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Abstract. In this paper, we present an efficient technique for optimgisiata

replication under the data parallel programming model. \M@@se a precise
mathematical representation for data replication whitbwad handling replica-

tion as an explicit, separate stage in the parallel dateepiaat problem. This
representation takes the form of an invertible mapping. Weethat this prop-
erty is key to making data replication amenable to good rmatiieal optimisa-

tion algorithms. We further outline an algorithm for optsinig data replication,
based on this representation, which performs interpraeddata placement op-
timisation over a sequence of loop nests. We have implerdéhésalgorithm and
show performance figures.

1 Introduction

Choosing parallel data placements which minimise comnatioin is key to generating
efficient data parallel programs. Under the data paralleyramming model, parallel
data placement is typically represented by a two-stage mgpjm the first stage, an
affine alignment function maps array elements onto virtwatessors. In the second
stage, a distribution function then maps virtual proceseato physical ones. Examples
for such a two-stage approach are listed in [5]. This decaitipa fails to account
properly for data replication: rather than using an exptieplication stage, replication
is often handled implicitly as part of the alignment stagetighreplicated alignments
In this paper, we propose an efficient mathematical reptaten for data replication
which expresses replication as an independent third staggrallel data placement.

While a good range of optimisation techniques has been itbestcfor the align-
ment stage, distribution and replication have receives &fention. We argue that the
representation which we propose in this paper is a step tlsvaaking data replica-
tion amenable to the same type of mathematical optimisatigarithms which have
previously been used for alignment optimisation. We dertratesthis assertion by de-
scribing and implementing an algorithm which performsiiptecedural data replica-
tion optimisation across a sequence of loop nests. The tgeftinction which our
optimisation algorithm attempts to minimise is commurimatolume.

The practical importance of maintaining multiple copiegeiftain data is evident:
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— The programmer may specify a replicated placement, e.gugiirspr ead opera-
tions [5], replicated alignments in HPF [8] or flooding optera in ZPL [12].

— If a read-only array is accessed by several processors int@yar subroutine
or loop, it is more efficient to use a broadcast operationegaly O(logP), to
replicate that array than to let processors access the layresmote reads, which
would most likely be®(P), unless a special scheme, such as proxies [13] is used.

— Arrays may be replicated in order to facilitate parallgiiza of a loop nest which
would otherwise be blocked by anti- or output-dependeraiethose arrays. This
is a highly effective technique, known agay privatisation[11].

— In certain circumstances, runtime re-alignments of arcaysbe avoided by replica-
tion. Specifically, mobile offset alignments can be reaigeough replication [4].

Default strategies. Implementations have typically made the assumption trelbse
are replicated everywhere (e.g. HPF [8]), or sometimes ngereerally, that when
mapped onto a higher-dimensional processor grid, lowsedsional arrays are repli-
cated in those dimensions where their extent is 1 (e.g. omrwark [2]). There are
other possible default strategies for choosing which arr@yd scalars to replicate.
However, while such a uniform default layout might concbiyabe optimal in some
circumstances, itis commonly much more efficient (as we sham example shortly)
to choose whether and how to replicate each value accordiogrtext.

Motivation. The key performance benefits from optimising data replicedirise from:

1. Replacing All-Reduce Operations with Simple Reductions.
A reduction which leaves its result in replicated form ongtticipating proces-
sors is known as an all-reduce. On most platforms, all-redperations are signif-
icantly more expensive than simple reductions; their cexipf generally is that of
a simple reduction followed by a broadcast. This is illugtdain Figure 1. Kumar
et al. [9] show that theoretically-better implementatidosexist, but they require at
least the connectivity of a hypercube with two-way commatian links. We there-
fore frequently have the opportunity of a significant pemiance gain by making
an optimal choice about whether the result of a reductioapicated or not.

2. Reducing the Cost of Residual Affine Communications.
In many programs, it is not possible to find a set of affine alignts which elimi-
nate all redistributions. However, the cost of these redidffine communications
will be less if the data being communicated is not replicated

Concrete instances of these two optimisations are illtesiran the working example
introduced at the end of this section.

