Cautious, Machine-Independent Performance
Tuning for Shared-Memory Multiprocessors

Sarah A. M. Talbot, Andrew J. Bennett, Paul H. J. Kelly

Department of Computing
Imperial College of Science, Technology and Medicine
London SW7 2BZ

Abstract. Coherent-cache shared-memory architectures often give dis-
appointing performance which can be alleviated by manual tuning. We
describe a new trace analysis tool, CLARISSA, which helps diagnose prob-
lems and pinpoint their causes. Unusually, CLARISSA works by analysing
potential contention, instead of measuring predicted contention by simu-
lating a specific memory system design. This is important because, after
tuning, the software will be executed on different inputs and different
configurations. The goal is to produce a program with robustly good
performance. This paper explains the principle behind cautious trace
analysis, describes our implementation, and presents our experience of
using the tool.

1 Introduction

There has been considerable recent interest in developing tools to support man-
ual performance optimisation of applications running on coherent-cache shared-
memory multiprocessors (e.g. [1, 3]). The purpose of a performance tuning tool
is to direct the programmer’s attention to where a program is spending its time
and to give as much guidance as possible into how to reduce the performance
bottlenecks.

Existing performance tools measure (using special monitoring circuitry) or
predict (using a simulation of the shared memory architecture) the behaviour
of the machine for which the program is being developed. Although this is very
useful in understanding the factors influencing performance, there are two fun-
damental problems in using such tools for producing high-quality software:

1. In the field, the software will be run with many different inputs, leading to
behaviour different from that seen during tuning, and

2. The software will be installed on hardware with different characteristics from
that used during tuning.

In this paper we present an alternative approach, cautious trace analysis, aimed
at addressing these problems. The key idea is to 1dentify behaviour which might
lead to lost performance on some reasonable architecture, or with different tim-
ing assumptions. If we can diagnose and eliminate, or at least minimise, these
characteristics, the program should behave well in service.

2 Cache Line Contention in Shared-Memory Systems

A shared-memory multiprocessor consists of several CPUs with associated caches
linked to memory units via an interconnection network. A cache coherency pro-
tocol is required to ensure that CPUs do not use stale cached data. In addition to
the overheads of maintaining coherence, such architectures can suffer from three
problems: contention for nodes, cache lines and communication links. These all
conspire to increase memory access times, and hence slow down the execution
time of tasks running on the processors. The challenge is to minimise the causes
of contention, i.e. to keep data in the local cache whenever possible and to avoid
using the network. We use the following definitions of cache line sharing:

Active sharing: a data item is accessed by more than one processor during
the execution of a program.

False sharing: this is where processors share a cache line without sharing data
items within the cache line. With invalidation, a write to an item in a shared
cache line requires all copies of that cache line to be invalidated, even if the
other processors never use the data item which was changed.

Passive sharing: this occurs where shared data still remains in a processor’s
cache even though no objects on the cache line will be accessed by that
processor again [2]. Since a write by another processor to any item in that
cache line will require all other copies of the cache line to be invalidated, it
is desirable that the redundant cache line is ejected after its last use.

These characteristics interact, and are affected by the memory access char-
acteristics of a particular program and the shared-memory architecture. Cache
line size is particularly relevant: larger cache lines would allow many objects to
be allocated on each cache line, which could be helpful if an application has
locality of access. However, the larger line size can lead to contention for cache
lines, especially if false sharing plays a significant role in the behaviour of an
application.

3 Cautious Trace Analysis and CLARISSA

The analysis process operates as a sequence of phases, in order to reflect barrier
synchronisations (which prevent events occurring on different sides of a barrier
from overlapping), limit the amount of analysis time and space required, and
prune overlaps which are unlikely because they appear at widely-differing times
in the trace (overlap is possible, since no synchronisation prevents them, but are
unlikely). Essentially, what needs to be considered is which events could possibly
occur in the same phase. Whatever the hardware configuration, the events for a
particular CPU will always occur in the same order, but the order in which events
occur between different CPUs can vary. In the example, Fig. 1, it is possible that
an event in C'PUy may occur before or after any event in, say, C’PU; from the
start of the program up to the first barrier synchronisation. However, it is not

start barriery lockq unlockq barrier o end

CPU ! Foe f i L
barrier : lockq unlockq barrier 5 i

CPU 4 f oo oot f e

barrierlf locky unlockq barrier2: t7|r7n’e>

CPU ! b f f i |
lockq unlocky i

CPU sl f f - |

s barrierq

barrier 5

Fig.1. An example execution path

possible for events occurring before the first barrier to overlap with events after
that barrier.

