Derivation and Performance of a
Pipelined Transaction Processor

A. J. Bennett

P. H. J. Kelly

R. A. Paterson

Department of Computing
Imperial College of Science, Technology and Medicine
London SW7 2BZ

Abstract

Transaction processing can be formulated as a sim-
ple functional program operating on a stream of trans-
action requests and a tree-structured database. In
this paper we use algebraic transformation of the ini-
teal program to yield an optimistic implementation
i which unnecessary synchronization is eliminated,
thereby allowing concurrent processing of transactions.
A detailed simulation is used to study the program’s
behaviour and to assess scheduling policies based on
the characteristics of the target architecture. Qur re-
sults show that good speedups can be achieved, and that
transformation can be used to derive a highly concur-
rent program with better locality and grain size.

1 Introduction

Transaction processing is an important application
area where the need for high performance has mo-
tivated sophisticated parallel implementation tech-
niques. In this paper we present a simple formulation
of the problem in a functional style, and use this as
a basis for a reconstruction of a fairly sophisticated
parallel algorithm. We then give a detailed analysis of
its performance using parallel graph reduction (PGR),
a dynamically-scheduled implementation scheme. Our
use of simulation makes it possible to isolate a number
of effects which were obscured in earlier experiments
using real hardware [1].

The transaction processing example which forms the
subject of this paper has inherently unpredictable
sharing behaviour. It also relies heavily on the PGR
synchronization mechanism. It is therefore a good ex-
ample of a PGR application. Indeed we hope our re-
sults will be of interest to a wide audience since the
techniques are essentially language-independent.

The problems associated with allowing concurrent ac-
cesses to a database in a parallel transaction pro-

cessing system have received much attention. The
key problem 1s to ensure the consistency of data so
that the concurrent execution is equivalent to a sched-
ule in which the transactions are executed sequen-
tially [5], and several styles of concurrency control al-
gorithms have been proposed [3]. Using a functional
language leads naturally to an approach in which con-
current transactions operate on multiple versions of
the database [12]. We begin by reviewing this style
of transaction processing, before addressing the issues
involved in its parallelization.

2 Functional transaction processing

The problem we consider involves updates to a sim-
ple database, comprising a collection of records in-
dexed by a single key. We shall assume that the whole
database resides in memory, or that the language sup-
ports persistent data structures. The usual implemen-
tation of such updates in a conventional database sys-
tem updates the data structure in place. At first sight
it would appear that a functional version must gener-
ate a new copy of the entire database for each update.
However, it 1s well known that such a database can be
structured as a tree, and the update need only gener-
ate new versions of nodes on a path down the tree to
the addressed record.

More specifically, using a Haskell style of presenta-
tion [9], we define a database as the following tree
structure

data DB = Leaf Key Value &
Node DB Key DB

A database item is either a leaf, containing a key and
associated data, or an index node containing a sign-
post key and two subtrees. In a properly constructed
tree, the key in an index node is greater than or equal

to all the keys in the left subtree and less than all those
in the right subtree.

The function lookup returns the datum associated with
a key, if present, or fails:

data Maybe o = Yes o @ No

lookup : Key — DB — Maybe Value
lookup © (Leaf k v) =

if £ = = then Yes v else No
lookup © (Node L k 1) =

lookup = (if z < k then [else r)

The following function assigns the datum associated
with a key, if present:

assign : Key — Value — DB — DB
assign © v’ (Leaf k v) =

Leaf k (if k¥ = = then v’ else v)
assign © v’ (Node [k 1) =

ifz <k

then Node (assign = v' 1) k r

else Node | k (assign z v’ r)

As noted above, only nodes on the path down to the
addressed leaf are updated.

We shall not consider updates that change the shape of
the tree, like insertions and deletions. However, there
are standard schemes for such operations which per-
form top-down rebalancing of the tree, and we expect
that they could be added without greatly complicating
our analysis.

A great deal of parallelism is available in such a
database:

e A lookup and an assign applied to the same
database may proceed independently in parallel,
since the assign returns a new tree without alter-
ing the old one.

e An instance of assign is able to construct each in-
dex node without waiting for the recursive call.
If the result is the input to another call of assign,
the new index node may be given to a thread exe-
cuting the following call while the current thread
processes a child node. That is, successive calls to
asstgn may run concurrently in a pipeline. Once
their paths diverge in the tree, they will be com-
pletely independent.