Background: DESO BLAS Library. Although this work is applicable to compile-
time optimisation, it has been developed and implement#uticontext of our delayed
evaluation, self-optimising (DESO) library [2] of pardlleumerical routines (mainly
level 1 and 2 BLAS [10]). This library uses delayed evaluatie more details will be
given in Section 3 — to capture the calling program’s data #ma then performs run-
time interprocedural data placement optimisation. Figdilgorithms efficient enough
for use at run-time is a key motivation for our work.
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Fig. 1. Performance comparison of simple reduction and all-redveduction over addition,
1 scalar per processob)eft: Cluster of 350MHz Pentium Il workstations, running Linud 36
(TCP patched), connected by 100Mb/s ethernet and ugingh- 1. 1. 1. Right: Fujitsu AP3000
MPP: Nodes are 300 MHz UltraSPARC, connected by 200 MB/s AR-Alverages of 100 runs;
for both platforms, 5% of peak values were left out. In botbe= all-reduce takes roughly twice
as long as reduce. Further, the figures illustrate that tHfenpeance of all-reduce is on these two
platforms the same as that of a simple reduction followed bsoadcast.

Contributions of this paper. We propose a technique for optimising data replication:

— We describe a mathematical representation for replicatinich takes the form of
an invertible mapping. We argue that this property is key &kimg data replication
amenable to good mathematical optimisation algorithms.

— We describe an optimisation algorithm, based on this remtesion, which per-
forms interprocedural data placement optimisation ovemrgence of loop nests.

— We argue that our optimisation algorithm is efficient enotgghe used in a runtime
system.

Our optimisation algorithm works from aggregate loop negtéch have been paral-
lelised in isolation. We do not address any parallelism egplication trade-offs; we
assume that decisions about which arrays have to be peddiis parallelisation have
been taken separately.

The paper builds on related work in the field of optimisingredfalignment, such
as [5, 6]. Chatterjee et al. [4] provides a key point of refieeefor our work and we
evaluate our work in comparison to their approach at the étiteqpaper in Section 5.

Overview of this Paper. After the final section of this introduction, which preseats
example to illustrate the potential performance benefitsptifnising replication, Sec-
tion 2 describes our proposed representation for datecegn. In Section 3, we de-
scribe an algorithm for interprocedural optimisation ofedigeplication, which is based
on the representation from the previous section. Sectioiseugses evaluation of our
work using our DESO library of parallel numerical routinE®ally, Section 5 reviews
related work and Section 6 concludes.

Example: Conjugate Gradient. Consider the sequence of operations from the first
iteration of the conjugate gradient algorithm which is shawFigure 2. By far the most
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Fig. 2. Sequence of operations from the conjugate gradient iteratgorithm for solving linear
systemdAx = b, showing data layout on a mesh of processors. Affine alighimenalready been
optimised in both examples.

compute-intensive part of this algorithm is the vector#imgiroductqg = Ap. On a mesh

of processors, this can be parallelised in two dimensiorierag as every row of the
processor mesh has a private copy of vegtdt would not be profitable to reconfigure
the processor mesh as a ring for the remaining vector-veqerations; rather, the
easiest unoptimised solution is to block all vectors, idicaped form, over the rows (or
columns, in the case o of the mesh. Similarly, scalars are replicated on all pseoes.
As illustrated in the left-hand part of Figure 2, the resigtcommunications are 3 all-
reduce operations and one transpo@(@® P) data. However, this can be optimised: the
solution in the right-hand part of Figure 2 keeps replicately those scalars and vectors
which are involved in updating vect@ This leads to the following optimisations:

— We replace all-reduce operations with simple reductiomkthan choose optimum
points to broadcast data which is required for updatingeetgd vectors. On many
platforms, this will save a broadcast operation.

— Further, the transpose operation which is necessary ta glnd p for the dot-
producta = g.p now only has to communicat®(N) data and involvesR— 1
rather tharP? — P processors.

Our choice of unoptimised implementation is arguably sohsvarbitrary; the point
is that unless replication is incorporated into the datagai@ent optimisation process,
optimisations like these will be missed. Note also that we icaprove further still
on the solution shown here by choosing a skewed affine platefoeq. Detecting
this automatically requires our optimiser to take accodritath affine alignment and
replication. We will address this issue again when we diséutsire work in Section 6.



