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B Three different potential audiences:

E Programming language design
and implementation

B Numerical methods for PDEs _ ‘
B High-performance computing E Whatis it used for? By whom?

» B Whatis Firedrake?

B What does its DSL actually look like?

A 4

B Whatis its domain of applicability?

A

B How is its compiler designed?

B Does it generate good code? y
J J B What are the open research

Y

challenges?
B Does it automate interesting y :
optimisations that would be hard to E  What would we do differently?
do by hand? 1
B Whatis the opportunity to

change the world?
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Firedrake

Documentation = Download Team  Citing Publications Events Funding Contact GitHub  Jenkins

Firedrake is an automated system for the solution of partial differential equations using the Latest commits to the Firedrake master

finite element method (FEM). Firedrake uses sophisticated code generation to provide branch on Github

mathematicians, scientists, and engineers with a very high productivity way to create

sophisticated high performance simulations. Merge pull request #1520 from
firedrakeproject/wence/feature/assemble-
diagonal

Lawrence Mitchell authored at 22/10/2019,

Features: 09:14:34

tests: Check that getting diagonal of matrix
» Expressive specification of any PDE using the Unified Form Language from the FEnICS works .
. Lawrence Mitchell authored at 21/10/2019,
Project. 13:04:04
» Sophisticated, programmable solvers through seamless coupling with PETSc.

, . matfree: Add getDiagonal method to
 Triangular, quadrilateral, and tetrahedral unstructured meshes.

implicit matrices

» Layered meshes of triangular wedges or hexahedra. Lawrence Mitchell authored at 18/10/2019,
« Vast range of finite element spaces. 10:19:48
» Sophisticated automatic optimisation, including sum factorisation for high order assemble: Add option to assemble

diagonal of 2-form into Dat

elements, and vectorisation. Lawrence Mitchell authored at 18/10/2019,
* Geometric multigrid. 10:08:37

» Customisable operator preconditioners. Merge pull request #1509 from

» Support for static condensation, hybridisation, and HDG methods. firedrakeproject/wence/patch-c-wrapper

B What is Firedrake?
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Firedrake is an automated system for the solution of partial differential equa
finite element method (FEM). Firedrake uses sophisticated code generation
mathematicians, scientists, and engineers with a very high productivity way

sophisticated high performance simulations.

Features:

» Expressive specification of any PDE using the Unified Form Languag

Project.

» Sophisticated, programmable solvers through seamless coupling with

Download

The Conversation: ..

Team

 Triangular, quadrilateral, and tetrahedral unstructured meshes.

» Layered meshes of triangular wedges or hexahedra.
+ Vast range of finite element spaces.

» Sophisticated automatic optimisation, including sum factorisation for |

elements, and vectorisation.
* Geometric multigrid.
» Customisable operator preconditioners.

» Support for static condensation, hybridisation, and HDG methods.
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B What is Firedrake?
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E Firedrake Is THETIS § e
used in: \ ot T bk Ry o 0k

. Th Et I S . The Thetls pI‘OjeCt Current development status
{ s Cpassing |
u n Stru Ctu re d Thetis is an unstructured grid coastal ocean model built using the Firedrake finite element Latest status: SR

g ri d CO astal framework. Currently Thetis consists of 2D depth averaged and full 3D baroclinic models. Thetis source code is hosted on

> ; ; z ; Github and is being continually tested
Some example animations are shown below. More animations can be found in the Youtube g y

m O d e I I I n g channel. ‘USingJenkinS,
framework

—
(3)f7). Idealized river plume simulation

HET!

-
377 Baroclinic eddies test case
BHET
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THETIS

B Whatis it used for? By whom?
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B Tidal barrage simulation using Thetis (https://thetisproject.org/)

B Whatis it used for? By whom?
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E Firedrake Is
used in:
B Gusto:
atmospheric mmm L _
modellin Getd| *!? 0./ Katy=5km 323 Bw /mstaty=>5km”
9 10 10 / /
framework e
being used
to prototype | APl||g E .
the next | e =
generatlon -
of weather
and C||mate % z / km 10 % x / km 10
simulations Three-dimensional simulation of a thermal rising through
for the UK a saturated atmosphere. From A Compatible Finite
Met Office Element Discretisation for the Moist Compressible Euler
Equations (Bendall et al,
https://arxiv.org/pdf/1910.01857.pdf)

B Whatis it used for? By whom?
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https://arxiv.org/pdf/1910.01857.pdf
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A icepack . )
Docs » icepack View page source

0.0.3 I

icepack

Search docs

B Firedrake Is

u Se d i n . Overview Welcome to the documentation for icepack, a python library for modeling the flow of

. - . . . )
Background ice sheets and glaciers! The main design goals for icepack are:

E lcepack:a [y
framework
for modeling .-
the flow of B
glaciers and - [—_G

Ice sheets, [t
developed at

meters/year

Contributing

the Polar
Science
Center at the
University of
Washington

o <

Larsen ice shelf model, from the Icepack tutorial
by Daniel Shapero

(

B Whatis it used for? By whom?
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https://icepack.github.io/icepack.demo.02-larsen-ice-shelf.html

The finite element method in outline

do element = 1,N
T assemble(element) :
j K /z?L(u‘S)dX: / vgdX.
0 J ()

| | eﬁd do//// ///

I Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector
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Multilayered abstractions for FE
= e W e ——

B Local assembly:
B Computes local assembly matrix
B Using:
B The (weak form of the) PDE
B The discretisation

