
Synthesis versus analysis: what do we
actually gain from domain-specificity?

Paul H J Kelly
Group Leader, Software Performance Optimisation

Co-Director, Centre for Computational Methods in Science and Engineering
Department of Computing, Imperial College London

Joint work with :
David Ham (Imperial Computing/Maths/Grantham Inst for Climate Change)

Gerard Gorman, Michael Lange (Imperial Earth Science Engineering – Applied Modelling and Computation Group)
Mike Giles, Gihan Mudalige, Istvan Reguly (Mathematical Inst, Oxford)

Doru Bercea, Fabio Luporini, Graham Markall, Lawrence Mitchell, Florian Rathgeber, Francis Russell, George Rokos,
Paul Colea (Software Perf Opt Group, Imperial Computing)

Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)
Michelle Mills Strout, Chris Krieger, Cathie Olschanowsky (Colorado State University)

Carlo Bertolli (IBM Research), Ram Ramanujam (Louisiana State University)
Doru Thom Popovici, Franz Franchetti (CMU), Karl Wilkinson (Capetown), Chris–Kriton Skylaris (Southampton) 1

Have your cake and eat it too

This talk is about the
following idea:
  can we simultaneously
  raise the level at which
programmers can
reason about code,
provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

Have your cake and eat it too

This talk is about the
following idea:
  can we simultaneously

raise the level at which
programmers can
reason about code,
 provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

  Compilation is like skiing
  Analysis is not always the interesting part....

Syntax

Points-to
Class-hierarchy

Dependence
Shape

.....

Types

Call-graph

Polyhedra

Register allocation
Instruction selection/scheduling

Storage layout

Tiling
Parallelisation

Mapping

Loop nest ordering
….

ht
tp

://
w

w
w

.n
ik

ki
em

cd
ad

e.
co

m
/s

ub
Fi

le
s/

2D
E

xa
m

pl
es

.h
tm

l
ht

tp
://

w
w

w
.g

in
z.

co
m

/n
ew

_z
ea

la
nd

/s
ki

_n
ew

_z
ea

la
nd

_w
an

ak
a_

ca
dr

on
a

What we
are
doing….

PyOP2/OP2
Unstructured-
mesh stencils

GiMMiK
Small-matrix
multiplication

Firedrake
Finite-element
assembly

SLAMBench
Dense SLAM
– 3D vision

PRAgMaTIc
Dynamic
mesh
adaptation

TINTL
Fourier
interpolation

Unsteady
CFD - higher-
order flux-
reconstruction

Finite-volume
CFD

Real-time 3D
scene
understanding

Adaptive-
mesh CFD

Ab-initio
computational
chemistry
(ONETEP)

Finite-element

Formula-1,
UAVs

Aeroengine
turbo-
machinery

Domestic
robotics,
augmented
reality

Tidal turbines

Solar energy,
drug design

Weather and
climate

Projects Contexts Applications

Massive common
sub-expressions

Vectorisation,
parametric
polyhedral tiling

Lazy, data-driven
compute-
communicate

Multicore graph
worklists

Optimisation of
composite
transforms

Tiling for
unstructured-
mesh stencils

Technologies

Targetting
MPI,
OpenMP,
OpenCL,
Dataflow/
FPGA, from
supercomp
uters to
mobile,
embedded
and
wearable

Runtime code
generation

7

This talk
 Some examples of domain-specific optimisations
 BLINK: visual effects filters – fusion, vectorisation, CUDA
 DESOLA: runtime fusion for linear algebra
 OP2: (among many) staging for CUDA shared memory
 PyOP2: (ditto) fusion and tiling for unstructured meshes
 COFFEE: (ditto) generalised loop-invariant code motion
GiMMiK: tiling & full unrolling for block-panel matrix multiply
 TINTL: Fourier interpolation for density functional theory

This talk’s question:
What do we actually gain by building domain-specific
tools? Where does the advantage come from?

8

This talk
The standard DSL message:

Avoid analysis for transformational optimisation
Transform at the right level of abstraction
Get the abstraction right

But what do we actually gain by building
domain-specific compiler tools?

YYZ
XX

Z

  Unstructured meshes require pointers/indirection because
adjacency lists have to be represented explicitly
  A controlled form of pointers

  OP2 is a C++ and Fortran library for parallel loops over the
mesh implemented by source-to-source transformation
  PyOP2 is an major extension implemented in Python using
runtime code generation

  Generates highly-optimised CUDA, OpenMP and MPI code

YYZ
XX

Z

Unmodified Fortran OP2 source code
exploits inter-node parallelism using MPI,
and intra-node parallelism using
OpenMP and CUDA
Application is a proprietary, full-scale, in-
production fluids dynamics package
Developed by Rolls Royce plc and used
for simulation of aeroplane engines

(joint work with Mike Giles, Istvan Reguly, Gihan Mudalige at Oxford)

8

TABLE 1: Benchmark systems specifications

System Ruby HECToR Jade
(Development machine) (Cray XE6) (NVIDIA GPU Cluster)

Node 2⇥Tesla K20c + 2⇥16-core AMD Opteron 2⇥Tesla K20m +
Architecture 2⇥6-core Intel Xeon E5-2640 2.50GHz 6276 (Interlagos)2.3GHz Intel Xeon E5-1650 3.2GHz

