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t. The TaskGraph Library is a C++ library for dynami
 
odegeneration, whi
h 
ombines spe
ialisation with dependen
e analysis andloop restru
turing. A TaskGraph represents a fragment of 
ode whi
h is
onstru
ted and manipulated at run-time, then 
ompiled, dynami
allylinked and exe
uted. TaskGraphs are initialised using ma
ros and over-loading, whi
h forms a simpli�ed, C-like sub-language with �rst-
lass ar-rays and no pointer arithmeti
. On
e a TaskGraph has been 
onstru
ted,we 
an analyse its dependen
e stru
ture and perform optimisations. Inthis paper, we present the design of the TaskGraph library, and two sam-ple appli
ations to demonstrate its use for runtime 
ode spe
ialisationand restru
turing optimisation.1 Introdu
tionSetting the S
ene: Cross-Component Optimisation at Runtime. The work wedes
ribe in this paper is part of a wider resear
h programme at Imperial Col-lege aimed at addressing the apparent 
on
i
t between the quality of s
ienti�
software and its performan
e. High-quality, easy-to-maintain s
ienti�
 softwareis often built from abstra
t 
omponents whi
h have been independently veri�edand optimised. Unfortunately, there is a performan
e penalty asso
iated with thisapproa
h sin
e 
omponents are deployed outside the 
ontext in whi
h they havebeen optimised. Our proposal for reversing this performan
e penalty is based onruntime 
ross-
omponent optimisation. Current resear
h proje
ts whi
h imple-ment this general approa
h are a library for performing runtime 
ross-
omponentdata pla
ement optimisation in data-parallel programs [13℄, a system for optimis-ing Java RMI 
alls at runtime [22℄ and runtime 
ross-
omponent loop fusion [6℄.The TaskGraph Library. The TaskGraph library is a key tool whi
h we aredeveloping in order to drive this resear
h programme. The library is written inC++ and is designed to support dynami
 
ode generation, spe
ialisation andexpli
it analysis and manipulation of the generated 
ode:{ Dynami
 Component Spe
ialisationThe TaskGraph library 
an be used for spe
ialising software 
omponents



a

ording to either their parameters or other runtime 
ontext information.Later in this paper (Se
tion 3), we show an example of spe
ialising a generi
image �ltering fun
tion to the parti
ular 
onvolution matrix being used.{ Runtime Dependen
e Analysis and Restru
turingThe TaskGraph library uses SUIF-1 [21℄, the Stanford University Interme-diate Format, as its internal representation for 
ode. This makes a ri
h 
ol-le
tion of dependen
e analysis and restru
turing passes available for our usein 
ode optimisation.{ Runtime Generation of Component MetadataOur delayed evaluation, self-optimising (DESO) library [13℄ for performingruntime 
ross-
omponent data pla
ement optimisation 
urrently relies onhand-written metadata whi
h 
hara
terises the data pla
ement 
onstraintsof ea
h 
omponent. We have 
arried out initial work aimed at generatingthis metadata automati
ally using the TaskGraph library [19℄.Relationship with Earlier Work. Several earlier tools for dynami
 
ode optimi-sation have been reported in the literature [5, 8℄. The key 
hara
teristi
s whi
hdistinguish our approa
h are as follows:{ Single-Language DesignThe TaskGraph library is implemented in C++ and any TaskGraph program
an be 
ompiled as C++ using widely-available 
ompilers. This is in 
ontrastwith approa
hes su
h as `C [5℄ whi
h rely on a spe
ial 
ompiler for pro
essingdynami
 
onstru
ts. The TaskGraph library's support for manipulating 
odeas data within one language was pioneered in Lisp [15℄.{ Expli
it Spe
i�
ation of Dynami
 CodeLike `C [5℄, the TaskGraph library is an imperative system in whi
h theappli
ation programmer has to 
onstru
t the 
ode as an expli
it data stru
-ture. This is in 
ontrast with ambitious partial evaluation approa
hes su
h asDyC [8,9℄ whi
h use de
larative annotations of regular 
ode to spe
ify wherespe
ialisation should o

