Run-time code generation in C++ as a
foundation for domain-specific optimisation

Olav Beckmann, Alastair Houghton, Paul H J Kelly, and Michael Mellor

Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, United Kingdom
{o.beckmann,p.kelly}@imperial.ac.uk
www.doc.ic.ac.uk/{"ob3, “phjk}

Abstract. The TaskGraph Library is a C++ library for dynamic code
generation, which combines specialisation with dependence analysis and
loop restructuring. A TaskGraph represents a fragment of code which is
constructed and manipulated at run-time, then compiled, dynamically
linked and executed. TaskGraphs are initialised using macros and over-
loading, which forms a simplified, C-like sub-language with first-class ar-
rays and no pointer arithmetic. Once a TaskGraph has been constructed,
we can analyse its dependence structure and perform optimisations. In
this paper, we present the design of the TaskGraph library, and two sam-
ple applications to demonstrate its use for runtime code specialisation
and restructuring optimisation.

1 Introduction

Setting the Scene: Cross-Component Optimisation at Runtime. The work we
describe in this paper is part of a wider research programme at Imperial Col-
lege aimed at addressing the apparent conflict between the quality of scientific
software and its performance. High-quality, easy-to-maintain scientific software
is often built from abstract components which have been independently verified
and optimised. Unfortunately, there is a performance penalty associated with this
approach since components are deployed outside the context in which they have
been optimised. Our proposal for reversing this performance penalty is based on
runtime cross-component optimisation. Current research projects which imple-
ment this general approach are a library for performing runtime cross-component
data placement optimisation in data-parallel programs [13], a system for optimis-
ing Java RMI calls at runtime [22] and runtime cross-component loop fusion [6].

The TaskGraph Library. The TaskGraph library is a key tool which we are
developing in order to drive this research programme. The library is written in
C++ and is designed to support dynamic code generation, specialisation and
explicit analysis and manipulation of the generated code:

— Dynamic Component Specialisation
The TaskGraph library can be used for specialising software components



according to either their parameters or other runtime context information.
Later in this paper (Section 3), we show an example of specialising a generic
image filtering function to the particular convolution matrix being used.

— Runtime Dependence Analysis and Restructuring
The TaskGraph library uses SUTF-1 [21], the Stanford University Interme-
diate Format, as its internal representation for code. This makes a rich col-
lection of dependence analysis and restructuring passes available for our use
in code optimisation.

— Runtime Generation of Component Metadata
Our delayed evaluation, self-optimising (DESO) library [13] for performing
runtime cross-component data placement optimisation currently relies on
hand-written metadata which characterises the data placement constraints
of each component. We have carried out initial work aimed at generating
this metadata automatically using the TaskGraph library [19].

Relationship with Earlier Work. Several earlier tools for dynamic code optimi-
sation have been reported in the literature [5,8]. The key characteristics which
distinguish our approach are as follows:

— Single-Language Design
The TaskGraph library is implemented in C+4 and any TaskGraph program
can be compiled as C++ using widely-available compilers. This is in contrast
with approaches such as ‘C [5] which rely on a special compiler for processing
dynamic constructs. The TaskGraph library’s support for manipulating code
as data within one language was pioneered in Lisp [15].

— Explicit Specification of Dynamic Code
Like ‘C [5], the TaskGraph library is an imperative system in which the
application programmer has to construct the code as an explicit data struc-
ture. This is in contrast with ambitious partial evaluation approaches such as
DyC [8,9] which use declarative annotations of regular code to specify where
specialisation should occur and which variables can be assumed constant.
Offline partial evaluation systems like these rely on binding-time analysis
(BTA) to find other, derived static variables [12].

— Simplified C-like Sub-language
Dynamic code is specified with the TaskGraph library via a small sub-
language which is very similar to standard C (see Section 2). This language
has been implemented through extensive use of macros and C++ operator
overloading and consists of a small number of special control flow constructs,
as well as special types for dynamically bound variables. This means that
BTA in our approach is effectively performed by the C++ type system. The
language has first-class arrays, unlike C and C++, to facilitate dependence
analysis.