Memory/Node 5GB/GPU (ECC off) + 64GB 32GB 5GB/GPU (ECC on)
Num of Nodes 1 128 8

Interconnect shared memory Cray Gemini FDR InfiniBand
O/S RedHat Linux Enterprise 6.3 CLE 3.1.29 Red Hat Linux Enterprise 6.3

Compilers PGI 13.3, ICC 13.0.1, Cray MPI 8.1.4 PGI 13.3, ICC 13.0.1,
OpenMPI 1.6.4 OpenMPI 1.6.4

Compiler -O2 -xAVX -O3 -h fp3 -h ipa5 -O2 -xAVX
flags -arch=sm 35 -use fast math -arch=sm 35 -use fast math

16

32

64

128

256

512

1 6 12 24

Ti
m

e
(s

ec
on

ds
)

Number of threads

OPlus
OP2 (initial)

OP2

(a) OPlus vs OP2 (MPI only)

0

5

10

15

20

25

30

35

40

6 12 24

Ti
m

e
(s

ec
on

ds
)

Number of threads

OPlus
OP2

+PTScotch
+renum

(b) OPlus vs OP2 (with PTSotch and renumbering)
Fig. 9: Single node performance on Ruby (NASA Rotor 37, 2.5M edges, 20 iterations)

lel platforms and (4) how the OP2 framework facilitate
the deployment of such optimisations. In the next
section we analyze Hydra’s performance with OP2
and present work assessing these issues.

4 PERFORMANCE AND OPTIMISATIONS
We begin by initially benchmarking the runtime of
Hydra with OP2 on a single node. Key specifications
of the single node system are detailed in column 1
of TABLE 1. The system is a two socket Intel Xeon
E5-2640 system with 64GB of main memory. The
processors are based on Intel’s latest Sandy-bridge
architecture. The compiler flags that give the best
runtimes are listed. This system, named Ruby, also
consists of two NVIDIA Tesla K20 GPUs. Each GPU
consists of 5 GB of global memory. We use CUDA 5.0
in this study. TABLE 1 also details the large cluster
systems used later in the benchmarking study. These
will be used to explore the distributed memory scaling
performance of Hydra.

As mentioned previously, Hydra consists of several
components [22] and in this paper we report on the
non-linear solver configured to compute in double
precision floating point arithmetic. Hydra can also
be used to express multi-grid simulations, but for
simplicity of the performance analysis and reporting
we utilize experiments with a single grid (mesh) level.
The configuration and input meshes of Hydra in
these experiments model a standard application in
CFD, called NASA Rotor37 [23]. It is a transonic axial

compressor rotor widely used for validation in CFD.
Fig. 8 shows a representation of the mach contours for
this application on a single blade. The mesh used for
the single node performance benchmarking consists
of 2.5 million edges.

Fig. 9(a) presents the performance of Hydra with
both OPlus and OP2 on up to 12 cores (and 24 SMT
threads) on the Ruby single node system using the
message passing (MPI) parallelization. This is a like-
for-like comparison where the same mesh is solved
by both versions. The partitioning routine used in
both cases is a recursive coordinate bisection (RCB)
mesh partitioning [24] where the 3D coordinates of the
mesh is repeatedly split in the x, y and z directions
respectively until the required number of partitions
(where one partition is assigned to one MPI process)
is achieved. The timing presented are for the end-to-
end runtime of the main time-marching loop for 20
iterations. Usual production runs solving this mesh
would take hundreds of iterations to converge.

We see that the OP2 version (noted as OP2 initial) is
about 50% slower than the hand coded OPlus version.
The generated code from OP2 appears to be either
missing a performance optimisation inherent in the
original Hydra code and/or the OP2 generated code
and build structure is introducing new bottlenecks. By
simply considering the runtime on a single thread we
see that even without MPI communications the OP2
(initial) version performs with the same slowdown.
Thus it was apparent that some issue is affecting

“Performance
portability”

HYDRA: Full-scale industrial CFD using OP2

R
eg

ul
y,

 M
ud

al
ig

e
et

 a
l,

IE
E

E
 T

ra
ns

 P
ll

&
 D

is
t S

ys
te

m
s

20
15

HYDRA: Full-scale industrial CFD using OP2

R
eg

ul
y,

 M
ud

al
ig

e
et

 a
l,

IE
E

E
 T

ra
ns

 P
ll

&
 D

is
t S

ys
te

m
s

20
15

 Where did the domain-specific advantage come
from?
 Automatic code synthesis, for MPI, OpenMP, CUDA,
OpenCL – single source code, clean API
  Inspector-executor scheme: we know we will iterate over
the mesh many times, so we can invest in partitioning,
colouring etc
 Code synthesis templates to deliver optimised
implementations, eg:
  Colouring to avoid read-increment-write conflicts
  Staging of mesh data into CUDA shared memory
  Splitting push loops (that increment via a map) to
reduce register pressure (LCPC2012)

Sparse split tiling on an unstructured mesh, for locality

  How can we fuse two loops, when there is a “halo”
dependence?
  I.e. load a block of mesh and do the iterations of loop 1, then
the iterations of loop 2, before moving to the next block
  If we could, we could dramatically improve the memory access
behaviour!