ur and whi
h variables 
an be assumed 
onstant.O�ine partial evaluation systems like these rely on binding-time analysis(BTA) to �nd other, derived stati
 variables [12℄.{ Simpli�ed C-like Sub-languageDynami
 
ode is spe
i�ed with the TaskGraph library via a small sub-language whi
h is very similar to standard C (see Se
tion 2). This languagehas been implemented through extensive use of ma
ros and C++ operatoroverloading and 
onsists of a small number of spe
ial 
ontrol 
ow 
onstru
ts,as well as spe
ial types for dynami
ally bound variables. This means thatBTA in our approa
h is e�e
tively performed by the C++ type system. Thelanguage has �rst-
lass arrays, unlike C and C++, to fa
ilitate dependen
eanalysis.Stru
ture of this Paper. In Se
tion 2, we des
ribe how TaskGraphs are 
on-stru
ted. Se
tion 3 o�ers a simple demonstration of run-time spe
ialisation. Se
-tion 4 explains how the library itself is implemented. In Se
tion 5, we use matrix



1 #in
lude <stdio.h>2 #in
lude <TaskGraph>34 using namespa
e tg;56 int main( int arg
, 
har �argv[℄ ) f7 TaskGraph T;8 int b = 1, 
 = 1;910 taskgraph( T ) f11 tParameter ( tVar ( int, a ) );1213 a = a + 
;14 g1516 T.
ompile();17 T.exe
ute( "a", &b, NULL );1819 printf ( "b = %dnn", b );20 return 0;21 g
var
a : int progn

TaskGraph

Var a Add

(Statement) Assign

1Var aFig. 1. Left: Simple Example of using the TaskGraph library. Right: Abstra
t syntaxtree (AST) for the simple TaskGraph 
onstru
ted by the pie
e of 
ode shown on theleft. The variable 
, whi
h has is stati
 at TaskGraph 
onstru
tion time appears in theAST as a value (see Se
tion 4).multipli
ation to illustrate the use of the library's loop restru
turing 
apabili-ties. In Se
tions 6 and 7 we dis
uss related and ongoing work, and Se
tion 8
on
ludes.2 The TaskGraph Library APIA TaskGraph is a data stru
ture whi
h holds the abstra
t syntax tree (AST)for a pie
e of dynami
 
ode. A key feature of our approa
h is that the appli-
ation programmer has a

ess to and 
an manipulate this data stru
ture atruntime; in parti
ular, we provide an extensible API (sub-language) for 
on-stru
ting TaskGraphs at runtime. This API was 
arefully designed using ma
rosand C++ operator overloading to look as mu
h as possible like ordinary C.A Simple Example. The simple C++ program shown in the left-hand part of Fig-ure 1 is a 
omplete example of using the TaskGraph library. When 
ompiled withg++, linked against the TaskGraph library and exe
uted, this program dynami-
ally 
reates a pie
e of 
ode for the statement a = a + 
, binds the appli
ationprogram variable b as a parameter and exe
utes the 
ode, printing b = 2 as theresult. This very simple example illustrates both that 
reation of dynami
 
odeis 
ompletely expli
it in our approa
h and that the language for 
reating theAST whi
h a TaskGraph holds looks similar to ordinary C.