2 Representing Data Replication

In this section, we introduce our representation for dapdigation. Our objective has
been to develop a representation which is both efficient dément and which facili-
tates efficient optimisation.

2.1 Overview of Data Placement for Data Parallel Programs

Our starting point is the typical data parallel two-stagprapch of a mapping onto
virtual processors followed by a distribution of virtualogessors onto physical ones.
The notion of a virtual processor grid is equivalent to thiaa template, as described
by Chatterjee et al. [5].

We augmenthe dimensionality of all arrays in an optimisation problenthe high-
est number of dimensions occurring in that problem. This paiieely conceptual step
which does not imply any data movement and it is equivalerihéoconcept that a
template is a Cartesian grid of “sufficiently high dimengiorio which all arrays can
be mapped [5]. If we wish to map afrvector over a two-dimensional processor grid,
we conceptually treat this vector agaN) matrix'. Scalars are handled in the same
way, so a scalar would be treated aflal)-array when mapped onto the same grid.
Following augmentation, our representation for data pteerg consists of three stages:

1. Replication descriptorallow us to represent the replication of arrays in any di-
mension where their extent is 1. We describe these deskgilptdetail later in this
section.

2. Affine alignment functionact on augmented, replicated array index vectansd
map them onto virtual processor indices. They take the form

f(i)=Ai+t . 1)

The alignment function for mapping a row vector over the roia processor mesh
is f(i)=(59)i+ (). Note that this representation allows us to capture axislest
and offset alignment as defined in [5]. Some approaches [Bn&]the nature of
the matrixA, such as to require exactly one non-zero entry per columnnand
more than one non-zero entry per row. The only restrictioninygose on these
alignment functions is that they be invertible. Thus, we gresent skewings, as
well as simple permutations for axis alignments.

3. Distribution or folding functions map virtual processor index vectors onto pairs of
physical processor and local indices. We currently use thiékmown symbolic
representationsl ock, collapsed) andcycl i c(N) as distribution functions. No-
tice that folding allows us to “serialise” some of the reption we may have intro-
duced in step 1, leaving no more than one copy of each arrgyhysical processor.

1 We always add dimensions in initial positions. Thus, whegraenting arlN-vector to 2 di-
mensions, we always treat it aglaN) matrix, never as &N, 1) matrix.



Properties of Affine Alignment Functions. The affine alignment functions we have
described above have two properties which facilitate efficimplementation and opti-
misation:invertibility andclosure under composition

— Invertibility means that, given an affine alignment funatiove can always calculate
both which virtual processor holds a particular array eletryend also, which array
element is held by a particular virtual processor. This propfacilitates sender-
initiated communication, an important optimisation ontidigited-memory archi-
tectures.

— Further, given the above properties and two affine alignrherdtionsf andg for
an array, we may always calculateeaistributionfunctionr = f~1o g, which is
itself an affine function (invertibility gives us the exiatee of f ~* and closure un-
der composition thatis affine). As we will discuss in more detail in Section 3, this
property facilitates efficient optimisation. We define a g¥gifunctionw, which
returns an estimate of the amount of data movement gendrgitedThe optimi-
sation problem we need to solve is then to minimise, overdgkes in a DAG, the
sum of weightsn(r) associated with the redistributionslong the edges, subject
to placement constraints. Examples for this approach afd.[2

2.2 Replication Descriptors

Our aim in designing descriptors for data replication haanbi® re-use as much pre-
vious work on optimising affine alignment as possible; weehiderefore required that
our descriptors have both the above-mentioned propertiewertibility and closure
under composition. The advantages become apparent irn8&tvhere we outline our
optimisation algorithm.