• 18

Loop 2

Loop 1
Visits edges
Increments nodes

Visits nodes
Depends on edges

S
tro

ut
, L

up
or

in
i e

t a
l,

IP
D

P
S

’1
4

Sparse split tiling

  Partition the iteration space of loop 1

• 36

Loop 2

Loop 1
Visits edges
Increments nodes

Visits nodes
Depends on edges

S
tro

ut
, L

up
or

in
i e

t a
l,

IP
D

P
S

’1
4

Sparse split tiling

  Partition the iteration space of loop 1
Colour the partitions
  Project the tiles, using the knowledge that colour n can use
data produced by colour n-1
  Thus, the tile coloured #1 grows where it meets colour #0
  And shrinks where it meets colours #2 and #3

• 38

Loop 2

Loop 1
0

2
1

3 2

0

0
2

1
3 2

0

Visits edges
Increments nodes

Visits nodes
Depends on edges

S
tro

ut
, L

up
or

in
i e

t a
l,

IP
D

P
S

’1
4

OP2 loop fusion in practice

  Mesh size = 1.5M edges
  # Loop chain = 6 loops
  No inspector/plans overhead

Airfoil test problem
  Unstructured-mesh finite-
volume

(a) (b)

��

��
��

��
��

��

��
�	

�

��

���

�� �� �� �
 ��� ��� ��� ���

�

��
��

��

��
���

��
���

���
�

�������

�
����
��������������������� ���!�

����"�#
�
����"��
��#

����"�$����!

(c) (d)

Fig. 6: The Airfoil’s loop chain performance in terms of execution time and speedup relative to the best sequential execution
time for Sandy Bridge(a,c) and Westmere(b,d). The speedup is evaluated with respect to the omp version with one thread (i.e.
the slowest sequential back-end).

Choosing the correct input parameters to the tiling process is
key to achieving performance improvements. The parameters
include, the number of tiles, the iteration space to use as
the seed partition, and the numbering of the see partition.
The quality of the seed partition and associated coloring is
especially important. Together these determine the degree of
parallelism in the task graph.

VI. RELATED WORK

Our definition of a loop chain was presented in [8] along
with a discussion of how the loop chain abstraction is compli-
mentary to previous projects that performed task scheduling in
order to achieve asynchronous parallelism. In essence, projects
that require manual task definition [16]–[19] may benefit from
the semantics of a loop chain. Additionally, loop chaining is
a general abstraction that allows for broader application than
abstractions tailored to specific applications [20] or with more
restrictive requirements [21], [22].

For unstructured codes, there has been various inspector/ex-
ecutor strategies [23] that reschedule across loops to improve
data locality while still providing parallelism [2], [7], [24],
[25]. These methods include communication avoiding ap-
proaches [5] that optimize a series of loops over unstructured
meshes. These strategies fall under the broader category of
sparse tiling. In this paper we present a generalized sparse
tiling algorithm, whereas previous work was specific to par-
ticular benchmarks.

Various code transformation have been developed to
reschedule computation and reorder data for loop-chain-like
code patterns. Many of these techniques also generate parallel
execution schedules for the loops. The approach in [26]
identifies partitionable loops, and schedules these loops for
execution on a distributed memory machine. Likewise, there
are approaches that take parallel loops identified by OpenMP
pragmas and transform them for execution on distributed
memory clusters [27].

The approach presented in this paper differs from these
techniques in two key ways. First, these approaches generate
a schedule in which each partition or processing element
executes its assigned iterations of one loop, then communicates
a subset of its results to other partitions that are dependent
on that data. After executing its iterations of a loop, each
processing element potentially waits to receive data from other
partitions. The full sparse tiling approach described here does
not require any synchronization or communication during the
execution of a tile due to the atomicity of the tile. Before
a tile begins execution, it waits until all necessary data is
available and then executes from start to finish without further
communication or synchronization. This approach can better
exploit the locality available across the sequence of loops.

VII. CONCLUSIONS

Full sparse tiling has previously been shown to deliver
significant performance gains when applied ad hoc to specific

Intel Sandy Bridge (dual-socket 8-core Intel
Xeon E5-2680 2.00Ghz, 20MB of shared
L3 cache per socket); Intel icc 2013 (-O3, -
xSSE4.2/-xAVX).

Sparse split tiling

S
tro

ut
, L

up
or

in
i e

t a
l I

P
D

P
S

 2
01

4

Where did the domain-specific advantage come
from?
 OP2’s access descriptors provide precise dependence
iteration-to-iteration information
 We “know” that we will iterate many times over the same
mesh – so it’s worth investing in an expensive “inspector-
executor” scheme

 We capture chains of loops over the mesh
  We could get our compiler to find adjacent loops
  We could extend the OP2 API with “loop chains”

 What we actually do?
  We delay evaluation of parallel loops
  We build a chain (DAG) of parallel loops at runtime
  We generate code at runtime for the traces that occur

The finite element method in outline

do#element#=#1,N#
##assemble(element)#
end#do#

i

j k

i i

i

j j

j

k k

k

Ax#=#b

 Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

Multilayered abstractions for FE
 Local assembly:
 Specified using the FEniCS project’s DSL, UFL
(the “Unified Form Language”)
 Computes local assembly matrix
 Key operation is evaluation of expressions over
basis function representation of the element

 Mesh traversal:
 OP2
 Loops over the mesh
 Key is orchestration of data movement
 Solver:
 Interfaces to standard solvers, such as PetSc

The FEniCS
project’s Unified
Form Language

(UFL)

Firedrake: a finite-element framework
  An alternative implementation of the FEniCS language
  Using PyOP2 as an intermediate representation of parallel loops
  All embedded in Python

