
Cautious, Machine-Independent PerformanceTuning for Shared-Memory MultiprocessorsSarah A. M. Talbot, Andrew J. Bennett, Paul H. J. KellyDepartment of ComputingImperial College of Science, Technology and MedicineLondon SW7 2BZAbstract. Coherent-cache shared-memory architectures often give dis-appointing performance which can be alleviated by manual tuning. Wedescribe a new trace analysis tool, clarissa, which helps diagnose prob-lems and pinpoint their causes. Unusually, clarissa works by analysingpotential contention, instead of measuring predicted contention by simu-lating a speci�c memory system design. This is important because, aftertuning, the software will be executed on di�erent inputs and di�erentcon�gurations. The goal is to produce a program with robustly goodperformance. This paper explains the principle behind cautious traceanalysis, describes our implementation, and presents our experience ofusing the tool.1 IntroductionThere has been considerable recent interest in developing tools to support man-ual performance optimisation of applications running on coherent-cache shared-memory multiprocessors (e.g. [1, 3]). The purpose of a performance tuning toolis to direct the programmer's attention to where a program is spending its timeand to give as much guidance as possible into how to reduce the performancebottlenecks.Existing performance tools measure (using special monitoring circuitry) orpredict (using a simulation of the shared memory architecture) the behaviourof the machine for which the program is being developed. Although this is veryuseful in understanding the factors in
uencing performance, there are two fun-damental problems in using such tools for producing high-quality software:1. In the �eld, the software will be run with many di�erent inputs, leading tobehaviour di�erent from that seen during tuning, and2. The software will be installed on hardware with di�erent characteristics fromthat used during tuning.In this paper we present an alternative approach, cautious trace analysis, aimedat addressing these problems. The key idea is to identify behaviour which mightlead to lost performance on some reasonable architecture, or with di�erent tim-ing assumptions. If we can diagnose and eliminate, or at least minimise, thesecharacteristics, the program should behave well in service.

2 Cache Line Contention in Shared-Memory SystemsA shared-memorymultiprocessor consists of several CPUs with associated cacheslinked to memory units via an interconnection network. A cache coherency pro-tocol is required to ensure that CPUs do not use stale cached data. In addition tothe overheads of maintaining coherence, such architectures can su�er from threeproblems: contention for nodes, cache lines and communication links. These allconspire to increase memory access times, and hence slow down the executiontime of tasks running on the processors. The challenge is to minimise the causesof contention, i.e. to keep data in the local cache whenever possible and to avoidusing the network. We use the following de�nitions of cache line sharing:Active sharing: a data item is accessed by more than one processor duringthe execution of a program.False sharing: this is where processors share a cache line without sharing dataitems within the cache line. With invalidation, a write to an item in a sharedcache line requires all copies of that cache line to be invalidated, even if theother processors never use the data item which was changed.Passive sharing: this occurs where shared data still remains in a processor'scache even though no objects on the cache line will be accessed by thatprocessor again [2]. Since a write by another processor to any item in thatcache line will require all other copies of the cache line to be invalidated, itis desirable that the redundant cache line is ejected after its last use.These characteristics interact, and are a�ected by the memory access char-acteristics of a particular program and the shared-memory architecture. Cacheline size is particularly relevant: larger cache lines would allow many objects tobe allocated on each cache line, which could be helpful if an application haslocality of access. However, the larger line size can lead to contention for cachelines, especially if false sharing plays a signi�cant role in the behaviour of anapplication.3 Cautious Trace Analysis and CLARISSAThe analysis process operates as a sequence of phases, in order to re
ect barriersynchronisations (which prevent events occurring on di�erent sides of a barrierfrom overlapping), limit the amount of analysis time and space required, andprune overlaps which are unlikely because they appear at widely-di�ering timesin the trace (overlap is possible, since no synchronisation prevents them, but areunlikely). Essentially, what needs to be considered is which events could possiblyoccur in the same phase. Whatever the hardware con�guration, the events for aparticular CPU will always occur in the same order, but the order in which eventsoccur between di�erent CPUs can vary. In the example, Fig. 1, it is possible thatan event in CPU0 may occur before or after any event in, say, CPU1 from thestart of the program up to the �rst barrier synchronisation. However, it is not