Structure of this Paper. In Section 2, we describe how TaskGraphs are con-
structed. Section 3 offers a simple demonstration of run-time specialisation. Sec-
tion 4 explains how the library itself is implemented. In Section 5, we use matrix



1 #include <stdio.h>

2 #include <TaskGraph>
3

4 using namespace tg;

5

6 int main( int arge, char *argv[] ) { var
7 TaskGraph T; a:int
8 int b=1,c=1;
9

10 taskgraph( T ) {

TaskGraph

11 tParameter ( tVar (int, a ) ); | (Statement) Assign
12

13 a=a+c;

14

15

16 T.compile(); | Var a | | Add |

17 T.execute( ”a”, &b, NULL );
18
19 printf ( "bo=_%d\n"”, b );

20 return 0;
21 }

Fig. 1. Left: Simple Example of using the TaskGraph library. Right: Abstract syntax
tree (AST) for the simple TaskGraph constructed by the piece of code shown on the
left. The variable ¢, which has is static at TaskGraph construction time appears in the
AST as a value (see Section 4).

multiplication to illustrate the use of the library’s loop restructuring capabili-
ties. In Sections 6 and 7 we discuss related and ongoing work, and Section 8
concludes.

2 The TaskGraph Library API

A TaskGraph is a data structure which holds the abstract syntax tree (AST)
for a piece of dynamic code. A key feature of our approach is that the appli-
cation programmer has access to and can manipulate this data structure at
runtime; in particular, we provide an extensible API (sub-language) for con-
structing TaskGraphs at runtime. This APT was carefully designed using macros
and C++ operator overloading to look as much as possible like ordinary C.

A Simple Example. The simple C++ program shown in the left-hand part of Fig-
ure 1 is a complete example of using the TaskGraph library. When compiled with
g++, linked against the TaskGraph library and executed, this program dynami-
cally creates a piece of code for the statement a = a + c, binds the application
program variable b as a parameter and executes the code, printing b = 2 as the
result. This very simple example illustrates both that creation of dynamic code
is completely explicit in our approach and that the language for creating the
AST which a TaskGraph holds looks similar to ordinary C.



void convolution( const int IMGSZ, const FLOAT *image, FLOAT #new_image,
const int CSZ /+ convolution matriz size */, const FLOAT smatrix ) {
int i, j, ci, ¢j;

assert ( CSZ % 2 == 1);
const int c_half = ( CSZ / 2 );
// Loop iterating over image

for( i = c_half; i < IMGSZ — c_half; +4i ) {
for( j = c-half; j < IMGSZ — c_half; ++4j ) {
new-image[i * IMGSZ + j] = 0.0;

// Loop to apply convolution matriz
for( ci = — c-half; ci <= c_half; ++4ci ) {
for( cj = — c-half; cj <= c-half; +4-cj ) {
new_image[i * IMGSZ + j| +=
image[(i+ci) * IMGSZ + j+cj] * matrix[(c-half+ci) * CSZ + c_half+cj];

}
}
}

return;

Fig. 2. Generic image filtering: C+-+ code. Because the size as well as the entries of
the convolution matrix are runtime parameters, the inner loops (for-ci and for-cj), with
most likely very low trip-count, cannot be unrolled efficiently.

3 Generalised Image Filtering

We now show an example which uses a fuller range of TaskGraph constructs
and which also demonstrates a real performance benefit from runtime code op-
timisation. A generic image convolution function, which allows the application
programmer to supply an arbitrary convolution matrix could be written in C
as shown in Figure 2. This function has the advantage of genericity (the inter-
face is in principle similar to the General Linear Filter functions from the Intel
Performance Libraries [11, Section 9]) but suffers from poor performance because

— The loop bounds of the inner loops over the convolution matrix are statically
unknown, hence these loops, with most likely very low trip-count, cannot be
unrolled efficiently.

— Failure to unroll the inner loops not only leads to unnecessarily complicated
control flow, but also blocks optimisations such as vectorisation on the outer
loops.

Figure 3 shows a function which constructs a TaskGraph that is specialised to
the particular convolution matrix being used. The tFor constructs are part of
the TaskGraph APT and create a loop node in the AST. Note, however, that the
inner for loops are executed as ordinary C++ at TaskGraph construction time,
creating an assignment node in the AST for each iteration of the loop body. The
effect is that the AST contains control flow nodes for the for-i and for-j loops
and a loop body consisting of CSZ * CSZ assignment statements.