  Stencil DSL for unstructured-mesh
  Explicit access descriptors

characterise access footprint of
kernels
  Runtime code generation

  The FEniCS project’s UFL –
DSL for finite element
discretisation
  Compiler generates PyOP2

kernels and access descriptors

47/9

PyOP2

Non-FE loops FEniCS Form
Compiler

Unified Form
Language

COFFEE kernel
optimiser/vectoriser

Multicore Manycore
/GPU

Future/
other

R
at

hg
eb

er
, H

am
, M

itc
he

ll
et

 a
l,

ht
tp

://
ar

xi
v.

or
g/

ab
s/

15
01

.0
18

09

15#of#20#

Advection*diffusion.UFL.source.
t=state.scalar_fields["Tracer"]222222#2Extract2fields2
u=state.vector_fields["Velocity"]2222#2from2Fluidity2
2
p=TrialFunction(t)2222222222222222222#2Setup2test2and2
q=TestFunction(t)22222222222222222222#2trial2functions2
2
M=p*q*dx22222222222222222222222222222#2Mass2matrix2
d=Edt*dfsvty*dot(grad(q),grad(p))*dx2#2Diffusion2term2
D=ME0.5*d2222222222222222222222222222#2Diffusion2matrix2
2
adv2=2(q*t+dt*dot(grad(q),u)*t)*dx222#2Advection2RHS2
diff2=2action(M+0.5*d,t)2222222222222#2Diffusion2RHS2
2
solve(M2==2adv,2t)2222222222222222222#2Solve2advection2
solve(D2==2diff,2t)222222222222222222#2Solve2diffusion2
.

• 4
8

  This is the
entire
specification
for a solver for
an advection-
diffusion test
problem

  Same model
implemented
in FEniCS/
Dolfin, and
also in Fluidity
– hand-coded
Fortran

2.2. The Finite Element Method 13

elements of order k � 1 are used for the space for v and u [KLRT12].

We note how modifications to the equation being solved result in changes to the weak form,

and the choice of basis functions. This demonstrates how flexibility in the weak form and basis

functions is necessary for solving a wide range of problems.

The Advection-Di�usion Equation

A general form of the Advection-Di�usion equation is:

⇥T

⇥t
= ⇥ · (D⇥T)�⇥ · (uT) +R (2.13)

where T is the concentration of some tracer in a fluid with velocity u and di�usivity D that

evolves over time t and has a source R. If we assume that the velocity field is divergence-free,

the source term is zero, and di�usivity is isotropic, Equation 2.13 simplifies to:

⇥T

⇥t
= D⇥2T⌅ ⇤⇥ ⇧

Di⇥usion

� u ·⇥T⌅ ⇤⇥ ⇧
Advection

(2.14)

where we refer to the marked terms as the advection term and the di�usion term. The weak

form of Equation 2.14 after integration by parts of the advection and di�usion terms is:

�

�

q
⇥T

⇥t
dX =

�

��

q(⇥T � uT) · n ds�
�

�

⇥q ·⇥T dX +

�

�

⇥q · uT dX (2.15)

Only the spatial derivatives are discretised using the finite element method in this example.

Although it is possible to discretise time with the finite element method, it is presently uncom-

mon to do so in practice. Discretising the time derivative with a theta scheme [HNW93] where

� = 0.5 yields the following:

2.2. The Finite Element Method 13

elements of order k � 1 are used for the space for v and u [KLRT12].

We note how modifications to the equation being solved result in changes to the weak form,

and the choice of basis functions. This demonstrates how flexibility in the weak form and basis

functions is necessary for solving a wide range of problems.

The Advection-Di�usion Equation

A general form of the Advection-Di�usion equation is:

⇥T

⇥t
= ⇥ · (D⇥T)�⇥ · (uT) +R (2.13)

where T is the concentration of some tracer in a fluid with velocity u and di�usivity D that

evolves over time t and has a source R. If we assume that the velocity field is divergence-free,

the source term is zero, and di�usivity is isotropic, Equation 2.13 simplifies to:

⇥T

⇥t
= D⇥2T⌅ ⇤⇥ ⇧

Di⇥usion

� u ·⇥T⌅ ⇤⇥ ⇧
Advection

(2.14)

where we refer to the marked terms as the advection term and the di�usion term. The weak

form of Equation 2.14 after integration by parts of the advection and di�usion terms is:

�

�

q
⇥T

⇥t
dX =

�

��

q(⇥T � uT) · n ds�
�

�

⇥q ·⇥T dX +

�

�

⇥q · uT dX (2.15)

Only the spatial derivatives are discretised using the finite element method in this example.

Although it is possible to discretise time with the finite element method, it is presently uncom-

mon to do so in practice. Discretising the time derivative with a theta scheme [HNW93] where

� = 0.5 yields the following:

  Weak form:

The advection-
diffusion problem:

48/9

 Here we compare
performance against
two production
codes solving the
same problem on the
same mesh:

 Fluidity: Fortran/
C++
 DOLFIN: the
FEniCS project’s
implementation
of UFL

  Graph shows speedup over Fluidity on one core
of a 12-core Westmere node

Fermi M2050

Firedrake – single-node performance

M
ar

ka
ll,

 R
at

hg
eb

er
 e

t a
l,

IC
S

’1
3

These results are preliminary
and are presented for
discussion purposes – see
Rathgeber, Ham, Mitchell et
al,
http://arxiv.org/abs/
1501.01809
for more systematic
evaluation