A more realistic application might group a number of
lookup and update operations as a transaction, so that

the updates are taken as a whole—either all take ef-
fect, or in the event of some failure the database is
unchanged. For example, let ¢ denote a data struc-
ture describing a transaction, containing distinct keys
z1,...,%5. Let the corresponding values be vy, ..., vs.
If all keys are present and a condition c¢ defined in
terms of ¢ and the v; is satisfied, we wish to replace
each v; with a new value e¢; defined in terms of ¢t and
v1,...,05. Otherwise we wish to return the original
database. Thus a simple function to apply such a
transaction to a database is:

apply : Trans — DB — DB
apply t dby =

let v; = lookup 1 dby in

let vs = lookup 5 dbg in

let all-ok = ok v A ... A ok vs in
if all-ok N ¢

then

let db; = assign 1 e; dby in

let dbs = assign s es dby In
dbs
else dbg

where the function ok tests whether a lookup has suc-

ceeded:

ok : Maybe o — Bool
ok (Yes 1) 2 True
ok No = False

This sort of global rollback is neatly supported by a
functional formulation [12]: the program may return
either the old root node or a new one reflecting all the
updates.

3 Reducing synchronization

The program of the previous section has much paral-
lelism within a transaction:

e The various lookup operations may be executed
in parallel.

e Assuming that transactions usually succeed, we
may speculatively execute the assign operations
in parallel with the lookups. Moreover, the as-
sign operations exhibit the pipeline parallelism
discussed above.

However, in a sequence of transactions, no parallelism
between transactions is possible: the top-level if forces
a synchronization between transactions, as the next
transaction cannot begin until the appropriate branch
is selected. This is wasteful, since the two possible
versions of the output database differ very little, and
the differences are all in the leaf records, not the index
nodes. Recognizing this, Trinder [12, 1] proposed that
the if in the above program be replaced with a condi-
tional proposed by Friedman and Wise [6]. The idea
is to evaluate the branches concurrently with the con-
dition; if both branches have the same top-level struc-
ture, it may be returned even if the condition is as yet
unknown, while execution continues on the subtrees.
This approach produces a large number of short-lived
threads, each responsible for evaluating a single node
of the tree. Scheduling is thus considerably simplified,
at the cost of greater overheads. In the context of
the above program, many of the threads do no useful
work, since all the altered nodes are concentrated on a
path down the tree. Hence the implementation of this
conditional requires ad hoc treatment of a number of
special cases, some of them specific to this program,
to achieve reasonable behaviour [1]. Even so, the over-
heads of thread creation and the costs of the resulting
loss of locality may be excessive.

An alternative to introducing fine-grain parallelism
and relying on general-purpose scheduling strategies,
i1s to transform an initial program into one that ex-
hibits better parallel behaviour, but is equivalent in
the specified context. The transformational approach
can produce programs in which the grain of parallelism
is quite large.

Removing synchronization amounts to pushing a con-
ditional down into its branches. In the current case,
we wish to apply such a transformation to a sub-
expression of the form

if b then assign = v d else d
That is, we require a function

maybe-assign : Key — Maybe Value —
DB — DB

such that for all fully defined b, » and d,

if b then assign z v d else d =
maybe-assign x
(if b then Yes v else No) d

Assuming for the moment the existence of such a func-
tion, we can transform our transaction processor to the
equivalent

decide : Trans —
Maybe Value — ...
(Maybe Value x ...
decide t uy ... us =
let all-ok £ ok u; A ... A ok uz in
if all-ok A ¢
then (Yes e, ..., Yes e5)
else (No, ..., No)

— Maybe Value —
x Maybe Value)

apply t dbg

A
A

let uy = lookup 2, dbg in

let us = lookup z5 dby in
let (uf, ..

let db; = maybe-assign 21 w) dby in

A . .
., ug) = decide 1wy ... us in

let dbs = maybe-assign x5 uf dby in

dbs

The two programs are equivalent on fully defined in-
puts. However, in the revised version the five instances
of maybe-assign can be pipelined, and will proceed in
parallel once their paths in the tree diverge. Subse-
quent applys may also run concurrently, blocking only
if they refer to one of these keys.