B Key operation is evaluation of expressions over basis
function representation of the element

—® Mesh traversal:

B PyOP2

B Loops over the mesh

B Key is orchestration of data movement

B Solver:
B Interfaces to standard solvers through PetSc
13




imperial College Example: Burgers equation

T e S e e R e —
B We start with the PDE: (see )

The Burgers equation is a non-linear equation for the advection and diffusion of momentum. Here we choose to write the Burgers equation in two
dimensions to demonstrate the use of vector function spaces:

%+(U-V)u—l/v2u:0
(n-V)u=0onTl

where I is the domain boundary and v is a constant scalar viscosity. The solution v is sought in some suitable vector-valued function space V.
We take the inner product with an arbitrary test function v € V and integrate the viscosity term by parts:

ou
— v+ ((u-Vu) - v+vVu-Vodz =0.
o Ot
The boundary condition has been used to discard the surface integral. Next, we need to discretise in time. For simplicity and stability we elect to
use a backward Euler discretisation:

un+1 —un
/ = o+ (W™ V)™ v+ vVt - Ve dz = 0.
Q

E From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
the previous timestep

15


https://www.firedrakeproject.org/demos/burgers.py.html

imperial College Example: Burgers equation
e . e e aeaea————

un+1 —un
/ = o+ (V) v+ vVet - Vo dz = 0.
Q

E From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
the previous timestep

16



obeian _olege Example: Burgers equation
T e S e R e e —

un+1 —um
/ o+ (V") v+ Ve - Vo dz = 0.
0

dt

B From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of

the previous timestep

E Transcribe into Python —uis u™*t!, u_isu™:

F = (inner((u - u_)/timestep, v)
+ inner(dot(u,nabla grad(u)), v) + nu*inner(grad(u), grad(v)))*dx

17



from firedrake import *
n =50
mesh = UnitSquareMesh(n, n)

# We choose degree 2 continuous Lagrange polynomials. We also need a
# piecewise linear space for output purposes::

V = VectorFunctionSpace(mesh, "CG", 2)
V_out = VectorFunctionSpace(mesh, "CG", 1)

# We also need solution functions for the current and the next timestep::

= Function(V, name="Velocity")
= Function(V, name="VelocityNext")

u_
u
v = TestFunction(V)

# We supply an initial condition::

x = SpatialCoordinate(mesh)
ic = project(as_vector([sin(pi*x[0]), 0]1), V)

# Start with current value of u set to the initial condition, and use the
# initial condition as our starting guess for the next value of u::

u_.assign(ic)
u.assign(ic)

® :math:\nu" is set to a (fairly arbitrary) small constant value::
nu = 0.0001

timestep = 1.0/n

# Define the residual of the equation::

F = (inner((u - u_)/timestep, v)

+ inner(dot(u,nabla_grad(u)), v) + nu*inner(grad(u), grad(v)))*dx41—]_

outfile = File("burgers.pvd")
outfile.write(project(u, V_out, name="Velocity"))
# Finally, we loop over the timesteps solving the equation each time::

t=20.0
end = 0.5
while (t <= end):
solve(F == 0, u)
u_.assign(u)
t += timestep
outfile.write(project(u, V_out, name="Velocity"))

Burgers equation

— e e

B Firedrake implements the
Unified Form Language
(UFL)

B Embedded in Python

nt+l _ ,n
f % o+ (@ V)t w4+ Ve Ve dz = 0.
Q

B From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
the previous timestep

B Transcribe into Python —uis u™*!, u_is u™:

F = (inner((u - u_)/timestep, v)
+ inner(dot(u,nabla_grad(u)), v) + nu*inner(grad(u), grad(v)))*dx

B UFL is also the DSL of the
FENICS project

B What does its DSL actually look like?




from firedrake import *

s mesh = UnitSquareMesh(n, n)

mesh = UnitSquareMesh(n, n)

# We choose degree 2 continuous Lagrange polynomials.

# piecewise linear space for output purposes:: — UECtUFFUﬂCtiUﬂSpaCE{ITIESh, "CG" , 2}
Vot < VertorFunctionspacetnesh. “co*, 1) _out = VectorFunctionSpace(mesh, "CG", 1)

# We also need solution functions for the current and

= Function(V, name="Velocity")
Function(V, name="VelocityNext")

u_ = Function(V, name="Velocity")
u = Function(V, name="VelocityNext")

v = TestFunction(V)

T -

# We supply an initial condition::

# set up initial conditions for u and u_

x = SpatialCoordinate(mesh)
ic = project(as_vector([sin(pi*x[0]), 01), V)

# Start with current value of u set to

# initial condition as our starting quef# Define the residual 01: the equation::

u_.assign(ic)

u.assign(ic) F = (inner((u - u_)/timestep, v)

B math:\nu' is set to a (fairly arbit + inner(dot(u,nabla _grad(u)), v) + nu*inner(grad(u), grad(v)))*dx

nu=0.000.t — 0.0

timestep =

# Define t end = 0'5

F = (inner While (t <= end):

outfile = SOlve(F == 0] u)

outfile.wr u_ .dS Sign ( u )

T t += timestep

e outfile.write(project(u, V out, name="Velocity"))
solve(_— == 0, u) r
u_.ass;gn(u) . .
Eujc:i{?\?urs:i[:g(project(u, V_out, name="Velocity")) . What does |tS DSL aCtua”y IOOk Ilke’)




