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Abstract

This paper presents a new approach to enforcing array
bounds and pointer checking in the C language. Check-
ing is rigorous in the sense that the result of pointer
arithmetic must refer to the same object as the orig-
inal pointer (this object is sometimes called the ’in-
tended referent’). The novel aspect of this work is
that checked code can inter-operate without restriction
with unchecked code, without interface problems, with
some effective checking, and without false alarms. This
“backwards compatibility” property allows the overheads
of checking to be confined to suspect modules, and also
facilitates the use of libraries for which source code is
not available. The paper describes the scheme, its pro-
totype implementation (as an extension to the GNU C
compiler), presents experimental results to evaluate its
effectiveness, and discusses performance issues and the
effectiveness of some simple optimisations.

1 Introduction and related work

C is unusual among programming languages in provid-
ing the programmer with the full power of pointers.
Languages in the Pascal/Algol family have arrays and
pointers, with the restriction that arithmetic on point-
ers 1s disallowed. Languages like BCPL allow arbitrary
operations on pointers, but lack types and so require
clumsy scaling by object sizes.

An advantage of the Pascal/Algol approach is that
array references can be checked at run-time fairly effi-
ciently, in fact so efficiently that there is a good case
for bounds-checking in production code. Bounds check-
ing is easy for arrays because the array subscript syn-
tax specifies both the address calculation and the array
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within which the resulting pointer should point.

A pointer in C can be used in a context divorced
from the name of the storage region for which it 1s valid,
it’s “intended referent”, and this has prevented a fully
satisfactory bounds checking mechanism from being de-
veloped. There is overwhelming evidence that bounds
checking is desirable, and a number of schemes have
been presented. The main difference between our work
and Kendall’s bee[13] and Steffen’s rtec[7] is that in
our scheme the representation of pointers is unchanged.
This is crucial, since it means that inter-operation with
non-checked modules and libraries still works (and much
checking is still possible). Compared with interpretative
schemes like Sabre-C[14], we offer the potential for much
higher performance. Patil and Fischer [10, 11] present a
sophisticated technique with very low overheads, using
a second CPU to perform checking in parallel. Unfor-
tunately, their scheme requires function interfaces to be
changed to carry information about pointers, so also
has the inter-operation problem.

Another approach is exemplified by the commercially-
available checking package Purify [6]. Purify processes
the binary representation of the software, so can handle
binary-only code. FEach memory access instruction is
modified to maintain a bit map of valid storage regions,
and whether each byte has been initialised. Accesses
to unallocated or uninitialised locations are reported
as errors. Purify catches many important bugs, and is
fairly efficient. However, Purify does not catch abuse
of pointer arithmetic which yields a pointer to a valid
region which is not the intended referent. Fischer and
Patil [10, 11] provide evidence for the importance of this
refinement.

Our goals 1n this paper are to describe a method of
bounds checking C programs that fulfills the following
criteria:

e Backwards compatibility — the ability to mix checked
code and unchecked libraries (for which the source
may be proprietary or otherwise unavailable)

o Works with all common C programming styles



e Rigorously rejects violations of the ANSI C stan-
dard

e Checks static and stack objects as well as objects
dynamically allocated with malloc

e Understands scope of automatic variables

e Performance — including the ability to be able to
distribute programs with checks compiled in

There remain some circumstances in which checking is
incomplete; as we describe later, these are fairly un-
common in practice. The main shortcoming of the im-
plementation described in this paper is that the perfor-
mance is currently poor. However, the approach has
fundamental performance advantages over previously-
published work. Because checked code inter-operates
easily with unchecked code, the performance penalty
is confined to those modules where 1t is needed. Fur-
thermore, there 1s substantial scope for optimisation of
loop-invariant pointers and pointers which are induc-
tion variables. Because the pointer representation is
unchanged, there is no residual overhead once checking
code is eliminated. We return to this issue in Section 5.

1.1 Overview of this paper

The next section reviews the problem of bounds check-
ing for C; and the limitations the language places on
the checking that can be done. In the following section,
the new approach 1s introduced, and we explain how,
unlike earlier schemes, our bounds checking scheme al-
lows inter-operation with unchecked code. Then we give
some details of our implementation, and discuss some
optimisations and their effectiveness. Finally, we dis-
cuss the effectiveness of the scheme in the light of our
experience with some large and well-known C programs.