It remains to construct a definition of the function
maybe-assign. The usual procedure in such cases is
to attempt to prove the desired equation by induction
over the data structure. In the process, the appro-
priate definition of the function will often emerge, as
happens in this case: the proof requires the following
definition of maybe-assign:

or : Maybe ¢« — o — «
A
Yes x or y =

Nooryéy

maybe-assign = u (Leaf k v) =

Leaf k (if k¥ = = then (u or v) else v)

A

maybe-assign ¢ u (Node | k r) =
ifz <k
then Node (maybe-assign © uw 1) k r
else Node [k (maybe-assign z u)

By pushing the synchronization point downwards, we
have constructed a program which always updates,
but updates with the original content in the event
of failure. This might be considered an optimistic
update, justified in this context, where transactions
rarely fail.

Our revised program is naturally partitioned as a
thread for each lookup and one for each maybe-assign.

It is necessary to perform all the assignments concur-
rently, so that the upper levels of the index are made
available to the next transaction as early as possible.
However, we can increase the grain size still further.

A well-known transformation [4] combines two similar
passes over a data structure into one, saving some ef-
fort in searching through the data structure. In the
parallel context, this transformation may fuse two sim-
ilar processes, creating a larger process with greater
locality. Here, we shall apply this procedure to lookup
and maybe-assign, which repeat the same process of
searching for the key in the tree. Applying the usual
technique, we define a function that performs both
operations

update : Key — Maybe Value — DB —
Maybe Value x DB

update k v’ d =
(lookup k d, maybe-assign k v’ d)

This definition is expanded by cases (unfolding) and
recursive calls are discovered (folding), giving a revised
definition for the new function:

update © u' (Leaf k v) =
(w, Leaf k v')
where (u, v') =
if ¥ = z then (Yes v, v’ or v)
else (No, v)

>

update © u' (Node L k 1)
ifz <k
then (u, Node ' k r)
where (u, I') 2 update z v’ |
else (u, Node | k 1')

where (u, ') 2 update z v’ r

The update function uses its database argument im-
mediately, making the top level of its database result
available as soon as it moves to the next level. Only
when 1t reaches the leaf does 1t make its value result
available, after which it consults its value argument to
determine whether to alter the value in the leaf. Thus
several update threads may be pipelined.

Recall that we assumed that all keys within a trans-
action were distinct, so that the five updates are inde-
pendent

lookup x; db;_1 = lookup x; dbg

for each ¢ = 2,...,5. Thus we can restate the trans-
action processor as follows:

S

apply t dbg
let
(w1, dby) < update z,) dbg
(us, dbs) = update zs uf dby
(ahy ooy ug) £ decide 1 ui ... us
in

dbs

The let in this program is recursive: the wu; are de-
fined in terms of the ué», which in turn are defined in
terms of the u;. However, there is no circularity in the
computation, since as noted above update provides the
value of u; before it examines the value of u}. More-
over, the only part of the database that depends on u}

1s the data value in one leaf.

4 Simulation of parallel graph reduc-
tion

In order to evaluate the parallel performance of the
new form of the transaction processor, its behaviour
has been studied on an implementation of parallel
graph reduction. This in turn runs on an execution-
driven simulation of a shared-memory multiprocessor.
The advantage of using simulation is that is allows
the behaviour of the system to be closely monitored
without affecting its behaviour.

PGR supports the “call-by-need” parameter passing
mechanism required by lazy functional languages by
using “closures”. A closure is a heap-based object con-
taining a method for computing a value; the method
is only invoked when the closure is demanded, and on
completion of the call the closure is overwritten by its
result value. Closures are used in several places in the
new formulation of the transaction processor. In the
definition of the apply function above, each call of up-
date is packaged into a closure which is then sparked
(i.e. added to a pool of available tasks for distribution
to other processing elements). The call to decide is
also built as a closure, but is not sparked since its ar-
guments will not be available until the updates have
reached the leaves of the tree. The u/ parameters of
the update closures are components of the value of the
dectde closure. The first call of update to reach a leaf
node of the tree will demand its u/ parameter, in turn
evaluating the decide closure. Any other update re-
quiring a u/ will block until decide completes, at which
point the new result database can be returned.

PGR is inherently a dynamically scheduled scheme,
and mechanisms are required to distribute sparked
tasks around the machine. We have adopted a work

stealing scheme in which each processor has a local
task queue to which tasks it sparks are added and
from which it fetches new work when necessary. Only
when a processor’s local queue 1s empty will it attempt
to find work from another processor.

