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Abstract. In this paper, we present an efficient technique for optimising data
replication under the data parallel programming model. We propose a precise
mathematical representation for data replication which allows handling replica-
tion as an explicit, separate stage in the parallel data placement problem. This
representation takes the form of an invertible mapping. We argue that this prop-
erty is key to making data replication amenable to good mathematical optimisa-
tion algorithms. We further outline an algorithm for optimising data replication,
based on this representation, which performs interprocedural data placement op-
timisation over a sequence of loop nests. We have implemented the algorithm and
show performance figures.

1 Introduction

Choosing parallel data placements which minimise communication is key to generating
efficient data parallel programs. Under the data parallel programming model, parallel
data placement is typically represented by a two-stage mapping. In the first stage, an
affine alignment function maps array elements onto virtual processors. In the second
stage, a distribution function then maps virtual processors onto physical ones. Examples
for such a two-stage approach are listed in [5]. This decomposition fails to account
properly for data replication: rather than using an explicit replication stage, replication
is often handled implicitly as part of the alignment stage throughreplicated alignments.
In this paper, we propose an efficient mathematical representation for data replication
which expresses replication as an independent third stage of parallel data placement.

While a good range of optimisation techniques has been described for the align-
ment stage, distribution and replication have received less attention. We argue that the
representation which we propose in this paper is a step towards making data replica-
tion amenable to the same type of mathematical optimisationalgorithms which have
previously been used for alignment optimisation. We demonstrate this assertion by de-
scribing and implementing an algorithm which performs interprocedural data replica-
tion optimisation across a sequence of loop nests. The objective function which our
optimisation algorithm attempts to minimise is communication volume.

The practical importance of maintaining multiple copies ofcertain data is evident:? While this work was carried out, Paul Kelly was a visiting research scientist at the Department
of Computer Science and Engineering, University of California at San Diego, USA.



– The programmer may specify a replicated placement, e.g. throughspread opera-
tions [5], replicated alignments in HPF [8] or flooding operators in ZPL [12].

– If a read-only array is accessed by several processors in a particular subroutine
or loop, it is more efficient to use a broadcast operation, generally O(logP), to
replicate that array than to let processors access the arrayby remote reads, which
would most likely beΘ(P), unless a special scheme, such as proxies [13] is used.

– Arrays may be replicated in order to facilitate parallelisation of a loop nest which
would otherwise be blocked by anti- or output-dependencieson those arrays. This
is a highly effective technique, known asarray privatisation[11].

– In certain circumstances, runtime re-alignments of arrayscan be avoided by replica-
tion. Specifically, mobile offset alignments can be realised through replication [4].

Default strategies. Implementations have typically made the assumption that scalars
are replicated everywhere (e.g. HPF [8]), or sometimes moregenerally, that when
mapped onto a higher-dimensional processor grid, lower-dimensional arrays are repli-
cated in those dimensions where their extent is 1 (e.g. our own work [2]). There are
other possible default strategies for choosing which arrays and scalars to replicate.
However, while such a uniform default layout might conceivably be optimal in some
circumstances, it is commonly much more efficient (as we showin an example shortly)
to choose whether and how to replicate each value according to context.

Motivation. The key performance benefits from optimising data replication arise from:

1. Replacing All-Reduce Operations with Simple Reductions.
A reduction which leaves its result in replicated form on allparticipating proces-
sors is known as an all-reduce. On most platforms, all-reduce operations are signif-
icantly more expensive than simple reductions; their complexity generally is that of
a simple reduction followed by a broadcast. This is illustrated in Figure 1. Kumar
et al. [9] show that theoretically-better implementationsdo exist, but they require at
least the connectivity of a hypercube with two-way communication links. We there-
fore frequently have the opportunity of a significant performance gain by making
an optimal choice about whether the result of a reduction is replicated or not.

2. Reducing the Cost of Residual Affine Communications.
In many programs, it is not possible to find a set of affine alignments which elimi-
nate all redistributions. However, the cost of these residual affine communications
will be less if the data being communicated is not replicated.

Concrete instances of these two optimisations are illustrated in the working example
introduced at the end of this section.