Let dy be the number of dimensions of an array after augmentatiertiie number
of dimensions of the virtual processor grid). Mebe the index space of the array after
augmentation and &, be the set of all possible index values in dimensiafV. Let
i be an array index vector. We defifie ) to be a constructor function which takes two
dy x dy matricesD1, D, and returns a functiofD1,D>), where

(D1,D2) i = Dy - SolvgDy,i ) . )

SolvgM,Vv ), whereM is a matrix ands a vector, is the set of solutions to the equation

Mx=v, i.e. SolvéM,v ) d:ef{x | Mx=v }. This is also known as the pre-imageMf

Definition 1 (Copy Function). We now define a replication or copy function c to be
(D1,D3), where B3, D are d, x dy matrices, and we have

ci ©'(Dy,Dy) i
= D; - SolvéD,,i ) 3)
={Dix| Dox=iand xeV} .
Matrix D, is used to generate sets of locations to copy dat®tds used to collapse

sets. We first give one preliminary example and then provetttia definition does
indeed meet the properties which we require. Further exesrgold rationale follow.



Example 1.The copy function for replicating a vector down the columfa processor
meshis((39),(39)). Note that the vector is a row-vector, i.e. 41,n) array. Its first
index value is therefore always 0. Thus, we have:
(52)-Solve((§2) 1) = {x] (§9)x=(?) xeV}
H
={x] (§2)x=0xeV}+(9)
={(%) I xxeVi}+(9)
={(") [ xaewi} .
The second equality, marked H, is due to the homomorphisoréne [7]. We will

expand shortly. Each vector elementvhich after augmentation corresponds(fd,
therefore gets mapped to all virtual processor indicesinatumn.

Remark 1.The only formal restriction which we have imposed on the inesD; and

D, in a replication descriptor is that their dimensions @re& d,. However, we do not
lose any expressive power in practice by only ugifagonalmatrices: A skewed repli-
cation such ag(3?), (3 ) can always be achieved by using a replication descriptor
consisting of diagonal matricd¢3 9), (39)) together with a skewed affine alignment
functionf (i) = (1 9)i+ ().

Proposition 1. The composition of two copy functions= (D1,D,), ¢c; = (E1,E) is
CioCr = (Dl-El, Eg-Dz) . (4)
Proof. We have
(croc) (i) =c1({Eix| Exx=i,xeV})
= {Dly| DZy: ElX, EZX: i, y,Xe V}
= {DlEly | Doy =X, Epx= i, Y, X EV}
= {DiE1y| E2D2y=1i,y€eV} .

Proposition 2. The composition of two copy functions is again a copy functio
Proof. Follows from the fact that the product of tvdp x dy, matrices is al, x dy matrix.

Proposition 3. If the matrices @ and D, contain identical entries in corresponding
locations, we may “cancel” those entries by replacing theith in both matrices.

Proof. We examine the one-dimensional case. dstd, be arbitrary scalars. Thus, we
have(di,dy) i = d1 - Solvgdy,i). If we now assume that; = d,, we have
(dl,dz) i= dl . SO|V€(d1,i )

= {d1X| dix=i }

={i}

=(1,1)i .
The multidimensional case easily follows. Note that thisetyf “cancellation” even
applies if the identical corresponding entries are zeros. O

(5)



Proposition 4. The inverse of a copy function=e (D1,D>) is
¢ t=(D2,Dy) . (6)

Proof. coc™! = (D1D2,D1D>). Therefore, the two matrices ito ¢~ 1 are identical,
which means that according to Proposition 3, we can replhentiies with 1, so we
havecoc™ = (I,1). O

Rationale. The first problem that had to be addressed when trying to septeeplica-
tion is that a one-to-many “mapping” is not a function. Thetfidea in trying to work
around this problem was to represent the “inverse reptinafiunction instead, i.e., a
many-to-one mapping. Given such an inverse funcfipwe have to solve equations of
the form f(x) =i in order to establish which virtual processors the data efgmwith
index vectori is replicated on.

Since we wish to optimise at runtime, the second challengetavansure that these
equations can be solved very efficiently; in particularjrteelution complexity should
not depend on either array data size or processor numbemnakle use of the homo-
morphism theorem [7]: Formally, an equation is a gdiry) of a functionf : D — R
and an element of R. Thesolutionof (f,y) is the se{x € D | f(x) =y}. Thekernel
of f is the solution tq f,0r): Kernf = {x€ D | f(x) = Or}. If a functionf is a homo-
morphism, it may not be invertible, but, we can make a veryulstatement about the
nature of the solution to all equations of the foffy) with y € R: the homomorphism
theorem states that for ajlle R,

Solveg f,y) ={xeD| f(x) =y} =Kernf+y . @)

This means that although we may not be able to formulate @msefor such a function,
we need only solveneequation, the kernel, in order to be able to state the saisitio
to all possible equations involving this function: they may therchlculated by simple
addition. The requirement that the inverse copy functioratl@®momorphism meant
choosing a vector-matrix product, i.e. multiplication b tmatrixD5 in our replication
descriptor.