We study the performance of this example in Figure 4. The convolution
matrix used was a 3 X 3 averaging filter, images were square arrays of single-



302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

325
326
327
328
329
330
331

void taskgraph_convolution( TaskGraph &T, const int IMGSZ,
const int CSZ, const FLOAT smatrix ) {
int ci, cj;
assert ( CSZ % 2 == 1);
const int c_half = ( CSZ / 2 );

taskgraph( T ) {
unsigned int dims[] = {IMGSZ x IMGSZ};
tParameter( tArray( FLOAT, tgimg, 1, dims ) );
tParameter( tArray( FLOAT, new_tgimg, 1, dims ) );
tVar (int, i );
tVar (int, j );

// Loop iterating over image
tFor( i, c-half, IMGSZ — (c_half + 1)) {
tFor( j, c-half, IMGSZ — (c-half + 1))
new_tgimgli * IMGSZ + j] = 0.0;

{

// Loop to apply convolution matriz
for( ci = —c_half; ci <= c_half; ++4ci ) {
for( ¢j = —c_half; ¢j <= c_half; ++cj) {
new_tgimgl[i * IMGSZ + j] +=
tgimg[(i4ci) * IMGSZ + j+cj] * matrix[(c_half+ci) * CSZ + c_half+cj];

}
}
}
}
}

return;

¥

Fig. 3. Generic image filtering: function constructing the TaskGraph for a specific
convolution matrix. The size as well as the entries of the convolution matrix are static
at TaskGraph construction time. This facilitates complete unrolling of the inner two
loops. The outer loops (for-i and for-j) are entered as control flow nodes in the AST.

precision floats ranging in size up to 4094 x 4096. Measurements are taken on
a Pentium 4-M with 512KB L2 cache running Linux 2.4, gcc 3.3 and the Intel
C++ compiler version 7.1. We compare the performance of the following;:

The static C++ code, compiled with gcec 3.3.

The static C++ code, compiled with the Intel C++ compiler version 7.1. The
icc compiler reports that the innermost loop (for-cj) has been vectorised®.
Note, however, that this loop will have a dynamically determined trip-count
of 3, i.e. the Pentium 4’s 16-byte vector registers will not be filled.

The code dynamically generated by the TaskGraph library, compiled with
gcc 3.3. The two innermost loops are unrolled.

The code dynamically generated by the TaskGraph library, compiled with
icc 7.1. The two innermost loops are unrolled and the then-remaining in-
nermost loop (the for-j loop over the image) is vectorised by icc.

We have deliberately measured the performance of these image filtering functions
for only one pass over an image. In order to see a real speedup the overhead of

! The SSE2 extensions implemented on Xeon and Pentium 4 processors include 16-
byte vector registers and corresponding vector instructions [10].



Generalised Image Filtering Performance (1 Pass)
2 4
——Generic C++ compiled with gcc
~—Generic C++ compiled with icc L
——TaskGraph gcc
815 —«TaskGraph icc
5
O
o)
n
£ 1
)
E
IS
& \
0.5
O T T T T T T
0 512 1024 1536 2048 2560 3072 3584 4096
Image Size (512 means image size is 512x512 floats)
Generalised Image Filtering - Timing Breakdown
0.5
B Code Runtime
@ Compile Time
0.4
%)
°
c
3
$0.3 1
(7]
£
202 -
=
- I I I
0 ,
Generic Generic TGgcc TG icc Generic Generic TGgcc TGicc
gcc 1024 icc 1024 1024 1024 gcc 2048 icc 2048 2048 2048

Fig. 4. Performance of image filtering example. Top: Total execution time, including
runtime compilation, for one pass over image. Bottom: Breakdown of total execution
time into compilation time and execution time of the actual convolution code for two
specific image sizes: 1024 x 1024 (the break-even point) and 2048 x 2048.



runtime compilation therefore needs to be recovered in just a single application of
the generated code. Figure 4 shows that we do indeed get an overall speedup for
image sizes that are greater than 1024 x 1024. In the right-hand part of Figure 4,
we show a breakdown of the overall execution time for two specific data sizes.
This demonstrates that although we achieve a huge reduction in execution time
of the actual image filtering code, the constant overhead of runtime compilation
cancels out this benefit for a data size of 1024 x 1024. However, for larger data
sizes, we achieve an overall speedup.