Background: DESO BLAS Library. Although this work is applicable to compile-
time optimisation, it has been developed and implemented inthe context of our delayed
evaluation, self-optimising (DESO) library [2] of parallel numerical routines (mainly
level 1 and 2 BLAS [10]). This library uses delayed evaluation — more details will be
given in Section 3 — to capture the calling program’s data flowand then performs run-
time interprocedural data placement optimisation. Finding algorithms efficient enough
for use at run-time is a key motivation for our work.
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Fig. 1. Performance comparison of simple reduction and all-reduce(reduction over addition,
1 scalar per processor).Left: Cluster of 350MHz Pentium II workstations, running Linux 2.0.36
(TCP patched), connected by 100Mb/s ethernet and usingmpich-1.1.1. Right: Fujitsu AP3000
MPP: Nodes are 300 MHz UltraSPARC, connected by 200 MB/s AP-Net. Averages of 100 runs;
for both platforms, 5% of peak values were left out. In both cases, all-reduce takes roughly twice
as long as reduce. Further, the figures illustrate that the performance of all-reduce is on these two
platforms the same as that of a simple reduction followed by abroadcast.

Contributions of this paper. We propose a technique for optimising data replication:

– We describe a mathematical representation for replicationwhich takes the form of
an invertible mapping. We argue that this property is key to making data replication
amenable to good mathematical optimisation algorithms.

– We describe an optimisation algorithm, based on this representation, which per-
forms interprocedural data placement optimisation over a sequence of loop nests.

– We argue that our optimisation algorithm is efficient enoughto be used in a runtime
system.

Our optimisation algorithm works from aggregate loop nestswhich have been paral-
lelised in isolation. We do not address any parallelism vs. replication trade-offs; we
assume that decisions about which arrays have to be privatised for parallelisation have
been taken separately.

The paper builds on related work in the field of optimising affine alignment, such
as [5, 6]. Chatterjee et al. [4] provides a key point of reference for our work and we
evaluate our work in comparison to their approach at the end of the paper in Section 5.

Overview of this Paper. After the final section of this introduction, which presentsan
example to illustrate the potential performance benefits ofoptimising replication, Sec-
tion 2 describes our proposed representation for data replication. In Section 3, we de-
scribe an algorithm for interprocedural optimisation of data replication, which is based
on the representation from the previous section. Section 4 discusses evaluation of our
work using our DESO library of parallel numerical routines.Finally, Section 5 reviews
related work and Section 6 concludes.

Example: Conjugate Gradient. Consider the sequence of operations from the first
iteration of the conjugate gradient algorithm which is shown in Figure 2. By far the most
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Fig. 2. Sequence of operations from the conjugate gradient iterative algorithm for solving linear
systemsAx= b, showing data layout on a mesh of processors. Affine alignment has already been
optimised in both examples.

compute-intensive part of this algorithm is the vector-matrix productq=Ap. On a mesh
of processors, this can be parallelised in two dimensions aslong as every row of the
processor mesh has a private copy of vectorp. It would not be profitable to reconfigure
the processor mesh as a ring for the remaining vector-vectoroperations; rather, the
easiest unoptimised solution is to block all vectors, in replicated form, over the rows (or
columns, in the case ofq) of the mesh. Similarly, scalars are replicated on all processors.
As illustrated in the left-hand part of Figure 2, the resulting communications are 3 all-
reduce operations and one transpose ofO(NP) data. However, this can be optimised: the
solution in the right-hand part of Figure 2 keeps replicatedonly those scalars and vectors
which are involved in updating vectorp. This leads to the following optimisations:

– We replace all-reduce operations with simple reductions and then choose optimum
points to broadcast data which is required for updating replicated vectors. On many
platforms, this will save a broadcast operation.

– Further, the transpose operation which is necessary to align q and p for the dot-
productα = q:p now only has to communicateO(N) data and involves 2P� 1
rather thanP2�P processors.

Our choice of unoptimised implementation is arguably somewhat arbitrary; the point
is that unless replication is incorporated into the data placement optimisation process,
optimisations like these will be missed. Note also that we can improve further still
on the solution shown here by choosing a skewed affine placement for q. Detecting
this automatically requires our optimiser to take account of both affine alignment and
replication. We will address this issue again when we discuss future work in Section 6.



2 Representing Data Replication

In this section, we introduce our representation for data replication. Our objective has
been to develop a representation which is both efficient to implement and which facili-
tates efficient optimisation.

