reads andgain-reads below) from those that do (mandatory-reads and loss-reads above).First, consider db with the invalidation protocol:� When the line size is 1 closure, clearly there is no opportunity to exploit spatial locality, butalso false sharing cannot occur. Therefore all reads are either simple-reads or mandatory-reads (only about 15% of references are mandatory-reads).16
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Figure 3: Distribution of reads for the invalidation protocol (left column) and the two-level own-ership protocol (right column) with 32 PEs� As the line size is increased, spatial locality gains are made, and the number of mandatory-read accesses decreases. This trend continues for larger line sizes, ultimately reducingmandatory-reads to about 2%.� Line stealing occurs even when the line size is 2 closures, and increases steadily for largerline sizes.� Read references not requiring network use peak at a line size of 32 closures.17



The corresponding graph for db with the two-level protocol is similar: again 15% of reads aremandatory-reads at the minimum line size, and again, as line size is increased the replacement ofmandatory-reads by gain-reads occurs. However this time no losses occur. Note in particular thatthe mandatory-read regions are almost the same: this means that the loss-reads of the invalidationprotocol have all been replaced by cheaper gain-reads and simple-reads. Both matmult and waveshow similar results; only the magnitude of each region is di�erent.These results show that the two-level ownership protocol can exploit locality of reads to at leastthe same extent as the invalidation protocol, but without losses due to false sharing.6.3.2 WritesThe classi�cation scheme for write references for the invalidation protocol concentrates on relatingthe sharing activity of lines to that of the closures allocated on them. In particular it quanti�esboth the advantage and disadvantage of invalidation.Allocation-write: a write-miss caused by allocating a new closure on an unused cache line. Itcan be serviced simply by allocating a new line and writing to it, i.e. no communication isrequired.Simple-write: a write-hit which is either an allocation of a closure, or an update of a closurewhich has not been accessed by another PE. In either case communication is not required.Mandatory-write: a write-hit or a write-miss, but in either case a coherent copy of this closurehas been accessed by another PE, and communication is required.Gain-write: a write-hit which does not require invalidation, although coherent copies of theclosure have been accessed by other PEs.Loss-write: a write-hit or a write-miss, which is either an allocation, or an update of a closurewhich has not been accessed by another PE, but communication is required.The corresponding classi�cation for the two-level protocol is:Allocation-write: a write-miss caused by allocating a new closure on an as yet unused cacheline. Again, a fresh line can be allocated quickly without communication.Local-write: a write to a cache line owned by the PE, i.e. no communication required.Remote-write: a write to an object owned by a remote PE, thus requiring use of the network.Graphs of write accesses for 32 PE simulations with both protocols are shown in Figure 4. Again,the solid line separates write references not requiring network use from those that do.Under the invalidation protocol,� The vast majority of writes are to newly-allocated memory, and are classi�ed either as\simple" or \allocation" depending on whether a fresh cache line is used.When large lines are used, fewer writes refer to completely fresh (\allocation") cache lines.However, large lines lead to an increased risk that a remote read will result in a remote copybeing taken. Because of this false sharing, a subsequent write would cause an invalidation,and be classi�ed as a \loss". However, later writes to the line would bene�t from thisinvalidation and be counted as \gain". 18
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Figure 4: Distribution of writes for the invalidation protocol (left column) and the two-levelownership protocol (right column) with 32 PEs� Gain writes arise when the �rst of a spatially-related series of writes performs the invalidationneeded to allow several writes to proceed with exclusive access.Gain writes increase as cache line size increases, re
ecting spatial locality for writes.Note that there is evidence of no write gain due to temporal locality; this is why no gainsoccur at very short cache lines� Mandatory writes are almost constant, as expected. These are writes to a closure which itselfhas been referred to by another processor, so, regardless of cache line size, an invalidation19



