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Abstract. We present an automated run-time optimisation framewaak ¢an
improve the performance of distributed applications writtising Java RMI whilst
preserving its semantics.

Java classes are modified at load-time in order to intercéfit &alls as they
occur. RMI calls are not executed immediately, but are delafpr as long as
possible. When a dependence forces execution of the detafks] the aggre-
gated calls are sent over to the remote server to be exequtedki step. This
reduces network overhead and the quantity of data seng dita can be shared
between calls. The sequence of calls may be cached on ther sate along with
any known constants in order to speed up future calls. A rersetver may also
make RMI calls to another remote server on behalf of the tiferecessary.

Our results show that the techniques can speed up distiifputgrams signifi-
cantly, especially when operating across slower netwihlesalso discuss some
of the challenges involved in maintaining program semanand show how the
approach can be used for more ambitious optimisations ifutiee.

1 Introduction

Frameworks for distributed programming such as the ComnigjacddResource Broker
Architecture (CORBA) [9] and Java Remote Method InvocafRNll) [12] aim to pro-
vide a location-transparent object-oriented programmingel, but do not completely
succeed since the cost of a remote call may be several orflenagnitude greater
than a local call due to marshalling overheads and relgtslelv network connections.
This means that developers must explicitly code with penfmce in mind, leading to
reduced productivity and increased program complexity.

The usual approach to optimising distributed programs imegal has been to op-
timise the connection between the communicating hosts;tdiniag the remote call
mechanism and the underlying communication protocol totlveitoverhead for each
call to a minimum. Although this leads to a general speedtumes not help the per-
formance of programs that are slow due to their structuge (sing many fine-grained
methods instead of a few coarse-grained methods). Our apiptowards solving this
problem has been to consider all communicating nodes a®parte large program,
rather than many disjoint ones.

We delay the execution of remote calls on the client for ag las possible until a
dependency on the delayed calls blocks further progredbig\point, the delayed calls
are executed in one step, after which the blocked operatenproceed. By delaying



the execution of remote calls, we build up a knowledge of thwetext in which calls
were made on the client. This enables us to find opporturidresptimisations between
calls that would have been lost had the calls been execuraédiately.

1.1 Contributions

— We present an optimisation tool which can improve perforoeasf Java/RMI ap-
plications by combining static analysis of applicationdndde with run-time opti-
misation of sequences of remote operations. This tool ¢pemn unmodified Java
RMI applications, and runs on a standard JVM.

— By aggregating sequences of remote calls to the same s#rgdntal number of
message exchanges is reduced. By avoiding redundant pgaraame result trans-
fers, total amount of data transferred can also be reducéénWwalls to different
servers are aggregated together, results can be forwandetlydfrom one server
to another, bypassing the client in some cases.

— We show how run-time overheads can be reduced by cachingtixeplans at the
servers.

— We demonstrate the use of the tool using a number of examples.

The framework presented here provides the basis for a progeaof research
aimed at extending aggressive optimisation techniquexsadistributed systems, and
deploying the results in large-scale industrial systems.cahclude with a discussion
of the potential for the work, and the challenges that remain

1.2 Structure

We begin in Section 2 with a discussion of related work. Wentbever the runtime

optimisation framework used to implement our optimisasiaha high-level in Section
3. We proceed to cover the optimisations performed in Secticand the challenges
involved in maintaining the semantics of the original apgtion in Section 5. We then
present some performance results in Section 6 and finishittffseme suggestions for
future work in Section 7 and conclude in Section 8.

2 Related Work

Most work on optimising RMI has concentrated on reducing rilve-time overhead
of each remote call by reducing the amount of work done pkrecady using more
lightweight network protocols. Examples include the UKAisaksation work [14],

KaRMI [13], and R-UDP [10]. Similar work has been done on C@RB/ Gokhale

and Schmidt [7].

Asynchronous RPC [11, 15] aims to overlap client computatiith communica-
tion and remote execution, replacing results with ‘promisehich block the client
only when actually used.

A more ambitious approach is the concept of caching the sfadieremote-object
locally [10]. This works well provided that most operatiarscached objects are reads.