4.1 Simulated architecture

A simple model of a shared-memory parallel archi-
tecture has been adopted: the system consists of
a set of processors, each tightly coupled to a large
cache. The PEs are interconnected by network. The
processor model is based on a simple 32-bit RISC
(i.e. load/store) device. Tt is assumed that stack, pri-
vate data and code regions of each process are served
by separate perfect cache systems; each read or write
to these areas has a latency of one processor cycle.
Note that cache associativity conflicts and cache ca-
pacity events are ignored, i.e. it 1s assumed that each
cache is infinite in size, and therefore associativity is
not an issue.

Two different memory models are used: a perfect
shared-memory is simulated in the next section in or-
der to determine ideal speedup times and to study the
behaviour of the program without it being disturbed
by network delays. A more realistic multicache imple-
mentation of shared-memory is used later in order to
assess scheduling policies appropriate for a real ma-
chine.

5 Parallel behaviour

To run the transaction processor on a parallel ma-
chine, we need to indicate the parallel grains by an-
notating the program with spark directives. Each
update must be run independently, so that the follow-
ing transaction will not be blocked in any part of the
tree. However, the program processes the root node
in a purely sequential manner, so locality will be in-
creased with no loss of concurrency if a single thread
is responsible for all root updates. Hence, we unfold
the definition of update, sparking threads to update
nodes below the root. By sparking the first compo-
nent of the result of the function update, we ensure
that a single thread evaluates the update all the way
down to the leaf.

For our experiments, we used the following parame-
ters:

e Size of the database: 10000 consecutively num-
bered records. This size was adopted in order
to produce a reasonable execution time for each
simulation run.

s0 F . ———
40
30

20 |

Processor

10 |-

0 1000 2000 3000 4000 5000
Time (cycles)

Figure 1: Activity on a 64-node Machine

e Imitial distribution of the database: the entire
database is divided into subsets of consecutively
numbered databases which are allocated to indi-
vidual PEs.

e Number and size of transactions: 10 transactions
each operating on 5 randomly selected records.

e No disks are simulated, i.e. the database is en-
tirely RAM-resident.

The concurrency of the program is illustrated by Fig-
ure 1, showing the activity of each processor when the
program was run on our simulator, using a large num-
ber of processors and an ideal memory model to give
a simple picture. As can be seen from the figure, the
master thread spawns 5 threads for each transaction
and then terminates. Each of these threads represents
an update, scanning from the root of the tree to a par-
ticular leaf. The path of nodes to that leaf are updated
by the thread, so any following thread requesting the
same node will block. As the figure shows, such colli-
sions usually occur in the upper levels of the tree, and
are transient. They are most noticeable where sev-
eral keys are close together in the tree, and thus have
long paths in common, as in the seventh transaction
(processor number 33). For each transaction, the first
update thread to reach its leaf goes on to apply de-
cide, while the others block. When the new values are
known, all the update threads commit together.

Since the keys in the transactions are spread across the
tree, collisions are rare. However, if two successive
transactions require the same record, the evaluation
of decide in the second will block until the value is
updated.

From Figure 1 we can also predict the behaviour on
fewer processors. When a thread blocks after reaching
a leaf, the processor on which it is running may use-
fully take up another update thread. The modification

20 T T T T T
0
@
15 |
%0
? 10 oo
o %
S ® o @
o 5F ® o
®
@S ®
®
O -
1 1 1 1 1
0 1000 2000 3000 4000 5000 6000

Time (cycles)

Figure 2: Activity and State Transitions on a 18-node
Machine

of the leaf data can be done later; only another update
requiring the same leaf will be blocked. On the other
hand, if the transient blocks higher in the tree (usually
near the root) are treated in the same way, any new
thread taken up will be likely to block quickly, so that
the processor will accumulate many blocked threads.
Moreover, other threads requiring the output of these
also block. Since in our simulation threads do not mi-
grate, most of the processors will be idle, waiting for
a few heavily loaded processors.

Possible solutions to this scheduling problem include
timesharing between runnable threads, and thread mi-
gration. Both are expensive, and neither is a complete
solution. However, it is apparent from the program
that

e the updates are pipelined, and

e the nodes and leaves of the tree are built quickly.

Thus we have introduced a new annotation, indicat-
ing that if a thread blocks waiting for value of the
annotated expression, the processor should not sched-
ule extra work, as the value will soon be available.
Automatic detection of short computations is useful
for other purposes (for example to avoid the overhead
of thread switching, or to avoid creating short-lived
threads) and some partial solutions are known [7].