#include <math.h>
#include <petsc.h>

void wrap_form@@_cell_integral_otherwise(int const start, int const end, Mat const mat@, double const *__restrict__ datl, double const *__restrict__ dat@, int const *__restrict__ map@, int const *__restrict__ mapl)

double form_t0...tl6;
double const form_tl17[7]1 = { ... };
double const form_t18[7 * 6]
double const form_t19[7 * 6]
double form_t2;

double const form_t20[7 * 6] =
double form_t21...t37;
double form_t38[6];
double form_t39[6];
double form_t4;

Generated code
i to assemble the

double t1[3 * 2];
double t2[6 * 2 * 6 * 21;

resulting linear

for (int i4 = @; i4 <= 5; ++id)
for (int i5 = ©; i5 <= 1; ++i5)
for (int i6 = @; i6 <= 5; ++i6)

Ll
for (int i7 = 0; 17 <= 1; ++i7)
t2024 * i4 + 12 * i5 + 2 * i6 + i7] = 0.0;

"
~
-~

for (int i2 = @; 12 <= 2; ++i2)
for (int i3 = 0; i3 <= 1; ++i3)
t1[2 * i2 + i3] = dat1[2 * mapl[3 * n + i2] + i3];

.
for (int i0 = @; 1@ <= 5; ++1i0)
for (int il = ©; il <= 1; ++il)
t0[2 + i0 + il] = dat®[2 * mapd[6 * n + 10] + i1];

form_t0 = -1.© * t1[1];

form t1 = form t0 + t1[3]; . .
form_t2 -1.0 * tl[e];

form_t3 = form_t2 + t1[2];

form_td = form_t0 + t1[5];

form_t5 = form_t2 + t1[4];

form t6 = form t3 * form t4 + -1.0 * form_t5 * form_tl;
form_t7

1.0 / form_t6;
form_t8 = form_t7 * -1.0 * form_tl;
form_t9 = form_t4 * form_t7;

form_tl0 = form_t3 * form_t7;

form_t1l = form_t7 * -1.0 * form_t5;

form_t12 = ©.0001 + (form_t8 * form_t9 + form_t10 * form_t11);

form_t13 = 0.0001 * (form_t8 * form_t8 + form_t10 * form_tl10);

form_t14 = ©.0001 * (form_t9 * form_t9 + form_t11 * form_t11); Ccesses
form_tl15 = 0.0001 * (form_t9 * form_t8 + form_tll * form_tl10);

form_t16 = fabs(form_t6);
for (int form_ip = @; form_ip <= 6; ++form_ip)

{
form_t26 = 0.0; form_t25 = 0.0; form_t24 = 0.0; form_t23 = 0.0; form_t22 = 0.0; form_t21 = 0.0; d e reeS Of
for {int form i = 0; form i < ++form_i)

. H

form_t21 = form_t21 + form_t20[6 * form_ip + form_i] * tO[1 + 2 * form_il;

+ * + *
form_t22 form_t22 + form_tl9[6 * form_ip + form_i] * tO[1l + 2 * form_i];
form_t23 = form_t23 + form_t20[6 * form_ip + form_i] * t0[2 * form_i]; ree Ol I I S are
form_t24 = form_t24 + form_t19[6 * form_ip + form_i] * t0[2 + form_ i];
Torm_t25 = form_t25 + form_t18[6 * form_ip + form_i] * t@[1 + 2 * form_i];

= + * . ®

form_t26 = form_t26 + form_t18[6 * form_ip + form i] t0[2 * form_i];

. .
}

form_t27 = form_tl7[form_ip] * form_t16; WI n el O u r
form_t28 = form_t27 * form_t15;

form_t29 form_t27 * form_tl4;
form_t30 = form_t27 * (form_t26 * form_t9 + form_t25 * form_tll); L]
form_t31 = form_t27 * form_t13;
form_t32 = form_t27 * form_t12; rI an eS rO u
form_t33 = form_t27 * (form_t26 * form t8 + form_t25 * form_t18);
form_t34 = form_t27 * (form_tll * form_t24 + form_tl@ * form_t23);
form_t35 = form_t27 * (form_t9 * form_t22 + form_t8 * form_t21);
*
®

form_t36 = form_t27

. . N
(50.0 + form_t9 * form_t24 + form_t8 * form_t23);
| (50.0 + form_t11l * form_t22 + form_t1l0 * form_t21); I I I I re' IOI l I I Ia
for (int form kB = 0; form_k@8 <= 5; ++form_k®)
{

form_t37 = form_t27

form_t38[form_ke

1 form_t18[(6 * form_ip + form_k0] * form_t37;
form_t39[form_k0]

form_t18[6 * form_ip + form k8] * form_t36;

}
for {(int form_jO = 0; form_jO <= 5; ++form_jo)

form_t40 = form_t18[6 * form_ip + form_jO] * form_t35;

form_t41 = form_t18[6 * form_ip + form_j8] * form_t34;

form_t42 = form_t20[6 * form_ip + form_j@] * form_t31 + form_t18[6 * form_ip + form_j@] * form_t33 + form_tl19[6 * form_ip + form_je@] * form_t32;
form_t43 = form_t20[6 * form_ip + form_jo] * form t28 + form_t18[6 * form_ip + form_j@] * form_t30 + form_t19[6 * form_ip + form_je] * form_t29;
for (int form kB 0 = 0; form_k®_0 <= 5; ++form_k&_0)