However, a write operation incurs high penalties for allrasaf the cached object,
since the client has to wait for invalidation of all copiestloé object to finish before
proceeding. The first request for invalidated data will atetur an extra delay as the
server fetches it from the client that performed the lastati@d

A later implementation of remote-object caching [5] impksmts the notion ofe-
duced objectsvhere only a subset of the remote-object state is cachedeosetiver.
The subset that is cached depends on the properties of thieeiimethods — e.g. if
a called method only accesses immutable variables, thee trariables can be cached
on the client without needing to deal with consistency issue

Neither of these approaches to RMI optimisation conflichvaitir aggregation op-
timisations, and although we have not done so ourselvese thptimisations could
theoretically be combined. It may be argued that our optiiosis are made redundant
under certain circumstances (e.g. if the aggregated aa&llseeched locally).

The concept of aggregating numerous small operations isittgée larger operation
is very old, and appears in numerous other contexts, edlyanithe hardware domain.
In the context of RPC mechanisms, concepts such as storeddunes in database sys-
tems or commands in IBM’s San Francisco [3] project are atguable of aggregating
calls, but these are explicit mechanisms. Implicit call reggtion is much rarer and
harder to implement. One example would be the concept ohbdttutures [2] in the
Thor database system.

3 The Veneer Framework

The RMI optimisations are based on top of Veneer, which isreeg@ised framework
that we have developed for the purpose of easing the develaprhrun-time optimisa-

tion techniques. This framework is written in standard Jaging the BCEL [4] library

for bytecode generation and the Soot [16] library for progenalysis. Veneer is not
tied to any particular JVM implementation, which is essargince it is likely be used
in a heterogeneous environment. We refer to Veneer as a&aitwM’, since it behaves
like a highly configurable Java virtual machine, withoutedly being one.

The framework presents a simplified model of the Java rue-énvironment, work-
ing with what appears to be a simple interpreter, calleex@tutor A basic executor is
shown in Figure 1, which executes a method with no modifioatishatsoever.

When a method that we are interested in is called, contragzat our executor
instead of the original method. The executor is initialisgtthh anexecution planwhich
is essentially a control-flow graph of the method, with exable code-blocks forming
the nodes. The executor sits in a loop which executes themubtock, then sets the
current block to the next block in line to be executed.

The power of this framework lies in the fact that the plan igstfdrder object that
we can change while the executor is still running, effedgiveodifying the code that
will be executed. The executor has full control over the pescof method execution
between blocks, such that we can perform operations sucimgsng to arbitrary code-
blocks, modifying local variables or timing operations @aessary.

We minimise the interpretive overhead by delegating as muatk as possible to
the underlying JVM, and by making the code-blocks as coarpessible. There is also



an option to permit blocks to run continuously without reing to the executor, though
certain block types will always force a return.

The mapping of byte-code to code-blocks in the plan and ththads affected by
our framework are determined by a plug-in policy class. Tlcp class also contains
numerous call-back methods that are invoked on certaingv&ich as the initial load-
ing of a class.

public class Basi cExecut or extends Executor{
public int execute() throws Exception {
while (block != null
&& !l ockWasRel eased()) {
int next = -1;

try {
next = bl ock. execute(this);

bl ock = pl an. get Bl ock(next);

} catch (ExecuteException e) {
/1 Pass control to exception handler
bl ock = pl an. get Excepti onHandl er(e);

/1 Propagate exception if no handler
if (block == null)
throw e. get Exception();

l ocal s[1] = e.getException();
}
}

return next;

}
}

Fig. 1. Structure of a basic executor

4 Optimisations

In this section we detail the RMI optimisations that haverbiegplemented. The exam-
ples used to illustrate the optimisations are deliberatighplified for clarity.

4.1 Call Aggregation

Delaying calls to form call aggregates is the core technigpen which this project is
based. It is an important optimisation in its own right, andliermore can also open up
further optimisation opportunities. For example, consttie following code fragment:



void m RenpteCbject r, int a) {

int x =r.f(a);
int y =r.g(x);
int z =r.h(y);

Systemout.println(z);

This program fragment incurs three remote method calld) wiit data transfers.
However, for this example, we can do better:

— Since all three calls are to the same remote object, they eagbregated into a
single large call, such that the number of times that calrtoead is incurred is
reduced to one (see Figure 2).

