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Have your cake and eat it too 

This talk is about the 
following idea:  
  can we simultaneously  
  raise the level at which 
programmers can 
reason about code,  
provide the compiler 
with a model of the 
computation that 
enables it to generate 
faster code than you 
could reasonably write 
by hand? 
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  Compilation is like skiing 
  Analysis is not always the interesting part.... 

Syntax 

Points-to 
Class-hierarchy 

Dependence 
Shape 

..... 

Types 

Call-graph 

Polyhedra 

Register allocation 
Instruction selection/scheduling 

Storage layout 

Tiling 
Parallelisation 

Mapping 

Loop nest ordering 
…. 
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What we 
are 
doing…. 

PyOP2/OP2 
Unstructured-
mesh stencils 

GiMMiK 
Small-matrix 
multiplication 

Firedrake 
Finite-element 
assembly 

SLAMBench 
Dense SLAM 
– 3D vision 

PRAgMaTIc 
Dynamic 
mesh 
adaptation 

TINTL 
Fourier 
interpolation  

Unsteady 
CFD - higher-
order flux-
reconstruction 

Finite-volume 
CFD 

Real-time 3D 
scene 
understanding 

Adaptive-
mesh CFD 

Ab-initio 
computational 
chemistry 
(ONETEP) 

Finite-element 

Formula-1, 
UAVs 

Aeroengine 
turbo-
machinery 

Domestic 
robotics, 
augmented 
reality 

Tidal turbines 

Solar energy, 
drug design 

Weather and 
climate 

Projects Contexts Applications 

Massive common 
sub-expressions 

Vectorisation, 
parametric 
polyhedral tiling 

Lazy, data-driven 
compute-
communicate 

Multicore graph 
worklists 

Optimisation of 
composite 
transforms 

Tiling for 
unstructured-
mesh stencils 

Technologies 

Targetting 
MPI, 
OpenMP, 
OpenCL, 
Dataflow/
FPGA, from 
supercomp
uters to 
mobile, 
embedded 
and 
wearable 

Runtime code 
generation 
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This talk 
 Some examples of domain-specific optimisations 
 BLINK: visual effects filters – fusion, vectorisation, CUDA 
 DESOLA: runtime fusion for linear algebra 
 OP2: (among many) staging for CUDA shared memory 
 PyOP2: (ditto) fusion and tiling for unstructured meshes 
 COFFEE: (ditto) generalised loop-invariant code motion 
GiMMiK: tiling & full unrolling for block-panel matrix multiply 
 TINTL: Fourier interpolation for density functional theory 

This talk’s question:  
What do we actually gain by building domain-specific 
tools?  Where does the advantage come from? 
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This talk 
The standard DSL message:  

Avoid analysis for transformational optimisation 
Transform at the right level of abstraction 
Get the abstraction right 

 

But what do we actually gain by building 
domain-specific compiler tools? 



YYZ
XX

Z

  Unstructured meshes require pointers/indirection because 
adjacency lists have to be represented explicitly 
  A controlled form of pointers 

  OP2 is a C++ and Fortran library for parallel loops over the 
mesh implemented by source-to-source transformation 
  PyOP2 is an major extension implemented in Python using 
runtime code generation 

  Generates highly-optimised CUDA, OpenMP and MPI code 

YYZ
XX

Z



Unmodified Fortran OP2 source code 
exploits inter-node parallelism using MPI, 
and intra-node parallelism using 
OpenMP and CUDA 
Application is a proprietary, full-scale, in-
production fluids dynamics package 
Developed by Rolls Royce plc and used 
for simulation of aeroplane engines  

(joint work with Mike Giles, Istvan Reguly, Gihan Mudalige at Oxford) 
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TABLE 1: Benchmark systems specifications

System Ruby HECToR Jade
(Development machine) (Cray XE6) (NVIDIA GPU Cluster)

Node 2⇥Tesla K20c + 2⇥16-core AMD Opteron 2⇥Tesla K20m +
Architecture 2⇥6-core Intel Xeon E5-2640 2.50GHz 6276 (Interlagos)2.3GHz Intel Xeon E5-1650 3.2GHz