Note, also, that image filters such as the one in this example might be applied
either more than once to the same image or to different images — in either case,
we would have to pay the runtime compilation overhead only once and will get
higher overall speedups.

4 How it Works

Thus far, we have given examples of how the TaskGraph library is used, as well
as demonstrated that it can achieve significant performance gains. In this section
we now give a brief overview of TaskGraph syntax, together with an explanation
of how the library works.

TaskGraph Creation. The TaskGraph library can represent code as data —
specifically, it provides TaskGraphs as data structures holding the AST for a
piece of code. We can create, compile and execute different TaskGraphs inde-
pendently. Statements such as the assignment a = a + c in line 13 of Figure 1
make use of C++ operator overloading to add nodes (in this case an assignment
statement) to a TaskGraph. Figure 1 illustrates this by showing a graphical rep-
resentation of the complete AST which was created by the adjacent code. Note
that the variable ¢ has static binding-time for this TaskGraph. Consequently,
the AST contains its value rather than a variable reference.

The taskgraph( T ){...} construct (see line 308 in Figure 3) determines
which AST the statements in a block are attached to. This is necessary in or-
der to facilitate independent construction of different TaskGraphs, representing
different computations.

Variables in TaskGraphs. The TaskGraph library inherits lexical scoping from
C++. The tVar(type, name) construct (see lines 312 and 313 in Figure 3)
can be used to declare a dynamic local variable. Similarly, the tArray(type,
name, no_dims, extents[]) construct can be used to declare a dynamic multi-
dimensional array with number of dimensions no_dims and size in each dimen-
sion contained in the integer array extents. Arrays are first-class objects in the
TaskGraph construction sub-language and can only be accessed inside a Task-
Graph using the [] subscript operators. There are no pointers in the TaskGraph
construction sub-language.



302 void taskgraph_convolution( TaskGraph &T, const int IMGSZ,

303 const int CSZ, const FLOAT *matrix ) {
304 int ci, cj;

305 assert ( CSZ % 2==1 )

306 const int c_half = ( CSZ / 2);

307

308 taskgraph( T ) {

300 unsigned int dims[] = {IMGSZ = IMGSZ};

310 tParameter( tArray( FLOAT, | tgimg |, 1, dims ) );

311 tParameter( tArray( FLOAT, | new_tgimg |, 1, dims ) );
312 tVar (int, );

313 tVar ( int, );

314

315 // Loop iterating over image

26 tFor([i] c-half, IMGSZ — (c-half 4 1) ) {

a7 tFor( , c_half, IMGSZ — (c_half + 1) ) {
318 [ * IMGSZ + ] = 0.0;

319

320 // Loop to apply convolution matriz

321 for( ci = —c_half; ci <= c_half; ++ci ) {
322 for( cj = —c-half; ¢j <= c_half; ++c¢j) {
[new gima][1] » 1MGS7 + [1] +-
324 m[(.—km) * IMGSZ + .+c1] * matrix[(c_half4-ci) * CSZ + c_half+cj];
325 }

326 }

327 }

328 }

20  }

330 return;

31 }

Fig. 5. Binding-Time Analysis. TaskGraph construction code for the image filtering
example from Figure 2, with all dynamic variables marked by a boxed .

TaskGraph Parameters. Both Figure 1 (line 11) and Figure 3 (lines 310 and 311)
illustrate that any TaskGraph variable can be declared to be a TaskGraph pa-
rameter using the tParameter () construct. We require the application program-
mer to ensure that TaskGraph parameters bound at execution time do not alias
each other.

Control Flow Nodes. Inside a TaskGraph construction block, for loops and
if conditionals are executed at construction time. Therefore, the for loops on
lines 321 and 322 in Figure 3 result in an unrolled inner loop. However, the
TaskGraph sub-language defines some constructs for adding control-flow nodes
to an AST: tFor (var,lower,upper) adds a loop node (see lines 316 and 317 in
Figure 3). The loop bounds are inclusive. tIf () can be used to add a conditional
node to the AST.