— Xxis returned as the result of the callfttrom the remote server, but is subsequently
passed back to it during the next call. The same occurs wittvahiabley. If the
values ofx andy were retained by the remote object between remote methts] cal
then the number of communications could be reduced fronodiadtr.

— The variablex andy are unused by the client except as arguments to remote oalls o
the remote object from which they originatechndy may therefore be considered
as dead variables from the client’s point of view, and there need for their value
to be passed back to the client at all, thereby further redyitie total number of
remote transactions down to just two messages with paylofagizeint.
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Fig. 2. Example of call aggregation

Client-side Implementation We have created a Veneer policy that only affects meth-
ods that are statically determined to contain potentiadijmote method calls. Calls
are deemed to be potentially remote if they are invoked vianterface, and have
j ava. rm . Renot eExcepti on or one of its super-classes on the throw list. A
run-time check is later used to ensure that the potentiabternall is actually re-
mote. Note that it is not sufficient just to check that the iesreof the call implements



j ava. rm . Renot e since the object could be invoked directly instead of via RMI
and some remote calls may be missed if we are supplied witmaemote interface
that is actually a remote object that implements a remotéd dtiiour interface.

The client runs under the control of the Veneer frameworkagighis policy. If the
executor encounters a confirmed remote call during the ecofr&xecution, then it
places the call within a queue and proceeds to the next oi&iru Sequences of ad-
jacent calls to the same remote object are grouped togettoaeimote plansRemote
plans also contain metadata regarding the calls, such &blaliveness and data de-
pendencies. Calls to other remote objects will not forcecetien unless the target of
the call is defined by a previous delayed call, leading to arobdependency. However,
even this condition is relaxed by server forwarding, dethih Section 4.2.

When a non-remote block is encountered with delayed catiairging in the queue,
a decision has to be made whether or not to force executidmeogdlls. In general, it
is safe to execute the current block without forcing if thare no dependencies be-
tween the current instruction and the delayed operatidriedendencies exist or if it
is impossible to tell, then we must force execution.

We detect data dependencies by noting attempts to accessedatned by RMI
calls. Since the results of RMI calls are constructed by riiglsging the data returned
by the server, there can be no other references to the reftdate except for the local
that the result of the remote call was placed in. We therefegard local code that
accesses locals that should contain the results of RMI asllseing dependent on the
delayed calls.

This scheme is rather conservative, such that even simgigrasents from one lo-
cal variable to another can force the execution of the delajens. We hope to improve
this in the future using improved static analysis. Alsoaihoot detect indirect data de-
pendencies — for example, if the RMI call modifies a remotalblase which the client
proceeds to access using another API, then that accessowitigpticed.

When executing local code in the presence of delayed renadite we must ensure
that the variables used by the delayed calls are not ovéewrir modified by the local
code. This is done by making a copy of all locals supplied éodblayed calls that may
be touched by the local code.

On forcing execution, the queue of delayed remote plansaietsed, with plans
being sent one-by-one, along with the set of data used byldme fo the corresponding
remote proxyon the server-side via standard RMI invocation to be execdtee proxy
call may either return successfully or throw an exception.

If the call returns successfully, then the variables defimgthe plan that are still
live are copied back into the locals set of the executing pubthf an exception was
thrown, then the executor goes through the normal procefasdifig a handler for the
exception within the method, and propagating it up the daire if one is not found.

The same Veneer policy also runs a remote proxy server otugtarhich first
registers itself in a naming service via JNDI. The proxy keteack of all remote objects
present on the JVM by inserting a small callback into the troiesors of all remote
classes at load tinte

! This may lead to a potential security hole since this may obetore the remote object has
been exported for remote access



Clients obtain handles to proxies using the standard namsemgices via JNDI.
When a client first encounters a new remote stub, it broasidasi all known prox-
ies. The proxy that handles the remote object denoted byttievall identify itself.
Remote plans containing calls on that stub will subsequdrglsent to the identified
proxy. The stub-to-proxy mapping is cached on the cliensfed.