Finally, since the inverse copying homomorphidbaesare not invertible, we cannot
use them to represent collapsing, i.e. a change from reéptida non-replicated place-
ment. We therefore use a pdiD1,D>) of matrices. Multiplying the solutions to the
equationDox =i by D1 allows us to represent collapsing.

Intuition. Our construction of an invertible representation for dagglication is in
many aspects analogous to the construction of rational epusrfbom integers, which
is prompted by the lack multiplicative inversesZn In both cases, the answer is to
use a pair (fraction) of elements. Note also the parallelingabf the definitions for
composition (multiplication) and inverse, and the notiéfcancel and replace with 1'.
One important difference, though, is that since we are dgalith finite sets of numbers
(index vector spaces), having zeros in the right hand compofdenominator’) does
not cause problems.



2.3 Examples

1. The copy function for replicating a scalar on column O ofracessor mesh is
((39),(39)) (see Example 1).

2. The copy function for replicating a scalar on row 0 of a meslprocessors is
((5%):(50))-

3. Theredistributionfunction for changing the placement of a scalar from repdida
on column O to replicated on row 0 (¢9 9), (3 9)).

4. We conclude with a more complicated example: Suppose we dran x h matrix
distributed( bl ock, bl ock) over ap x p processor mesh, and that we wish to
replicate anm-element vector on every processor, i.e., ‘align’ the entegctor with
every’ﬂJ X % block of the matrix. We can represent such a placement. Wmany
the virtual processor space dimensions to 3, treating thexnss 1x nx n, and
then choose the following placement descriptors:

Matrix : Vector:

rematon (339).(419)  mestemions((419).(439)
affine: £(i) = (399)i+(8) Affine - £(i) = (882)i+(3)
Folding :(*, bl ock, bl ock) Folding :(*, *, *)

The point here is that although we cannot replicate the vedtmg a dimension
where its data extent is more than 1, we can use a combindtiangmentation,
affine permutation of axes, replication along those axe<hvhiter permutation
have an extent of 1 and collapsed distribution to represersame effect.

Summary. We have presented a powerful and efficient, invertible nratitecal repre-
sentation for data replication in data parallel programs HaVve illustrated that we can
represent a wide range of replicated data placements. Weligéuss related work, in
particular by Chatterjee et al. [4] in Section 5.

3 Optimisation

We have developed the techniques described in this papkeiodntext of a delayed
evaluation, self-optimising (DESO) library of parallelmarical routines. The library
uses delayed evaluation of library operators to capturedmérol flow of a user pro-
gram at runtime. This is achieved through wrappers rounddheal parallel numerical
routines. When we encounterf@ce point(a point in the user program where evalua-
tion of our library calls can be delayed no longer, such asnaheput is required), we
call our interprocedural data placement optimiser on th&A library calls that has
been accumulated.

We have previously described [2] and implemented an affigamdent optimisation
algorithm, loosely based on that of Feautrier [6]. In thikdiwing section, we outline
an algorithm for optimising replication. We make use of theeitibility and closure



properties of our replication descriptors so that this athm follows a very similar
pattern to our affine alignment optimisation algorithm.

It is not possible within the confines of this paper to give ahasistive descrip-
tion of our optimisation algorithm; we will therefore focos describing key enabling
techniques for our algorithm which rely on the replicatiepresentation described in
Section 2: metadata for operators, redistributions anigtréalition cost.

3.1 Library Operator Placement Constraints

Our library operators have one or more parallel impleméorat Each of these imple-
mentations is characterised by a set of placement consti@metadata) that constrain
our search during optimisation. In our case, these have fresided by the library im-
plementor; however, they could also have been computed bynaiter. Note that each
call to a library operator forms a node in the DAG we are opging. Our library oper-
ators therefore precisely correspond to single statenieiite compile-time alignment
optimisation approach of Chatterjee [5], where nodes irgtiaph represent array oper-
ations. In this paper, we will concentrate on those placew@mstraints which describe
replication.