void 
onvolution( 
onst int IMGSZ, 
onst FLOAT �image, FLOAT �new image,
onst int CSZ /� 
onvolution matrix size �/, 
onst FLOAT �matrix ) fint i , j , 
i , 
j ;assert ( CSZ % 2 == 1 );
onst int 
 half = ( CSZ / 2 );// Loop iterating over imagefor( i = 
 half ; i < IMGSZ � 
 half; ++i ) ffor( j = 
 half ; j < IMGSZ � 
 half; ++j ) fnew image[i � IMGSZ + j℄ = 0.0;// Loop to apply 
onvolution matrixfor( 
i = � 
 half; 
i <= 
 half; ++
i ) ffor( 
j = � 
 half; 
j <= 
 half; ++
j ) fnew image[i � IMGSZ + j℄ +=image[(i+
i) � IMGSZ + j+
j℄ � matrix[(
 half+
i) � CSZ + 
 half+
j℄;ggggreturn;gFig. 2. Generi
 image �ltering: C++ 
ode. Be
ause the size as well as the entries ofthe 
onvolution matrix are runtime parameters, the inner loops (for-
i and for-
j), withmost likely very low trip-
ount, 
annot be unrolled eÆ
iently.3 Generalised Image FilteringWe now show an example whi
h uses a fuller range of TaskGraph 
onstru
tsand whi
h also demonstrates a real performan
e bene�t from runtime 
ode op-timisation. A generi
 image 
onvolution fun
tion, whi
h allows the appli
ationprogrammer to supply an arbitrary 
onvolution matrix 
ould be written in Cas shown in Figure 2. This fun
tion has the advantage of generi
ity (the inter-fa
e is in prin
iple similar to the General Linear Filter fun
tions from the IntelPerforman
e Libraries [11, Se
tion 9℄) but su�ers from poor performan
e be
ause{ The loop bounds of the inner loops over the 
onvolution matrix are stati
allyunknown, hen
e these loops, with most likely very low trip-
ount, 
annot beunrolled eÆ
iently.{ Failure to unroll the inner loops not only leads to unne
essarily 
ompli
ated
ontrol 
ow, but also blo
ks optimisations su
h as ve
torisation on the outerloops.Figure 3 shows a fun
tion whi
h 
onstru
ts a TaskGraph that is spe
ialised tothe parti
ular 
onvolution matrix being used. The tFor 
onstru
ts are part ofthe TaskGraph API and 
reate a loop node in the AST. Note, however, that theinner for loops are exe
uted as ordinary C++ at TaskGraph 
onstru
tion time,
reating an assignment node in the AST for ea
h iteration of the loop body. Thee�e
t is that the AST 
ontains 
ontrol 
ow nodes for the for-i and for-j loopsand a loop body 
onsisting of CSZ * CSZ assignment statements.We study the performan
e of this example in Figure 4. The 
onvolutionmatrix used was a 3 � 3 averaging �lter, images were square arrays of single-



302 void taskgraph 
onvolution( TaskGraph &T, 
onst int IMGSZ,303 
onst int CSZ, 
onst FLOAT �matrix ) f304 int 
i , 
j ;305 assert ( CSZ % 2 == 1 );306 
onst int 
 half = ( CSZ / 2 );307308 taskgraph( T ) f309 unsigned int dims[℄ = fIMGSZ � IMGSZg;310 tParameter( tArray( FLOAT, tgimg, 1, dims ) );311 tParameter( tArray( FLOAT, new tgimg, 1, dims ) );312 tVar ( int, i );313 tVar ( int, j );314315 // Loop iterating over image316 tFor( i , 
 half , IMGSZ � (
 half + 1) ) f317 tFor( j , 
 half , IMGSZ � (
 half + 1) ) f318 new tgimg[i � IMGSZ + j℄ = 0.0;319320 // Loop to apply 
onvolution matrix321 for( 
i = �
 half; 
i <= 
 half; ++
i ) f322 for( 
j = �
 half; 
j <= 
 half; ++
j) f323 new tgimg[i � IMGSZ + j℄ +=324 tgimg[(i+
i) � IMGSZ + j+
j℄ � matrix[(
 half+
i) � CSZ + 
 half+
j℄;325 g326 g327 g328 g329 g330 return;331 gFig. 3. Generi
 image �ltering: fun
tion 
onstru
ting the TaskGraph for a spe
i�

onvolution matrix. The size as well as the entries of the 
onvolution matrix are stati
at TaskGraph 
onstru
tion time. This fa
ilitates 
omplete unrolling of the inner twoloops. The outer loops (for-i and for-j) are entered as 
ontrol 
ow nodes in the AST.pre
ision 
oats ranging in size up to 4094� 4096. Measurements are taken ona Pentium 4-M with 512KB L2 
a
he running Linux 2.4, g

