
1

Compiling for data not code

Paul H J Kelly

Group Leader, Software Performance Optimisation

Department of Computing, Imperial College London

This talk includes work done by or influenced by: David Ham (Imperial Maths), Lawrence Mitchell (University of Durham)

Gerard Gorman, Fabio Luporini, (Imperial Earth Science Engineering – Applied Modelling and Computation Group)

Mike Giles, Gihan Mudalige, Istvan Reguly (Mathematical Inst, Oxford)

Spencer Sherwin, Peter Vincent, Chris Cantwell (Aeronautics, Imperial)

Michelle Mills Strout (Univ of Arizona), Chris Krieger, Cathie Olschanowsky (Colorado State University)

Carlo Bertolli, Doru Bercea (IBM Research*), Richard Veras, Ram Ramanujam (Louisiana State University)

Doru Thom Popovici, Franz Franchetti (CMU), Karl Wilkinson (Capetown), Chris–Kriton Skylaris (Southampton)

Sajad Saeedi (Ryerson University*), Luigi Nardi (Stanford/Lund University*), Ridgway Scott (University of Chicago)

Florian Rathgeber (Google*), Michael Lange (ECMWF*), Graham Markall (NVIDIA*), Francis Russell (Hadean*), George Rokos

(Intel*), Tianjiao Sun (Cerebras*), Thomas Debrunner (IniVation), Mehedi Paribartan (Imperial), Freddie Witherden (Texas A&M)

* Work done while at Imperial

2 2

Compilers usually compile code

This talk is about compiling data

Examples:

Convolutions on an analogue SIMD image sensor

Block-panel matrix-multiply: GiMMiK and libxsmm

The “topological” optimisation

Steiner points

Keeping a whole matrix in registers

Tiling

Re-ordering

Beyond:

Matrix factorisation

Matrix approximation

Training for convenient values

3

Cameras produce images for humans,

not machines

3

http://personalpages.manchester.ac.uk/staff/p.dudek/papers/carey-cnna2012.pdf

SCAMP 5 focal-

plane sensor

processor

• 256x256 SIMD processor
array

• Light sensor on every
processor

• Ca.170 transistors per
processor

Piotr Dudek and
colleagues at
Manchester
University

4

http://personalpages.manchester.ac.uk/staff/p.dudek/papers/carey-cnna2012.pdf

Piotr Dudek and
colleagues at
Manchester
University

5

SCAMP 5 focal-

plane sensor

processor

• Seven registers holding
analogue values

• Computation by moving
charge

• Addition is easy

• No multiply

• North-east-west-south
data movement

Basic instruction set (of interest)

Shift image x

Shift image y

Add two images

Subtract two images

Scale image by 1/2

Take absolute value of image

8• How to do convolution filters on SCAMP 5?

• For image filtering

• As a component in image processing algorithms

• Notably CNNs

We can add/subtract

repeatedly – so we

can multiply by a

constant

10

Convolution filters on SCAMP 5

Easy filters

11

Convolution filters on SCAMP 5

Harder filters

We can divide by two repeatedly

12

Convolution filters on SCAMP 5

Harder filters – still easy

13

Convolution filters on SCAMP 5

Hard filters

We can approximate

14

Convolution filters on SCAMP 5

Hard filters – easy again

15

We can approximate – D-digit binary weights

With CNNs, we can train for representable weights

Filters often have repeated terms

We implement multiplication using

summations – so there are lots of

common subterms

We can shift intermediate values to save

redundant computation

16

Our compiler takes a convolution as

input, and generates optimised code

Simple motivating (extreme) example

5x5 Box:

17

Naively: 25
additions

6 additionsThomas Debrunner, Sajad Saeedi, and Paul H. J. Kelly. 2019. AUKE: Automatic Kernel
Code Generation for an Analogue SIMD Focal-Plane Sensor-Processor Array. ACM
TACO 15, 4, Article 59 (January 2019),

GiMMiK and libxsmm

33

Peter Vincent, Freddie Witherden, Brian Vermeire, Jin Seok Park,
and Arvind Iyer. 2016. Towards green aviation with python at
petascale. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC
’16). IEEE Press, Article 1, 1–11.

Shortlisted for Gordon Bell Prize

Our motivation: CFD using
PyFR

Flux reconstruction – roughly,
high-order discontinuous-
Galerkin finite element

18,000 K20X GPUs on Titan.
195 billion DOFs, achieved 13.7
DP-PFLOP/s (58.0% peak
accelerator DP-FLOP/s).