— The replication placement constraints for library opermttescribe thelacement
relationshipbetween the result and the operands. For a library operdtiwhvade-
fines an array, reading array, we denote the replication descriptor for the result
y by ¢, and the descriptor for the operaxty c,, . For example, for thdaxpy loop
y < ax +y, we have

o =((59:6)ee  &.=((9),(50)) 0 - (8)

This means that the input vectoalways has the same degree of replication as the
resulty, while a has replication along dimension 1 added to the placement of

— Thus, when doing a vector update the result of which is reglim non-replicated
form, the chosen replication placements will be that theliyectorx is not repli-
cated, whilex is replicated along row 0 of a processor mesh.
However, when the required placement for the result is capgd on all rows of a
processor mesh, i.e, = ((39),(89)), then we can work out the resulting place-
ments for the operandsanda as follows:

))o((59),(89)  oa=((

Thus,x will now be replicated on every row of the processor grid,le/hiis repli-
cated on every processor.

— When our optimiser changes the placement of one of the ogerarof the result of
any node in a DAG, it can use these placement constraintsdalcelate the place-
ments for the other arrays involved in the computation. &ilploperators also have
to adapt dynamically their behaviour so as to always comjitly their placement
constraints.



3.2 Calculating Required Redistributions

While accumulating a DAG, our library assigns placementtbtary operands accord-
ing to the default scheme mentioned in Section 1: when aligvith higher-dimensio-
nal arrays, lower-dimensional arrays are replicated iredisions where, after augmen-
tation, their extentis 1. In particular, this means thatasaare by default replicated on
all processors.

Once a DAG has been accumulated and is available for optiasaur algorithm
begins by calculating the requireeplication redistributionsbetween the placements
of arrays at the source and sink of all edges in the DAG. We teradesin a DAG
by the values they calculate. For an edge— b, we denote the replication descriptor
(copy function) ofa at the source bg, and the copy function at the sink lzy,. The
replication redistribution function,_,, for this edge is defined bgy = ra_ o cs, and
may be calculated ag_,, =CaoCyt .

3.3 Cost Model for Redistributions

We define thesize vector ) of an arraya to be the vector consisting of the array’s data
size in all dimensions, so for anx mmatrix M, we haveNy = (1,). We define the data
volume%; of a as % = [o<i<d, Na[i], in other words 1 is the total data size @f. Let

P be the vector consisting of the physical processor grids gi all dimensions. Given
these definitions, we may build a reasonably accurate mddsdramunication cost
for areplication redistributionfunctionr,_,, = (D1,D2) as follows: We first calculate
which dimensions, 0 < i < dy are replicated by,_,p. We then define the cost, or
weight, of the edga — b as

Wosp = Z Cbcas(Pl,(Va) ) (9)
o<i<dy
dimensioni replicated

whereCpcas{ p,m) is the cost of broadcasting an array of sm@ver p processors. On
typical platforms, we hav€pcas{ p, M) = (ts + twm)logp, with ts being the message
startup time and, per-word transfer time.

The key aspect of this cost model is that it takes accounttbfthe data size and the
number of processors involved in broadcast operationsiiagtresult from replication
redistributions.

3.4 The Algorithm

Given that our replication descriptors now have the samentiss properties as our
affine alignment descriptors, the same algorithm which wes haeviously described
for affine alignment optimisation [2] applies. It is origllyabased on the algorithm
proposed by Feautrier in [6].

1. We select the edge with the highest weight. Suppose this ézigea — b.

2. We change the distribution at thimk of the edge such that the redistributiqn,
is avoided, i.e., we substitut®, < c;. We then use the constraint equations at
nodeb for calculating the resulting placement bbfand any other operands and
forward-propagatehis change through the DAG.



3. We check the weight of the DAG following the change. If theight has gone up,
we abandon the change and proceed to step 4. If the weightdmesdpwn, we
jump to step 6.