2.1 Overview of Data Placement for Data Parallel Programs

Our starting point is the typical data parallel two-stage approach of a mapping onto
virtual processors followed by a distribution of virtual processors onto physical ones.
The notion of a virtual processor grid is equivalent to that of a template, as described
by Chatterjee et al. [5].

Weaugmentthe dimensionality of all arrays in an optimisation problemto the high-
est number of dimensions occurring in that problem. This is apurely conceptual step
which does not imply any data movement and it is equivalent tothe concept that a
template is a Cartesian grid of “sufficiently high dimension” into which all arrays can
be mapped [5]. If we wish to map anN-vector over a two-dimensional processor grid,
we conceptually treat this vector as a(1;N) matrix1. Scalars are handled in the same
way, so a scalar would be treated as a(1;1)-array when mapped onto the same grid.
Following augmentation, our representation for data placement consists of three stages:

1. Replication descriptorsallow us to represent the replication of arrays in any di-
mension where their extent is 1. We describe these descriptors in detail later in this
section.

2. Affine alignment functionsact on augmented, replicated array index vectorsi and
map them onto virtual processor indices. They take the form

f (i ) = Ai+ t . (1)

The alignment function for mapping a row vector over the rowsof a processor mesh
is f (i) = �

1 0
0 1

�
i+�

0
0

�
. Note that this representation allows us to capture axis, stride

and offset alignment as defined in [5]. Some approaches [5, 8]limit the nature of
the matrixA, such as to require exactly one non-zero entry per column andno
more than one non-zero entry per row. The only restriction weimpose on these
alignment functions is that they be invertible. Thus, we canrepresent skewings, as
well as simple permutations for axis alignments.

3. Distribution or folding functions map virtual processor index vectors onto pairs of
physical processor and local indices. We currently use the well-known symbolic
representationsblock, collapsed (*) andcyclic(N) as distribution functions. No-
tice that folding allows us to “serialise” some of the replication we may have intro-
duced in step 1, leaving no more than one copy of each array perphysical processor.

1 We always add dimensions in initial positions. Thus, when augmenting anN-vector to 2 di-
mensions, we always treat it as a(1;N) matrix, never as a(N;1) matrix.



Properties of Affine Alignment Functions. The affine alignment functions we have
described above have two properties which facilitate efficient implementation and opti-
misation:invertibility andclosure under composition.

– Invertibility means that, given an affine alignment function, we can always calculate
both which virtual processor holds a particular array element, and also, which array
element is held by a particular virtual processor. This property facilitates sender-
initiated communication, an important optimisation on distributed-memory archi-
tectures.

– Further, given the above properties and two affine alignmentfunctions f andg for
an array, we may always calculate aredistributionfunction r = f�1 Æg, which is
itself an affine function (invertibility gives us the existence of f�1 and closure un-
der composition thatr is affine). As we will discuss in more detail in Section 3, this
property facilitates efficient optimisation. We define a weight functionw, which
returns an estimate of the amount of data movement generatedby r. The optimi-
sation problem we need to solve is then to minimise, over all edges in a DAG, the
sum of weightsw(r) associated with the redistributionsr along the edges, subject
to placement constraints. Examples for this approach are [2,6].

2.2 Replication Descriptors

Our aim in designing descriptors for data replication has been to re-use as much pre-
vious work on optimising affine alignment as possible; we have therefore required that
our descriptors have both the above-mentioned properties of invertibility and closure
under composition. The advantages become apparent in Section 3 where we outline our
optimisation algorithm.

Let dv be the number of dimensions of an array after augmentation (i.e. the number
of dimensions of the virtual processor grid). LetV be the index space of the array after
augmentation and letVn be the set of all possible index values in dimensionn of V. Let
i be an array index vector. We define( ; ) to be a constructor function which takes two
dv�dv matricesD1, D2 and returns a function(D1;D2), where(D1;D2) i = D1 �Solve(D2; i ) . (2)

Solve(M;v ), whereM is a matrix andv a vector, is the set of solutions to the equation

Mx= v, i.e. Solve(M;v ) def= fx j Mx= v g. This is also known as the pre-image ofM.

Definition 1 (Copy Function). We now define a replication or copy function c to be(D1;D2), where D1, D2 are dv�dv matrices, and we have

c i
def= (D1;D2) i= D1 �Solve(D2; i )= fD1x j D2x= i and x2Vg .