Expressions and Binding-Time Analysis. We refer to variables that are bound at
TaskGraph construction time as static variables and those that are bound at ex-
ecution time as dynamic. Declarative code specialisation systems such as DyC [8]



use annotations that declare some variables to be static for the purpose of par-
tial evaluation. In contrast, static binding time, i.e. evaluated at TaskGraph
construction time is the default for the TaskGraph language. Only TaskGraph
variables, including parameters, are dynamic. Internally, dynamic variables are
represented by special types and the overloaded operators defined on those dy-
namic types define binding-time derivation rules. Thus, an expression such as
a + c in Figure 1 where a is dynamic and c is static is derived dynamic, but
the static part is evaluated at construction time and entered into the AST as
a value. We illustrate this by reproducing the TaskGraph image filtering code
from Figure 3 again in Figure 5; however, this time all dynamic expressions are
marked by a boxed outline. Note that the convolution matrix, including its entire
subscript expression in the statement on line 324, is static.

5 Another example: matrix multiply

In Section 3, we showed an example of how the specialisation functionality of
the TaskGraph library can be used to facilitate code optimisations such as vec-
torisation. In this Section, we show, using matrix multiplication as an example,
how we can take advantage of the use of SUIF-1 as the underlying code rep-
resentation in the TaskGraph library to perform restructuring optimisations at
runtime.

Figure 6 shows both the code for the standard C/C++ matrix multiply
loop (ijk loop order) and the code for constructing a TaskGraph representing
this loop, together with an example of how we can direct optimisations from
the application program: we can interchange the for-j and for-k loops before
compiling and executing the code. Further, we can perform loop tiling with a
runtime-selected tile size. This last application demonstrates in particular the
possibilities of using the TaskGraph library for domain-specific optimisation:

— Optimising for a particular architecture
In Figure 6, we show a simple piece of code which implements a runtime
search for the optimal tilesize when tiling matrix multiply. In Figure 8, we
show the results of this search for both a Pentium 4-M (with 512K L2 cache)
and an Athlon (with 256K L2 cache) processor. The resulting optimal tile-
sizes differ for most problem sizes, but they do not differ by as much as
would have been expected if the optimal tilesize was based on L2 capacity.
We assume that a different parameter, such as TLB span, is more significant
in practice.

— Optimising for a particular loop or working set
We note that the optimal tile size for matrix multiply calculated by our
code shown in Figure 6 differs across problem sizes (see Figure 8). Similarly,
we would expect the optimal tilesize to vary for different loop bodies and
resulting working sets.

We believe that high performance achieved, with relatively straight-forward
code, in our matrix multiply example (up to 2 GFLOP/s on a Pentium 4-M



void TG_mm_ijk( unsigned int sz[2],
TaskLooplIdentifier *loop,

/: o TaskGraph &t ) {
mme_ij ‘ ) ) taskgraph( t ) {
* Most straight—forward matriz multiply tParameter(tArray (FLOAT, A, 2, sz

* Calculates C += A = B
*
void mm_ijk( const unsigned int sz,
const FLOAT x*const A,
const FLOAT x*const B,
FLOAT #const C ) {

unsigned int i, j, k; tGetId( loop [0] );

for( i =0; i < sz ++i) { tﬂ"é.ﬁt}a?ioii[?ﬂ] )i DA
for(j =0; j <sz ++4j) { tFor(j, 0, sz[l] — 1) {
for( k =0; k < sz +4k) { tGetI(,i( ioop 2] );
Clixsz+j] += Alixsz+k] * Blkksz+j]; tFor( k, 0, s [0]’7 1) {

Clilli] += Afil[k] = Blk][i];

))s
tParameter(tArray (FLOAT, B, 2, sz));
tParameter(tArray (FLOAT, C, 2, sz));
tVar( int, i );
tVar( int, j );
tVar( int, k );

}
; }
return; }
' }
}
for( int tsz = 4; tsz <= min(362, matsz); ++tsz ) {

unsigned int sizes[] = { matsz, matsz };
int trip3[] = { tsz, tsz, tsz };

TaskLooplIdentifier loop [3];
TaskGraph MM;