Memory/Node 5GB/GPU (ECC off) + 64GB 32GB 5GB/GPU (ECC on)
Num of Nodes 1 128 8

Interconnect shared memory Cray Gemini FDR InfiniBand
O/S RedHat Linux Enterprise 6.3 CLE 3.1.29 Red Hat Linux Enterprise 6.3

Compilers PGI 13.3, ICC 13.0.1, Cray MPI 8.1.4 PGI 13.3, ICC 13.0.1,
OpenMPI 1.6.4 OpenMPI 1.6.4

Compiler -O2 -xAVX -O3 -h fp3 -h ipa5 -O2 -xAVX
flags -arch=sm 35 -use fast math -arch=sm 35 -use fast math

16

32

64

128

256

512

1 6 12 24

Ti
m

e
(s

ec
on

ds
)

Number of threads

OPlus
OP2 (initial)

OP2

(a) OPlus vs OP2 (MPI only)

0

5

10

15

20

25

30

35

40

6 12 24

Ti
m

e
(s

ec
on

ds
)

Number of threads

OPlus
OP2

+PTScotch
+renum

(b) OPlus vs OP2 (with PTSotch and renumbering)
Fig. 9: Single node performance on Ruby (NASA Rotor 37, 2.5M edges, 20 iterations)

lel platforms and (4) how the OP2 framework facilitate
the deployment of such optimisations. In the next
section we analyze Hydra’s performance with OP2
and present work assessing these issues.

4 PERFORMANCE AND OPTIMISATIONS
We begin by initially benchmarking the runtime of
Hydra with OP2 on a single node. Key specifications
of the single node system are detailed in column 1
of TABLE 1. The system is a two socket Intel Xeon
E5-2640 system with 64GB of main memory. The
processors are based on Intel’s latest Sandy-bridge
architecture. The compiler flags that give the best
runtimes are listed. This system, named Ruby, also
consists of two NVIDIA Tesla K20 GPUs. Each GPU
consists of 5 GB of global memory. We use CUDA 5.0
in this study. TABLE 1 also details the large cluster
systems used later in the benchmarking study. These
will be used to explore the distributed memory scaling
performance of Hydra.

As mentioned previously, Hydra consists of several
components [22] and in this paper we report on the
non-linear solver configured to compute in double
precision floating point arithmetic. Hydra can also
be used to express multi-grid simulations, but for
simplicity of the performance analysis and reporting
we utilize experiments with a single grid (mesh) level.
The configuration and input meshes of Hydra in
these experiments model a standard application in
CFD, called NASA Rotor37 [23]. It is a transonic axial

compressor rotor widely used for validation in CFD.
Fig. 8 shows a representation of the mach contours for
this application on a single blade. The mesh used for
the single node performance benchmarking consists
of 2.5 million edges.

Fig. 9(a) presents the performance of Hydra with
both OPlus and OP2 on up to 12 cores (and 24 SMT
threads) on the Ruby single node system using the
message passing (MPI) parallelization. This is a like-
for-like comparison where the same mesh is solved
by both versions. The partitioning routine used in
both cases is a recursive coordinate bisection (RCB)
mesh partitioning [24] where the 3D coordinates of the
mesh is repeatedly split in the x, y and z directions
respectively until the required number of partitions
(where one partition is assigned to one MPI process)
is achieved. The timing presented are for the end-to-
end runtime of the main time-marching loop for 20
iterations. Usual production runs solving this mesh
would take hundreds of iterations to converge.

We see that the OP2 version (noted as OP2 initial) is
about 50% slower than the hand coded OPlus version.
The generated code from OP2 appears to be either
missing a performance optimisation inherent in the
original Hydra code and/or the OP2 generated code
and build structure is introducing new bottlenecks. By
simply considering the runtime on a single thread we
see that even without MPI communications the OP2
(initial) version performs with the same slowdown.
Thus it was apparent that some issue is affecting

“Performance 
portability” 