Firedrake

R
at

hg
eb

er
, H

am
, M

itc
he

ll
et

 a
l,

ht
tp

://
ar

xi
v.

or
g/

ab
s/

15
01

.0
18

09

Where did the domain-specific advantage come
from?
 UFL (the Unified Form Language, inherited from the
FEniCS Project)
  Delivers spectacular expressive power
  Reduces scope for coding errors
  Supports flexible exploration of different models,
different PDEs, different solution schemes

 Building on PyOP2
  Handles MPI, OpenMP, CUDA, OpenCL
  Completely transparently

  PyOP2 uses runtime code generation
  So we don’t need to do static analysis
  So the layers above can freely exploit unlimited
abstraction

Firedrake

Fa
rr

el
l,

H
am

, F
un

ke
, R

og
ne

s,
 S

IA
M

 J
. S

ci
 C

om
p.

 2
01

3

Where did the domain-specific advantage come
from?
 The adjoint of the PDE characterises the sensitivity of the
PDE’s solution to input variables; it is usually derived by
automatic differentiation of the solver code:

 With UFL we have access to the PDE so we can generate
the adjoint solver directly:

2 P. E. FARRELL ET AL.

discrete forward equations
implement model by hand

����������������! forward code

algorithmic di↵erentiation

??y

adjoint code

Fig. 1.1: The traditional approach to developing adjoint models. The forward model
is implemented by hand, and its adjoint derived either by hand or with the assistance
of an algorithmic di↵erentiation tool.

nontrivial to implement by hand on a large and complex code. For parallel compu-
tations, these di�culties are magnified by the fact that the control flow of parallel
communications reverses in the adjoint solve: forward sends become adjoint receives,
and forward receives become adjoint sends [45].

The traditional approach to model development is to implement the forward code
by hand in a low-level language (typically Fortran or C++). While this allows the
programmer a high degree of control over each memory access and floating point
operation, implementing these codes usually takes a large amount of time, and the
mathematical structure of the problem to be solved is irretrievably interwoven with
implementation details of how the solution is to be achieved. Then the adjoint code is
produced, either by hand or with the assistance of an algorithmic di↵erentiation (AD)
tool (figure 1.1). Such AD tools take as input a forward model written in a low-level
language, and derive the associated discrete adjoint model, through some combination
of source-to-source transformations and operator overloading. However, this process
requires expert knowledge of both the tool and the model to be di↵erentiated [38, pg.
xii]. The root cause of the di�culty which AD tools have is that they operate on
low-level code in which implementation details and mathematics are inseparable and
therefore must both be di↵erentiated: AD tools must concern themselves with matters
such as memory allocations, pointer analyses, I/O, and parallel communications (e.g.
MPI or OpenMP).

A variant of this approach is to selectively apply AD to small sections of the model,
and then to connect and arrange these di↵erentiated routines by hand to assemble the
discrete adjoint equations [14, 8, 37]. This approach attempts to re-introduce as much
as possible of the distinction between mathematics and implementation; however, it
requires even more expertise than a näıve black-box application of AD.

Algorithmic di↵erentiation treats models as a sequence of elementary instructions,
where an instruction is typically a native operation of the programming language such
as addition, multiplication or exponentiation. Instead, we consider a new, higher-
level abstraction for developing discrete adjoint models: to treat the model as a
sequence of equation solves. This o↵ers an alternative approach to the development
of discrete adjoint models, and is implemented in an open-source software library
called libadjoint.

When libadjoint is applied to a low-level forward code, the developer must an-
notate the forward model. This involves embedding calls to the libadjoint library
that record the temporal structure of the equations as they are solved. The recorded
information is analogous to a tape in AD, but at a higher level of abstraction. Us-

4 P. E. FARRELL ET AL.

discrete forward equations
FEniCS system

����������! forward code

libadjoint

??y

discrete adjoint equations
FEniCS system

����������! adjoint code

Fig. 1.2: The approach to adjoint model development advocated in this paper. The
user specifies the discrete forward equations in a high-level language similar to math-
ematical notation; the discrete forward equations are explicitly represented in mem-
ory in the UFL format [2, 1]. libadjoint automatically derives the corresponding
in-memory representation of the discrete adjoint equations, from the in-memory rep-
resentation of the forward problem. Both the forward and adjoint equations are then
passed to the FEniCS system, which automatically generates and executes the code
necessary to compute the forward and adjoint solutions.

2. The fundamental abstraction of libadjoint. In this section, we detail
the basic abstraction upon which libadjoint is based. This abstraction is to treat the
model as a sequence of equation solves. This abstraction applies to both stationary
and time-dependent systems of partial di↵erential equations, and to both linear and
nonlinear systems.

2.1. Mathematical framework. We consider systems of discretised partial dif-
ferential equations expressed in the fundamental abstract form

A(u)u = b(u), (2.1)

where u is the vector of all prognostic variables, b(u) is the source term, and A(u)
the entire discretisation matrix. In the time-dependent case, u is a block-structured
vector containing all the values of the unknowns at all the time levels, A is a matrix
with a lower-triangular block structure containing all of the operators featuring in the
forward model, and b is a block-structured vector containing all of the right-hand side
terms for all of the equations solved in the forward model. The block-lower-triangular
structure of A is a consequence of the forward propagation of information through
time: later values depend on earlier values, but not vice versa.