TG-mm_ijk( sizes, loop, MM );

interchangeLoops( loop [1], loop [2] ); // Interchange loops
tileLoop( 3, &loop [0], trip3 ); // Tile inner two loops
MM.compile( TaskGraph::ICC, false );

tt2 = time_function ();

MM.setParameters( "A”, A, "B”, B, ”C”, C, NULL );
MM.execute();

tt2 = time_function() — tt2;

time[0] = time_to_seconds( tt2 );

if ( time[0] < best_time_icc ) {
best_time_icc = time|[0];
best_tsz_icc = tsz;

Fig. 6. The code on the top left is the standard C++ matrix multiply (ijk loop or-
der) code. The code on the top right constructs a TaskGraph for the standard ijk
matrix multiply loop. The code underneath shows an example of using the TaskGraph
representation for the ijk matrix multiply kernel, together with SUIF-1 passes for in-
terchanging and tiling loops to search for the optimal tilesize of the interchanged and
tiled kernel for a particular architecture and problem size.



1.8 GHz) shows promising potential for our approach of performing dynamic
specialisation and optimisation, based on runtime domain-specific information.

6 Related Work

In this section, we briefly discuss related work in the field of dynamic code
optimisation.

Language-Based Approaches.

— Imperative
Tick-C or ’C [5], a superset of ANST C, is a language for dynamic code gen-
eration. Like the TaskGraph library, 'C is explicit and imperative in nature;
however, a key difference in the underlying design is that 'C relies on a special
compiler (tcc). Dynamic code can be specified, composed and instantiated,
i.e. compiled, at runtime. The fact that ‘C relies on a special compiler also
means that it is in some ways a more expressive and more powerful system
than the TaskGraph library. For example, 'C facilitates the construction of
dynamic function calls where the type and number of parameters is dynam-
ically determined. This is not possible in the TaskGraph library. Jak [2],
MetaML [20], MetaOCaml [4] and Template Haskell [18] are similar efforts,
all relying on changes to the host language’s syntax.

— Declarative
DyC [8,9] is a dynamic compilation system which specialised selected parts of
programs at runtime based on runtime information, such as values of certain
data structures. DyC relies on declarative user annotations to trigger spe-
cialisation. This means that a sophisticated binding-time analysis is required
which is both polyvariant (i.e. allowing specialisation of one piece of code
for different combinations of static and dynamic variables) and program-
point specific (i.e. allowing polyvariant specialisation to occur at arbitrary
program points). The result of BTA is a set of derived static variables in
addition to those variables which have been annotated as static. In order to
reduce runtime compilation time, DyC produces, at compile-time, a generat-
ing extension [12] for each specialisation point. This is effectively a dedicated
compiler which has been specialised to compile only the code which is being
dynamically optimised. This static pre-planning of dynamic optimisation is
referred as staging.
Marlet et al [14] present a proposal for making the specialisation process
itself more efficient. This is built using Tempo [3], an offline partial eval-
uator for C programs and also relies on an earlier proposal by Gliick and
Jorgensen to extend two-level binding-time analysis to multiple levels [7],
i.e. to distinguish not just between dynamic and static variables but be-
tween multiple stages. The main contribution of Marlet et al is to show
that multi-level specialisation can be achieved more efficiently by repeated,
incremental application of a two-level specialiser.



Performance of Matrix Multiply on Athlon 1600+

2000
—— Standard C++ ijk
1800 11 ——TaskGraph (icc) Interchanged ikj, Raw
—#—TaskGraph (icc) Interchanged ikj, Code Generation Included
1600 11 —=TaskGraph (icc) ikj 3-way Tiled, Code Generation Included
—=-TaskGraph (icc) ikj 3-way Tiled, Raw
w
o 1400
o
-
[T
=
£
(o]
o
c
©
£
L
5]
o
0 100 200 300 400 500 600 700 800 900 1000
Square Root of Datasize
Performance of Matrix Multiply on Pentium 4-M 1.8GHz
—e—Standard C++ ijk
3000 —+—TaskGraph (icc) Interchanged ikj, Raw
—+—TaskGraph (icc) Interchanged ikj, Code Generation Included
2500 I —#—TaskGraph (icc) ikj 3-way Tiled, Code Generation Included
Y —=—-TaskGraph (icc) ikj 3-way Tiled, Raw
a
(e}
-
LL 2000 -
=
£
8 1500 1
c
<
£
£ 1000
[9)
a
500
0 cnill ‘ ‘ ‘ , : : —
0 100 200 300 400 500 600 700 800 900 1000