 3.3 and the IntelC++ 
ompiler version 7.1. We 
ompare the performan
e of the following:{ The stati
 C++ 
ode, 
ompiled with g

 3.3.{ The stati
 C++ 
ode, 
ompiled with the Intel C++ 
ompiler version 7.1. Thei

 
ompiler reports that the innermost loop (for-
j) has been ve
torised1.Note, however, that this loop will have a dynami
ally determined trip-
ountof 3, i.e. the Pentium 4's 16-byte ve
tor registers will not be �lled.{ The 
ode dynami
ally generated by the TaskGraph library, 
ompiled withg

 3.3. The two innermost loops are unrolled.{ The 
ode dynami
ally generated by the TaskGraph library, 
ompiled withi

 7.1. The two innermost loops are unrolled and the then-remaining in-nermost loop (the for-j loop over the image) is ve
torised by i

.We have deliberately measured the performan
e of these image �ltering fun
tionsfor only one pass over an image. In order to see a real speedup the overhead of1 The SSE2 extensions implemented on Xeon and Pentium 4 pro
essors in
lude 16-byte ve
tor registers and 
orresponding ve
tor instru
tions [10℄.



Generalised Image Filtering Performance (1 Pass)
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Fig. 4. Performan
e of image �ltering example. Top: Total exe
ution time, in
ludingruntime 
ompilation, for one pass over image. Bottom: Breakdown of total exe
utiontime into 
ompilation time and exe
ution time of the a
tual 
onvolution 
ode for twospe
i�
 image sizes: 1024 � 1024 (the break-even point) and 2048 � 2048.



runtime 
ompilation therefore needs to be re
overed in just a single appli
ation ofthe generated 
ode. Figure 4 shows that we do indeed get an overall speedup forimage sizes that are greater than 1024�1024. In the right-hand part of Figure 4,we show a breakdown of the overall exe
ution time for two spe
i�
 data sizes.This demonstrates that although we a
hieve a huge redu
tion in exe
ution timeof the a
tual image �ltering 
ode, the 
onstant overhead of runtime 
ompilation
an
els out this bene�t for a data size of 1024� 1024. However, for larger datasizes, we a
hieve an overall speedup.Note, also, that image �lters su
h as the one in this example might be appliedeither more than on
e to the same image or to di�erent images | in either 
ase,we would have to pay the runtime 
ompilation overhead only on
e and will gethigher overall speedups.4 How it WorksThus far, we have given examples of how the TaskGraph library is used, as wellas demonstrated that it 
an a
hieve signi�
ant performan
e gains. In this se
tionwe now give a brief overview of TaskGraph syntax, together with an explanationof how the library works.TaskGraph Creation. The TaskGraph library 
an represent 
ode as data |spe
i�
ally, it provides TaskGraphs as data stru
tures holding the AST for apie
e of 
ode. We 
an 
reate, 
ompile and exe
ute di�erent TaskGraphs inde-pendently. Statements su
h as the assignment a = a + 
 in line 13 of Figure 1make use of C++ operator overloading to add nodes (in this 
ase an assignmentstatement) to a TaskGraph. Figure 1 illustrates this by showing a graphi
al rep-resentation of the 
omplete AST whi
h was 
reated by the adja
ent 
ode. Notethat the variable 
 has stati
 binding-time for this TaskGraph. Consequently,the AST 
ontains its value rather than a variable referen
e.The taskgraph( T )f...g 
onstru
t (see line 308 in Figure 3) determineswhi
h AST the statements in a blo
k are atta
hed to. This is ne
essary in or-der to fa
ilitate independent 
onstru
tion of di�erent TaskGraphs, representingdi�erent 
omputations.Variables in TaskGraphs. The TaskGraph library inherits lexi
al s
oping fromC++. The tVar(type, name) 
onstru
t (see lines 312 and 313 in Figure 3)
an be used to de
lare a dynami
 lo
al variable. Similarly, the tArray(type,name, no dims, extents[℄) 
onstru
t 
an be used to de
lare a dynami
 multi-dimensional array with number of dimensions no dims and size in ea
h dimen-sion 
ontained in the integer array extents. Arrays are �rst-
lass obje
ts in theTaskGraph 
onstru
tion sub-language and 
an only be a

essed inside a Task-Graph using the [℄ subs
ript operators. There are no pointers in the TaskGraph
onstru
tion sub-language.