(3)

Matrix D2 is used to generate sets of locations to copy data to;D1 is used to collapse
sets. We first give one preliminary example and then prove that this definition does
indeed meet the properties which we require. Further examples and rationale follow.



Example 1.The copy function for replicating a vector down the columns of a processor
mesh is

��
1 0
0 1

� ;�0 0
0 1

��
. Note that the vectorx is a row-vector, i.e. a(1;n) array. Its first

index value is therefore always 0. Thus, we have:�
1 0
0 1

� �Solve(�0 0
0 1

� ; i ) = fx j �0 0
0 1

�
x= �

0
i

� ;x2Vg
H= fx j �0 0

0 1

�
x= 0;x2Vg+ �0

j

�= f�x1
0

� j x1 2V1g+ �
0
i

�= f(x1
i ) j x1 2V1g .

The second equality, marked H, is due to the homomorphism theorem [7]. We will
expand shortly. Each vector elementi, which after augmentation corresponds to

�
0
i

�
,

therefore gets mapped to all virtual processor indices in its column.

Remark 1.The only formal restriction which we have imposed on the matricesD1 and
D2 in a replication descriptor is that their dimensions aredv�dv. However, we do not
lose any expressive power in practice by only usingdiagonalmatrices: A skewed repli-
cation such as

��
1 0
0 1

� ;�1 �1
0 0

��
can always be achieved by using a replication descriptor

consisting of diagonal matrices
��

1 0
0 1

� ;�0 0
0 1

��
together with a skewed affine alignment

function f (i) = �
1 0
1 1

�
i+ �

0
0

�
.

Proposition 1. The composition of two copy functions c1 = (D1;D2), c2 = (E1;E2) is

c1Æc2 = (D1 �E1; E2 �D2) . (4)

Proof. We have(c1Æc2) (i ) = c1 ( fE1x j E2x= i;x2Vg )= fD1y j D2y= E1x; E2x= i; y;x2Vg= fD1E1y j D2y= x; E2x= i; y;x2Vg= fD1E1y j E2D2y= i; y2Vg . ut
Proposition 2. The composition of two copy functions is again a copy function.

Proof. Follows from the fact that the product of twodv�dv matrices is adv�dv matrix.

Proposition 3. If the matrices D1 and D2 contain identical entries in corresponding
locations, we may “cancel” those entries by replacing them with 1 in both matrices.

Proof. We examine the one-dimensional case. Letd1, d2 be arbitrary scalars. Thus, we
have(d1;d2) i = d1 �Solve(d2; i ). If we now assume thatd1 = d2, we have(d1;d2) i = d1 �Solve(d1; i )= fd1x j d1x= i g= fi g= (1;1) i .

(5)

The multidimensional case easily follows. Note that this type of “cancellation” even
applies if the identical corresponding entries are zeros. ut



Proposition 4. The inverse of a copy function c= (D1;D2) is

c�1 = (D2;D1) . (6)

Proof. cÆ c�1 = (D1D2;D1D2). Therefore, the two matrices incÆ c�1 are identical,
which means that according to Proposition 3, we can replace all entries with 1, so we
havecÆc�1 = (I ; I). ut
Rationale. The first problem that had to be addressed when trying to represent replica-
tion is that a one-to-many “mapping” is not a function. The first idea in trying to work
around this problem was to represent the “inverse replication” function instead, i.e., a
many-to-one mapping. Given such an inverse functionf , we have to solve equations of
the form f (x) = i in order to establish which virtual processors the data element with
index vectori is replicated on.

Since we wish to optimise at runtime, the second challenge was to ensure that these
equations can be solved very efficiently; in particular, their solution complexity should
not depend on either array data size or processor numbers. Wemake use of the homo-
morphism theorem [7]: Formally, an equation is a pair( f ;y) of a function f : D�! R
and an elementy of R. Thesolutionof ( f ;y) is the setfx2 D j f (x) = yg. Thekernel
of f is the solution to( f ;0R): Kern f = fx2 D j f (x) = 0Rg. If a function f is a homo-
morphism, it may not be invertible, but, we can make a very useful statement about the
nature of the solution to all equations of the form( f ;y) with y2 R: the homomorphism
theorem states that for ally2 R,

Solve( f ;y) = fx2 D j f (x) = yg= Kern f +y . (7)

This means that although we may not be able to formulate an inverse for such a function,
we need only solveoneequation, the kernel, in order to be able to state the solutions
to all possible equations involving this function: they may then be calculated by simple
addition. The requirement that the inverse copy function bea homomorphism meant
choosing a vector-matrix product, i.e. multiplication by the matrixD2 in our replication
descriptor.