2 Objects, bounds checking in C, and its

limitations

ANSI C conveniently allows us to define an object as
the fundamental unit of memory allocation. Objects
are created by declarations or allocations such as those
shown in Table 1, which may be static, automatic (i.e.
stack-allocated), or dynamically allocated.

Objects are stored sequentially in memory and can-
not overlap. Operations are permitted which manipu-
late pointers within objects, but pointer operations are
not permitted to cross between two objects. There 1s
no ordering defined between objects, and the program-
mer should never be allowed to make assumptions about
how objects are arranged in memory.

Bounds checking is not blocked or weakened by the
use of a cast (i.e. type coercion). Casts can properly
be used to change the type of the object to which a
pointer refers, but cannot be used to turn a pointer
to one object into a pointer to another. A corollary
is that bounds checking i1s not type checking: it does
not prevent storage from being declared with one data
structure and used with another.

More subtly, note that for this reason, bounds check-
ing in C cannot easily validate use of arrays of structs
which contain arrays in turn.

Casts and unions can be used to create a pointer
from an object of any other type, in a machine-dependent
way. This cannot be checked using our technique, nor
by earlier approaches to bounds checking, since there is
no object for the pointer to be derived from.

3 The technique and its advantages

In this section we review earlier approaches and explain
the basis for the new approach.

3.1 Earlier approaches to carrying bounds

information

Storage object

base] @—
pointer] @—
limit; @

Enhanced pointer

Figure 1: Modified pointer representation: pointer—
base-address—extent triple

In earlier work in this area[5, 14, 13,7, 8, 10, 11], bounds
information is carried with each pointer at run-time. A
simple approach is to represent each pointer as a triple:
the pointer, together with the storage region’s base ad-
dress and limit or extent. Checking is then straight-
forward. The larger size of pointers requires changes in
storage allocation, and the code generator must be mod-
ified to copy pointers correctly. The change in pointer
size can be avoided by replacing each pointer with an
index into a table, which contains the pointer-base-limit
triple.

The net effect of both methods is the same. When
the program, at runtime, comes to use a pointer, it
must first verify that the operation that is about to be



int a;

A simple variable

int al10];

An array

struct { /*...*%/ } a;

A single record

struct { /*...*/ } a[10];

An array of records

malloc(10);

A single unit of memory allocated with malloc

Table 1: Typical objects.

performed is correct. It uses the information about the
base and size of the array or structure being pointed to
to decide if a particular index is legal.

3.2 Unchanged pointer representation

The problem with both these schemes is that the mod-
ified pointer representation is not interpreted correctly
by code compiled without bounds checking enabled.
This 1s a problem wherever a pointer is passed to or
from an unchecked procedure, whether as a parameter,
a result, or in a global variable. It is, of course, often
possible to translate pointers where necessary (called
encapsulation in bee[13] and rtece[7]), but this is incon-
venient and difficult to do reliably (e.g. where a func-
tion pointer may refer either to checked or an unchecked
routine). Because of these difficulties, in rtcc only op-
erating system calls are encapsulated — all libraries must
be recompiled.

In this paper we show that the pointer representa-
tion need not be changed. This avoids the need either
for encapsulation or recompilation. The result is im-
proved functionality (e.g. to work with modules and
libraries provided in binary-only form), and potentially
also improved performance, since well-tested modules
can run without checking.

3.3 Checking pointer use: how the scheme

works

Given these considerations, in our method pointers are
represented as simple addresses, as in ordinary C pro-
grams. We maintain a table of all known valid stor-
age objects. Using the table we can map a pointer to
a descriptor of the object into which it points, which
contains the base, extent and additional information to
improve error reporting.

We have to check both pointer arithmetic and pointer
use. Pointer arithmetic must be checked because the re-
sult must never be allowed to refer to an object different
from the one from which it is originally derived. This
1s because the object for which the pointer is valid can
only be determined by checking the pointer itself, by
looking it up in the object table.

Every valid pointer-valued expression in C derives
its result from exactly one original storage object. If
the result of the pointer calculation refers to a different
object, it 1s invalid.

Although it sometimes useful to know where an in-
valid pointer has been calculated, reporting every in-
stance can yield many false alarms. We therefore re-
place such incorrectly-derived pointers with a pointer
value which is always invalid, called ILLEGAL (Defined
as (void *)-2 in our implementation). This ensures
that a bounds error is reported when the pointer is ac-
tually used.