302 void taskgraph 
onvolution( TaskGraph &T, 
onst int IMGSZ,303 
onst int CSZ, 
onst FLOAT �matrix ) f304 int 
i , 
j ;305 assert ( CSZ % 2 == 1 );306 
onst int 
 half = ( CSZ / 2 );307308 taskgraph( T ) f309 unsigned int dims[℄ = fIMGSZ � IMGSZg;310 tParameter( tArray( FLOAT, tgimg , 1, dims ) );311 tParameter( tArray( FLOAT, new tgimg , 1, dims ) );312 tVar ( int, i );313 tVar ( int, j );314315 // Loop iterating over image316 tFor( i , 
 half, IMGSZ � (
 half + 1) ) f317 tFor( j , 
 half, IMGSZ � (
 half + 1) ) f318 new tgimg [ i � IMGSZ + j ℄ = 0.0;319320 // Loop to apply 
onvolution matrix321 for( 
i = �
 half; 
i <= 
 half; ++
i ) f322 for( 
j = �
 half; 
j <= 
 half; ++
j) f323 new tgimg [ i � IMGSZ + j ℄ +=324 tgimg [( i +
i) � IMGSZ + j +
j℄ � matrix[(
 half+
i) � CSZ + 
 half+
j℄;325 g326 g327 g328 g329 g330 return;331 gFig. 5. Binding-Time Analysis. TaskGraph 
onstru
tion 
ode for the image �lteringexample from Figure 2, with all dynami
 variables marked by a boxed outline .TaskGraph Parameters. Both Figure 1 (line 11) and Figure 3 (lines 310 and 311)illustrate that any TaskGraph variable 
an be de
lared to be a TaskGraph pa-rameter using the tParameter() 
onstru
t. We require the appli
ation program-mer to ensure that TaskGraph parameters bound at exe
ution time do not aliasea
h other.Control Flow Nodes. Inside a TaskGraph 
onstru
tion blo
k, for loops andif 
onditionals are exe
uted at 
onstru
tion time. Therefore, the for loops onlines 321 and 322 in Figure 3 result in an unrolled inner loop. However, theTaskGraph sub-language de�nes some 
onstru
ts for adding 
ontrol-
ow nodesto an AST: tFor(var,lower,upper) adds a loop node (see lines 316 and 317 inFigure 3). The loop bounds are in
lusive. tIf() 
an be used to add a 
onditionalnode to the AST.Expressions and Binding-Time Analysis. We refer to variables that are bound atTaskGraph 
onstru
tion time as stati
 variables and those that are bound at ex-e
ution time as dynami
. De
larative 
ode spe
ialisation systems su
h as DyC [8℄