{

form_t44 = form_t43 * form_t19[6 * form_ip + form_ko_0];
form_t45 = form_t42 * form_t20[6 * form_ip + form_k0_0];
t2[24 * form_joO + 2 * form_k6_0] = t2[24 * form_jO + 2 * form_k0_0] + form_t45 + form_t18[6 * form_ip + form_jO] * form_t39[form_ko_01 + form_t44;
t2[13 + 24 + form_jO + 2 * form k0 8] = t2[13 + 24 * form_j8 ¥ 2 * form k8 0] + form t45 + form_t18[6 * form_ip + form_jO] * form_t38[form_k8 0] + form_tdd;
12[1 + 24 * form_jO + 2 * form_kO_0] = t2[1 + 24 * form_jO@ + 2 * form_ke_0] + form_t18[6 * form_ip + form_k0_0] * form_t4l;
t2[12 + 24 * form_jO + 2 * form kO_0] = t2[12 + 24 * form_jO + 2 * form_k@_6] + form_t18[6 * form_ip + form_k0_0]1 * form_t40;
}
}

)
MatSetValuesBlockedLocal(mat@, 6, &(map0[6 * n]), 6, &(mapO[6 * nl), &(t2[0]), ADD_VALUES);
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Firedrake: single-node AVX512 performance
B Does it generate good code?

Skylake cross-element vectorization

2000
= | N€0 peak
1000 1 ===» INtel LINPACK
500 -
. GFLOPs
» achieved for
o 2007 residual
O
= 1001 ass_embly for
O ] various
50 A element types,
with polynomial
20 - degree ranging
from 1-6
10 ' ' ' LA ELE | ' ' d L L | ' ' d LI | v v v LR |
109 10! 102 103
Arithmetic intensity
® mass-tri B helmholtz - tri * laplacian - tri A elasticity - tri V¥ hyperelasticity - tri
® mass - quad B helmholtz - quad * laplacian - quad A elasticity - quad V¥ hyperelasticity - quad
mass - tet helmholtz - tet laplacian - tet elasticity - tet hyperelasticity - tet
® mass - hex B helmholtz - hex * laplacian - hex A elasticity - hex V¥ hyperelasticity - hex

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 —march=native)]

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al


https://arxiv.org/abs/1903.08243

imperial College Firedrake: compiler architecture.

%

Non-FE loops Unified Form
over the mesh Language

UFL specifies the (weak form of

UFL “Two- the) partial differential equation

stage” Form and how it is to be discretised
Compiler

Compiler generates PyOP2
kernels and access descriptors

GEM: abstract representation

GEM: tensor .. -
contractions supports efficient flop-reduction
optimisations
Loo.py representation PyOP2: stencil DSL for

unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

Loo.py: vectorization etc

i S Sequence of intermediate
representations
Multicore | Manycore | Future/ 100% Python, runtime code

IGPU other

Rathgeber, Ham, Mitchell et al, ACM TOMS 2016, Tianjiao Sun et al https://arxiv.org/pdf/1903.0

generation, code-caching

In In Some prototyping
23 production development



https://arxiv.org/pdf/1903.08243.pdf

Firedrake: a finite-element framework

B Automates the finite element method for solving PDEs
B Alternative implementation of FEnIiCS language, 100% Python using runtime code generation

Non-FE loops Unified Form
over the mesh Language

UFL specifies the (weak form of
UFL “Two- the) partial _differentigl equ_ation
stage” Form and how it is to be discretised

compiler Compiler generates PyOP2
kernels and access descriptors

GEM: tensor B GEM: abstract representation

contractions supports efficient flop-reduction
opumisatons

oG-y representation PyOP2: stencil DSL for

unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

Loo.py loop transformations Loo.py: vecC

i S Firedrake’s “Compiler
architecture” has evolved
Manycore Future/ over tlme

Multicore

IGPU other

In In Some prototyping
production development

Rathgeber, Ham, Mitchell et al, ACM TOMS 2016, Tianjiao Sun et al hitps://arxiv.org/pdf/1903.08243.pdf


https://arxiv.org/pdf/1903.08243.pdf

Imperial College

Easy parallelism

Example:

for (1I=0; I<N; ++1) { B Can the
. : A iterations of this
points[i]->x += 1; loop be executed

} In parallel?
L b

X X
y
z

y
z

X X
y y
y y

EOh no: not all the iterations are independent!

B You want to re-use piece of code in different
contexts

B Whether it's parallel depends on context!

26



B Compilation is like skiing

pEXamples.html

B Analysis is not always the interesting part....
B It's more fun the higher you start!


http://www.nikkiemcdade.com/subFiles/2DExamples.html

'I"

Y

Unstructured meshes require pointers/indirection because adjacency
lists have to be represented explicitly

A controlled form of pointers (actually a general graph)

OP2 is a C++ and Fortran library for parallel loops over the mesh,
Implemented by source-to-source transformation

PyOP2 is the same basic model, implemented in Python using
runtime code generation

Enables generation of highly-optimised vectorised, CUDA, OpenMP
and MPI code

The OP2 model originates from Oxford (Mike Giles et al)



How a mesh is represented in OP2
Mesh

— =

L AR NN

e e ) JEw



": ; Cells ; ;
. CellToEdge
N/ = N/
v v
EdgeToVertex|
® L ] *Ww oW ®
Vertices
° oW
PyOP2: ‘sets” “dats” “maps”

OP2 loops,
access
descriptors and
kernels

op_par_loop(set, kernel, access descriptors)