Finally, since the inverse copying homomorphismsD2 are not invertible, we cannot
use them to represent collapsing, i.e. a change from replicated to non-replicated place-
ment. We therefore use a pair(D1;D2) of matrices. Multiplying the solutions to the
equationD2x= i by D1 allows us to represent collapsing.

Intuition. Our construction of an invertible representation for data replication is in
many aspects analogous to the construction of rational numbers from integers, which
is prompted by the lack multiplicative inverses inZ. In both cases, the answer is to
use a pair (fraction) of elements. Note also the parallel nature of the definitions for
composition (multiplication) and inverse, and the notion of ‘cancel and replace with 1’.
One important difference, though, is that since we are dealing with finite sets of numbers
(index vector spaces), having zeros in the right hand component (‘denominator’) does
not cause problems.



2.3 Examples

1. The copy function for replicating a scalar on column 0 of a processor mesh is��
1 0
0 1

� ;�0 0
0 1

��
(see Example 1).

2. The copy function for replicating a scalar on row 0 of a meshof processors is��
1 0
0 1

� ;�1 0
0 0

��
.

3. Theredistributionfunction for changing the placement of a scalar from replicated
on column 0 to replicated on row 0 is

��
0 0
0 1

� ;�1 0
0 0

��
.

4. We conclude with a more complicated example: Suppose we have ann�n matrix
distributed(block, block) over a p� p processor mesh, and that we wish to
replicate anm-element vector on every processor, i.e., ‘align’ the entire vector with
every n

p� n
p block of the matrix. We can represent such a placement. We augment

the virtual processor space dimensions to 3, treating the matrix as 1�n� n, and
then choose the following placement descriptors:

Matrix : Vector:

Replication :
��

1 0 0
0 1 0
0 0 1

� ;�1 0 0
0 1 0
0 0 1

��
Replication :

��
1 0 0
0 1 0
0 0 1

� ;�1 0 0
0 0 0
0 0 0

��
Affine : f (i ) = �

1 0 0
0 1 0
0 0 1

�
i +�

0
0
0

�
Affine : f (i ) = �

0 1 0
0 0 1
1 0 0

�
i +�

0
0
0

�
Folding :(*, block, block) Folding :(*, *, *)

The point here is that although we cannot replicate the vector along a dimension
where its data extent is more than 1, we can use a combination of augmentation,
affine permutation of axes, replication along those axes which after permutation
have an extent of 1 and collapsed distribution to represent the same effect.

Summary. We have presented a powerful and efficient, invertible mathematical repre-
sentation for data replication in data parallel programs. We have illustrated that we can
represent a wide range of replicated data placements. We will discuss related work, in
particular by Chatterjee et al. [4] in Section 5.

3 Optimisation

We have developed the techniques described in this paper in the context of a delayed
evaluation, self-optimising (DESO) library of parallel numerical routines. The library
uses delayed evaluation of library operators to capture thecontrol flow of a user pro-
gram at runtime. This is achieved through wrappers round theactual parallel numerical
routines. When we encounter aforce point(a point in the user program where evalua-
tion of our library calls can be delayed no longer, such as when output is required), we
call our interprocedural data placement optimiser on the DAG of library calls that has
been accumulated.

We have previously described [2] and implemented an affine alignment optimisation
algorithm, loosely based on that of Feautrier [6]. In this following section, we outline
an algorithm for optimising replication. We make use of the invertibility and closure



properties of our replication descriptors so that this algorithm follows a very similar
pattern to our affine alignment optimisation algorithm.

It is not possible within the confines of this paper to give an exhaustive descrip-
tion of our optimisation algorithm; we will therefore focuson describing key enabling
techniques for our algorithm which rely on the replication representation described in
Section 2: metadata for operators, redistributions and redistribution cost.