It is to be emphasised that writing the model in this format (2.1) does not imply
that the whole of A is ever assembled at once, or the whole of u stored in memory.
For instance, the forward solver will typically assemble one block-row of A, solve it
for a block-component of u, forget as much as possible, and step forward in time.

Letm be some parameter upon which the forward equations depend. For example,
m could be a boundary condition, initial condition, or coe�cient appearing in the
equations. The tangent linear model associated with (2.1) is then given by

(A+G�R)
du

dm
= �

@F

@m
, (2.2)

FEniCS/Firedrake

FEniCS/Firedrake

Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.
The local assembly operation computes a small dense submatrix
Essentially computing (for example) integrals of flows across facets
These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

COFFEE: Optimisation of kernels

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly A:5

LISTING 1: Local assembly code generated by Firedrake for a Helmholtz problem on a 2D
triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3] = {{...}}
static const double X D01[3][3] = {{...}}

for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[j][k] += ((Y[i][k]*Y[i][j]+
+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

LISTING 2: Local assembly code generated by Firedrake for a Burgers problem on a 3D tetra-
hedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double **coords, double **w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {...}
static const double X1 D001[5][12] = {{...}}
static const double X2 D001[5][12] = {{...}}
//11 other basis functions definitions.
...
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,...)
...
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, ...)
...

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k])+...+(K8*X2 D001[i][k]))*((K2*X2 D100[i][j])+...+(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

(2) Definition of basis functions used, intuitively, to interpolate the contribution to the
PDE solution over the element. The choice of basis functions is expressed in UFL
directly by users. In the generated code, they are represented as global read-only
two dimensional arrays (i.e., using static const in C) of double precision floats.

(3) Evaluation of the element matrix in an affine loop nest, in which the integration is
performed.

Table I shows the variable names we will use in the upcoming code snippets to refer to
the various kernel objects.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Lu
po

rin
i,

Va
rb

en
es

cu
 e

t a
l,

A
C

M
 T

A
C

O
/H

iP
E

A
C

 2
01

5

Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.
The local assembly operation computes a small dense submatrix
Essentially computing (for example) integrals of flows across facets
These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

COFFEE: Optimisation of kernels

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly A:5

LISTING 1: Local assembly code generated by Firedrake for a Helmholtz problem on a 2D
triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3] = {{...}}
static const double X D01[3][3] = {{...}}

for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[j][k] += ((Y[i][k]*Y[i][j]+
+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

LISTING 2: Local assembly code generated by Firedrake for a Burgers problem on a 3D tetra-
hedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double **coords, double **w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {...}
static const double X1 D001[5][12] = {{...}}
static const double X2 D001[5][12] = {{...}}
//11 other basis functions definitions.
...
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,...)
...
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, ...)
...

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k])+...+(K8*X2 D001[i][k]))*((K2*X2 D100[i][j])+...+(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

(2) Definition of basis functions used, intuitively, to interpolate the contribution to the
PDE solution over the element. The choice of basis functions is expressed in UFL
directly by users. In the generated code, they are represented as global read-only
two dimensional arrays (i.e., using static const in C) of double precision floats.

(3) Evaluation of the element matrix in an affine loop nest, in which the integration is
performed.

Table I shows the variable names we will use in the upcoming code snippets to refer to
the various kernel objects.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Lu
po

rin
i,

Va
rb

en
es

cu
 e

t a
l,

A
C

 T
A

C
O

/H
iP

E
A

C
 2

01
5

COFFEE: Optimisation of kernels

A:8 F. Luporini et al.

LISTING 3: Local assembly code for the Helmholtz problem in Listing 1 after application of
padding, data alignment, and licm, for an AVX architecture. In this example, sub-expressions
invariant to j are identical to those invariant to k, so they can be precomputed once in the r loop.
void helmholtz(double A[3][4], double **coords) {
#define ALIGN attribute ((aligned(32)))
// K, det = Compute Jacobian (coords)

static const double W[3] ALIGN = {...}
static const double X D10[3][4] ALIGN = {{...}}
static const double X D01[3][4] ALIGN = {{...}}

for (int i = 0; i<3; i++) {
double LI 0[4] ALIGN;
double LI 1[4] ALIGN;
for (int r = 0; r<4; r++) {
LI 0[r] = ((K1*X D10[i][r])+(K3*X D01[i][r]));
LI 1[r] = ((K0*X D10[i][r])+(K2*X D01[i][r]));

}
for (int j = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
A[j][k] += (Y[i][k]*Y[i][j]+LI 0[k]*LI 0[j]+LI 1[k]*LI 1[j])*det*W[i]);

}
}

delegation to the compiler through standard pragmas (unroll). Tiling at the level of
vector registers is an additional feature of COFFEE. Based on the observation that
the evaluation of the element matrix can be reduced to a summation of outer prod-
ucts along the j and k dimensions, a model-driven vector-register tiling strategy can
be implemented. If we consider the code snippet in Listing 3 and we ignore the pres-
ence of the operation det*W3[i], the computation of the element matrix is abstractly
expressible as

Ajk =
X

x⇤B0�B
y⇤B00�B

xj · yk j, k = 0, ..., 2 (1)

where B is the set of all basis functions (or temporary variables, e.g., LI 0) accessed in
the kernel, whereas B⇥ and B⇥⇥ are generic problem-dependent subsets. Regardless of
the specific input problem, by abstracting from the presence of all variables indepen-
dent of both j and k, the element matrix computation is always reducible to this form.
Figure 2 illustrates how we can evaluate 16 entries (j, k = 0, ..., 3) of the element ma-
trix using just 2 vector registers, which represent a 4⇥4 tile, assuming |B⇥| = |B⇥⇥| = 1.
Values in a register are shuffled each time a product is performed. Standard compiler
auto-vectorization for both GNU and Intel compilers, instead, executes 4 broadcast
operations (i.e., “splat” of a value over all of the register locations) along the outer di-
mension to perform the calculation. In addition to incurring a larger number of cache
accesses, it needs to keep between f = 1 and f = 3 extra registers to perform the same
16 evaluations when unroll-and-jam is used, with f being the unroll-and-jam factor.