Remote plans sent to the proxy are executed by an executioch simply executes
the calls one-by-one. The calls are made directly on the rewigject rather than via
another RMI invocation. However, care must be taken duedsémantic differences
between local and RMI calls (see Section 5.1).

When finished, the proxy only sends the variables that aedrithe client program
at the point where execution was forced. The live set is ¢afed using the metadata
supplied with the remote-calls.

4.2 Server Forwarding

Server forwarding takes advantage of the fact that serypisally reside on fast con-
nections, whilst the client-server connection can oftemtukers of magnitude slower.
Consider this sequence of calls:

ri.f();
r2.f();
r3.f(x,y);

X
y
z

The first two methods invoked arl andr2 are returning objects that are subse-
quently used as arguments to a method on another remote dhjéo this situation,
the client is acting as a router for messages betwea andr3. It would be better for
rl andr2 to communicate withi3 directly, such that no constraints are set as to which
path is taken between the two servers. Alsx dr y are dead, then they need not be
returned to the client.

Forwarding is also necessary for efficient aggregationatbfy patterns. e.g.

a = r.newlbject();
b =a.f();

Without forwarding in place, we would need to force after tiadl to newCbj ect
because is used as the receiver for the next remote call — without kngwthe value
of a, we would not where to send the remote plan, or what objecivokief on.

Implementation Server forwarding is implemented on top of call aggregaiticapre-
processing step just before execution on the remote prdxyegrouping remote plans
on differing remote objects together. When a remote proxgpanters a plan that is
handled by another remote proxy, it will forward the planathiat proxy automatically.
At present, the remote plans are composed of straightdigeences of remote calls
to the same object bundled together. We will refer to thedts ascall clusters We use
the following heuristics to decide when to group clusterthwliffering destinations:

— Plans that are delivered to the same remote proxy shoulddugpgd together
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Fig. 3. Implementation of call forwarding: a) Arcs are placed betwéhe calls to r1—r3 and r2—r3
(due to data dependence) and r1—r2 (due to co-location)ubrkat cluster is the call to r1 — we
append the call to r2 due to the r1-r2 arc, c) Current clustére call to r2 — we prepend the
call to r3 due to the r2—r3 arc

— Plans that are data dependent on one another should be drogether

We aim to achieve these goals whilst preserving the relatidering of the calls.
First, we build up a graph from the list of call clusters, wdth arc between nodes that
have a data-dependence or share a remote proxy. We thersptbeedelayed-plan list
in order, cluster-by-cluster.

We start by checking if there is an arc from the current clugidts immediate
successor. If there is, then we append it to the current piahere is not, then we
check for an arc between the parent of the current clustettamsluccessor, appending
to the parent plan if there is. We repeat the process untitiieek either succeeds, or
there are no more parents left to check. At that point, thegs® is repeated with the
successor cluster as the current plan. This process rejraitare have processed all
the clusters.

When a remote plan B is appended to a remote plan A, a checktisnfade as to
whether plan A is a call cluster. If it is, then a new plan isategl and plans A and
B inserted into it, in that order, as children, taking thecplaf the original plan A.
If not, then B is inserted as the youngest sibling of A (i.e. B tve executed after
anything already in A will be). The overall effect is that thkans form a multi-rooted
tree structure, with call clusters appearing at the leaRkms that contain other plans
are always sent to the handler of the oldest (i.e. first to leewed) sub-plan.

The algorithm currently gives equal priority to arcs due ¢el@cation and those
due to data-dependencies. It is possible to prioritise gpe of arc by processing all
instances of that type first when traversing through the plararchy, followed by the
other type.

We illustrate the process in Figure 3 using the previous g@tanassuming thatl
andr2 are targeted at the same proxy server.



4.3 Plan Caching

These optimisations incur a substantial overhead due torfasuch as:

— Overhead of the Veneer runtime

— Maintenance of dependence information for delayed calls
— Pre-processing for server-forwarding

— Transmission of remote plans and metadata

We can reduce some overhead by caching plans on both sealiant sides.
Instead of building up remote plans by delaying calls as voenter them, we replace
the remote calls with the remote plans built up by delayimgéhcalls previously. When
the executor encounters these, it can simply place it dirento the remote plan queue
with minimal overhead.