With this modification there are some momentary de-
lays high in the tree, but otherwise the processors
are almost completely utilized. For example, Figure
2 shows activity and state transitions on a 18-node
machine. Note that there are three different typical
lengths of activity, in decreasing order:

e The scan from the root of the tree to the leaf.

o The work of decide.

20 T T T T T

Speedup

O 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Number of processors

Figure 3: Relative speedup on an ideal shared-memory

e The actual update of the leaf.

As can be seen, the work of deciding whether to com-
mit, and of updating the leaves may be done one or
more scans later than the update of which they were
part.

Figure 3 shows the relative speedup achieved for vari-
ous sizes of machine. We have used a larger number of
transactions (100) to reduce the significance of the un-
even finish times seen in Figure 2. As one might expect
from Figure 1, the graph shows near-linear speedup
up to the ratio between the cost of processing the root
node (by processor 0) and the cost of processing the
entire path down the tree and performing the update,
which is proportional to the depth of the tree [12].
For our sample tree of 10,000 nodes, the asymptotic
speedup is 18.

6 Program behaviour with a multi-
cache shared-memory

In a real shared-memory parallel machine, memory
accesses which require use of the network incur la-
tency. We have simulated a multicache implementa-
tion of shared-memory, since our previous experiments
have shown that programs running under PGR ex-
hibit considerable locality of reference, which can be
exploited by a caching scheme.We have used a new
PGR-specific coherency protocol [2] that exploits lo-
cality to a greater extent than a conventional invali-
dation coherency protocol by taking advantage of the
disciplined memory reference characteristics of PGR.
Two memory timing models are used with this proto-
col: the low-latency model represents a first generation
shared-memory multiprocessor such as the Symme-
try [10], in which the latency of a shared-memory ac-
cess which requires use of the network is 10 times that
of an access which can be satisfied by the local cache,
whereas the high-latency model represents a more

50 -

40 -

30 -

20 |

Processor

10 |-

ol |
1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000
Time (cycles)

Figure 4: Activity on a low-latency network

50

40

30

Processor

20

10

0 5000 10000 15000

Time (cycles)

20000 25000 30000

Figure 5: Activity on a high-latency network

modern multiprocessor, in which the remote:local ra-
tio is an order of magnitude larger.

Our program has a great deal of locality within
threads, the arguments and results of each call being
essentially local data. The nodes of the tree must be
shared between threads. However, each update thread
generates new nodes along a path from the root, so
there is a 50% probability that each node is stored
near its parent.

Processor

20000 25000

0 5000

10000 15000

Time (cycles)

30000

Figure 6: Activity on a high-latency network with de-
layed sparks

The behaviour of our program on a low-latency net-
work is shown in Figure 4. As expected, everything
takes longer, but the overall shape of the computation
is much as before. Note, however, that the transient
delays that occur near the top of the tree are becoming
longer. If the network latency is greatly increased, we
have the situation of Figure 5. The slope of the lead-
ing edge, the thread creations, is identical with that
in Figure 4, but the delays have become a bottleneck.
In fact, there are two bottlenecks: the thread resump-
tions form two lines as the threads queue for the use
of the two tree nodes at the second level in the tree.

The solution is to move the sparks further down the
tree, effectively broadening the root node. This has
two effects: firstly, the work done by processor 0 on
each update increases, a throttling effect decreasing
the slope of the leading edge in the figure. Secondly,
the updates are divided between a larger number of
queues, increasing the slope of the thread-resumption
part of the figure and reducing overall time. If the
sparks occur after k levels, processor 0 must process k
nodes, and the threads are divided between 2* queues.
Assuming a uniform distribution of keys, if ¢,, is the
time to reconstruct a node and [the latency, then the
average inter-arrival time in each queue is k2%¢,,, while
the service time is [+ £,,. To achieve a stable system,
we must have
k2%, > 1+,

For the network parameters reflected in Figure 5, a
choice of k = 3 achieves this balance, leading to the
behaviour seen in Figure 6. The processors are used
for shorter periods, and the overall time has also im-
proved. This may be taken further, using standard
queueing theory to obtain the expected time spent in
the queue, and hence an estimated time for the up-
date.