The storage layout of A, however, is incorrect after the application of this outer-
product-based vectorization (op-vect, in the following). It can be efficiently restored
with a sequence of vector shuffles following the pattern highlighted in Figure 3, ex-
ecuted once outside of the ijk loop nest. The generated pseudo-code for the simple
Helmholtz problem when using op-vect is shown in Figure 4.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Local assembly code
for the Helmholtz
problem after
application of

padding,
data alignment,
Loop-invariant
code motion

In this example, sub-
expressions invariant
to j are identical to
those invariant to k, so
they can be
precomputed once in
the r loop

Lu
po

rin
i,

Va
rb

en
es

cu
 e

t a
l,

A
C

 T
A

C
O

/H
iP

E
A

C
 2

01
5

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly A:5

LISTING 1: Local assembly code generated by Firedrake for a Helmholtz problem on a 2D
triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3] = {{...}}
static const double X D01[3][3] = {{...}}

for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[j][k] += ((Y[i][k]*Y[i][j]+
+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

LISTING 2: Local assembly code generated by Firedrake for a Burgers problem on a 3D tetra-
hedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double **coords, double **w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {...}
static const double X1 D001[5][12] = {{...}}
static const double X2 D001[5][12] = {{...}}
//11 other basis functions definitions.
...
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,...)
...
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, ...)
...

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k])+...+(K8*X2 D001[i][k]))*((K2*X2 D100[i][j])+...+(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

(2) Definition of basis functions used, intuitively, to interpolate the contribution to the
PDE solution over the element. The choice of basis functions is expressed in UFL
directly by users. In the generated code, they are represented as global read-only
two dimensional arrays (i.e., using static const in C) of double precision floats.

(3) Evaluation of the element matrix in an affine loop nest, in which the integration is
performed.

Table I shows the variable names we will use in the upcoming code snippets to refer to
the various kernel objects.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Kernels are often a lot more complicated
Local assembly code
generated by Firedrake
for a Burgers problem
on a 3D tetrahedral
mesh using Lagrange p
= 1 elements
Somewhat more
complicated!
Examples like this
motivate more complex
transformations
Including loop fission

Lu
po

rin
i,

Va
rb

en
es

cu
 e

t a
l,

A
C

 T
A

C
O

/H
iP

E
A

C
 2

01
5

COFFEE: Performance impact

Fairly serious, realistic example: static linear elasticity, p=2
tetrahedral mesh, 196608 elements
Including both assembly time and solve time
Single core of Intel Sandy Bridge
Compared with Firedrake loop nest compiled with Intel’s icc
compiler version 13.1

At low p, matrix insertion overheads dominate assembly time
At higher p, and with more coefficient functions (f=2), we get up to
1.47x overall application speedup

A:20 F. Luporini et al.

��

����

��

����

��

����

��

����

�	
	�� 	�� �	
	�� 	��

�
��
��
�	
��
���

��
��
��
��

�������	���	��������������	��

�������������������������
��	���	�����	� ����

!�������
�	�"�
#�$��

��%����%��

(a)

��

���

���

���

���

���

���

�	�

�
�

���

�
�
��
�� �
�
��
��

��
��
��
�

��
���

��
��
��
��

�������
���
��������������
��

 �!����"���!���"!������#����
"#�
��!"�
�$����

%�����"#

"&�
'�(��

��)����)��

(b)

Fig. 9: Performance improvement over non-optimized code for the static linear elas-
ticity equation. The tetrahedral mesh is composed of 196608 elements. Experiments
were executed on a single core of a Sandy Bridge architecture.

invariant code motion, alignment and padding, and expression splitting. We recall that
the cost of the insertion of the computed local element matrices (and vectors) in the
global matrix (vector) is incorporated in assembly.

We first notice that, in the scenario [f = 1, p = 1], the assembly is dominated by
matrix insertion: despite the application of several transformations, only a minimal
performance gain is achieved. This changes instantly increasing p or f . In these sce-
narios, not only the cost of assembly becomes larger with respect to solve, but also does
it make insertion cost negligible. In such cases, the transformations automatically ap-
plied by COFFEE successfully decrease the impact of assembly over solve. Interesting
is the fact that generalized loop-invariant code motion was particularly invasive, with
23 temporaries generated and several redundancies discovered (see Section 3.2).

In these experiments, we observe a maximum performance improvement of 1.47�
over the non-optimized local assembly code, obtained in the case [f = 2, p = 2]. How-
ever, we reiterate the fact that full-application speed ups rise proportionally with the
amount of time spent in assembly and, therefore, with the complexity of the equa-
tion. By increasing polynomial order and number of coefficient functions, or by simply
studying a different, more complex equation, it is our experience that performance
gains become increasingly more relevant. The choice of studying the static linear elas-
ticity equation was to show that even relatively simple problems can be characterized
by a large proportion of execution time spent in assembly.