Considering only barriers, Fig. 1 has three phases. Sharing can occur across
barriers, but it is not currently part of our analysis. In programs where barriers
are used regularly to ensure synchronisation, such as MP3D (Sect. 4), cautious
trace analysis between barriers shows the sharing effects that may occur within
the weak ordering programming model.

In applications where there are few or no barriers, the analysis becomes
so broad that it is likely that CLARISSA will over-report the potential sharing,
and the volume of data and phase end processing will be problematic. In such
cases, we introduce fixed time-slots. The length of the time-slots depends on
the overall length of the program. Too short a time-slot will result in some
effects being missed and give too fine a level of summary information, whereas
too long a time-slot will tend to over-report sharing and contention, and give a
summary which 1s too coarse. In addition, edge effects have to be allowed for,
i.e. the analysis must take into consideration sharing effects which cross a time-
slot boundary. In Sect. 5 an example is given of using time-slot analysis (with
overlaps) to tune the performance of an application which makes little use of
barrier synchronisations.

Cautious analysis also has to allow for the use of locks. For example, in Fig. 1,
if each CPU only reads and writes a particular data item when the processor has
obtained lock, then, although there is still active sharing of the item between
the barriers, the programmer has protected the data item from the possibility
of simultaneous update by two or more processors.

3.1 Using CLARISSA

The cLARISSA tool is based on [5]. Input parameters include cache line size,
class threshold (the N value in Table 1), phase type (barrier or time-slot), time-
slot length and overlap. A classification system is needed for summarising the
wealth of data. Table 1 gives the classification used in the SM-prof performance
debugging tool, which reports cache line access for fixed time-slots in terms of
read or write accesses and the number of CPUs involved [1]. In CLARISSA, an
enhanced version of this categorisation is used, where the sharing categories
(ending in E/F/M) are further split according to active or false sharing. The

Table 1. SM-prof classification of cache line accesses [1]

class |degree of sharing|access mode|comments

UNR |none none no processor referenced the cache line

ROE |exclusive read only one processor has done a read operation, but no
write operation to the cache line

ROF |shared by few read only ¢ processors have done read operations,
but no write operations, to the cache line®

ROM |shared by many |read only N or more processors have done read operations,
but no write operations, to the cache line

RWE |exclusive read/write |one processor has performed a read-modify-write
sequence on the cache line

RWF |shared by few read/write |i processors have performed read-write-modify
sequences to the cache line.

RWM [shared by many |read/write |N or more processors have performed
read-write-modify sequences to the cache line

¢ where 1l <1< N

results are used to provide histograms of sharing activity for each phase during
the execution of the program.

4 MP3D

MP3D is a particle-based wind tunnel simulation, from SPLASH [4]. Tt is used
to study the shock waves created as an object flies at high speed through the
upper atmosphere. It was run for 30000 molecules, using the supplied geometry
file test.geom, for 10 time-steps. Two large arrays of structures account for more
than 99% of the static data space used by MP3D; the first structure stores the
state information for each particle and the second structure stores the properties
of each cell in the active space.

The way MP3D uses barriers for synchronisation within each step meant that
CLARISSA barrier analysis was the most appropriate, and the resulting phase level
graphs are shown in Fig. 2. These graphs, in conjunction with the summary and
detail level sharing information generated by CLARISSA, showed that the domi-
nant sharing was active sharing of the cells array. For many data items within
the cells array, more than one processor updates the same data item between
barriers, and this generates a high number of coherency protocol invalidation
messages.