S ¥ 5 .
We specify We specify a
which set to kernel to
iterate over execute — the
kernel
operates

entirely locally,
on the dats to

which it has
access

The access descriptors
specify which dats the
kernel has access to:

 Which dats of the target
set

« Which dats of sets
Indexed from this set
through specified maps

B OP2 separates local (kernel) from global (mesh)
B OP2 makes data dependence explicit



PyOP2 “decoupled access-execute”

Parallel loops, over sets (nodes, edges etc)
» Access descriptors specify how to pass data to and

from the C kernel

« The kernel operates only on local data

Access |
descriptors
specify how
to feed the
kernel from

the mesh

r,u,du

/for iter in xrange(0, NITER):

6p2 par_loop(res, edges,
N3 0_A(0p2.READ),

L beta(op2.READ))

p_u(op2.READ, edge2vertex[1]),
p_du(op2.INC, edge2vertex[0]),

u_sum = op2.Global(1, data=0.0, np.float32)
u_max = op2.Global(1, data=0.0, np float32)

void res(float *A, float *u, float *du,
const float *beta) {
*du += (*beta) * (*A) * (*u);
}

J

p_du(op2.RW),
p_u(op2.INC),
u_sum(op2.INC),

u_max(op2.MAX))

U\

GpZ.par_Ioop(uEdate, nodes,

p_r(op2.READ), '\)

~

void update(float *r, float *du, float *u, float
*u_sum, float *u_max) {
*u +=*du + alpha * (*r);
*du = 0.0f;
*u_sum += (*u) * (*u);
*U_max = *u_max > *u ? *u_max : *u;




Code generation for indirect loops in PyOP2

B For MPl we
precompute
partitions & haloes

B Derived from ./:/. ‘/:/. /
PyOP2 access
descriptors, ./:/.
Implemented
using PetSC 0/0/0/
B At partition / ‘/ ‘/
boundaries, the
entities (vertices, ‘/ ‘/
edges, cells) form‘/ .
layered halo O 0—0—0—0© 0

region



Code generation for indirect loops in PyOP2

B For MPIl we
precompute

partitions & haloes Processor0

B Derived from
PyOP2 access
descriptors,
Implemented
using PetSC
DMPlex

E At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

R,

fafats
fare
i

AN
'\’\'\
'\'\’\

K
Q\

'4/

.

processor 1



For MPI we
precompute
partitions & haloes processor 0

B Derived from ./.
PyOP2 access

descriptors,

Implemented

using PetSC
DMPlex

B At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo

B Core: entities owned which can be processed without accessing halo data.

Code generation for indirect loops In PyOP2

core
core

!

B Owned: entities owned which access halo data when processed

B Exec halo: off-processor entities which are redundantly executed over because they
touch owned entities

B Non-exec halo: off-processor entities which are not processed, but read when
computing the exec halo



Imperial College

E Can we automate interesting
optimisations that would be hard to do
by hand?

B First example:
B Tiling for cache locality

B (This optimisation has been implemented —
and automated — but does not currently
form part of the standard distribution)
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Sparse split tiling on an unstructured mesh, for locality

Loop 1

Visits edges
Increments nodes

Loop 2

Visits nodes
Depends on edges

/&4

B How can we load a block of mesh and do the iterations of loop
1, then the iterations of loop 2, before moving to the next
block?

B If we could, we could dramatically improve the memory access
behaviour!

Strout, Luporini et al, IPD
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Sparse split tiling

Loop 1

Visits edges
Increments nodes

Visits nodes
Depends on edges

/&4

Partition the iteration space of loop 1
Colour the partitions, execute the colours in order

Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0
And shrinks where it meets colours #2 and #3

Strout, Luporini et al, IPD



Sparse split tiling

Loop 1

Visits edges
Increments nodes

Visits nodes
Depends on edges

&

Strout, Luporini et al, IPD

E Partition the iteration space of loop ?/Inspector-exeCUt()r\
E Colour the partitions derive tasks and |
B Project the tiles, using the knowled task graph from
data produced by colour n-1 h h. at
B Thus, the tile coloured #1 grows wh J;uen{inne]z | Y,
And shrinks where it meets colours #r—wrrarro
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Tiles grow

B As we project the tiles forward, tile shape d

B Perimeter-volume ratio gets worse



Tiles grow

As we project the tiles forward, tile shape degrades
Perimeter-volume ratio gets worse

We could partition Loop 1's data for the cache

But Loop 2 and Loop 3 have different footprints

So we rely on good (ideally space-filling-curve) numbering

Strout, Luporini et al, IPDPS’14
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e -oop chains
_|—> with loop_chain( oees):
# solve for velocity vector field
self.solve(....);
self.solve(....);
self.solve(....);
self.solve(....);
# solve for stress tensor field
self.solve(....);

extra_halo=self.tiling_halo,
explicit=self.tiling_explicit,
use_glb_maps=self.tiling_glb_maps,
use prefetch=self.tiling prefetch,
coloring=self.tiling_coloring,
ignore_war=True,
log=self.tiling_log):

# In case the source is time-dependent, update the time 't'

if(self.source):

with timed_region('source term update'):
self.source_expression.t = t

self.source = self.source_expression

# Solve for the velocity vector field.

self.solve(self.rhs_uhl, self.velocity mass_asdat, self.uhl)
self.solve(self.rhs_stemp, self.stress_mass_asdat, self.stemp)
self.solve(self.rhs_uh2, self.velocity_mass_asdat, self.uh2)

self.solve(self.rhs_ul, self.velocity_mass_asdat, self.ul)