6. GENERALITY OF THE APPROACH AND APPLICABILITY TO OTHER DOMAINS
We have demonstrated that our cross-loop optimizations for arithmetic intensity are
effective in the context of automated code generation for finite element local assembly.
In this section, we discuss about their applicability in other computational domains
and, more in general, their integrability within a general-purpose compiler.

We observe that our choice was to develop COFFEE as a separate, self-contained
software module, with clear input/output interfaces, rather then incorporating it
within PyOP2. This was motivated by two critical aspects that characterize the gener-
ality of our research.

Separation of concerns. We believe that in domain-specific frameworks there must
be a clear, logical separation of roles reflecting the various levels of abstractions, with
domain-specialists that can completely abstract from performance optimization. In
Firedrake, for instance, COFFEE decouples the mathematical specification of a fi-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Lu
po

rin
i,

Va
rb

en
es

cu
 e

t a
l,

A
C

 T
A

C
O

/H
iP

E
A

C
 2

01
5

COFFEE
Where did the domain-specific advantage come
from?
 Finite-element assembly kernels have complex structure
 With rich loop-invariant expression structure
 And simple dependence structure

 COFFEE generates C code that we feed to the best
available compiler
 COFFEE’s transformations make this code run faster
 COFFEE does not use any semantic information not
available to the C compiler
  But it does make better decisions
  For the loops we’re interested in Lu

po
rin

i,
Va

rb
en

es
cu

 e
t a

l,
A

C
 T

A
C

O
/H

iP
E

A
C

 2
01

5

COFFEE
Where did the domain-specific advantage come
from?

  COFFEE does “generalised” loop-invariant code motion (GLICM)

“an expression in a loop L is invariant with respect to a parent loop P if each of its
operands is

defined outside of P,
or is the induction variable of L,
or is the induction variable of a superloop of L which is also a subloop of P.”

We have an implementation for LLVM… preliminary evaluation suggests rather
few general C programs benefit from GLICM

P
au

l C
ol

ea
, M

S
c

th
es

is
, I

m
pe

ria
l

CHAPTER 4. GENERALIZED LOOP-INVARIANT CODE MOTION

GLICM.

1 i n t A[1 0 0] ;
2 i n t x=0, y=0;
3 f o r (i n t i =0; i <100; i++) {
4 f o r (i n t j =0; j <100; j++) {
5 x+=A[i] [i]⇤A[n�i] [n�i] ;
6 y+=A[j] [n�j]⇤A[n�j] [j] ;
7 }
8 }

(a) Original loop nest.

1 i n t A[1 0 0] ;
2 i n t x=0, y=0;
3 i n t t1 [1 0 0] ;
4 f o r (i n t j =0; j <100; j++) {
5 t1 [j]=A[j] [n�j]⇤A[n�j] [j] ;
6 }
7 f o r (i n t i =0; i <100; i++) {
8 i n t t2 = A[i] [i]⇤A[n�i] [n�i] ;
9 f o r (i n t j =0; j <100; j++) {

10 x+=t2 ;
11 y+=t1 ;
12 }
13 }

(b) After LICM and GLICM.

Figure 4.8: A loop nest where loop interchanging and LICM hoist a suboptimal number
of invariant expressions.

Even for programs such as the one in Figure 4.7, where we can use both methods to
hoist the same number of invariant instructions, the GLICM-optimized version might
perform better in practice. Firstly, the cloned loop introduced by GLICM is vectorizable.
If automatic vectorization is enabled, the hoisted operations will be executed using
SIMD instructions, achieving a speed-up compared to the scalar versions. Secondly, loop
interchanging might have other detrimental e↵ects on the runtime of the program, such
as increasing cache misses due to ine�cient memory access patterns.

45

y is variant in j, but recomputed
on each i iteration

x is invariant in j – interchange
doesn’t help

Conclusions
 Where do DSO opportunities come from?
 Domain semantics (eg in SPIRAL)
 Domain expertise (eg we know that inspector-executor will
pay off)
 Domain idiosyncracies (eg for GLICM)
 Transforming at the right representation

Eg fusing linear algebra ops instead of loops
 Data abstraction (eg AoS vs SoA)

  Or whether to build the global system matrix (in instead
to use a matrix-free or local-assembly scheme)

 Runtime code generation is liberating
We do not try to do static analysis on client code
We encourage client code to use powerful abstractions

Acknowledgements

Partly funded by
 NERC Doctoral Training Grant (NE/G523512/1)
 EPSRC �MAPDES� project (EP/I00677X/1)
 EPSRC “PSL” project (EP/I006761/1)
 Rolls Royce and the TSB through the SILOET programme
 EPSRC “PAMELA” Programme Grant (EP/K008730/1)
 EPSRC “PRISM” Platform Grant (EP/I006761/1)
 EPSRC “Custom Computing” Platform Grant (EP/I012036/1)
 AMD, Codeplay, Maxeler Technologies

 Code:
http://www.firedrakeproject.org/
  http://op2.github.io/PyOP2/

PyOP2 is on github

Firedrake is on github

The FEniCS project... The book

Abstraction…

 computer science is a science of
abstraction — creating the right model
for thinking about a problem and
devising the appropriate mechanizable
techniques to solve it
(Aho and Ullman, Foundations of Computer
Science, Ch1, http://infolab.stanford.edu/
~ullman/focs.html)