HYDRA: Full-scale industrial CFD using OP2  
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 Where did the domain-specific advantage come 
from? 
 Automatic code synthesis, for MPI, OpenMP, CUDA, 
OpenCL – single source code, clean API 
  Inspector-executor scheme: we know we will iterate over 
the mesh many times, so we can invest in partitioning, 
colouring etc 
 Code synthesis templates to deliver optimised 
implementations, eg: 
  Colouring to avoid read-increment-write conflicts 
  Staging of mesh data into CUDA shared memory 
  Splitting push loops (that increment via a map) to 
reduce register pressure (LCPC2012) 



Sparse split tiling on an unstructured mesh, for locality 

  How can we fuse two loops, when there is a “halo” 
dependence? 
  I.e. load a block of mesh and do the iterations of loop 1, then 
the iterations of loop 2, before moving to the next block 
  If we could, we could dramatically improve the memory access 
behaviour! 

• 18 

Loop 2 

Loop 1 
Visits edges 
Increments nodes  

Visits nodes 
Depends on edges 
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Sparse split tiling 

  Partition the iteration space of loop 1 
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Sparse split tiling 

  Partition the iteration space of loop 1 
Colour the partitions 
  Project the tiles, using the knowledge that colour n can use 
data produced by colour n-1 
  Thus, the tile coloured #1 grows where it meets colour #0 
  And shrinks where it meets colours #2 and #3  

• 38 
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OP2 loop fusion in practice 

  Mesh size = 1.5M edges 
  # Loop chain = 6 loops 
  No inspector/plans overhead 

Airfoil test problem 
  Unstructured-mesh finite-
volume 

(a) (b)
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Fig. 6: The Airfoil’s loop chain performance in terms of execution time and speedup relative to the best sequential execution
time for Sandy Bridge(a,c) and Westmere(b,d). The speedup is evaluated with respect to the omp version with one thread (i.e.
the slowest sequential back-end).

Choosing the correct input parameters to the tiling process is
key to achieving performance improvements. The parameters
include, the number of tiles, the iteration space to use as
the seed partition, and the numbering of the see partition.
The quality of the seed partition and associated coloring is
especially important. Together these determine the degree of
parallelism in the task graph.

VI. RELATED WORK

Our definition of a loop chain was presented in [8] along
with a discussion of how the loop chain abstraction is compli-
mentary to previous projects that performed task scheduling in
order to achieve asynchronous parallelism. In essence, projects
that require manual task definition [16]–[19] may benefit from
the semantics of a loop chain. Additionally, loop chaining is
a general abstraction that allows for broader application than
abstractions tailored to specific applications [20] or with more
restrictive requirements [21], [22].

For unstructured codes, there has been various inspector/ex-
ecutor strategies [23] that reschedule across loops to improve
data locality while still providing parallelism [2], [7], [24],
[25]. These methods include communication avoiding ap-
proaches [5] that optimize a series of loops over unstructured
meshes. These strategies fall under the broader category of
sparse tiling. In this paper we present a generalized sparse
tiling algorithm, whereas previous work was specific to par-
ticular benchmarks.

Various code transformation have been developed to
reschedule computation and reorder data for loop-chain-like
code patterns. Many of these techniques also generate parallel
execution schedules for the loops. The approach in [26]
identifies partitionable loops, and schedules these loops for
execution on a distributed memory machine. Likewise, there
are approaches that take parallel loops identified by OpenMP
pragmas and transform them for execution on distributed
memory clusters [27].

The approach presented in this paper differs from these
techniques in two key ways. First, these approaches generate
a schedule in which each partition or processing element
executes its assigned iterations of one loop, then communicates
a subset of its results to other partitions that are dependent
on that data. After executing its iterations of a loop, each
processing element potentially waits to receive data from other
partitions. The full sparse tiling approach described here does
not require any synchronization or communication during the
execution of a tile due to the atomicity of the tile. Before
a tile begins execution, it waits until all necessary data is
available and then executes from start to finish without further
communication or synchronization. This approach can better
exploit the locality available across the sequence of loops.

VII. CONCLUSIONS

Full sparse tiling has previously been shown to deliver
significant performance gains when applied ad hoc to specific

Intel Sandy Bridge (dual-socket 8-core Intel 
Xeon E5-2680 2.00Ghz, 20MB of shared 
L3 cache per socket); Intel icc 2013 (-O3, -
xSSE4.2/-xAVX). 