4. We change the distribution at tBeurceof the edge by substituting, < ca,. We
update the placements of the operands at reod@d backwards-propagatéhe
change through the DAG.

5. We check the weight of the DAG. If it has gone up, we abantienchange and
mark the edga — b as “attempted”. Otherwise, we accept the change.

We stop optimising if the weight of the DAG becomes zero. Th@vever, is rare. Oth-

erwise, we iterate the algorithm a fixed, small number of §irach time we encounter
a particular context, attempting to eliminate the codtliemaining residual communi-
cation. This is particularly suitable for runtime systentsane we wish to only spend a
strictly limited time optimising whenever the algorithmimvoked.

Once we have begun optimising, we use our value numberireyseli?] for recog-
nising previously encountered contexts and no longer usé@fault placement strat-
egy for such nodes, but rather use the results of the laghigaiion. Thus, we have the
chance of improving on a placement scheme every time a pkaticontext is encoun-
tered.

Summary. The fact that our replication descriptors have two key prigggmeans that
we have been able to propose an algorithm for optimising gtiication which is ex-
actly analogous to our previous affine alignment optimisaglgorithm. The algorithm
aims to minimise the overall communication cost arisingrfrbata replication. It works
incrementally, attempting to eliminate the costliest caiminations at each stage. We
review related work in Section 5.

4 Evaluation

We have implemented the techniques described in this papauri DESO library of
parallel linear algebra routines. In this section, we shewigrmance results for an im-
plementation of the Conjugate Gradient iterative algomifi] which uses our library
(see [2] for a source code sample). Table 1 splits the ovimadl spent by our bench-
mark into different categories; in particul@gint-to-pointcommunication accounts for
transpose operations andllectivecommunication for reductions and broadcasts.

— We achieve very encouraging parallelisation speedup 3181016 processors.

— Affine alignment optimisation alone achieves a reductiomlfgctor of about 2 in
point-to-point communication.

— Performing the replication optimisation algorithm fronistipaper in addition to
affine alignment optimisation results in a further factd-2.8 reduction in point-
to-point communication. In addition, collective commuation is decreased by
about 10%. The two key motivations for this work were thatdiang replication
correctly results in cheaper affine realignments and in fém@adcasts.



P | Compu- Runtime| Communication |Optimi-| Total |O-SpeedupP-Speeduf
tation | Overhead Pt-to-Pt| Collective| sation b2
N| 1|4351.92 7.10 0.00 0.24 0.00 |4359.26 1.00 1.00
A| 1|4359.11 7.22 0.00 0.25 6.43 |4372.99 1.00 1.00
R| 1|4340.46 7.39 0.00 0.25 11.01 |4359.11 1.00 1.00
N| 4 (1108.62 12.00 | 57.18 | 95.85 0.00 |1273.66 1.00 3.42
A| 4|1114.36 10.77 | 28.78 | 80.89 6.85 |1241.64 1.03 3.52
R| 4 |1095.75 10.21 | 12.63 | 60.12 | 16.41|1195.12 1.07 3.65
N|9|467.35| 11.77 | 51.28 | 83.90 0.00 | 614.30 1.00 7.10
A| 9| 46451 1152 | 27.08 | 72.49 7.12 | 582.71 1.05 7.50
R| 9| 463.53| 10.57 | 14.32 | 65.29 | 16.64 | 570.34 1.08 7.64
N|16| 238.28| 1250 | 41.22 | 72.82 0.00 | 364.81 1.00 11.95
A|16| 237.94| 12.01 | 25.00 | 62.88 7.17 | 345.00 1.06 12.68
R|16| 235.07| 10.09 8.92 64.22 | 16.18 | 334.48 1.09 13.03

Table 1. Time in milliseconds for 10 iterations of conjugate gradjemith a 3600x 3600 pa-
rameter matrix (about 100 MB) on varying numbers of proces$d denotes timings without
any optimisationA timings with affine alignment optimisation only, afdtimings with affine
alignment and replication optimisatio®-Speedughows the speedup due to our optimisations,
and P-Speeduphe speedup due to parallelisation. The platform is a duste50MHz Pen-
tium Il workstations with 128MB RAM, running Linux 2.0.36 0P patched), connected by
two channel-bonded 100Mb/s ethernet cards per machineghra Gigabit switch and using
mpi ch- 1. 1. 1. Averages of 10 runs; the standard deviation is about 1%eofeported figures.