3.4 Example: pointers to objects

h Dead space between objects
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Figure 2: Objects arranged in memory.

Figure 2 shows an example layout for several objects
of various sizes, perhaps arising from static allocations,
or from calls to malloc. Suppose we have pointers pi,
p2 and p3 referring to the objects, or perhaps to their in-
ternal components (their type is immaterial since casts
may have been used). Table 2 shows permissible pointer
operations given the rule that pointer operations are
only permitted to take place within an object, and not
between objects.



p2 - pl Permitted. Both pointers are within the same
object.
pP3 - p2 Not permitted. Makes assumptions about the

layout of objects in memory.

Increment p2 until p2 == p3

Not permitted. As soon as p2 is incremented
beyond the end of object b, a bounds error will
be reported.

Table 2: Permissible operations on pointers p1-p3
in Figure 2

3.5 Problem: legal out-of-range array point-

ers

An awkward complication arises with arrays. Consider
the (correct) code in Figure 3.

f()
{
int *p;
int *a = (int *) malloc (100 * sizeof(int));
for (p = a; p < &a[100]; ++p)
*p = 0;
return a;

Figure 3: Iterating over an array.

On exit from the loop, p points to a[100]. The final
++p increments p beyond the range for which it is valid,
although the resulting pointer is never used. Accord-
ing to the definition of permissible pointer operations
above, this should be flagged as an error since p may
now point to a different object.

The ANSI C standard[1] (section 3.3.6, lines 24-27)
states that for an array declared Type allll;, a pro-
grammer may only generate pointers to elements a[0],
al1], up to a[N]. The last element does not literally
exist, and any attempt to dereference a pointer to a[N]
will result in undefined behaviour (or in our case, a
bounds error). Tt is not permissible to create a pointer
to, for instance, element a[-1] of an array, and such
programs will not be portable to architectures where
all objects are stored in separate segments.

To overcome this problem, we place at least one byte
of dead space between objects in memory (allocations
are often aligned to 4 or 8 byte boundaries in mem-
ory so there may be several bytes between adjacent ob-
jects). A pointer to a[N] can now be distinguished from
a pointer to the next adjacent object in memory! (see
the Appendix for an example).

I There is a subtle assumption here: if the size of the object were
not an integer multiple of the array element size, then a[N] could lie
more than one byte beyond its limit (depending on the size of the
element type). However, this case is a bounds error since there is

Unfortunately we cannot pad parameters passed to
functions (since this would mean that the parameter
layouts assumed by checked and non—checked code would
be incompatible). This results in a small ambiguity. We
resolved this partially in our implementation by flagging
function parameters and treating them specially. Essen-
tially, when looking up pointers to parameters, we treat
a reference to “a[N]” as a possible pointer to the next
object in memory. If there is an adjacent parameter,
then the pointer will point to the next object.

This is an instance where checking is incomplete: a
pointer to an array passed as a parameter can be in-
cremented to point to the later parameters without an
error being reported. Using the pointer to refer to ear-
lier parameters or elsewhere will be trapped correctly.

In practice this solution was satisfactory, since al-
though it is possible to pass actual structures and struc-
tures containing arrays as parameters, this is very rare,
and even then most cases can be caught. The infre-
quency of use, and the fact that we catch many cases
anyway, make this potential loophole an extremely mi-
nor concern.

3.6 Objects originating in unchecked code

When an object is allocated in checked code, it is en-
tered in the object table. When the resulting pointer
is used in checked code, bounds checking works fully.
If the pointer is passed to unchecked code, unchecked
accesses can Occur.

When a pointer is passed from unchecked to checked
code, it may originate either from a checked or unchecked
allocation (note that dynamically-allocated objects are
always registered since even unchecked code must call
the checked malloc function).

There are two cases:

1. The pointer passed from unchecked to checked code
points into a checked object.

This may be correct, as it may have been derived
from a pointer passed to it, or it may be the result

insufficient space for a[N-1].



from a call to the (modified) malloc storage allo-
cator. In this case, checking will proceed normally.

It may be incorrect: the pointer may be improp-
erly derived from some other object. This case is
indistinguishable and no error will be reported.