start barrier1 lock 1 unlock1 barrier 2 end

0CPU

CPU 1

CPU 2

CPU 3

barrier1 lock1 unlock barrier1 2

1barrier

barrier1

lock1 unlock1 2barrier

lock1 unlock1

barrier2

timeFig. 1. An example execution pathpossible for events occurring before the �rst barrier to overlap with events afterthat barrier.Considering only barriers, Fig. 1 has three phases. Sharing can occur acrossbarriers, but it is not currently part of our analysis. In programs where barriersare used regularly to ensure synchronisation, such as mp3d (Sect. 4), cautioustrace analysis between barriers shows the sharing e�ects that may occur withinthe weak ordering programming model.In applications where there are few or no barriers, the analysis becomesso broad that it is likely that clarissa will over-report the potential sharing,and the volume of data and phase end processing will be problematic. In suchcases, we introduce �xed time-slots. The length of the time-slots depends onthe overall length of the program. Too short a time-slot will result in somee�ects being missed and give too �ne a level of summary information, whereastoo long a time-slot will tend to over-report sharing and contention, and give asummary which is too coarse. In addition, edge e�ects have to be allowed for,i.e. the analysis must take into consideration sharing e�ects which cross a time-slot boundary. In Sect. 5 an example is given of using time-slot analysis (withoverlaps) to tune the performance of an application which makes little use ofbarrier synchronisations.Cautious analysis also has to allow for the use of locks. For example, in Fig. 1,if each CPU only reads and writes a particular data item when the processor hasobtained lock1 then, although there is still active sharing of the item betweenthe barriers, the programmer has protected the data item from the possibilityof simultaneous update by two or more processors.3.1 Using CLARISSAThe clarissa tool is based on [5]. Input parameters include cache line size,class threshold (the N value in Table 1), phase type (barrier or time-slot), time-slot length and overlap. A classi�cation system is needed for summarising thewealth of data. Table 1 gives the classi�cation used in the SM-prof performancedebugging tool, which reports cache line access for �xed time-slots in terms ofread or write accesses and the number of CPUs involved [1]. In clarissa, anenhanced version of this categorisation is used, where the sharing categories(ending in E/F/M) are further split according to active or false sharing. The

Table 1. SM-prof classi�cation of cache line accesses [1]class degree of sharing access mode commentsUNR none none no processor referenced the cache lineROE exclusive read only one processor has done a read operation, but nowrite operation to the cache lineROF shared by few read only i processors have done read operations,but no write operations, to the cache lineaROM shared by many read only N or more processors have done read operations,but no write operations, to the cache lineRWE exclusive read/write one processor has performed a read-modify-writesequence on the cache lineRWF shared by few read/write i processors have performed read-write-modifysequences to the cache line.RWM shared by many read/write N or more processors have performedread-write-modify sequences to the cache linea where 1 < i < Nresults are used to provide histograms of sharing activity for each phase duringthe execution of the program.4 MP3Dmp3d is a particle-based wind tunnel simulation, from SPLASH [4]. It is usedto study the shock waves created as an object
ies at high speed through theupper atmosphere. It was run for 30000 molecules, using the supplied geometry�le test.geom, for 10 time-steps. Two large arrays of structures account for morethan 99% of the static data space used by mp3d; the �rst structure stores thestate information for each particle and the second structure stores the propertiesof each cell in the active space.The way mp3d uses barriers for synchronisation within each step meant thatclarissa barrier analysis was the most appropriate, and the resulting phase levelgraphs are shown in Fig. 2. These graphs, in conjunction with the summary anddetail level sharing information generated by clarissa, showed that the domi-nant sharing was active sharing of the cells array. For many data items withinthe cells array, more than one processor updates the same data item betweenbarriers, and this generates a high number of coherency protocol invalidationmessages.To avoid the active sharing of cells, mp3d was modi�ed so that the schedul-ing of work for the CPUs was driven by cells rather than particles. When thetrace output for mp3d-new was analysed by clarissa, there was a substantial