3.1 Library Operator Placement Constraints

Our library operators have one or more parallel implementations. Each of these imple-
mentations is characterised by a set of placement constraints (metadata) that constrain
our search during optimisation. In our case, these have beenprovided by the library im-
plementor; however, they could also have been computed by a compiler. Note that each
call to a library operator forms a node in the DAG we are optimising. Our library oper-
ators therefore precisely correspond to single statementsin the compile-time alignment
optimisation approach of Chatterjee [5], where nodes in thegraph represent array oper-
ations. In this paper, we will concentrate on those placement constraints which describe
replication.

– The replication placement constraints for library operators describe theplacement
relationshipbetween the result and the operands. For a library operator which de-
fines an arrayy, reading arrayx, we denote the replication descriptor for the result
y by cy and the descriptor for the operandx by cyx . For example, for thedaxpy loop
y αx+y, we have

cyx = ��
1 0
0 1

� ;�1 0
0 1

��Æcy cyα = ��
1 0
0 1

� ;�1 0
0 0

��Æcy . (8)

This means that the input vectorx always has the same degree of replication as the
resulty, while α has replication along dimension 1 added to the placement ofy.

– Thus, when doing a vector update the result of which is required in non-replicated
form, the chosen replication placements will be that the input vectorx is not repli-
cated, whileα is replicated along row 0 of a processor mesh.
However, when the required placement for the result is replicated on all rows of a
processor mesh, i.e,cy = ��

1 0
0 1

� ;�0 0
0 1

��
, then we can work out the resulting place-

ments for the operandsx andα as follows:

cyx = ��
1 0
0 1

� ;�1 0
0 1

��Æ ��1 0
0 1

� ;�0 0
0 1

��
cyα = ��

1 0
0 1

� ;�1 0
0 0

��Æ ��1 0
0 1

� ;�0 0
0 1

��= ��
1 0
0 1

� ;�0 0
0 1

�� = ��
1 0
0 1

� ;�0 0
0 0

��
.

Thus,x will now be replicated on every row of the processor grid, while α is repli-
cated on every processor.

– When our optimiser changes the placement of one of the operands or of the result of
any node in a DAG, it can use these placement constraints to re-calculate the place-
ments for the other arrays involved in the computation. Library operators also have
to adapt dynamically their behaviour so as to always comply with their placement
constraints.



3.2 Calculating Required Redistributions

While accumulating a DAG, our library assigns placements tolibrary operands accord-
ing to the default scheme mentioned in Section 1: when aligned with higher-dimensio-
nal arrays, lower-dimensional arrays are replicated in dimensions where, after augmen-
tation, their extent is 1. In particular, this means that scalars are by default replicated on
all processors.

Once a DAG has been accumulated and is available for optimisation, our algorithm
begins by calculating the requiredreplication redistributionsbetween the placements
of arrays at the source and sink of all edges in the DAG. We denote nodesin a DAG
by the values they calculate. For an edgea�! b, we denote the replication descriptor
(copy function) ofa at the source byca and the copy function at the sink bycab . The
replication redistribution functionra!b for this edge is defined byca = ra!b Æ cab and
may be calculated asra!b = ca Æc�1

ab .

3.3 Cost Model for Redistributions

We define thesize vector Na of an arraya to be the vector consisting of the array’s data
size in all dimensions, so for ann�mmatrixM, we haveNM = ( n

m). We define the data
volumeVa of a asVa = ∏06i6dv Na[i℄, in other words,Va is the total data size ofa. Let
P be the vector consisting of the physical processor grid’s size in all dimensions. Given
these definitions, we may build a reasonably accurate model of communication cost
for a replication redistributionfunctionra!b = (D1;D2) as follows: We first calculate
which dimensionsi, 06 i 6 dv are replicated byra!b. We then define the cost, or
weight, of the edgea�! b as

Wa!b = ∑
06i6dv

dimensioni replicated

Cbcast(Pi ;Va) , (9)

whereCbcast(p;m) is the cost of broadcasting an array of sizem over p processors. On
typical platforms, we haveCbcast(p;m) � (ts+ twm) logp, with ts being the message
startup time andtw per-word transfer time.

The key aspect of this cost model is that it takes account of both the data size and the
number of processors involved in broadcast operations thatmay result from replication
redistributions.