We can only do this for adjacent clusters of remote callserathan the merged
remote plans because the pattern of remote calls might ot oext time. For exam-
ple, consider Figure 4. During the first iteratiat, r.g andr.h will be aggregated, but
it would not be valid to replacef with the aggregated call because the next iteration
would result inr.f, r.g andr.i being aggregated. However, it is safe to replacandr.g
with the aggregate since these always occur together.

We can also take advantage of the fact that the server hadtse@han before to
implement a form of data compression. The server can keepreedaopy of the plans
that it receives, returning an identifier associated with ¢ached plan to the client.
The client from that point can simply use the identifier tcerdb the plan, rather than
sending the entire plan every time.

for (int i =0; i < 1000; i++) {
r.f0);
r.g();
if (i %2 == 0)
x =r.h();
el se
X =r.i();
System out. println(x);

Fig. 4. Example of a loop that results in a different remote plan @riteration

Client-side Implementation On the client side, we maintain a list of newly constructed
call clusters. After the plans are executed, the clustergnaorporated into the method
plan, such that for each cluster, all paths leading to thedal in the cluster are re-
routed to the cluster, and the successor of the cluster se¢ muccessor of the last call
in the cluster. The embedded remote clusters are delaydddynto remote calls when
encountered, though without the processing required tstoact the plan.



After a plan is executed, a list of cache IDs is returned bys#reer proxy. Cache
IDs associated with call clusters are assigned directliggcembedded remote clusters.
The cache IDs belonging to compound plans (plans consistirgusters and other
compound plans) are stored in a global cache, which asesaatche patterwith a
cache ID. The cache pattern is generated by traversing tlizarhplans of the current
plan pre-order, adding the cache ID of the plans encountesed progress.

The cache IDs for all plans are stored as a hash-map from essaoter to the cache
ID for that server. In all plans, we retain a handle to the lastote server used and the
cache ID associated with that server. If the plan is involgadraon the same server, we
can re-use the cache ID and avoid a hash-map lookup.

When the plans have been grouped and are about to be senstrile we attempt
to send cache IDs in preference to the entire plan whenesgsiige using the following
algorithm, starting at the root of the tree:

— Ifthe plan is an embedded cluster, we use the associated tadtom the embed-
ded cluster directly.

¢ If the cache ID is found, then that is used in place of the plan
e If there is no cache ID, then we must send the entire plan

— If the plan is compound, we:

1. Compute the cache pattern of the plan
2. Lookup the cache ID in the global cache

e Ifa cache ID is found, then it is used in place of the plan
e If no cache ID is found, then we:

1. Repeat the algorithm for each child of the plan
2. Ifthere is a cache ID for the child, then use that in placiaefchild plan

Server-side Implementation On the server side, the remote proxy maintains a cache
of encountered plans, indexed by an integer identifier. Braate plan containing un-
cached entities is executed, we cache the uncached itenmretamd an array of cache
IDs for the overall plan. Since the remote plan forms a treectiire known by both the
server and client during the call, cache IDs are returnetieécctient as a flat array of
integers by performing a pre-order traversal of the remtate, peturning the cache IDs

as the nodes are encountered. The client uses this infermiatiallocate the correct
IDs to the correct clusters.

5 Maintaining Semantics

The optimisations may have changed some of the applicatiorastics due to the dif-
ference between executing calls remotely and locally. is $bction, we identify and
suggest solutions to some of the problems that arise.



5.1 Differences between Local and Remote Calls

A local call and a remote call differ in the way that they pabgots as parameters.
Local calls receive their parameters by reference, whessaste calls receive them by
copy. Consider the following code fragment, wheris a remote object:

a =r.f(x);
b r.g(x);

Since the arguments to the call are marshalled, using letalance semantics, this
would be equivalent to:

= x.clone();
F0x);
x.clone();
-g(x" ")

X
a
X
b

= | =

Note that whateverdoes tar’ is not propagated to or 2", and similarly the effects
of gonz' are not propagated to. However, by aggregating calls, the original code is
transformed to the equivalent of:

x' = x.clone();
a=r.f(x);
b =r.g9(x);

Now, although the effects df andg on 2’ still do not affectz, the effect off on
2" will affect the functioning ofg. It is therefore only safe to aggregate the two calls
without copying the parameter if we can be sure thdbes not change the value of its
parameter.