2. The pointer passed from unchecked to checked code
points into an object which does not appear in the
object table because the space was allocated in
unchecked code.

This i1s detected when the pointer is used. Al-
though it may be helpful to issue a warning mes-
sage and to perform basic sanity checks, the pro-
gram can proceed without false alarms. This is
because the key check is whether, in pointer arith-
metic, the result refers to the same object as the
pointer from which it was derived. If the original
pointer is not registered, the result should not be.
Accidental use of unchecked pointers in checked
code to damage checked objects is thereby pre-
vented.

3.7 Maintaining the object table: tracking

creation and deletion of objects

At run—time, we track objects as they are created and
deleted. We maintain an ordered list of objects in mem-
ory, and employ a fast method to convert pointers to ob-
jects. Several suitable structures are available for this
purpose. We used a splay tree in our implementation[4,
3] but other structures such as tries and skiplists might
be suitable.

Static objects (global variables, variables declared as
static in functions and string constants) persist over
the lifetime of the program. A simple modification to
the compiler and/or the linker can be made to produce
a list of these objects. As indicated above, it is not
necessary to find objects in the unchecked parts of the
code.

Dynamically allocated objects — those declared with
malloc and destroyed with free — can be tracked by a
simple modification to the C library. Although malloc
often introduces padding anyway, care is needed with
objects allocated dynamically by other means (such as
mmap and sbrk).

Stack objects present greater difficulties, since the
C goto command may mean that they are created and
destroyed at several different places in the code (see
Figure 4).

In this code fragment, b is in scope between the inner
set of curly brackets. The goto labell; statement has
the side effect of creating b and goto label2; destroys
it. In addition, b must be created and destroyed if and
when control passes the inner curly brackets.

0
{

int a;
if (...) goto labell;

int b;
labell:
if (...) goto label2;

label2:
}

Figure 4: Stack objects created and destroyed by goto.

In our implementation, we used the C+4 construc-
tor/destructor mechanism of our compiler (GCC) to track
such variables. This is fairly common since many C
compilers are built to handle C++ too. Details lie be-
yond the scope of this paper.

Parameters are a special form of stack object. Care
must be taken to ensure that parameters are created
once on entry to the function, and deleted on exit, even
if the procedure exits with return early on. The C++
constructor/destructor mechanism can handle this too.

Ordinary stack objects must be padded as described
in section 3.4. Parameters are not padded, so that
checked and unchecked functions have compatible pa-
rameter layouts. ANSI C prevents using the return
value of a function as an lvalue immediately. Since all
return values are therefore copied into a variable in the
calling function, there is no need to take special action
checking or padding aggregate function results.

4 TImplementation in an existing compiler

We implemented our bounds checking scheme in the
GNU C compiler (GCC). In this section we briefly ex-
plain how this was done. The resulting program is freely
available from a variety of sources[12].

4.1 Checking pointer operations

We altered GCC to replace pointer operations with calls
to a library of checking functions. Typically when the
programmer writes p + i, where p has a pointer type
and 1 is an integer, the compiler replaces 1t with:

(T *) _bounds_check_ptr_plus_int(p, i, sizeof(T),
__FILE__, __LINE_);



T *1s the type of the pointer p, _FILE__and __LINE__
are macros that expand to the current file and line num-
ber, and are used to locate errors when they occur.

operator/operand lypes
pointer [integer] (array reference)
pointer —> element (reference to record field)
pointer + integer (yields pointer)
pointer — integer (yields pointer)
pointer — pointer (yields integer)
pointer < pointer (comparisons)
pointer > pointer
pointer <= pointer
pointer >= pointer
pointer == pointer
pointer != pointer
*pointer (dereference),
pointer++ (post-increment)
pointer—- (post-decrement)
++pointer (pre-increment)
——pointer (pre-decrement)

Table 3: Operators requiring checking

Table 3 shows the operators where checking code has
to be added. Note that we must check pointer arith-
metic as well as pointer use. We also check pointer
comparisons and subtractions since the result is valid
only if the operands refer to the same aggregate.

In order to handle compound operators correctly and
efficiently, we specifically detect and replace the follow-
ing patterns:

e &xpointeris replaced with pointer
o &pointer[integer] is replaced with pointer + integer

e &pointer —> element is replaced with pointer + off-
setof(element).