use annotations that de
lare some variables to be stati
 for the purpose of par-tial evaluation. In 
ontrast, stati
 binding time, i.e. evaluated at TaskGraph
onstru
tion time is the default for the TaskGraph language. Only TaskGraphvariables, in
luding parameters, are dynami
. Internally, dynami
 variables arerepresented by spe
ial types and the overloaded operators de�ned on those dy-nami
 types de�ne binding-time derivation rules. Thus, an expression su
h asa + 
 in Figure 1 where a is dynami
 and 
 is stati
 is derived dynami
, butthe stati
 part is evaluated at 
onstru
tion time and entered into the AST asa value. We illustrate this by reprodu
ing the TaskGraph image �ltering 
odefrom Figure 3 again in Figure 5; however, this time all dynami
 expressions aremarked by a boxed outline. Note that the 
onvolution matrix, in
luding its entiresubs
ript expression in the statement on line 324, is stati
.5 Another example: matrix multiplyIn Se
tion 3, we showed an example of how the spe
ialisation fun
tionality ofthe TaskGraph library 
an be used to fa
ilitate 
ode optimisations su
h as ve
-torisation. In this Se
tion, we show, using matrix multipli
ation as an example,how we 
an take advantage of the use of SUIF-1 as the underlying 
ode rep-resentation in the TaskGraph library to perform restru
turing optimisations atruntime.Figure 6 shows both the 
ode for the standard C/C++ matrix multiplyloop (ijk loop order) and the 
ode for 
onstru
ting a TaskGraph representingthis loop, together with an example of how we 
an dire
t optimisations fromthe appli
ation program: we 
an inter
hange the for-j and for-k loops before
ompiling and exe
uting the 
ode. Further, we 
an perform loop tiling with aruntime-sele
ted tile size. This last appli
ation demonstrates in parti
ular thepossibilities of using the TaskGraph library for domain-spe
i�
 optimisation:{ Optimising for a parti
ular ar
hite
tureIn Figure 6, we show a simple pie
e of 
ode whi
h implements a runtimesear
h for the optimal tilesize when tiling matrix multiply. In Figure 8, weshow the results of this sear
h for both a Pentium 4-M (with 512K L2 
a
he)and an Athlon (with 256K L2 
a
he) pro
essor. The resulting optimal tile-sizes di�er for most problem sizes, but they do not di�er by as mu
h aswould have been expe
ted if the optimal tilesize was based on L2 
apa
ity.We assume that a di�erent parameter, su
h as TLB span, is more signi�
antin pra
ti
e.{ Optimising for a parti
ular loop or working setWe note that the optimal tile size for matrix multiply 
al
ulated by our
ode shown in Figure 6 di�ers a
ross problem sizes (see Figure 8). Similarly,we would expe
t the optimal tilesize to vary for di�erent loop bodies andresulting working sets.We believe that high performan
e a
hieved, with relatively straight-forward
ode, in our matrix multiply example (up to 2 GFLOP/s on a Pentium 4-M



/�� mm ijk� Most straight�forward matrix multiply� Cal
ulates C += A � B�/void mm ijk( 
onst unsigned int sz,
onst FLOAT �
onst A,
onst FLOAT �
onst B,FLOAT �
onst C ) funsigned int i, j , k;for( i = 0; i < sz; ++i ) ffor( j = 0; j < sz; ++j ) ffor( k = 0; k < sz; ++k ) fC[i�sz+j℄ += A[i�sz+k℄ � B[k�sz+j℄;gggreturn;g

void TG mm ijk( unsigned int sz[2℄,TaskLoopIdenti�er �loop,TaskGraph &t ) ftaskgraph( t ) ftParameter(tArray(FLOAT, A, 2, sz));tParameter(tArray(FLOAT, B, 2, sz));tParameter(tArray(FLOAT, C, 2, sz));tVar( int, i );tVar( int, j );tVar( int, k );tGetId( loop [0℄ );tFor( i , 0, sz [0℄ � 1 ) ftGetId( loop [1℄ );tFor( j , 0, sz [1℄ � 1 ) ftGetId( loop [2℄ );tFor( k , 0, sz [0℄ � 1 ) fC[i ℄[ j℄ += A[i℄[k ℄ � B[k℄[ j ℄;gggggfor( int tsz = 4; tsz <= min(362, matsz); ++tsz ) funsigned int sizes[℄ = f matsz, matsz g;int trip3 [℄ = f tsz , tsz , tsz g;TaskLoopIdenti�er loop [3℄;TaskGraph MM;TG mm ijk( sizes, loop, MM );inter
hangeLoops( loop[1℄, loop [2℄ ); // Inter
hange loopstileLoop( 3, &loop [0℄, trip3 ); // Tile inner two loopsMM.
ompile( TaskGraph::ICC, false );tt2 = time fun
tion ();MM.setParameters( "A", A, "B", B, "C", C, NULL );MM.exe
ute();tt2 = time fun
tion() � tt2;time[0℄ = time to se
onds( tt2 );if ( time[0℄ < best time i

 ) fbest time i

 = time[0℄;best tsz i

 = tsz;ggFig. 6. The 
ode on the top left is the standard C++ matrix multiply (ijk loop or-der) 
ode. The 
ode on the top right 
onstru
ts a TaskGraph for the standard ijkmatrix multiply loop. The 
ode underneath shows an example of using the TaskGraphrepresentation for the ijk matrix multiply kernel, together with SUIF-1 passes for in-ter
hanging and tiling loops to sear
h for the optimal tilesize of the inter
hanged andtiled kernel for a parti
ular ar
hite
ture and problem size.