(25 op_par_loops
SE|f.SO|V€(.... ,  pertimestep, all
tilable)

# Solve for the stress tensor field.
self.solve(self.rhs_shl, self.stress_mass_asdat, self.shl)

self.solve(self.rhs_utemp, self.velocity_mass_asdat, self.utemp)

self.solve(self.rhs_sh2, self.stress_mass_asdat, self.sh2) Self-SOIVe( R );
self.solve(self.rhs_sl1, self.stress_mass_asdat, self.sl)
self.solve(....);

self.uB.assign(self.ul)
self.sB®.assign(self.sl)

# Write out the new fields
self.write(self.ul, self.sl, self.tofile and timestep % self.output == @)

(Luporini, Lange, Jacobs, Gorman, Ramanujam, Kelly.
# Move onto next timestep Automated Tiling of Unstructured Mesh Computations with
t += self.dt Application to Seismological Modeling. ACM TOMS 2019
timestep += 1 https://doi.org/10.1145/3302256)



" C — — — e
Example: Seigen & _, (> a=1Xa=27Vaq=3@q=4
= 1
' O
EIasFlc wave solver c L ® 5 4 P 0 0
2d triangular mesh E
g
Velocity-stress S _

: + .8 Best speedup:
formulation L5 1.28x at g=3 on
ah-order explicit 250 e

P g = Optimum fusion
leapfrog 8. scheme breaks
' : QD> 25 loops into 6
tlmhestepplng 3 chains. MPI
scheme Qg halo is extended
: : o GE) from S=1 to S=2
Discontinuous- 00t | . . . .
Galerkin, order (1%3}() (228}() (417172|<) (925234|<) (1?194]?M) (B?BQSM)
g=1-4 Weak scaling: #cores (#elements)

32 nodes, 2x14- g p 19 1.28x speedup

core E5-2680v4, , .
SG| MPT 2.14 B Inspection about as much time as 2

timesteps
B Using RCM numbering — space-filling
curve should lead to better results

1000 timesteps
(ca.l.15s/timestep)

(ACM TOMS 2019)



Imperial College
e e o e—
E Can we automate interesting

optimisations that would be hard to do
by hand?

B Second example:
B Generalised loop-invariant code motion

B (This optimisation has been implemented,
automated, and re-implemented — and
forms part of the standard distribution)
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__ datl, double const *__restrict__ dat@, int const *__restrict__ map@, int const *__restrict__ mapl)

double const form L2007 ¥ 61 ={ ... };
double form_t21...t37;

double form7t38[6];

double form_t39[6];

double form_t4;

double form_t40...t45;

double form_t5...19;

double tO[6 * 2];

double t1[3 * 2];

double t2[6 * 2 * 6 * 21;

resulting linear

for (int i4 = @; i4 == 5; ++i4d)
for (int i5 0; i5 1; ++i5)
for (int i6 = @; i6 <= 5; ++1i6)

.
for (int i7 = 0; i7 <= 1; ++i7)
t2[24 * i4 + 12 * i5 + 2 * i6 + i7] = 0.0;

for (int i2 = 0; 12 <= 2; ++i2)
for (int i3 = 0; 13 <= 1; ++i3)
t1[2 * i2 + i3] = dat1[2 * mapl[3 * n + i2] + i3];

.
for (int 10 = @; 10 <= 5; ++1i0)
for (int il = 0; il <= 1; ++il)
t0[2 + i0 + il] = dat®[2 * mapd[6 * n + 10] + i1];

form_t0 = -1.© * t1[1];

form t1 = form t0 + t1[3]; . .
form_t2 -1.0 * tl[e];

form_t3 = form_t2 + t1[2];

form_td = form_t0 + t1[5];

form_t5 = form_t2 + t1[4];

form t6 = form t3 * form t4 + -1.0 * form_t5 * form_tl;
form_t7

- 1.0 / form_t6;
form_t8 = form_t7 * -1.0 * form_tl;
form_t9 = form_t4 * form_t7;

form_tl0 = form_t3 * form_t7;

form_t1l = form_t7 * -1.0 * form_t5;

form_t12 = ©.0001 + (form_t8 * form_t9 + form_t10 * form_t11);

form_t13 = 0.0001 * (form_t8 * form_t8 + form_t10 * form_tl10);

form_t14 = ©.0001 * (form_t9 * form_t9 + form_t11 * form_t11); Ccesses
form_tl15 = 0.0001 * (form_t9 * form_t8 + form_tll * form_tl10);

form_t16 = fabs(form_t6);
for (int form ip = 0; form_ip <= 6; ++form_ip)

{
form_t26 = 0.0; form_t25 = 0.0; form_t24 = 0.0; form_t23 = 0.0; form_t22 = 0.0; form_t21 = 0.0; d e reeS Of
for {int form i = 0; form i <= 5; ++form_i)

. H

form_t21 = form_t21 + form_t20[6 * form_ip + form_i] * tO[1 + 2 * form_i];
form_t22 form_t22 + form_tl9[6 * form_ip + form_i] * tO[1l + 2 * form_i];
form_t23 = form_t23 + form_t20[6 * form_ip + form_i] * t0[2 * form_i]; ree OI I I S are
form_t24 = form_t24 + form_t19[6 * form_ip + form_i] * t0[2 + form_ i];
Torm_t25 = form_t25 + form_t18[6 * form_ip + form_i] * t@[1 + 2 * form_i];