An additional complication is the fact that marshallinggeves sharing between
objects. For example, consider the following code:

X.a =Yy,
r.f(x, vy);
r.g(x, y);

If we denote the arguments receivedfbgsz’ andy’, and those received hyas
z'" andy"”, then under conventional RMI, the following propertiesislacold:

© #2" (1)

y' £y )
z'.a#x'".a (3)
z.a=1v (4)
z"a=qy" (5)

This rules out copying the arguments separately, sincehthgrgy relationship de-
noted by equations 4 and 5 would be broken.
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Fig. 5. Effect of sharing under object marshalling — this sharimgcttire cannot be maintained
by copying the parameters one at a time

Copying Using Serialisation An easy way to properly copy parameters to a method
call is for the server to construct an array containing théades needed for the next
call, serialise it, immediately deserialise the byteatndnto a new array, and supply
the new array to the call.

Although this technique also incurs an extra cycle of ssasibn and deserialisa-
tion, it is still somewhat more efficient than the simplertteiue of using RMI calls
locally on the server side since it avoids the overhead neclby going through the
stub and skeleton.

Avoiding Argument Copying An argumentto a remote method call need not be copied
if any of the following are true:

— The argument is immutable
— All objects reachable via the argument are dead after the cal
— The method is guaranteed not to modify the argument

We have currently implemented some simple checks for a sufsbe first two
conditions. We specifically check for common object typest #ire known to be im-
mutable, such as instancesgiafva. | ang. St ri ng.

We also introduce the notion of ‘flat-types’, which are tyfiest do not contain any

references. These include common types such as arraysmfipeitypes such aisnt .
If only flat-types are used for the current and subsequelt, ¢ben if an argument is
dead and is not aliased by any other argument (which can beglomply by checking
if any of the other arguments are equal to it), then we canlysaf®id copying the
argument.

5.2 Call-backs

When using Java RMI, it is perfectly possible for a clienttba@s a remote server, and
vice-versa. This creates the possibility for a call-baclchamism, where a call by the
client to the server will result in the server calling thesali. This can create consistency
problems when delaying calls.

Consider a scenario where the sergdras managed to obtain a stub to a client
that also acts as a server (see Figure 6). Wheallss. f ( x) , s makes use of the stub
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to call the method. r , which has the effect of modifying the object referencedliyc
onc by x. Since RMI calls are synchronousgf x) is subsequently called, the value
of x should have been changed.

This causes a problem when aggregating calls, since the @b that is sent to
the server and subsequently operated orghwyill be that of the unchanged object.
However, since the cliertt generally does not know how the sergeis implemented,
it cannot tell in advance & will modify x viaf or not. If we ignore the problem, then
g will end up using the old value of.

A Possible Loopholelt could be argued that we could simply ignore the problemtdue
the Java memory model in the absence of explicit synchrboisdn the Java language
specification [8], the example in 7 is given:

class Simle {
int a=1, b = 2;

voidto() { a=3;, b=24;}
void fro() {
Systemout.println("a=" + a +
", b=" + b);

Fig. 7. Example to illustrate behaviour of threads accessing shamemory in the absence of
synchronisation (from Java language specification)

If t o andf r o are called from different threads, theamay equal 1 or 3 and may
equal 2 or 4 independently. This is true evehrifo executes aftero has finished, since
there is no obligation for o to write its changes back into main memory immediately
without the use of synchronisation.

Since a callback must execute in a different thread from tigéral caller (since
the caller is blocked by the unfinished RMI call), the effeaftshe callback might not



be immediately noticeable by the caller, in theory. In pacthis does not happen due
to the implementation of RMI flushing the updates to main memimt the RMI speci-
fication [12] itself does not mandate this — in fact, it doesmention synchronisation
issues at all.

Proposed Solution If we wish to ensure that the effects of callbacks are visithlen
we can modify the existing protocol to do so. There are twaragproaches to solving
the problem — by update and by invalidation.