34

Flux reconstruction is
dominated by block-panel
GEMM:

C = A * B

Where A is small (<100x100) and
compile-time constant

And sometimes sparse

And highly structured

Precise structure depends on PDE
and discretisation

Full unrolling works really well

All the zeroes disappear

GiMMiK generates CUDA code for
the matrix multiply

We evaluate using a large suite of
matrices found in PyFR
applications

p5-gauss-legendre-lobatto-m132:

36x36: 2592 elements, 384 non-zeros

32 distinct constants

p5-williams-shunn-m0:

21x18: 378 elements, all non-zero

63 distinct constants

(a
n
a
ly

s
is

 c
o
u
rt

e
s
y
 M

e
h
e
d
i
P

a
ri
b
a
rt

a
n
,
d
a
ta

 f
ro

m
 P

e
te

r
V

in
c
e
n
t

a
n
d
 F

re
d
d
ie

 W
it
h
e
rd

e
n
)

Speedup of GiMMiK’s
kernels over cuBLAS,

Achieved percentage of
the peak floating-point
rate

Achieved percentage of
the peak memory
bandwidth

The metric of interest is
represented through
the size and colour
intensity of the data
points. Speedups
smaller than 1 are
denoted with crosses.

Double precision on
Tesla K40c.

35

GiMMiK—Generating bespoke matrix multiplication
kernels for accelerators: Application to high-order
Computational Fluid Dynamics. BD Wozniak, FD
Witherden, FP Russell, PE Vincent, PHJ Kelly.
Computer Physics Communications 202, 12-22

36

This idea was re-implemented
in Intel’s open-source libxsmm
library

Libxsmm is a library for
specialized dense and sparse
matrix operations as well as for
deep learning primitives such
as small convolutions

Libxsmm includes a specialised
JIT compiler to generate highly-
optimised, vectorised,
specialised code for each
matrix/convolution (really fast –
low 100s of microseconds)

https://github.com/hfp/libxsmm
Alexander Heinecke, Greg Henry, Maxwell Hutchinson,
and Hans Pabst. 2016. LIBXSMM: accelerating small
matrix multiplications by runtime code generation. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC ’16). IEEE Press, Article 84, 1–11.

p5-gauss-legendre-lobatto-m132:

36x36: 2592 elements, 384 non-zeros

32 distinct constants

p5-williams-shunn-m0:

21x18: 378 elements, all non-zero

63 distinct constants

(a
n
a
ly

s
is

 c
o
u
rt

e
s
y
 M

e
h
e
d
i
P

a
ri
b
a
rt

a
n
,
d
a
ta

 f
ro

m
 P

e
te

r
V

in
c
e
n
t

a
n
d
 F

re
d
d
ie

 W
it
h
e
rd

e
n
)

https://github.com/hfp/libxsmm

More small-matrix

optimisations
Registerise the A matrix:

In common PyFR cases, the number of
distinct non-zeroes is small

Small enough to keep in registers

Prototype implementation in libxsmm

Especially if you use all the lanes of the
vector registers

Prototype implementation, no results yet

So the A matrix incurs no memory
accesses at all

37

Common subexpressions:

In common PyFR cases, the
number of distinct non-zeroes
is small

And they recur within the same
column

These result in redundant
multiplies

But we have FMA instructions
so eliminating multiplies
doesn’t help

Until we see more of them?
3838

p5-gauss-legendre-lobatto-m132:

36x36: 2592 elements, 384 non-zeros

32 distinct constants

p5-williams-shunn-m0:

21x18: 378 elements, all non-zero

63 distinct constants

(a
n
a
ly

s
is

 c
o
u
rt

e
s
y
 M

e
h
e
d
i
P

a
ri
b
a
rt

a
n
,
d
a
ta

 f
ro

m
 P

e
te

r
V

in
c
e
n
t

a
n
d
 F

re
d
d
ie

 W
it
h
e
rd

e
n
)

More small-matrix

optimisations

The “topological” optimisation idea
Build a graph with a vertex for
each inner product in the GEMM

Fully-connected

Edge a-b weighted with the
estimated cost of computing b
having just computed a

Cost may be reduced if some
redundancy of some kind can
be exploited

Construct a minimum
spanning tree of this graph
to find an optimal execution
strategy

Steiner variant: add vertices if
they reduce the total

39

Robert C. Kirby, Anders Logg, L. Ridgway Scott, and Andy R. Terrel. 2006. Topological
Optimization of the Evaluation of Finite Element Matrices. SIAM J. Sci. Comput. 28, 1
(January 2006), 224–240. DOI:https://doi.org/10.1137/050635547

Conclusion We usually think of compilers as
operating on code

We have seen a couple of examples
where it’s profitable to build a compiler
whose only input is data

This idea applies not just to specific
data values, but to any exploitable
structure in the data

Structured sparsity

Symmetries

Meshes

Matrix approximation
40

For this we need a
language for
describing the
exploitable
structure

Structure in unstructured meshes

41
Wael Al-Jishi, Crystal: Identifying and leveraging structure in quad meshes. MEng thesis, Imperial College 2014