= + * + ®

form_t26 = form_t26 + form_t18[6 * form_ip + form i] t0[2 * form_i];

] .
}

form_t27 = form_tl7[form_ip] * form_t16; WI n el Ol l r
form_t28 = form_t27 * form_t15;

form_t29 form_t27 * form_tl4;
form_t30 = form_t27 * (form_t26 * form_t9 + form_t25 * form_tll); L]
form_t31 = form_t27 * form_t13;
form_t32 = form_t27 * form_t12; rl an e S ro u
form_t33 = form_t27 * (form_t26 * form t8 + form_t25 * form_t18);
form_t34 = form_t27 * (form_tll * form_t24 + form_tl@ * form_t23);
form_t35 = form_t27 * (form_t9 * form_t22 + form_t8 * form_t21);
*
®

= . . -
form_t36 = form_t27 * (50.8 + form_t9 * form_t24 + form_t8 * form_t23);

form_t37 = form_t27 * (50.8 + form_t11 * form_t22 + form_t10 * form_t21); I I I I re‘ IO I l I I I a

for (int form_| kD = 0; form_k@ <= 5; ++form_k@)

{

fTorm_t38[form_ke]
form_t39[form_k0]

form_t18[(6 * form_ip + form_k0] * form_t37;
form_t18[6 * form ip + form k8] * form_t36;

}
for (int form_jo = @; form_j@ <= 5; ++form_jo)

form_t40 = form_t18[6 * form_ip + form_jO] * form_t35;

form_t41 = form_t18[6 * form_ip + form_j8] * form_t34;

form_t42 = form_t20[6 * form_ip + form_j@] * form_t31 + form_t18[6 * form_ip + form_j@] * form_t33 + form_tl19[6 * form_ip + form_je@] * form_t32;
form_t43 = form_t20[6 * form_ip + form_jo] * form t28 + form_t18[6 * form_ip + form_j@] * form_t30 + form_t19[6 * form_ip + form_je] * form_t29;
for (int form kb 0 = 8; form k@ 0 <= 5; ++form_k0_0)

{

form_t44 = form_t43 * form_t19[6 * form_ip + form_ko_0];
form t45 = form_t42 * form_t20[6 * form_ip + form_ke_@];
t2[24 * form _jO + 2 * form_k0_0] = t2[24 * form ]B + 2 * form_k0_0] + form_t45 + form_t18[6 * form_ip + form_jO@] * form_t39[form_k0_0]1 + form_t44;
t2[13 + 24 * form_jO + 2 * “form_ko 0] = t2[13 + 24 * form_jO + 2 * form_k@ 0] + form_t45 + form  t18[6 * form_ip + form ]0] + form, t38[f0rm kB 0] + form_td4;
t2[1 + 24 * form_jO + 2 * form_| Ko 0] = t2[1 + 24 * form_jO + 2 * formjﬂj] + form7t18[6 * form_ip + form_kO_0] * form_t4l;
t2[12 + 24 * form_j® + 2 * form_k@_8] = t2[12 + 24 * form_j@ + 2 * form _k8_6] + form_t18[6 * form_ip + form_kO_8] * form_t4e;
}
}

)
MatSetValuesBlockedLocal(mat@, 6, &(map0[6 * n]), 6, &(mapO[6 * nl), &(t2[0]), ADD_VALUES);




A simpler example:

void helmholtz(double A[3][3], double **coords) {
/I K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X_D10[3][3] = {{...}}
static const double X _DO1[3][3] = {{...}}

for (inti=0;1<3; 1++)
for (intj = 0; j<3; j++)
for (int k = 0; k<3; k++)

Afjllk] += ((Y[L[kI*Y[1[]+
+((K1*X_D10[1][k]+K3*X_DO1[i]l[kD*(K1*X_D10[1][j]1+K3*X_DO1[i][;1))+
+((KO*X_D10[1][k]+K2*X_DO1[il[k])*(KO0*X_D10[1][;]1+K2*X_DO01[i][;1)))*
*det*W/i]);

}

B [ ocal assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

B The local assembly operation computes a small dense submatrix

E These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

Luporini, Varbenescu et al, ACM TACO/HIPEAC 2015



A simpler example:

void helmholtz(double A[3][3], double **coords) {
/I K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3]
static const double X _DO01[3][3]

={{.--}}
={{...}}
for (inti=0;1<3; 1++)
for (intj = 0; j<3; j++)
for (int k = 0; k<3; k++)

Afjllk] += ((Y[L[kI*Y[1[]+
+((K1*X_D10[1][k]+K3*X_DO1[il[kD*(K1*X_D10[1][j]1+K3*X_DO1[i][;1))+
+((KO*X_D10[1][k]+K2*X_DO01[i]l[k)*(K0*X_D10[1][;]1+K2*X_DO01[i][31)))
*det*W/i]);

}

B [ ocal assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

B The local assembly operation computes a small dense submatrix

E These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

Luporini, Varbenescu et al, AC TACO/HIPEAC 2015



Generalised loop-invariant code motion:

void helmholtz(double A[3][4], double **coords) {
#define ALIGN __attribute__((aligned(32))) . ]lc_oorcit?-lleaﬁse?m ft])(|)>|/t§ ode
// K, det = Compute Jacobian (coords) problem after

static const double W[3] ALIGN ={...} applicati(_)n of
static const double X_D10[3][4] ALIGN = {{...}} ¥ padding,
static const double X DO1[3][4] ALIGN = {{...}}  ® data alignment,

for (int i = 0; i<3; i++) { B Loop-invariant

double LI_0[4] ALIGN code motion
double LI_1[4] ALIGN; B In this example, sub-
for (int r = 0; r<4; r++) { expressions invariant