3.4 The Algorithm

Given that our replication descriptors now have the same essential properties as our
affine alignment descriptors, the same algorithm which we have previously described
for affine alignment optimisation [2] applies. It is originally based on the algorithm
proposed by Feautrier in [6].

1. We select the edge with the highest weight. Suppose this isan edgea! b.
2. We change the distribution at thesinkof the edge such that the redistributionra!b

is avoided, i.e., we substitutecab  ca. We then use the constraint equations at
nodeb for calculating the resulting placement ofb and any other operands and
forward-propagatethis change through the DAG.



3. We check the weight of the DAG following the change. If the weight has gone up,
we abandon the change and proceed to step 4. If the weight has gone down, we
jump to step 6.

4. We change the distribution at thesourceof the edge by substitutingcb cab . We
update the placements of the operands at nodea and backwards-propagatethe
change through the DAG.

5. We check the weight of the DAG. If it has gone up, we abandon the change and
mark the edgea! b as “attempted”. Otherwise, we accept the change.

We stop optimising if the weight of the DAG becomes zero. This, however, is rare. Oth-
erwise, we iterate the algorithm a fixed, small number of times each time we encounter
a particular context, attempting to eliminate the costliest remaining residual communi-
cation. This is particularly suitable for runtime systems where we wish to only spend a
strictly limited time optimising whenever the algorithm isinvoked.

Once we have begun optimising, we use our value numbering scheme [2] for recog-
nising previously encountered contexts and no longer use our default placement strat-
egy for such nodes, but rather use the results of the last optimisation. Thus, we have the
chance of improving on a placement scheme every time a particular context is encoun-
tered.

Summary. The fact that our replication descriptors have two key properties means that
we have been able to propose an algorithm for optimising datareplication which is ex-
actly analogous to our previous affine alignment optimisation algorithm. The algorithm
aims to minimise the overall communication cost arising from data replication. It works
incrementally, attempting to eliminate the costliest communications at each stage. We
review related work in Section 5.

4 Evaluation

We have implemented the techniques described in this paper in our DESO library of
parallel linear algebra routines. In this section, we show performance results for an im-
plementation of the Conjugate Gradient iterative algorithm [1] which uses our library
(see [2] for a source code sample). Table 1 splits the overalltime spent by our bench-
mark into different categories; in particular,point-to-pointcommunication accounts for
transpose operations andcollectivecommunication for reductions and broadcasts.

– We achieve very encouraging parallelisation speedup: 13.03 for 16 processors.
– Affine alignment optimisation alone achieves a reduction bya factor of about 2 in

point-to-point communication.
– Performing the replication optimisation algorithm from this paper in addition to

affine alignment optimisation results in a further factor 2.0–2.8 reduction in point-
to-point communication. In addition, collective communication is decreased by
about 10%. The two key motivations for this work were that handling replication
correctly results in cheaper affine realignments and in fewer broadcasts.



P Compu- Runtime Communication Optimi- Total O-SpeedupP-Speedup
tation Overhead Pt-to-Pt Collective sation Σ

N 1 4351.92 7.10 0.00 0.24 0.00 4359.26 1.00 1.00
A 1 4359.11 7.22 0.00 0.25 6.43 4372.99 1.00 1.00
R 1 4340.46 7.39 0.00 0.25 11.01 4359.11 1.00 1.00
N 4 1108.62 12.00 57.18 95.85 0.00 1273.66 1.00 3.42
A 4 1114.36 10.77 28.78 80.89 6.85 1241.64 1.03 3.52
R 4 1095.75 10.21 12.63 60.12 16.41 1195.12 1.07 3.65
N 9 467.35 11.77 51.28 83.90 0.00 614.30 1.00 7.10
A 9 464.51 11.52 27.08 72.49 7.12 582.71 1.05 7.50
R 9 463.53 10.57 14.32 65.29 16.64 570.34 1.08 7.64
N 16 238.28 12.50 41.22 72.82 0.00 364.81 1.00 11.95
A 16 237.94 12.01 25.00 62.88 7.17 345.00 1.06 12.68
R 16 235.07 10.09 8.92 64.22 16.18 334.48 1.09 13.03

Table 1. Time in milliseconds for 10 iterations of conjugate gradient, with a 3600� 3600 pa-
rameter matrix (about 100 MB) on varying numbers of processors. N denotes timings without
any optimisation,A timings with affine alignment optimisation only, andR timings with affine
alignment and replication optimisation.O-Speedupshows the speedup due to our optimisations,
and P-Speedupthe speedup due to parallelisation. The platform is a cluster of 350MHz Pen-
tium II workstations with 128MB RAM, running Linux 2.0.36 (TCP patched), connected by
two channel-bonded 100Mb/s ethernet cards per machine through a Gigabit switch and using
mpich-1.1.1. Averages of 10 runs; the standard deviation is about 1% of the reported figures.