As described above, certain pointer operations silently
return the special representation ILLEGAL (Defined as
(void #)-2in our implementation) when they fail. This
allows programmers to make illegal pointers, and only
have them caught later if the programmer attempts to
dereference them. For instance, in an array declared
int a[10];, attempting to generate a+15 results in an
ILLEGAL pointer which is caught when used later. All
pointer operations catch ILLEGAL pointers passed and
throw bounds errors.

4.2 Using existing C++4 mechanisms to track
stack objects

Ordinary stack objects (not function parameters) are
padded by tricking GCC into believing they are one byte
larger than they really are. A patch to the GCC alloca
function catches variable—sized stack objects.

In order to de-register stack-allocated objects on block
exit, we used the constructor/destructor mechanism built
into GCC and designed to handle C++ objects, even
where they may be created or destroyed by uses of goto.
The code shown in Figure b contains several stack vari-
ables in different scopes. The code 1s compiled as if the
user had written the version in Figure 6.

4.3 Finding statically allocated objects at

compile and link time

We modified the back-end of GCC slightly to construct a
table of statically allocated objects, such as global vari-
ables and string constants. Each source file compiled
with bounds checking enabled will contain such a table,
and this 1s automatically loaded at run-time before the
program starts running. The design of GCC enabled
this to be done in a straightforward manner.

It 1s desirable to track down objects declared in unchecked

code too, although not strictly necessary as described
earlier. A simple tool was written that takes a library
archive or object file, and writes out a table of static ob-
jects contained therein. This table can then be linked
to the program.

Static objects are padded by asking the linker to
allocate one extra byte after each object.

4.4 Minimal modifications to malloc and

free

We modified the GNU malloc library to register dynam-
ically allocated objects as they are created, and dereg-
ister them as they are freed. A single extra byte of
padding is added to each object when it is allocated.

The new library is linked automatically and replaces
all calls to the previous malloc family of functions.

4.5 Modifications to C library functions

Unlike many other C compilers, GCC usually works with
the system—installed C library on whatever operating
system 1t runs. In most instances, the source to these
libraries is not freely available, so users will be forced to
run them without bounds checking. This implies that a
call to a function such as strcpy, passing a bad pointer,



int sum (int n, int *a)

{

inti,s =0;

for (i = 0;i < n; +4i)
s += a[i];

return s;

1

Figure 5: Vector sum example with stack objects.

int sum (int n, int *a)

{
/* _bounds_push_function enters a function context. A
* matching call to __bounds_pop_function will
* delete parameters.
*/
__bounds_push_function ("sum");
__bounds_add_parameter_object (&n, sizeof (int), ...);
__bounds_add_parameter_object (&a, sizeof (int*), ...);
/* Extra scope created around the function. GCC will
* call __bounds_pop_function when leaving this
* scope.
*/
{

/* Declare stack objects, and use GCC's destructor
*

* called for each variable however we leave scope
* (even if we leave with goto).

*/

int i;
__bounds_add_stack_object (&i, sizeof (int), ...);
ints = 0;

__bounds_add_stack_object (&s, sizeof (int), ...);

for (i = 0;i < n; +4i)
s += *(int*)
__bounds_check_array_reference (a, i,

sizeof (int), ...

__bounds_delete_stack_object (&s);
__bounds_delete_stack_object (&i);
}
end:
__bounds_pop_function ("sum”);
return s;

/* Delete a, n. */

1

Figure 6: Vector sum example with stack object man-
agement using the C4++ constructor/destructor mech-
anism.

mechanism to ensure __bounds_delete_stack_object is

will not result in a bounds error, but in a segmentation
fault, or in random damage to memory.

To detect such errors, we replaced many C library
functions, with efficient bounds—checked versions. Calls
to the ANSI str* and mem* functions are checked in
this way. The implementations of memcpy and strcpy
also check for illegal copying of overlapping memory seg-
ments.

4.6 Splay trees to look up pointers quickly

In order to reduce the overhead of converting pointers
to objects on the occasions when that is necessary, we
store the object list as a splay tree[4, 3]. Splay trees
are binary trees where frequently used nodes migrate
towards the top of the tree. In tests it was found that
the look—up function was iterated on average 2.11 times
per call on a typical large program. We unrolled the first
two iterations of the loop to optimise these cases.