LI_O[r] = (K1*X_D10[i][r])+(K3*X_DO01[il[r])); to j are identical to

Luporini, Varbenescu et al, AC TACO/HIPEAC 2015

LI_1[r] = (K0O*X_D10[il[r])+(K2*X_DO1[il[r])); those invariant to k, so
} they can be
for (int j = 0; j<3; j++) precomputed once in
#pragma vector aligned the r loop

for (int k = 0; k<4; k++)
Aljllk] += (YLlk]*Y[L]]+LI_O[KJ*LI_O[j]+LI_1[k]*LI_1[j1)*det*WIi]);
}
}



ARSENAL FOR REDUCING FLOPS

Loop-invariant code motion \ fl
Common sub-expressions elimination Ops

o

Enable

N\

Expansion
' (a+b)c = ac + bc Enable / flops

Prevent \

Enable
y
Factorisation \ ﬂOpS

ab + ac = a(b+c)

We formulate an ILP problem to find the best factorisation strategy



Speedup relative to fully inlined expression

FOCUS ON HYPERELASTICITY

Polynomial degree g

q=1 q=2 q=3 q=4
25- ! I | | | | | | 1 1 _ | 1 |
* Hyperelasticity
20 - - - - - - - * Sandy Bridge (icc)
* Small 3D mesh (fit L3)
15- - - - - -
7
2 1o. . - - msmm FFC-opt
5‘ II| . II | II R
omr wm-m- . B8 - 8 ' ‘ COFFEE-vl
20- I S E— - -

mmmm This talk

nf=1

15- - - —

10- - - _

allaalal
= & =1 I—I l—l l—l

quad ufls chl cf02 quad ufls cf01 cf02 quad uﬂs chl cf02 quad ufls chl cf02

F. Luporini, D.A. Ham, P.H.J. Kelly. An algorithm for the optimization of finite element integration
loops. ACM Transactions on Mathematical Software (TOMS), 2017).



Firedrake’s “Compiler architecture”
has evolved over time

Unified Form
Language

Non-FE loops
over the mesh

UFL “Two-
stage” Form
Compiler

Distributed MPI-parallel PyOP2
implementation

COFFEE kernel

Unified Form
Language

Non-FE loops
over the mesh

UFL “Two-
stage” Form
Compiler

GEM: tensor

Loop-invariant
code motion,
sum-
factorisation

Loo.py loop transformations

optimiser/vectoriser

Manycore Future/

Multicore IGPU other

Vectorisation

contractions

Loo.py representation

Distributed MPI-parallel PyOP2
implementation

Manycore Future/

Multicore
IGPU other

In In Some prototyping

production development



Imperual College

Why | do what | do, and what I've learned

B Engaging with applications to exploit domain-specific
optimisations can be incredibly fruitful
B Compiling general purpose languages is worthy but usually incremental

B Compiler architecture is all about designing intermediate
representations — that make hard things look easy

B Tools to deliver domain-specific optimisations often have domain-specific
representations

B Premature lowering is the constant enemy (appropriate lowering is great)

B Along the way, we learn something about building better
general-purpose compilers and programming
abstractions

B Drill vertically, expand horizontally



Imperial College E What are the open research challenges?
L e A e e

B Sparse unstructured tiling really works, but didn’t make it into
the main trunk
B It’s just too complicated to justify the additional maintenance burden

B It only helps some applications

B We need to find a way to make it easier!

Improved strong-scaling

GPUs (and other accelerators?)
Coupled problems (in-progress)
Particles, particle transport
Mesh adaptation, load balancing

Things that | haven’t had time to talk about:

B Automatic adjoints, inverse problems (in-service)

B Interface/integration with PetSc (in-service)

B Hybridisation, static condensation (in-service, could be faster)



imperial College B How can we change the world?

B Thereal value of Firedrake is In
supporting the applications users in
exploring their design space

E We enable them to navigate rapidly
through alternative solutions to their
problem

B We break down barriers that prevent the
right tool being used for the right
problem

E Firedrake automates the finite element
m et h 0 d Devito Documentation Team Citing Publications Opportuni

. The DeVItO p rOJ eCt aUtO m ateS fl n Ite Devito: Symbolic Finite Difference Computation
d Iffe r e n C e Devito is a Domain-specific Language (DSL) and code generation framework for the

design of highly optimised finite difference kernels for use in inversion methods. Devito
utilises SymPy to allow the definition of operators from high-level symbolic equations and
generates optimised and automatically tuned code specific to a given target architecture.

. I n t h e fu t u re y W e W I I I h aV e au to m ated Symbolic computation is a powerful tool that allows users to:

pathways from maths to code for many . Uee uromsted perormance opimisaion o generaed sode

« Adjust stencil discretisation at runtime as required

Classes Of prObIem’ and many alternatlve « (Re-)development of solver code in hours rather than months
solution techniques




Imperial College

Have your cake and eat It too

B \We can simultaneously

E raise the level at which
programmers can
reason about code,

B provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand

B Program generation is

how we do it
94
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B Code:
B http://www.firedrakeproject.org/
B http://op2.qgithub.io/PyOP2/
B https://github.com/OP-DSL/OP2-Common
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