RWMF

ROMF

RWFF

ROFF

0
0 10 20 30 40 50 60

A
C

C
E

S
S

 C
O

U
N

T
MP3D-ORIG - false sharing, barrier analysis

20

40

60

80

MP3D-ORIG - active sharing, barrier analysis

0
0 10 20 30 40 50 60

500

400

300

200

100

RWMF

ROMF

RWFF

ROFF

PHASE NUMBER

0
0 10 20 30 40 50 60

A
C

C
E

S
S

 C
O

U
N

T

20

40

60

80

MP3D-NEW - false sharing, barrier analysis

ROFA

RWFA

ROMA

RWMA

PHASE NUMBER

0
0 10 20 30 40 50 60

500

400

300

200

100

MP3D-NEW - active sharing, barrier analysis

Fig. 2. Phase level graphs for mp3d-orig and mp3d-new
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

R
E

LA
T

IV
E

 P
E

R
F

O
R

M
A

N
C

E

processing elements

MP3D

IDEAL MEMORY

MP3D-ORIG

MP3D-NEW

miss rate (%)no. of pe's mp3d-orig mp3d-new1 0.1682 0.22622 2.0008 0.34864 3.0215 0.44208 3.5685 0.554916 3.8490 0.785832 4.0972 1.1188Fig. 3. Relative performance and cache miss rates for mp3dreduction in the active sharing of the cells array, and false sharing had also beenreduced1. This is illustrated by the active and false sharing phase level graphsshown in Fig. 2.The two di�erent versions, mp3d-orig and mp3d-new, were run on anexecution-driven simulator to obtain cc-numa execution timings, cache miss1 Similar changes have been made by other researchers e.g. [1], but we made the changebecause it was speci�cally indicated by the active sharing information from clarissa.

rates and relative performance. The results are shown in Fig. 3. The best speedupis achieved by mp3d-new. Simulation statistics con�rm that the miss rate issubstantially lower for mp3d-new, so the strategy of reducing sharing has beensuccessful. However, this is starting to lose its \edge" at 32 CPUs: the drop inperformance is believed to be because of poor load balancing given the relativelysmall problem size (i.e. 30000 molecules) used for these tests.5 Computational Fluid Dynamicscfd is a major application area of high performance computing. The systemmodelled in our cfd application is a laminar
ow in a square cavity with a lidwhich slides across the cavity introducing a zone of re-circulatory
uid. cfd usesbarriers to ensure that CPU1 has updated global variables before all the proces-sors move on to the next stage, but there are long periods without a barrier [6].Time-slot analysis was therefore appropriate, and time-slot length was chosen togive around 100 slots over the execution time, i.e. to give a reasonably detailedpro�le without being swamped by too much information.The phase level graphs generated by clarissa are shown in Fig. 4. Thegraphs, in conjunction with the summary and detail level sharing information,indicated that the most signi�cant sharing was false sharing within the var datastructure. The 2-D arrays in var were originally distributed to the CPUs column-wise, and the program was modi�ed to create cfd-new, which uses square blockdistribution. Without the help of clarissa, it would only have been possible topinpoint the performance problem by gaining a thorough knowledge of the appli-cation program.When the trace output for cfd-new was analysed by clarissa,there was a substantial reduction in false sharing messages relating to the vardata structure, re
ected in the improved false sharing phase level graph shown inFig. 4. Active sharing was increased by the change but, as shown by the perfor-mance results below, any coherence overhead incurred by this increase is morethan compensated for by the reduction in false sharing. cfd-orig and cfd-new were run on the simulator to obtain timings, cache miss rates and relativeperformance, shown in Fig. 5. The best speedup running under real memory isachieved by cfd-new. In addition, the simulations showed that the cache missrate was always lower for cfd-new in comparison with cfd-orig. The reductionin false sharing lead to a signi�cant improvement in performance, even thoughactive sharing increased slightly.6 Related Shared-Memory ToolsMemSpy [3] assists in locating bottlenecks by providing detailed informationthat focuses the programmer's attention on the problem areas in the application.SM-prof [1], is similar to that presented here, but has the drawback that it doesnot distinguish between active and false sharing of cache lines. It also splits aprogram's execution up into time-slots, but does not allow for boundary e�ects