5 Performance and optimisations

For the bounds checking scheme outlined above to be
useful, careful consideration must be given to optimis-
ing the code produced. In particular, it is possible to
reduce the number of accesses to the splay tree that
are required quite considerably. In the next few para-
graphs we describe some simple optimisations we have
implemented, some further optimisations which should
be straightforward to add, and we briefly discuss the
problematic cases which remain.

5.1 Eliminating calls to register unused vari-

ables

If the programmer never takes the address of a stack
variable, then no pointer can ever be generated that
refers to that variable, and so it is unnecessary even
to consider that variable for bounds checking purposes.
This i1s extremely effective, as addressable local vari-
ables are rare in typical programs.

5.2 Eliminating look—ups in loops over ar-
rays

For further significant gains in performance, we sug-
gest a simple scheme for optimising loops over arrays
using code motion. Consider the fragment of code in
Figure 7 after bounds checking code has been added in
a simple-minded way. In Figure 8 we have made the
pointer-to-object conversion explicit by inlining part of
the procedure call.



int a[10], i;

for (i = 0; i < 10; ++i)
/* This is the code substitution for ‘a[i] = i;" */
*(int*)

__bounds_check_array_reference(a, i, sizeof(int), ...) = i,

Figure 7: Code after simple-minded substitution of a
checking function.

int a[10], i;
for (i = 0; i < 10; ++i)
{
object *obj = __bounds_find_object (a);
if (obj && obj->base <= &al]]
&& &a[i] < obj->extent)
ali] =i
else
/* throw a bounds error and exit */

Figure 8: Code after partially inlining the checking
function.

Clearly the call to do the pointer-to-object conver-
sion (__bounds_find_object) should be moved outside
the loop in the code motion phase of the optimiser.
An efficient compiler would then be able to remove
the bounds checking tests (obj->base <= &al[i] and
&al[i] < obj->extent) entirely and replace them with
two tests outside the loop.

This may be done if there is a way to specify that
the call is a constant function (ie. has the same return
value when called multiple times) provided that objects
are not added or deleted in between calls. GCC does not
provide a way to encapsulate this subtlety, and so our
implementation does not yet make this optimisation.

Loops which iterate through arrays using pointers
(instead of incrementing an array subscript as above)
are more difficult: __bounds find object will be ap-
plied to the pointer, which is not loop invariant. Here
a more specialised optimisation for induction variables

should help.

5.3 Difficulties optimising loops over linked

structures

Loops over linked lists, tree structures and the like pro-
vide a greater challenge. We were not able to devise an
efficient method of optimising loops that traverse linked
data structures, although the splay tree we used to im-
plement the object table will tend to cache frequently
used objects like the elements in the list near the top.

6 Evaluation

We have used the modified compiler to recompile a wide
variety of applications software. In this section we re-
view our experience with reference to some substan-
tial and freely-available C programs. We comment on
the problems we encountered, the effectiveness of the
scheme in finding errors, and the performance of the re-
sulting code with bounds checking enabled for the entire
program (excluding libraries).

We compiled the scripting and GUT language Tl /Tk[9]
in its entirety (around 120,000 lines of code). We made
11 changes to the source code (see table 4).

no. of instances

Contravening ANSI standard by 2
pointing to negative array offsets.

Fixing pointer nasties, such as 3
adding offsets to NULL pointers.

Using pointers that refer to objects 2
freed in a realloc.

Changes to support goto restric- 4
tion caused by using C+4++4 con-
structor and destructor mecha-
nism.

Table 4: Changes made to the source of Tcl/Tk.

The resulting interpreter ran all the Tk demos cor-
rectly, although noticably more slowly than without
checking. The interactive scripts were still quite usable
and responsive, but the authors would not recommend
using bounds checking in production code until the fur-
ther optimisations suggested above have been made.

We also compiled Ghostscript, a freeware PostScrip
interpreter. We needed to fix the non—-ANSI imple-
mentation of stacks that Ghostscript uses (it initial-
izes pointers to the —1 element of each stack), but the
changes involved were relatively minor, and the pro-
gram ran without error. Again, there was a noticable
slowdown when drawing complex graphical images, but
the program was by no means unusable.