Square Root of Datasize

Fig. 7. Performance of matrix multiply on Athlon 1600+ with 256 KB L2 cache and on
Pentium 4-M 1.8 GHz with 512KB L2 cache. We show the performance of the naive
C++ code (ijk loop order), the code where the we have used the TaskGraph library
to interchange the inner two loops (resulting in ikj loop order) and the code where
the TaskGraph library is used to interchange and 3-way tile the loops. For the tiled
code, we used the TaskGraph library to search for the optimal tile size for each data
point, as shown in Figure 6. For both the interchanged and tiled code, we plot one
graph showing the raw performance of the generated code and one graph which shows
the performance after the dynamic code generation cost has been amortised over one
invocation of the generated code.



Optimal Tile Size for 3-way Tiled Code (icc)

350
-5~ Pentium 4 Optimal Tilesize (icc)
300 —¢ Athlon Optimal Tilesize (icc)
250 4
[0}
N
[
© 200
=
£
150 1
2 el
o]
100 y ¥ 1
50 4
0 T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

Square Root of Datasize

Fig. 8. Optimal tile size on Athlon and Pentium 4-M processors, for each data point
from Figure 7. These results are based on a straight-forward exhaustive search imple-
mented using the TaskGraph library’s runtime code restructuring capabilities (see code
in Figure 6).

Data-Flow Analysis. Our library performs runtime data flow analysis on loops
operating on arrays. A possible drawback with this solution could be high run-
time overheads. Sharma et al present deferred data-flow analysis (DDFA) [17] as
a possible way of combining compile-time information with only limited runtime
analysis in order to get accurate results. This technique relies on comprising
the data flow information from regions of the control-flow graph into summary
functions, together with a runtime stitcher which selects the applicable summary
function, as well as computes summary function compositions at runtime.

Transparent Dynamic Optimisation of Binaries. One category of work on dy-
namic optimisation which contrasts with ours are approaches which do not rely
on program source code but instead work in a transparent manner on running
binaries.

Dynamo [1] is a transparent dynamic optimisation system, implemented
purely in software, which works on an executing stream of native instructions.
Dynamo interprets the instruction stream until a hot trace of instructions is
identified. This is then optimised, placed into a code cache and executed when
the starting-point is re-encountered.

These techniques also perform runtime code optimisation; however, as stated
in Section 1, our objective is different: restructuring cross-component optimisa-
tion at runtime.



7 Ongoing and Future Work

We have recently evaluated the current TaskGraph library implementation in
the context of some moderately large research projects [6]. This experience has
led us to planning future developments of this work.

— Automatic Generation of OpenMP Annotations
We would like to use the runtime dependence information which is calcu-
lated by the TaskGraph library for automatically annotating the generated
code with OpenMP [16] directives for SMP parallelisation. An alternative
approach would be to use a compiler for compiling the generated code that
has built-in SMP parallelisation capabilities.

— Automatic Derivation of Component Metadata
Our delayed evaluation, self-optimising (DESO) library of data-parallel nu-
merical routines [13] currently relies on hand-written metadata which char-
acterise the data placement constraints of components to perform cross-
component data placement optimisation. One of the outstanding challenges
which we would like to address in this work is to allow application pro-
grammers to write their own data-parallel components without having to
understand and supply the placement-constraint metadata. We hope to gen-
erate these metadata automatically with the help of the TaskGraph library’s
dependence information. Some initial work on this project has been done [19].

— Transparent Cross-Component Loop Fusion
In an ongoing project [6] we are using the TaskGraph library to perform
cross-component loop fusion in our DESO library of data-parallel numerical
routines.

8 Conclusion

The TaskGraph library combines code specialisation with runtime dependence
analysis and restructuring optimisations. We believe that this combination is
unique, and essential for our research agenda of restructuring cross-component
optimisation, carried out at runtime with the benefit of runtime context informa-
tion. Since our long-term objectives include the optimisation of large scientific
codes, we decided on the exclusive use of standard C++ to facilitate integrating
the TaskGraph library with existing codes.

