Abstract, declarative control over
partitioning in parallel functional

programs:
experiences with Caliban

Paul H J Kelly
phjk@doc.ic.ac.uk

(joint work with Frank Taylor, now with TECC
Ltd, London)

Department of Computing,
Imperial College London, U.K.

September 1998

Introduction

Slogan:

“Parallel programming by programmed

partitioning”

e Suppose automatic parallelisation isn’t

good enough

e The programmer has to decide how the
data and computation is distributed across
the processing elements

* This is a software engineering problem

* It needs a good programming language

* We need to support abstraction and

re-use

The fully-dynamic approach

e Futures (lazy task creation etc)
e par, “sparking”
e threads, fork

e ParAlfl’s “$on’ operator

Processes are generated one-at-a-time as the

computation progresses

Higher-level operators (pipelines, farms, arrays
of processes etc) can easily be programmed,
but the structure is not evident to the

implementation

* If we can separate the partitioning from the
program execution, we can exploit broader

knowledge when allocating resources
* Start with fully static

* Necessary precursor to semi-static

Compile-time vs run-time
Programmed partitioning depends on:

e the target machine: number of processors,
communication vs computation

performance, memory capacity

e the problem instance: size, shape of key

data structures

e the evolution of the computation: e.g.
where eddies, collisions or precipitation

occur

Some information available at compile-time,

some only later

Introducing Caliban

e This is expressed as an annotation (in fact

a Haskell data structure):

Bundle [a,b] And Bundle [c,d,e] And Bundle [f]
And (Arc a d) And (Arc a f)

e The Bundle assertions specify that

expressions a and b are allocated to the

Salne processor

c, d and e to the same, presumably

different processor
and f to a third.

The Arc a d assertion specifies a link in
the task graph, either because a

consumes d or vice versa.

The process placement rule

The moreover assertion specifies the
placement of named expressions onto the
task graph.

The “process placement rule” (analogous
to “owner computes” in HPF) specifies
where the computation of these expressions

takes place.

In the absence of any annotations, every
processor executes the entire program.
Some arbitrarily-chosen processor’s result

expression 1s output.

The expression Bundle [x] asserts that x is
computed on one processor only, and all
non-local references to x involve

communication.

Communication

e For simplicity, we assume that placed
expressions such as x are of list type, and
our implementation serialises such lists by
evaluating and sending each element in its

entirety in turn.
Explanation:

e (aliban is based on the model of a static
network of processes communicating via

streams of messages.

e To support this, we require that in an
annotation such as Bundle [x], the name x
should refer to an object which can be

transmitted as a stream of messages.
This raises various issues...

e Isn’t it unnecessarily restrictive?

e Doesn’t it interfere with the semantics?

Compute-ahead and strictness

e Evaluation proceeds in anticipation of
demand, so that the producer of a stream

can operate in parallel with its consumer.

e This “compute-ahead” is restricted by the
availability of buffer space in the consumer
(and, of course, by availability of

operands).

Streams are easy to compute ahead, because
the consumer cannot choose what to demand

next

Threads: “bundling”

e In an assertion such as Bundle [a,b], two
expressions are assigned to the same

processor.

e We create a thread for each expression,
each charged with computing elements
ahead of demand and sending the values to

each of the consumer processors.

In principle, these threads should be
pre-emptively scheduled, so that evaluation of
all the expressions allocated to a processor

proceeds even if one of the threads loops or
blocks.

Strictness and semantics

e “Bundle” assigns a thread to evaluate the

elements of the specified stream in order

An annotation may stop a working program

from producing all its outputs:

1. Threads are evaluated in advance of
demand. If the stream turns out not to be
needed, may loop — but a consumer thread
oughtn’t be interfered with

2. Stream elements are evaluated in order. If
one element turns out not to be needed
may loop evaluating unwanted stream
element, so subsequent elements are never

reached

3. If threads are not pre-emptively scheduled,
one expression may wait forever for
evaluation of another expression on the

Salnle processor

Strictness and semantics - cont'd

One more reason an annotation may stop a
working program from producing all its

outputs:

4 To evaluate the annotation, the compiler
may have to evaluate expressions which
aren’t needed by the computation by itself

— the compiler may not terminate

Example: ray tracing

A simple ray-tracer can be reduced to the

following Haskell program:

ray_trace scene viewpoint
= map impact rays
where
rays = generate_rays viewpoint
impact ray = fold earlier impacts
where

impacts = map (hit ray) scene

e hit ray obj tests whether a ray strikes a
given object in the scene, and if so, returns

details of the impact

e carlier impact; impacts returns the first

impact struck by the ray

The closest impact to the viewpoint determines

the colour of the pixel in the output.

First approach: using a processor farm
/Slaveo = map impact raij
oot)A/[slavel = map impact raylj
collector ‘
wslavez = map impact ray2

slave3 = map impact ray3:

Idea: define a function to generate this pattern:

[

fan :: Stream — [Stream] — Placement
fan s [] = NoPlace
fan s (a:as) = (Bundle [a]) And (Arc a s) And (fan s as)

the expression fan collector [slave0, slavel,
slave2, slave3| yields the annotation

Bundle [slave0] And () And
Bundle [slavel] And (Arc slavel collector) And
Bundle [slave2] And (Arc slave2 collector) And
Bundle [slave3] And () And
NoPlace

Arc slaveQ collector

Arc slave3 collector

(“NoPlace” is the null annotation). “fan” is

called an NFO - a network forming operator.