GCCitself compiles with the bounds checking patches.
Unfortunately, GCC makes extensive use of obstacks,
which are large singly—allocated areas of memory that
may contain many variable-sized objects. Since the
bounds checking library treats these areas of memory
as single objects, simple bounds errors between the el-
ementary objects contained inside are not detected. In

hindsight, we should have modified GCC’s obstack li-

tTM



brary very slightly to interact correctly with the bounds
checking library (by allocating and deleting the simple
objects explicitly).

MicroEMACS, a simple text editor that has been
ported and used widely, actually has bounds errors which
this program picked up immediately.

Although it 1s possible to construct programs that
perform very badly indeed when bounds checking is
added — such as programs that solely iterate over long
linked lists, doing almost no work at each node — real
programs are for the most part quite usable. Never-
theless, a good implementation of this technique must
consider optimisation issues very carefully. It is un-
likely that we could ever achieve the 10-15% perfor-
mance loss that would be acceptable if programs are
to be distributed with bounds checks compiled in. In
practice, most programs showed a 5—6 times slowdown,
which is comparable to other commercial bounds check-
ing packages.

Fischer and Patil [10, 11] provide interesting evi-
dence for the practical importance of checking pointers
are used to refer only to the intended referent, compared
with the checking provided by tools such as Purify.

7 Further work

We plan to investigate optimisation techniques further,
and when we have done so we will present benchmark
performance comparisons. While we hope to achieve
fairly good performance using conventional data flow
analysis as described earlier, there is also scope for inter-
procedural optimisation, and ultimately it may be pos-
sible to validate non-trivial examples at compile-time,
using, for example, partial evaluation [2].

The range query lookup on which checking is based
is critical to performance, and there 1s scope for exper-
imental work to tune our splay tree approach and to
study alternatives.

There remain some loopholes in our checker. The
most serious 1n practice is that it is possible to manu-
facture erroneous pointers using unions, casts and uni-
tialised data. At considerable performance cost, we
could maintain a shadow of the accessible store, indi-
cating whether it has been initialised and whether it is
a pointer. There is scope for optimisation, and doing so
would be a substantial project.

8 Summary and conclusions

We have shown how bounds checking can be provided
in a convenient form, with recompilation confined to
the files where problems are suspected. The execution
time penalty for code compiled with bounds checking

enabled 1s substantial, but in many cases this can be
alleviated by optimisation, and this is the most press-
ing direction for further enhancements. The technique
has been applied to a wide variety of C programs with
generally good results.
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Appendix: Examples

This appendix presents a number of small examples which illustrate the technique’s power and limitations.
Basic example illustrating simple bounds checking

#include <stdio.h>
void main() {

char A[10]={"1",'2","3','4’,’5",'6",'7",'8",'9' };
char B[10]={"a’,'b",'¢c",'d","e",'f",'g",’h","'};
char *p = A;
while(1)

putchar(*p++);

Output from the bounds-checking run-time system:

ShowltWorks.c:10:Bounds error: attempt to reference memory overrunning the end of an object.
ShowltWorks.c:10: Pointer value: Oxeffffae2

ShowltWorks.c:10:  Object ‘A"

ShowltWorks.c:10: Address in memory: Oxeffffad8 .. Oxeffffael

ShowltWorks.c:10: Size: 10 bytes
ShowltWorks.c:10: Element size: 1 bytes
ShowltWorks.c:10: Number of elements: 10
ShowltWorks.c:10: Created at: ShowltWorks.c, line 6
ShowltWorks.c:10: Storage class: stack

123456789

Simple example showing A[N] is a valid pointer

/* A pointer is allowed to refer to the byte after the object from which it
* is derived. The array is padded by one byte, if necessary, so that this
* is distinguishable from an illegal operation.

*/
#include <stdio.h>

main()

{

int a[10], *p;

/* Initialize array ‘a’ to 0. */
for (p = &a[0]; p < &a[10]; p++)
*p = 0

/* Now ‘p' points to &a[10], which is a valid address, but if we
* try to use it, we'll get an error.