In the update protocol, we need the client to detect whenlbard has occurred.
This can be done by associating a unique session ID thatasiassd with the remote
plan. This session ID is carried along with the plan to theatnproxy, and to any
subsequent remote calls that the proxy may make. Now, if ¢éinees calls the client
remotely, the client will be able to detect that it is a catlbaince the session ID will be
known to the client. If this happens, then the client sendspdated copy of the vari-
ables associated with the session ID to the server befarmiey from the remote call.
The server should use the fresh copy of the variables agerulrent call is finished.

If an invalidation protocol is used, then the server mugpéas the methods being
called. If a remote method may result in a callback, then tathod is executed anyway,
and an exception is thrown back to the client containingrimfation regarding how
far execution has progressed. The exception notifies teatalif a potential callback
situation, such that the client may resend the portion ofe¢hgote plan after the method
that resulted in a callback, along with an up-to-date coppefused variables.

6 Experimental Evaluations

We have tested our optimisations with two examples. The dixaimple is a simple,
synthetic benchmark to illustrate the potential of the mgations. The second is an
example of a naively written program found in the wild thatynzenefit from our
optimisations.

The tests were performed using the Linux version of the Su€\@sion 1.4.101,
across a Fast Ethernet network (ping time is 0.1 ms, meabaratividth is 10.03 MB/s)
and over the Internet via a slow ADSL connection (ping tim@8sns, measured band-
width is 10.7 kB/s). The client machine in all tests was anl@thXP 1800+ based PC.
The server for the Ethernet test was a 650MHz Intel Pentilifde, whilst the server
for the ADSL test was a dual-processor 700MHz Pentium-111 PC

For each test, 3 trials of 1000 iterations were performed tha mean taken as the
result.

6.1 Vector Arithmetic

We have evaluated our framework using a simple synthetichreark in which the
server object provides a single method takes two equattsimays of typedoubl e,
adds them together, and returns the resulting array. Inrdodeest aggregation, the
client application executes a sequence of remote callsedbttm:



tmpl = r.add(v0, vl);
tnp2 = r.add(tnpl, v2);
result = r.add(tnp2, v3);

This benchmark enables us to easily observe the effect obmiimisation frame-
work as we vary the size of the data, the number of calls ag¢eegnd various param-
eters of the framework.

We have tested a baseline configuration with no aggregatioardng, and con-
figurations containing from 2-5 aggregated calls. For eaxffiguration, we vary the
vector size from 1 to 1024 doubles, doubling the vector sizevary step. We test on
both the Ethernet and ADSL connections.

We show the results before and after applying the framewotke benchmark pro-
gram. We have also provided results for a ‘hand-optimisedsion of the tests (where
we provide manually aggregated methods on the server and thalclient call these
methods) for comparison purposes.

Results As can be seen in the results in Figures 8(a)-9(e), the cgations generally
result in an overall speedup whenever any aggregation scthie exceptions occur
when an Ethernet connection is used, with two aggregatdsi aadl argument size of
less than 400 bytes. This is due to overhead.

In the baseline case with no aggregation occurring, a slemdaill occur due to
the same overhead being occurred but without any compeagssgpieedup from call
aggregation. This is easily observable in the Ethernet ratis not evident in the
ADSL test due to the overhead being orders of magnitude esmetimpared to the
communication times.

If we compare the hand-optimised versus the automaticatimised results for
the tests on the Ethernet network, there is a discrepancyaiited.5 ms per call,
which is mainly due to interpretive overhead from the Vendeual JVM and the
call-delaying/plan-building mechanism. However, thigdwead remains constant, and
is therefore all but invisible when operating across thermét via ADSL, since it has
much greater latencies and is subject to variations thdtaeasily eclipse the 0.5 ms
overhead.

6.2 The MUD Example

The MUD (Multi-User Domain) example [6] is a more realisticaenple that contains
call aggregation possibilities. The main candidate foirjsation occurs in thé ook
method of thevudd i ent class (shown in Figure 10), which retrieves a description
of the room and its contents.