– The data in Table 1 were obtained with optimisation running on every iteration of
the CG loop. The optimisation times we achieve show that firstly, our replication
algorithm takes roughly the same time as affine alignment optimisation, and, sec-
ondly, that it is feasible to execute both at runtime in this way. However, we have
previously described a technique [2] that allows us tore-usethe results of previ-
ous optimisations at runtime. Applying this technique herewill cause the overall
optimisation time to become insignificant. We plan to implement this shortly.

– Conjugate Gradient hasO(N2) computation complexity, but onlyO(N) commu-
nication complexity. This means that for relatively small numbers of processors
with a fairly large problem size, such as in Table 1, the overall speedups that can
be achieved by optimising communication are small. We expect our optimisations
to have greater overall benefit on more fine-grain problems and problems with a
higher communication complexity.

5 Related Work

Affine Alignment Optimisation.Feautrier [6] proposes a compile-time method for au-
tomatic distribution which works for static-control programs. This method minimises
communication betweenvirtual processors, i.e. it deals with the affine alignment stage
of parallel data placement only. The method does not addressreplication; for lower-
dimensional loops, some processors are assumed to remain idle. Further, the placement



functions in [6] are static. In contrast, our method allows for dynamic realignments
and dynamic changes in replication, and will attempt to schedule such operations in an
optimal way.

Chatterjee et al. [5] give a comprehensive theoretic treatment of the alignment prob-
lem, including axis-, stride- and offset-alignment. Our affine alignment descriptors are
very similar to those of Chatterjee et al., though we impose slightly fewer restrictions.

Optimising Replicated Alignments.To our knowledge, the only previous work on opti-
mising replicated alignments is by Chatterjee et al. [4]. They use a representation which
permits replicating data not just on entire template axes, but also on subsets of template
axes. However, this refinement is not taken into account in their optimisation algorithm.
On the other hand, it appears that our use of augmentation, together with carefully cho-
sen alignment, permits us to handle a range of replication patterns, as illustrated in Sec-
tion 2.3 which the representation in [4] was not intended for. We consider the strongest
point of our representation to be the two properties of closure under composition and
invertibility.

Chatterjee et al. propose to use replication labelling, where data is labelled either
replicated or non-replicated, and network flow is used to findan optimal labelling. In
comparison, we use a more finely differentiated representation and cost model for repli-
cation. While Chatterjee et al. therefore solve a slightly simpler problem than we do,
their proposed algorithm finds the optimum solution to the problem as they formulate it.
Our algorithm, solving a harder problem, is heuristic and incremental, seeking to elim-
inate the costliest communications as quickly as possible.This makes our algorithm
particularly suitable to runtime optimisation, without restricting its potential of finding
the optimum solution with a larger investment in time.

6 Conclusion

We have presented an efficient technique for optimising datareplication:

– We propose a mathematical representation for replication which satisfies the prop-
erties of closure under composition and invertibility.

– These two properties of our replication descriptors allow us to propose an opti-
misation algorithm for data replication which is exactly analogous to previously
published algorithms for optimising affine alignment.

– Our optimisation algorithm is efficient enough to be used in aruntime system,
but we believe that its simplicity should also make it attractive for compile-time
optimisers.

Future Work. This work can be extended in a number of ways. By taking account
of affine placements while optimising replication, and vice-versa, we should be able to
detect overall placement strategies which are more efficient still than what we can obtain
by optimising both separately. For example, using skewed placements for the results of
non-replicated reductions may allow us to eliminate some affine re-alignments which
appear inevitable when the result of the reduction is replicated.



Through most of this paper we have assumed a two-dimensionalprocessor ar-
ray. This works well for BLAS, but we should evaluate our techniques for the one-
dimensional and higher-dimensional cases. A more difficultissue is how to mix differ-
ent processor arrangements within a single computation.
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