*/
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*——p=1, /* OK => sets a[9] to 1 */
*Lip =1, /* Bounds error => tries to set a[10] to 1 */

Output from the bounds-checking run-time system:

OneBeyondArrayBounds.c:20:Bounds error: attempt to reference memory overrunning the end of an object.
OneBeyondArrayBounds.c:20:  Pointer value: Oxeffffae0

OneBeyondArrayBounds.c:20:  Object ‘a’:

OneBeyondArrayBounds.c:20: Address in memory: Oxeffffab8 .. Oxeffffadf

OneBeyondArrayBounds.c:20: Size: 40 bytes
OneBeyondArrayBounds.c:20: Element size: 4 bytes
OneBeyondArrayBounds.c:20: Number of elements: 10

OneBeyondArrayBounds.c:20: Created at: OneBeyondArrayBounds.c, line 10
OneBeyondArrayBounds.c:20: Storage class: stack

Checking of out-of-range automatics

#include <stdio.h>
char *G;

void f() {
char A[10]={1",2",'3','4''5''6", 7 '8 '9'};

G = A+3;

}

void main() {
f();
putchar(*G);

In this example, the global variable G is used to capture a pointer into a stack-allocated array. The pointer is invalid
after the function £ has returned. Output from the bounds-checking run-time system:

OutOfRangeAutomatics.c:16:Bounds warning: unchecked stack object used at address Oxbffff6ef.*/

Arrays within structures are not checked

struct {
int obj1 [10];
int obj2 [10];
}s;
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main() {
int i;
for (i = 0; i < 20; ++i)

s.objl[i] =i;  /* no bounds error; reference is within allocation object */

This example illustrates a limitation on bounds checking as we have defined it. The variable s consists of a single
storage object, and the bounds checking does not verify that its use is consistent with the type declaration. To do so
would considerably add to the system’s complexity, but, more importantly, would lead to false reports in situations
where casts are used quite legitimately.

Arrays within arrays are not checked

/* Abuse of subarrays of a multidimensional array cannot be checked.
*/
int i;

double a[10][10];

main() {
for (i = 0; i < 20; ++i)

a[0][i] =i;  /* No bounds error; reference is within allocation object */

As in the previous example, the array a consists of a single object, and bounds errors are reported only when a
reference outside the whole array is derived.

Pointer to unchecked object passed to checked code

/* In file ‘unchecked.c' ...
*/
int *unchecked_ fn (void)

{
static int a[10];
return a;

1

/* In file ‘checked.c' ...

*/

extern int *unchecked_ fn (void);
int main ()

int *a = unchecked_ fn (), i;

for (i = 0; i < 20; ++i)

alil =i;  /* No bounds error. */
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When the variable a is used, it is found to have no corresponding object table entry. Although a warning can be
issued here, it is not necessarily an error since the pointer may have been imported from an unchecked module (Note
that this problem can be overcome by adding the object to the object tree by hand, using

_bounds note_constructed object (...);).

Correct inter-operation with non-trivial system calls

/* Example to show interworking with system calls etc (under SunOS 4.1).

*

* Allocate a 3-page region, set VM protection to disallow access, install a handler to

* catch the resulting faults, re-enable access and continue. Loop runs over end of region.
*/

#include <stdio.h>

#include <signal.h>

#include <sys/mman.h>

char *region;

int pagesize;

void SEGVHandler(sig, code, scp, addr)

int sig, code; struct sigcontext *scp; char *addr;

/* Reinstate the page in question */
char *pagebase = (char *)((int)addr / pagesize * pagesize);
mprotect(pagebase, pagesize, PROT_ READ | PROT_ WRITE);

/* Now we should return and restart the faulting instruction */

void main() {
char *p;
signal(SIGSEGV, SEGVHandler);
pagesize = getpagesize();
region = valloc(pagesize*3);
mprotect(region, pagesize*3, PROT_NONE);
for (p = region; p<=&region[pagesize*3]; p+=pagesize)
*p="p;

Output from the bounds-checking run-time system:

Signals.c:27:Bounds error: attempt to reference memory overrunning the end of an object.
Signals.c:27:  Pointer value: 0x23000

Signals.c:27:  Object ‘(unnamed)”:

Signals.c:27: Address in memory: 0x20000 .. 0x22fff

Signals.c:27: Size: 12288 bytes
Signals.c:27: Element size: 1 bytes
Signals.c:27: Number of elements: 12288
Signals.c:27: Storage class: heap

This example is intended to demonstrate that bounds checking can be used even in quite sophisticated contexts
with subtle inter-operation with the operating system. Although the actions of the system calls themselves are not
checked (of course they could be), the fault address addr passed to the signal handler is checkable with no special
arrangement.
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