This benchmark has 7 aggregated calls with a modest payloatband 100 bytes
of textual information in total. We have written a test hasi¢hat calls this routine
repeatedly, recording the average time per call. Cachidgsarver-side argument du-
plication have been enabled.
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Fig. 8. Results for the vector arithmetic example running on a FastiBet network with varying
levels of call aggregation
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String mudname = p.get Server (). get MudNane();
String placename = p. get Pl aceNane();

String description = p.getDescription();
Vector things = p.getThings();

Vect or nanmes = p.get Nanmes();

Vector exits = p.getExits();

Fig. 10.Code for thd ook method of the MUD example

Results As can be seen in Table 1, the MUD example shows a slight skawwvdehen
operating with an Ethernet network, but a large speedup eptrating over the Inter-
net.

Table 1. Table of results for the aggregation optimisation appleethe MUD example

Time taken to execute Without With Speedup
| ook (ms) optimisationoptimisatio

Ethernet 5.4 5.8 0.93
ADSL 759.6 164.9 4.61

The speedup is lower than what we might expect from the vettenchmark with
a similar number of aggregated calls. This is partly becdlsee is very little vari-
able sharing occurring between calls — the sole instandeaidietweemget Ser ver
and get MudName, where the result ofjet Ser ver is used as a receiver for the
get MudNane method, and is then discarded without ever reaching thatclignis
is in contrast to the vectors example, where each call ugae#ult of its predecessor.

We show a breakdown of the time taken to executel thek method in Table 2.
As can be seen, the majority of the time in both cases is spetitent-server com-
munication. However, on the Ethernet network, the addii@mverheads on the client
and server side are responsible for about a third of the tene, while the propor-
tion of time due to overheads is insignificant by comparistvemvusing ADSL (since
the overhead remains constant while the communicatiorstimage increased). If we
could minimise the overheads, then we could achieve as nmsiatb@% speedup when
operating on an Ethernet network.

7 Future Work

Some ideas we have for enhancing the RMI optimisation fue:

— By aggregating calls, we effectively build up knowledgearting a small portion
of the client. This knowledge may enable one to perform samer-procedural
optimisations that are valid for that sequence of calls daylynlining the calls on
the server side. The caching facility could serve to cachefitimised code along
with the plan.



Table 2. Table showing a percentage breakdown of the time spent &xgcl000 iterations of
thel ook method in the MUD example

Factor EthernetfADSL
(%) | (%)
Remote methods 0.62 | 0.06

Uncached RMI communicatiq)m 0.78 | 0.35
Cached RMI communication || 60.51 | 97.92
Client-side overhead 20.60 | 0.91
Server-side overhead 15.21 | 0.61
Argument copying overhead || 2.29 | 0.15

— As mentioned in Section 4.1, the mechanism to detect dgiardkencies triggers
too easily. We intend to strengthen this with the aid of escamalysis [17], such
that copying the return value of RMI calls into other datastres does not trigger
a force unless that structure is visible from outside theesurthread of execution.

— At present, loops are effectively unrolled as a remote péabuilt up. It may be
possible to export the entire loop structure to the serverder to decrease the size
of the remote plan.

— Instead of considering simple ‘flat-types’ to decide wheravtoid copying argu-
ments, we can extend the ideas to fully-fledged balloongypkto allow an arbi-
trary level of type-nesting, provided there are no exterefdrences.

8 Conclusion

This paper presents an attempt to extend the scope of rendptimisation to dis-
tributed systems. Conventional optimising compilers, aptimising virtual machines,
focus on each node in a system individually. This work exgdazptimisations which
span the nodes of a distributed system. This raises mangsissuincluding security,
the potential for failure, and run-time binding of clientsservers.

We have presented a prototype tool which optimises Java Ridliations. The
tool is based on a powerful framework, essentially a ‘virtd®M, which allows the
run-time system to re-order blocks of application codeecidp data dependence meta-
data generated by static analysis. We use this to implem@noptimisations of RMI
applications: call aggregation, and call forwarding. Thes turn, lead to further opti-
misations, such as eliminating data transfer across theonlefor data passed between
aggregated calls.

We present performance results for simple examples whistodstrate the perfor-
mance potential for these optimisations. We also showmiediry results for a more
substantial application, which demonstrate that optitiugaopportunities do arise in
real systems.

Our prototype implementation is based on a very powerfubexrpental framework,
and this incurs some run-time overheads which we hope toceegtutime. There is
enormous scope for more powerful analysis and more ambitptimisations.
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