1.8 GHz) shows promising potential for our approa
h of performing dynami
spe
ialisation and optimisation, based on runtime domain-spe
i�
 information.6 Related WorkIn this se
tion, we brie
y dis
uss related work in the �eld of dynami
 
odeoptimisation.Language-Based Approa
hes.{ ImperativeTi
k-C or 'C [5℄, a superset of ANSI C, is a language for dynami
 
ode gen-eration. Like the TaskGraph library, 'C is expli
it and imperative in nature;however, a key di�eren
e in the underlying design is that 'C relies on a spe
ial
ompiler (t

). Dynami
 
ode 
an be spe
i�ed, 
omposed and instantiated,i.e. 
ompiled, at runtime. The fa
t that `C relies on a spe
ial 
ompiler alsomeans that it is in some ways a more expressive and more powerful systemthan the TaskGraph library. For example, 'C fa
ilitates the 
onstru
tion ofdynami
 fun
tion 
alls where the type and number of parameters is dynam-i
ally determined. This is not possible in the TaskGraph library. Jak [2℄,MetaML [20℄, MetaOCaml [4℄ and Template Haskell [18℄ are similar e�orts,all relying on 
hanges to the host language's syntax.{ De
larativeDyC [8,9℄ is a dynami
 
ompilation system whi
h spe
ialised sele
ted parts ofprograms at runtime based on runtime information, su
h as values of 
ertaindata stru
tures. DyC relies on de
larative user annotations to trigger spe-
ialisation. This means that a sophisti
ated binding-time analysis is requiredwhi
h is both polyvariant (i.e. allowing spe
ialisation of one pie
e of 
odefor di�erent 
ombinations of stati
 and dynami
 variables) and program-point spe
i�
 (i.e. allowing polyvariant spe
ialisation to o

ur at arbitraryprogram points). The result of BTA is a set of derived stati
 variables inaddition to those variables whi
h have been annotated as stati
. In order toredu
e runtime 
ompilation time, DyC produ
es, at 
ompile-time, a generat-ing extension [12℄ for ea
h spe
ialisation point. This is e�e
tively a dedi
ated
ompiler whi
h has been spe
ialised to 
ompile only the 
ode whi
h is beingdynami
ally optimised. This stati
 pre-planning of dynami
 optimisation isreferred as staging.Marlet et al [14℄ present a proposal for making the spe
ialisation pro
essitself more eÆ
ient. This is built using Tempo [3℄, an o�ine partial eval-uator for C programs and also relies on an earlier proposal by Gl�u
k andJ�rgensen to extend two-level binding-time analysis to multiple levels [7℄,i.e. to distinguish not just between dynami
 and stati
 variables but be-tween multiple stages. The main 
ontribution of Marlet et al is to showthat multi-level spe
ialisation 
an be a
hieved more eÆ
iently by repeated,in
remental appli
ation of a two-level spe
ialiser.



Performance of Matrix Multiply on Athlon 1600+
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Performance of Matrix Multiply on Pentium 4-M 1.8GHz
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Fig. 7. Performan
e of matrix multiply on Athlon 1600+ with 256KB L2 
a
he and onPentium 4-M 1.8 GHz with 512KB L2 
a
he. We show the performan
e of the naiveC++ 
ode (ijk loop order), the 
ode where the we have used the TaskGraph libraryto inter
hange the inner two loops (resulting in ikj loop order) and the 
ode wherethe TaskGraph library is used to inter
hange and 3-way tile the loops. For the tiled
ode, we used the TaskGraph library to sear
h for the optimal tile size for ea
h datapoint, as shown in Figure 6. For both the inter
hanged and tiled 
ode, we plot onegraph showing the raw performan
e of the generated 
ode and one graph whi
h showsthe performan
e after the dynami
 
ode generation 
ost has been amortised over oneinvo
ation of the generated 
ode.