7 Summary and conclusions

Transaction processing can be formulated as a sim-
ple functional program operating on a stream of
transaction requests and a tree-structured database.
Meaning-preserving transformations have been used
to derive a more efficient form which reduces the num-
ber of traversals of the tree, and offers better paral-
lel performance by allowing multiple transactions to
be in progress simultaneously. The performance and
behaviour of this new form of the program has been
evaluated using a simulation of a shared-memory mul-
tiprocessor. The ability to monitor the behaviour of
the system in detail without affecting its behaviour
has allowed us to study scheduling and locking issues
in detail.

Our results include the following:

e Significant algorithmic parallelism is available.

e Transformation leads to a form of the program
with the same level of concurrency as the previ-
ously published version [1], but with better grain
size and locality.

e A new annotation was found to be necessary for
the optimum scheduling of pipelines. The under-
lying analysis is similar to that involved in the
generation of serial combinators [7].

e Contention for the upper levels of the tree be-
comes significant when network latency is high,
resulting in unnecessary sequentialization. This
contention can be reduced by increasing the size
of the root of the tree (i.e. by moving sparks down
the tree).

e A simple queueing model can be used to deter-
mine the optimum level to place spark annota-
tions.

Future work will include modifying the program to
more closely match the processing part of the debit-
credit benchmark [11], and a detailed study of the in-
teraction between the program and multicache shared-
memory systems. Also we plan to provide the fu-
ture [8] construct (very similar to a closure) to C pro-
grammers via a library in order to allow the program
to be expressed in an imperative language, and we
have targetted an initial implementation to the Fu-
Jitsu AP1000. Other ideas include the study of other
shared coherent abstract data types which can be used
for general-purpose portable parallel programming in
conventional languages.

Acknowledgements

This work was funded by the U.K. Engineering and
Physical Sciences Research Council under grant num-
ber GR/J 14448 (Compagt: Combined program and

query optimization for parallel database processing).

References

[1] G. Akerholt, K. Hammond, S. Peyton Jones,
and P. Trinder. Processing transactions on
GRIP, a parallel graph reducer. In Arndt Bode,
Mike Reeve, and Gottfried Wolf, editors, PARLE
98 Parallel Architectures and Languages Europe,
Munich, June 1993, volume 694 of Lecture Notes
. Computer Science, pages 634-647, Berlin,
1993. Springer-Verlag.

[2] Andrew J. Bennett and Paul H. J. Kelly. Elim-
inating invalidation in coherent-cache parallel
graph reduction. In C. Halatsis, D. Maritsas,
G. Philokyprou, and S. Theodoridis, editors,
PARLE 94 Parallel Architectures and Languages
Furope, Athens, July 1994, volume 817 of Lec-
ture Notes in Computer Science, pages 375386,
Berlin, 1994. Springer-Verlag.

[3] P. Bernstein and N. Goodman. On concurrency
control in distributed database systems. Comput-

ing Surveys, 13(2):185-221, June 1981.

[4] Rod M. Burstall and John Darlington. A trans-
formation system for developing recursive pro-

grams. Journal of the ACM, 24(1):44-67, 1977.

[5] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger. The notions of consistency and predicate
locks in a database system. Communications of

the ACM, 19(11):624-633, November 1976.

[6] D. P. Friedman and D. S. Wise. A note on condi-
tional expressions. Communications of the ACM,

21(11), November 1978.

[7] Benjamin F. Goldberg. Multiprocessor Execution
of Functional Programs. PhD thesis, Yale Uni-
versity, New Haven, 1988.

[8] Robert H. Halstead. Implementation of Multilisp:
Lisp on a multiprocessor. In 1984 ACM Sym-
postum on Lisp and Functional Programming,
Austin, August, pages 9-17, 1984.

[9] Paul Hudak, Simon L. Peyton Jones, and Philip
Wadler. Report on the programming language
Haskell — a non-strict purely functional lan-
guage, version 1.2. SIGPLAN Notices, 27(5):1-
162, May 1992.

[10] Tom Lovett and Shreekant Thakkar. The Symme-
try multiprocessor system. In 1988 International
Conference on Parallel Processing, Pennsylvania,

August, pages 303-310, 1988.

[11] Transaction Processing Performance Council
(TPC). TPC Benchmark, a standard. Techni-
cal report, ITOM International, Los Altos, CA,
1989.

[12] Phil Trinder. A Functional Database. PhD thesis,
Computing Laboratory, Oxford University, Ox-
ford, U.K., 1989.