— The data in Table 1 were obtained with optimisation runningeeery iteration of
the CG loop. The optimisation times we achieve show thatyfjrstir replication
algorithm takes roughly the same time as affine alignmenirogdtion, and, sec-
ondly, that it is feasible to execute both at runtime in thessmHowever, we have
previously described a technique [2] that allows usetaisethe results of previ-
ous optimisations at runtime. Applying this technique heilé cause the overall
optimisation time to become insignificant. We plan to impéetthis shortly.

— Conjugate Gradient ha®(N?) computation complexity, but onl@(N) commu-
nication complexity. This means that for relatively smallnmbers of processors
with a fairly large problem size, such as in Table 1, the ovepmeedups that can
be achieved by optimising communication are small. We eixpecoptimisations
to have greater overall benefit on more fine-grain problengsproblems with a
higher communication complexity.

5 Related Work

Affine Alignment OptimisationFeautrier [6] proposes a compile-time method for au-
tomatic distribution which works for static-control pr@gns. This method minimises
communication betweevirtual processors, i.e. it deals with the affine alignment stage
of parallel data placement only. The method does not addegdieation; for lower-
dimensional loops, some processors are assumed to rert@iRudther, the placement



functions in [6] are static. In contrast, our method allows dynamic realignments
and dynamic changes in replication, and will attempt to dakesuch operations in an
optimal way.

Chatterjee et al. [5] give a comprehensive theoretic treatrof the alignment prob-
lem, including axis-, stride- and offset-alignment. Ouiref alignment descriptors are
very similar to those of Chatterjee et al., though we impdightty fewer restrictions.

Optimising Replicated Alignment3o our knowledge, the only previous work on opti-
mising replicated alignments is by Chatterjee et al. [4yftse a representation which
permits replicating data not just on entire template axetsalso on subsets of template
axes. However, this refinement is not taken into accountin tptimisation algorithm.
On the other hand, it appears that our use of augmentatigether with carefully cho-
sen alignment, permits us to handle a range of replicatittenes, as illustrated in Sec-
tion 2.3 which the representation in [4] was not intended\fde consider the strongest
point of our representation to be the two properties of alesuinder composition and
invertibility.

Chatterjee et al. propose to use replication labelling,rettiata is labelled either
replicated or non-replicated, and network flow is used to &éindptimal labelling. In
comparison, we use a more finely differentiated representahd cost model for repli-
cation. While Chatterjee et al. therefore solve a slighifyder problem than we do,
their proposed algorithm finds the optimum solution to thabem as they formulate it.
Our algorithm, solving a harder problem, is heuristic araémental, seeking to elim-
inate the costliest communications as quickly as possiiles makes our algorithm
particularly suitable to runtime optimisation, withoustecting its potential of finding
the optimum solution with a larger investment in time.

6 Conclusion

We have presented an efficient technique for optimising aatkcation:

— We propose a mathematical representation for replicatioicwsatisfies the prop-
erties of closure under composition and invertibility.

— These two properties of our replication descriptors allesva propose an opti-
misation algorithm for data replication which is exactlyaogous to previously
published algorithms for optimising affine alignment.

— Our optimisation algorithm is efficient enough to be used iruatime system,
but we believe that its simplicity should also make it attikecfor compile-time
optimisers.

Future Work. This work can be extended in a number of ways. By taking adcoun
of affine placements while optimising replication, and viegsa, we should be able to
detect overall placement strategies which are more eftistédithan what we can obtain
by optimising both separately. For example, using skewadguhents for the results of
non-replicated reductions may allow us to eliminate sonfie@fe-alignments which
appear inevitable when the result of the reduction is rafsid.



Through most of this paper we have assumed a two-dimenspoakssor ar-
ray. This works well for BLAS, but we should evaluate our teicfues for the one-
dimensional and higher-dimensional cases. A more diffisglie is how to mix differ-
ent processor arrangements within a single computation.
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