will be needed (some small variation may occur due to dynamic scheduling).� Losses are caused by false sharing, as in the read case. Since the same amount of data isstored in fewer lines it is more likely that an individual line will be copied into more thanone cache, and therefore more likely that a write will require communication.As indicated by the solid curve, only loss and mandatory writes involve communication.In all three benchmarks it is clear that losses due to false sharing are a major cause ofunnecessary communication.The two-level protocol operates at a higher level than reads and writes so direct comparison is notmeaningful. However:� \Local" and \allocation" writes behave in much the same way as \simple" and \allocation"under the invalidation protocol. Note that the \local" class includes writes to closures ofwhich copies do exist elsewhere (i.e. writes by the owner of the line). In the new protocolno broadcast of invalidations or updates is needed.For this reason, \local" subsumes some references which would be classi�ed as mandatoryor even gains in the invalidation protocol.� Remote writes involve closures created by another processor. In the new protocol, there is nomigration of ownership so these always involve communication in order to keep the creator'scopy up to date.It is sometimes possible for the invalidation protocol to honour these writes without com-munication, since the processor issuing the write may already have exclusive access to thecache line (this is the \gain" case).� The new protocol may get worse write miss rates than the invalidation protocol, but this iscompensated for by improved read miss rates. This e�ect would be largest at large cacheline sizes, but invalidations due to false sharing interfere.In summary, the new protocol is marginally worse at very small cache lines because it lacksmigration of ownership, but for medium and large cache lines it achieves a reduction in thenumber of messages by exploiting spatial locality without unnecessary communications due tospurious invalidations.6.4 Relative performanceLarge cache lines are useful when communication performance is dominated by latency, ratherthan by bandwidth. In this section we brie
y illustrate how bandwidth a�ects the performanceof both protocols by studying a simple interconnection network model in which message transfertime consists of a latency and a function of the message size.In the results presented so far, we have compared the performance and behaviour of the twoprotocols by counting the number of network transactions required (the cache transaction ratio).This has the advantage that it allows us to compare the protocols in a general way. The e�ect thatcache transaction ratio has on the execution time and speedup of an application depends on thespeed of processors, the latency and bandwidth of the interconnection network, etc. For example,minor variations in cache transaction ratio will have little e�ect on a system with slow processorsand a fast network since execution time will be dominated by CPU time, whereas it would have amajor impact when fast processors and a slow network are used. The results presented above aretherefore independent of CPU and network speeds.20



To illustrate how varying bandwidth might a�ect performance, we have chosen to simulate amultiprocessor with very fast processors and a high bandwidth network. The processor speed andnetwork bandwidths used are optimistic by today's standards and do not represent a particularmachine, but have instead been chosen to clearly illustrate that the advantages gained by usinglarge cache lines with any protocol are reduced by increased network latency.Figure 5 shows what happens with the db benchmark with 8 PEs under the two-level ownershipprotocol. For simplicity we assume a fully-connected interconnection network with no blocking orcontention for cache controllers. The graph shows the relative speedup with increasing bandwidth.Messages which do not carry data take 20 cycles, whereas those that do take 20 cycles, plus 0.3,0.2, 0.1, 0.02, 0.01 and 0 cycles per closure (i.e. about 3, 5, 10, 50, 100 closures per cycle).The curve for the in�nite bandwidth shows the expected behaviour: increasing line size reducesexecution time, and thereby increasing speedup. For any given limited bandwidth there is anoptimum cache line size. For comparison, we show the same experiment using the invalidationprotocol in Figure 6. This shows lower performance, and the bene�t of large cache lines is notfully realised.When the network bandwidth is relatively low, the optimum cache line size is quite small and therelative bene�t of the two-level protocol over the invalidation protocol is minimal. The two-levelprotocol is most valuable when network bandwidth is high compared to the message latency orstart-up overhead. These results demonstrate that, although the contention problems inherent ininvalidation have been solved, other factors must be taken into consideration when determiningthe line size to be used.
0

1

2

3

4

5

6

1 10 100 1000

R
el

at
iv

e 
pe

rf
or

m
an

ce

Cache line size (closures)

 

infinite
bandwidth

low
bandwidthFigure 5: Speedup of db as a function of bandwidth, two-level protocol21



0

1

2

3

4

5

6

1 10 100 1000

R
el

at
iv

e 
pe

rf
or

m
an

ce

Cache line size (closures)

 