To avoid the active sharing of cells, MP3D was modified so that the schedul-
ing of work for the CPUs was driven by cells rather than particles. When the
trace output for MP3D-NEW was analysed by CLARISSA, there was a substantial

MP3D-ORIG - false sharing, barrier analysis

80 Il ROFF
T RWFF
E 60 [ROMF
8 C_TRWMF
(@]
@ 40
ii]
Q
(8]
<
20
0
0 10 20 30 40 50 60
MP3D-NEW - false sharing, barrier analysis
80 Il ROFF
T RWFF
E 60 [ROMF
8 C_TRWMF
(@]
@ 40
ii]
Q
(8]
<
20
0 1 1 }
0 10 20 30 40 50 60

PHASE NUMBER

MP3D-ORIG - active sharing, barrier analysis

500
1 n | |
400 nfon "
300
f =t 5 =t i ul f A
200
100
0
0 10 20 30 40 50 60
MP3D-NEW - active sharing, barrier analysis
500 I ROFA
[TRWFA
400 I ROMA
[TRWMA
300
200
100
olla 00 0.0 0.0 .0 .0
0 10 20 30 40 50 60

PHASE NUMBER

Fig. 2. Phase level graphs for MP3D-ORIG and MP3D-NEW

MP3D
35 T T T T T T

30 IDEAL MEMORY -~

25 - b

15 - MP3D-NEW -

a

10 .
MP3D-ORIG

RELATIVE PERFORMANCE

0 5 10 15 20 25 30 35
processing elements

miss rate (%)

no. of pe’s|MP3D-ORIG|MP3D-NEW
1 0.1682 0.2262
2 2.0008 0.3486
4 3.0215 0.4420
8 3.5685 0.5549
16 3.8490 0.7858
32 4.0972 1.1188

Fig. 3. Relative performance and cache miss rates for MP3D

reduction in the active sharing of the cells array, and false sharing had also been
reduced’. This is illustrated by the active and false sharing phase level graphs

shown in Fig. 2.

The two different versions, MP3D-ORIG and MP3D-NEW, were run on an
execution-driven simulator to obtain CC-NUMA execution timings, cache miss

! Similar changes have been made by other researchers e.g. [1], but we made the change
because it was specifically indicated by the active sharing information from CLARISSA.

rates and relative performance. The results are shown in Fig. 3. The best speedup
is achieved by MP3D-NEW. Simulation statistics confirm that the miss rate is
substantially lower for MP3D-NEW, so the strategy of reducing sharing has been
successful. However, this is starting to lose its “edge” at 32 CPUs: the drop in
performance is believed to be because of poor load balancing given the relatively
small problem size (i.e. 30000 molecules) used for these tests.

5 Computational Fluid Dynamics

CFD is a major application area of high performance computing. The system
modelled in our CFD application is a laminar flow in a square cavity with a lid
which slides across the cavity introducing a zone of re-circulatory fluid. CFD uses
barriers to ensure that C'PU; has updated global variables before all the proces-
sors move on to the next stage, but there are long periods without a barrier [6].
Time-slot analysis was therefore appropriate, and time-slot length was chosen to
give around 100 slots over the execution time, i.e. to give a reasonably detailed
profile without being swamped by too much information.

The phase level graphs generated by CLARISSA are shown in Fig. 4. The
graphs, in conjunction with the summary and detail level sharing information,
indicated that the most significant sharing was false sharing within the var data
structure. The 2-D arrays in var were originally distributed to the CPUs column-
wise, and the program was modified to create CFD-NEW, which uses square block
distribution. Without the help of cLARISSA, it would only have been possible to
pinpoint the performance problem by gaining a thorough knowledge of the appli-
cation program. When the trace output for CFD-NEW was analysed by CLARISSA,
there was a substantial reduction in false sharing messages relating to the var
data structure, reflected in the improved false sharing phase level graph shown in
Fig. 4. Active sharing was increased by the change but, as shown by the perfor-
mance results below, any coherence overhead incurred by this increase is more
than compensated for by the reduction in false sharing. CFD-ORIG and CFD-
NEW were run on the simulator to obtain timings, cache miss rates and relative
performance, shown in Fig. 5. The best speedup running under real memory is
achieved by crD-NEW. In addition, the simulations showed that the cache miss
rate was always lower for CFD-NEW in comparison with CFD-ORIG. The reduction
in false sharing lead to a significant improvement in performance, even though
active sharing increased slightly.