Skeletons

We can define a reusable function which
encapsulates the processor farm behaviour; we

use the fan operator to build its annotation:

farm :: (a—a) — [a] — [q]
farm func operands
— farmed moreover fan farmed farmed
where

farmed = map func operands

e The assertion says that each element of the
list farmed is evaluated on a separate
processor, and the results (the actual list
farmed) are collected onto a single

processor for output

e The assertion is evaluated by the compiler
to yield an annotation which places each of
the slaves on a separate processor.

e number of operands must be known

Using the parallel operator

ray_trace scene viewpoint
— farm impact rays
where
rays = generate_rays viewpoint
impact ray = fold earlier impacts

where

impacts = map (hit ray) scene

This is unfolded by the compiler:

ray_trace scene viewpoint
— farmed moreover fan farmed farmed
where
farmed = map impact rays
rays = generate_rays viewpoint
impact ray = fold earlier impacts

where

impacts = map (hit ray) scene

If the viewpoint is known at compile-time, we

can calculate the list of rays:

ray_trace scene viewpoint
— farmed moreover fan farmed farmed
where
farmed = map impact rays

rays = generate_rays viewpoint = [rg, ry, r2, I3]

Using the definition of map the compiler can
construct the list of unevaluated processes:

ray_trace scene viewpoint
— farmed moreover fan farmed farmed
where
[farmed, farmed;, farmeds, farmeds] = farmed
farmed
= [impact rg, impact ry, impact ry, impact rs]
rays = generate rays viewpoint = [rg, r1, rg, r3]

The compiler can expand fan farmed farmed

and build the static process network....

ray_trace scene viewpoint

— farmed moreover

Bundle
Bundle
Bundle
Bundle

NoPlace

where

farmed)
farmed;
farmeds

farmeds]

And (Arc farmed, farmed) And
And (Arc farmed; farmed) And
And (Arc farmed, farmed) And
And (Arc farmeds farmed) And

[farmedg, farmed;, farmeds, farmeds]

= [impact rg, impact ry, impact rg, impact rs]

rays = generate_rays viewpoint = [ry, ra, I3, 4]

impact ray = fold earlier impacts

where

impacts = map (hit ray) scene

e You could have written the annotation

above manually

e Caliban’s compile-time symbolic evaluation

allowed a more concise annotation

Aggregation by bundling

e The ray tracer above assigns one processor

per ray

e With many (or an unknown number of)
rays, we want to allocate many rays to

each processor

e It seems natural to use Bundle:

farm :: (a—a) — [a] — [q]
farm func operands
— farmed moreover fan farmed slaves
where
farmed = map func operands
slaves = partition noOfProcessors farmed

where partition n xs simply splits a list xs
into n sublists as equally as possible.

e So, if noOfProcessors is 2, farm f [xg, x1, X,

x3| expands to

farmed = map f [xg, X1, X2, X3]

moreover Bundle p; And (Arc p; farmed) And
Bundle po And (Arc p2 farmed) And
NoPlace

where

p1 = [Xo0, x1]

p2 = [x2, x3]

e This is nice in that the code for the

computation itself is completely unchanged

Problems with aggregation by bundling

e Unfortunately, using bundling alone for
aggregation has some serious practical

problems

— The compiler has to elaborate the entire
list of rays, rather than the list of

partitions

— There are many communication
messages, one for each ray — we have
agegregated computation but not

communication
e Related to this:

— The compiler has to know when to stop
evaluating p; and ps — our
implementation always evaluates placed
expressions to WHNF

— So the first element of each list xq, %,
x5 and x3 1s computed at compile-time

(unless further input is required)

Aggregation by restructuring

We can fix most of the the problems by
modifying the computation to partition

explicitly:

ray Trace scene viewpoint
— farm noOfProcessors impact rays
where
rays = generateRays viewpoint
impact ray = fold earlier impacts
where

impacts = map (hit ray) scene

farm :: Int — (a—a) — [a] — [&]
farm n func input
— farmed moreover fan farmed slaves
where
farmed = unpartition slaves
slaves = map (map func) jobs
jobs = partition n input

Time (seconds)

Farmed ray tracer - performance

1200

100x100 image, 20 objects, static farm, 2 element compute-ahead, 40 rays job size <—
Linear speedup ----

1000
800 - E
600 - y‘\‘
400

200 -

No. of slaves

The scene consisted on 20 simple objects
There were 100 x 100 rays

MPI on the Fujitsu AP1000 at Imperial
College (256MHz Sparc processors)

Implementation built on the Haskell™
compiler and a version of the FCG project
back-end (with thanks to Pieter Hartel and
others)

35 T T T T T T pg
100x100 image, 20 objects, static farm, 2 element compute-ahead, 40 rays job size <

-

Linear speedup-=---

20

Speedup

15

0 I I I I
0 5 10 15 20 25 30 35

No. of slaves

The graphs show execution time and speedup

for the explicitly-partitioned ray tracer:

e A small further adjustment was made to

avoid compile-time ray tracing

e Compute-ahead was adjusted to avoid

excessive blocking

e Rays were partitioned into groups of 40 for

maximum performance

Summary

Motivation

Controlling how a program is executed in
parallel - declaratively

Promise

Use the power of the functional language,
use powerful generic operators, re-use

operators from the computation

Implementation

Use partial evaluation to specialise the
program for each target machine, and

perhaps even each problem instance
Re-use, composition

Problems

Compilation time, controlling partial
evaluation, surprising effects of

demand-driven execution

Discussion: dynamic vs static

— (Can Caliban be extended to be more

dynamic?

— Sure, we could interpret Bundle as a

CCSpark”

— We lose the opportunity to schedule
aggregate process networks to

Processors

(eg to ensure processes in a pipeline

aren’t allocated to the same processor)

— We lose control over where

communication happens

(so where a given expression is
computed may depend on a
non-deterministic race between

evaluation and sparking)

Directions for further work

— Partial evaluation has lots of potential

— Hybrid dynamic/static resource allocation

1S an interesting area

— (Caliban did not provide enough control

over evaluation order and communication