infinite
bandwidth

low
bandwidthFigure 6: Speedup of db as a function of bandwidth, invalidation protocol7 Discussion and related workWe have shown that a careful implementation of parallel graph reduction can use substantiallyfewer messages than an implementation based on a conventional shared memory multiprocessor.This is shown by our experimental results for a invalidation cache coherency protocol. A non-cached shared memory machine such as the BBN Butter
y would be worse, since every read wouldincur communication. It is also easy to see that an update protocol would involve more messagessince updates would have to be multicast to every processor holding a copy of each cache linewhether or not the value is actually read.This would be academic if special-purpose hardware were required to support the new protocole�ciently, but this is not so. Communication occurs only when a processor performs an acquire orupdate operation on a closure, and in both cases a test is already needed by the PGR algorithm.Some support for memorymanagement may prove useful in order to locate a local cached copy of aline; both hardware MMU and hash table schemes can be used e�ectively. Thus an implementationon a message-passing machine would be fairly natural and we have been investigating variousapproaches. Interestingly, it is also possible to use a shared-memory machine: each processorwould be allocated a separate region of the address space, and copying would be used instead ofmessage passing.The new protocol works because of the single-assignment property of closures in the PGR graph.Garbage collection is therefore important, and has not been addressed in this study. Garbagecollection can be used to improve the cache hit rate by reusing addresses (thereby avoiding re-placement of useful data; see, for example, [46]). More awkwardly, garbage collection changes theway data is laid out in memory, and therefore in
uences spatial locality. Copying collectors arewidely used, and these tend to improve spatial locality by copying in a depth-�rst fashion (see forexample [12]).Arguably, our results form part of an argument in favour of writing programs in a functional,22



single assignment style for performance reasons. Avoiding mutable objects allows updates andinvalidations to be eliminated, so avoiding false sharing. The garbage collection involved wouldbe an unwelcome overhead, but not necessarily large, and it may lead to better locality. Theoverhead of building and inspecting closures is unfortunate, but it too can be controlled { forexample, sophisticated run-time mechanisms can be used to ensure that closures are only builtwhen parallelism is needed, and otherwise e�cient sequential, closure-free code can be used (see [39]and [35]).Finally, we should search for other situations (i.e. shared abstract data types) where cache co-herency can be optimised.7.1 Related workSeveral authors have studied the cache performance issues with heaps and garbage collection, mostinterestingly Wilson et al [46] and Appel [3]. Our work concentrates instead on coherency.The GRIP machine [37] uses a kind of cache mechanism: nodes are built in local memory and asubgraph is 
ushed to the globally-accessible memory only when another processor might accessit. In the Glasgow group's more recent work (see for example, [22]) they propose a more cache-likescheme where, when a node is referenced by a remote processor, a large message is packed with asmuch of the subgraph of which it is the root as will �t. This is similar in objective to our work, butshould use network bandwidth more e�ciently at the cost of much higher processing overheads.Langendoen, Muller and Vree [30] avoided coherency problems in their parallel functional languagesystem by a di�erent means: their \sandwich" parallelism annotation ensures that the sub-tasksneed refer only to read-only subgraphs.A similar approach to ours has been proposed in a data
ow context by Dennis and Gao [15], butthey have not evaluated the scheme. The idea is applicable in data
ow-related contexts such asNikhil's Cid [36] (where related cache-related ideas are discussed) and Blumofe et al's Cilk [11].7.2 Further workThis work has raised many issues deserving further investigation:� Improvements in the two-level ownership protocol, such as a more 
exible ownership policyto reduce contention for access to the processor that owns a cache line. We have assumedthat a memory unit (or cache) can handle accesses from all other processors simultaneously.This is overly optimistic and warrants further study.� Investigation into the overheads of garbage collection.� A more complex architectural model, including network and cache controller contentione�ects, and �nite capacity e�ects.8 ConclusionsWe have investigated a conventional parallel functional language implementationwhich uses a heapshared between processors for all synchronisation and communication. Parallelism was introducedmanually using the \spark" model used in parallel graph reduction. We have executed a rangeof simple parallel functional programs, and we have studied their memory sharing behaviour23



using a simulator. After using an ideal memory system to establish the potential performanceof each benchmark, we studied an invalidation protocol (as used in most modern shared-memorymultiprocessors), and this led us to formulate a novel two-level ownership protocol.Our main goal was to reduce the number of messages exchanged between processors. We foundthat this can be done by using large cache lines { when a processor requests a remote graph node,we transfer the entire cache line in which the requested node falls. This works because storage isallocated contiguously and most of our example programs display substantial spatial locality.Unfortunately, using the invalidation protocol this reduction is limited because processors contendfor exclusive ownership of each cache line in order to ensure consistency when writes occur. Withlarge cache lines, this \false sharing" e�ect happens increasingly often, and our results show thatthis leads to poor performance.Our new protocol is specially designed for the nodes of the PGR graph, which are accessed in adisciplined way. This allows large cache lines to be replicated in many processors' caches withoutthe need for invalidations or updates to be sent when a write occurs. Instead, when a processorreads a cell it checks a \valid" 
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