RWMF

ROMF

RWFF

ROFF

0
0

CFD-ORIG - false sharing, time-slot analysis

20 40 60 80 100

500

1000

1500

2000

2500
A

C
C

E
S

S
 C

O
U

N
T

ROFA

RWFA

ROMA

RWMA

0
0

500

400

300

200

100

20 40 60 80 100

CFD-ORIG - active sharing, time-slot analysis

RWMF

ROMF

RWFF

ROFF

0
0 20 40 60 80 100

500

1000

1500

2000

2500

A
C

C
E

S
S

 C
O

U
N

T

PHASE NUMBER

CFD-NEW - false sharing, time-slot analysis

ROFA

RWFA

ROMA

RWMA

0
0

500

400

300

200

100

20 40 60 80 100

CFD-NEW - active sharing, time-slot analysis

PHASE NUMBERFig. 4. Phase level graphs for cfd-orig and cfd-new
0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

R
E

LA
T

IV
E

 P
E

R
F

O
R

M
A

N
C

E

processing elements

CFD

IDEAL MEMORY

CFD-ORIG

CFD-NEW

miss rate (%)no. of pe's cfd-orig cfd-new1 0.0007 0.00072 0.6117 0.03564 1.7589 0.67028 4.0980 0.732016 9.2645 1.879932 13.2287 2.009464 18.9424 4.2586Fig. 5. Relative performance and cache miss rates for cfdbetween adjacent slots; consequently analysis has to be performed multiple timeswith di�erent time-slot lengths.The information given by clarissa di�ers from that of existing performanceanalysis tools because it diagnoses potential contention rather than problemsarising from a particular architecture. It also distinguishes between di�erenttypes of sharing, i.e. active, passive and false sharing. This is important as the

action to be taken depends on the type of sharing that needs to be eliminated.For example, in [1], false sharing is \suspected" in mp3d, but clarissa reportsfalse sharing precisely. Similarly MemSpy can report that cache misses are highfor a particular variable, but cannot say whether this is due to active, falseor passive sharing. Finally, clarissa allows the analysis to be carried out ona barrier or time-slot basis, so that the timing of phases is appropriate for aparticular application.7 Conclusionsclarissa is a new tool which has been shown to be e�ective in analysing thecache-line sharing e�ects in shared-memory parallel applications. It uses a novelapproach, cautious trace analysis, to locate potential cache line contention ratherthan measuring actual contention in a speci�c memory system design. We haveshown how it was used to greatly improve the performance and cache behaviourof two scienti�c programs.As further work, we plan to enhance clarissa to provide boundary analysisof cache lines, i.e. to cater for false sharing e�ects that may not show up for aparticular problem size due to data structures happening to align with cacheline boundaries. In addition, the performance of clarissa should be improvedby closer integration with the simulator.Acknowledgements. This work was funded by the U.K. Engineering and Phys-ical Sciences Research Council through an Advanced Course Studentship andproject GR/J 99117. Enormous thanks are due to Ashley Saulsbury for allowingus to use his simulator.References1. Mats Brorsson. SM-prof: A tool to visualise and �nd cache coherence performancebottlenecks in multiprocessor programs. In Proceedings of the ACM SIGMETRICSand Performance '95, pages 178{187, May 1995.2. Susan J. Eggers and Randy H. Katz. A characterisation of sharing in parallel pro-grams and its application to coherency protocol evaluation. 15th Annual Interna-tional Symposium on Computer Architecture, Honolulu, May, in Computer Archi-tecture News, 16(2):373{382, May 1988.3. M. Martonosi, A. Gupta, and T. Anderson. Tuning memory performance of sequen-tial and parallel programs. IEEE Computer, 28(4):32{40, April 1995.4. Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanfordparallel applications for shared-memory. Computer Architecture News, 20(1):5{44,March 1992.5. Sarah A. M. Talbot. Performance tuning of programs for shared-memory multi-processors. Master's thesis, Department of Computing, Imperial College, London,U.K., 1995.6. B. A. Tanyi. Iterative Solution of the Incompressible Navier-Stokes Equations on aDistributed Memory Parallel Computer. PhD thesis, UMIST, 1993.

This article was processed using the LaTEX macro package with LLNCS style