6 Related Shared-Memory Tools

MemSpy [3] assists in locating bottlenecks by providing detailed information
that focuses the programmer’s attention on the problem areas in the application.
SM-prof [1], is similar to that presented here, but has the drawback that it does
not distinguish between active and false sharing of cache lines. It also splits a
program’s execution up into time-slots, but does not allow for boundary effects

CFD-ORIG - false sharing, time-slot analysis CFD-ORIG - active sharing, time-slot analysis

2500 500
Il ROFF Il ROFA
2000 R 400 CIRWFA
E I ROMF I ROMA
8 1 RWMF 1 RWMA
O 1500 300
9}
0
O 1000 200
O
<
500 100
0= 0
0 20 40 60 80 100 0 20 40 60 80 100
CFD-NEW - false sharing, time-slot analysis CFD-NEW - active sharing, time-slot analysis
2500 B ROFF 500
Il ROFA
I RWFF] RWFA
2000 I ROMF 400
Z [ROMA
8 L IRWMF
O 1500 300 CTRWMA
9}
i
©O 1000 200
8}
<
500 100
0 0
0 20 40 60 80 100 0 20 40 60 80 100
PHASE NUMBER PHASE NUMBER

Fig. 4. Phase level graphs for ¢cFD-ORIG and CFD-NEW

CFD
60 ‘ ‘ ‘ ‘ ‘ T miss rate (%)

§ 50 IDEAL MEMORY 1 no. of pe’s|CFD-ORIG|CFD-NEW
S ol 1 0.0007| 0.0007
2 CFONEW 2 0.6117| 0.0356
g%y 4 1.7589 0.6702
Y a0t | 8 4.0980 0.7320
< CFD-ORIG _ 16 9.2645| 1.8799
& . ° ' 1 32 13.2287| 2.0094

0 1‘0 26 ?;O 4‘0 5‘0 66 70 64 18.9424 4.2586

processing elements

Fig. 5. Relative performance and cache miss rates for cFD

between adjacent slots; consequently analysis has to be performed multiple times
with different time-slot lengths.

The information given by cLARISSA differs from that of existing performance
analysis tools because it diagnoses potential contention rather than problems
arising from a particular architecture. It also distinguishes between different
types of sharing, i.e. active, passive and false sharing. This is important as the

action to be taken depends on the type of sharing that needs to be eliminated.
For example, in [1], false sharing is “suspected” in MP3D, but CLARISSA reports
false sharing precisely. Similarly MemSpy can report that cache misses are high
for a particular variable, but cannot say whether this is due to active, false
or passive sharing. Finally, CLARISSA allows the analysis to be carried out on
a barrier or time-slot basis, so that the timing of phases is appropriate for a
particular application.

7 Conclusions

CLARISSA 1s a new tool which has been shown to be effective in analysing the
cache-line sharing effects in shared-memory parallel applications. It uses a novel
approach, cautious trace analysis, to locate potential cache line contention rather
than measuring actual contention in a specific memory system design. We have
shown how it was used to greatly improve the performance and cache behaviour
of two scientific programs.

As further work, we plan to enhance CLARISSA to provide boundary analysis
of cache lines, 1.e. to cater for false sharing effects that may not show up for a
particular problem size due to data structures happening to align with cache
line boundaries. In addition, the performance of cLARISsSA should be improved
by closer integration with the simulator.

Acknowledgements. This work was funded by the U.K. Engineering and Phys-
ical Sciences Research Council through an Advanced Course Studentship and
project GR/J 99117. Enormous thanks are due to Ashley Saulsbury for allowing
us to use his simulator.

References

1. Mats Brorsson. SM-prof: A tool to visualise and find cache coherence performance
bottlenecks in multiprocessor programs. In Proceedings of the ACM SIGMFETRICS
and Performance '95, pages 178-187, May 1995.

2. Susan J. Eggers and Randy H. Katz. A characterisation of sharing in parallel pro-
grams and its application to coherency protocol evaluation. 15th Annual Interna-
tional Symposium on Computer Architecture, Honolulu, May, in Computer Archi-
tecture News, 16(2):373-382, May 1988.

3. M. Martonosi, A. Gupta, and T. Anderson. Tuning memory performance of sequen-
tial and parallel programs. [EEE Computer, 28(4):32-40, April 1995.

4. Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford
parallel applications for shared-memory. Computer Architecture News, 20(1):5-44,
March 1992.

5. Sarah A. M. Talbot. Performance tuning of programs for shared-memory multi-
processors. Master’s thesis, Department of Computing, Imperial College, London,
U.K., 1995.

6. B. A. Tanyi. lterative Solution of the Incompressible Navier-Stokes Equations on a
Distributed Memory Parallel Computer. PhD thesis, UMIST, 1993.

This article was processed using the IATRX macro package with LLNCS style