Acknowledgements. This work was supported by the United Kingdom EPSRC-
funded OSCAR project (GR/R21486).

References

1. Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent
dynamic optimization system. In PLDI ’00: Programming Language Design and
Implementation, pages 1-12, 2000.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: Tools for implementing

domain-specific languages. In P. Devanbu and J. Poulin, editors, Proceedings:
Fifth International Conference on Software Reuse, pages 143-153. IEEE Computer
Society Press, 1998.

C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and E.-N. Volanschi.
Tempo: Specializing systems applications and beyond. ACM Computing Surveys,
30(3), September 1998.

Walid Taha et al. MetaOCaml homepage. www.cs.rice.edu/ taha/MetaOCaml/.
Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ’C: a language for
high-level, efficient, and machine-independent dynamic code generation. In POPL
’96: Principles of Programming Languages, pages 131-144, 1996.

Peter Fordham. Transparent run-time cross-component loop fusion. MEng Thesis,
Department of Computing, Imperial College L.ondon, June 2002.

Robert Gliick and Jesper Jgrgensen. Fast binding-time analysis for multi-level
specialization. In Perspectives of System Informatics, number 1181 in LNCS, pages
261-272. Springer-Verlag, 1996.

Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eg-
gers. DyC: An expressive annotation-directed dynamic compiler for C. Theoretical
Computer Science, 248(1-2):147-199, October 2000.

Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J.
Eggers. An evaluation of staged run-time optimizations in DyC. In PLDI ’99:
Programming Language Design and Implementation, pages 293-304, 1999.

Intel Corporation. Intel Pentium 4 and Intel Xeon Processor Optimization Refer-
ence Manual, 1999-2002. Available via developer.intel.com.

Intel Corporation. Integrated Performance Primitives for Intel Architecture. Ref-
erence Manual. Volume 2: Image and Video Processing, 200—2001.

Neil D. Jones. Mix Ten Years Later. In PEPM ’95: Partial Evaluation and Seman-
tics-Based Program Manipulation, 1995.

Peter Liniker, Olav Beckmann, and Paul H. J. Kelly. Delayed evaluation self-
optimising software components as a programming model. In Burkhard Monien
and Rainer Feldmann, editors, Furo-Par 2002 Parallel Processing: Proceedings of
the 8 International Furo-Par Conference, number 2400 in LNCS, pages 666—673,
Paderborn, Germany, August 2002.

Renaud Marlet, Charles Consel, and Philippe Boinot. Efficient incremental run-
time specialization for free. ACM SIGPLAN Notices, 34(5):281-292, May 1999.
Proceedings of PL.DI’99.

John McCarthy. History of LISP. In R L. Wexelblat, editor, The first ACM SIG-
PLAN Conference on History of Programming Languages, volume 13(8) of ACM
SIGPLAN Notices, pages 217-223, 1978.

OpenMP C and C++ Application Program Interface, Version 2.0, March 2002.
Available via www.openmp.org.

Shamik Sharma, Anurag Acharya, and Joel Saltz. Deferred Data-Flow Analysis.
Technical Report TRCS98-38, University of California, Santa Barbara, December
30, 1998.

Tim Sheard and Simon Peyton-Jones. Template meta-programming for Haskell.
ACM SIGPLAN Notices, 37(12):60-75, December 2002.

Mahadhevan Subramanian. A C++ library to manipulate parallel computation
plans. Msc thesis, Department of Computing, Imperial College London, U.K.,
September 2001.

Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit
annotations. Theoretical Computer Science, 248(1-2):211-242, October 2000.



21.

22.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, Shih-Wei Liao, Chau-Wen, Tseng, M. W. Hall, M. S. Lam, and
J. L. Hennessy. SUIF: an infrastructure for research on parallelizing and optimizing
compilers. ACM SIGPLAN Notices, 29(12):31-37, December 1994.

Kwok Cheung Yeung and Paul H. J. Kelly. Optimising java rmi programs by com-
munication restructuring. In Proceedings of the ACM/IFIP/USENIX International
Middleware Conference 2003, Rio De Janeiro, Brazil, 16-20 June 2003, Lecture
Notes in Computer Science. Springer-Verlag, June 2003.