Optimal Tile Size for 3-way Tiled Code (icc)
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Fig. 8. Optimal tile size on Athlon and Pentium 4-M pro
essors, for ea
h data pointfrom Figure 7. These results are based on a straight-forward exhaustive sear
h imple-mented using the TaskGraph library's runtime 
ode restru
turing 
apabilities (see 
odein Figure 6).Data-Flow Analysis. Our library performs runtime data 
ow analysis on loopsoperating on arrays. A possible drawba
k with this solution 
ould be high run-time overheads. Sharma et al present deferred data-
ow analysis (DDFA) [17℄ asa possible way of 
ombining 
ompile-time information with only limited runtimeanalysis in order to get a

urate results. This te
hnique relies on 
omprisingthe data 
ow information from regions of the 
ontrol-
ow graph into summaryfun
tions, together with a runtime stit
her whi
h sele
ts the appli
able summaryfun
tion, as well as 
omputes summary fun
tion 
ompositions at runtime.Transparent Dynami
 Optimisation of Binaries. One 
ategory of work on dy-nami
 optimisation whi
h 
ontrasts with ours are approa
hes whi
h do not relyon program sour
e 
ode but instead work in a transparent manner on runningbinaries.Dynamo [1℄ is a transparent dynami
 optimisation system, implementedpurely in software, whi
h works on an exe
uting stream of native instru
tions.Dynamo interprets the instru
tion stream until a hot tra
e of instru
tions isidenti�ed. This is then optimised, pla
ed into a 
ode 
a
he and exe
uted whenthe starting-point is re-en
ountered.These te
hniques also perform runtime 
ode optimisation; however, as statedin Se
tion 1, our obje
tive is di�erent: restru
turing 
ross-
omponent optimisa-tion at runtime.



7 Ongoing and Future WorkWe have re
ently evaluated the 
urrent TaskGraph library implementation inthe 
ontext of some moderately large resear
h proje
ts [6℄. This experien
e hasled us to planning future developments of this work.{ Automati
 Generation of OpenMP AnnotationsWe would like to use the runtime dependen
e information whi
h is 
al
u-lated by the TaskGraph library for automati
ally annotating the generated
ode with OpenMP [16℄ dire
tives for SMP parallelisation. An alternativeapproa
h would be to use a 
ompiler for 
ompiling the generated 
ode thathas built-in SMP parallelisation 
apabilities.{ Automati
 Derivation of Component MetadataOur delayed evaluation, self-optimising (DESO) library of data-parallel nu-meri
al routines [13℄ 
urrently relies on hand-written metadata whi
h 
har-a
terise the data pla
ement 
onstraints of 
omponents to perform 
ross-
omponent data pla
ement optimisation. One of the outstanding 
hallengeswhi
h we would like to address in this work is to allow appli
ation pro-grammers to write their own data-parallel 
omponents without having tounderstand and supply the pla
ement-
onstraint metadata. We hope to gen-erate these metadata automati
ally with the help of the TaskGraph library'sdependen
e information. Some initial work on this proje
t has been done [19℄.{ Transparent Cross-Component Loop FusionIn an ongoing proje
t [6℄ we are using the TaskGraph library to perform
ross-
omponent loop fusion in our DESO library of data-parallel numeri
alroutines.8 Con
lusionThe TaskGraph library 
ombines 
ode spe
ialisation with runtime dependen
eanalysis and restru
turing optimisations. We believe that this 
ombination isunique, and essential for our resear
h agenda of restru
turing 
ross-
omponentoptimisation, 
arried out at runtime with the bene�t of runtime 
ontext informa-tion. Sin
e our long-term obje
tives in
lude the optimisation of large s
ienti�

odes, we de
ided on the ex
lusive use of standard C++ to fa
ilitate integratingthe TaskGraph library with existing 
odes.A
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