Sparse split tiling 
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Where did the domain-specific advantage come 
from? 
 OP2’s access descriptors provide precise dependence 
iteration-to-iteration information  
 We “know” that we will iterate many times over the same 
mesh – so it’s worth investing in an expensive “inspector-
executor” scheme 

 We capture chains of loops over the mesh 
  We could get our compiler to find adjacent loops 
  We could extend the OP2 API with “loop chains” 

 What we actually do? 
  We delay evaluation of parallel loops 
  We build a chain (DAG) of parallel loops at runtime 
  We generate code at runtime for the traces that occur 



The finite element method in outline 

do#element#=#1,N#
##assemble(element)#
end#do#

i 

j k 

i i 

i 

j j 

j 

k k 

k 

Ax#=#b


 Key data structures: Mesh, dense local assembly 
matrices, sparse global system matrix, and RHS vector 



Multilayered abstractions for FE 
 Local assembly:  
 Specified using the FEniCS project’s DSL, UFL 
(the “Unified Form Language”) 
 Computes local assembly matrix 
 Key operation is evaluation of expressions over 
basis function representation of the element  

 Mesh traversal:  
 OP2 
 Loops over the mesh 
 Key is orchestration of data movement  
 Solver: 
 Interfaces to standard solvers, such as PetSc  



The FEniCS 
project’s Unified 
Form Language 

(UFL) 



Firedrake: a finite-element framework 
  An alternative implementation of the FEniCS language 
  Using PyOP2 as an intermediate representation of parallel loops 
  All embedded in Python 

  Stencil DSL for unstructured-mesh 
  Explicit access descriptors 

characterise access footprint of 
kernels 
  Runtime code generation 

  The FEniCS project’s UFL – 
DSL for finite element 
discretisation 
  Compiler generates PyOP2 

kernels and access descriptors 
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PyOP2 

Non-FE loops FEniCS Form 
Compiler 

Unified Form 
Language 

COFFEE kernel 
optimiser/vectoriser 

Multicore Manycore
/GPU 
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15#of#20#

Advection*diffusion.UFL.source.
t=state.scalar_fields["Tracer"]222222#2Extract2fields2
u=state.vector_fields["Velocity"]2222#2from2Fluidity2
2
p=TrialFunction(t)2222222222222222222#2Setup2test2and2
q=TestFunction(t)22222222222222222222#2trial2functions2
2
M=p*q*dx22222222222222222222222222222#2Mass2matrix2
d=Edt*dfsvty*dot(grad(q),grad(p))*dx2#2Diffusion2term2
D=ME0.5*d2222222222222222222222222222#2Diffusion2matrix2
2
adv2=2(q*t+dt*dot(grad(q),u)*t)*dx222#2Advection2RHS2
diff2=2action(M+0.5*d,t)2222222222222#2Diffusion2RHS2
2
solve(M2==2adv,2t)2222222222222222222#2Solve2advection2
solve(D2==2diff,2t)222222222222222222#2Solve2diffusion2
.

• 4
8 

  This is the 
entire 
specification 
for a solver for 
an advection-
diffusion test 
problem 

 
  Same model 
implemented 
in FEniCS/
Dolfin, and 
also in Fluidity 
– hand-coded 
Fortran 

 

2.2. The Finite Element Method 13

elements of order k � 1 are used for the space for v and u [KLRT12].

We note how modifications to the equation being solved result in changes to the weak form,

and the choice of basis functions. This demonstrates how flexibility in the weak form and basis

functions is necessary for solving a wide range of problems.

The Advection-Di�usion Equation

A general form of the Advection-Di�usion equation is:

⇥T

⇥t
= ⇥ · (D⇥T )�⇥ · (uT ) +R (2.13)

where T is the concentration of some tracer in a fluid with velocity u and di�usivity D that

evolves over time t and has a source R. If we assume that the velocity field is divergence-free,

the source term is zero, and di�usivity is isotropic, Equation 2.13 simplifies to:

⇥T

⇥t
= D⇥2T⌅ ⇤⇥ ⇧

Di⇥usion

� u ·⇥T⌅ ⇤⇥ ⇧
Advection

(2.14)

where we refer to the marked terms as the advection term and the di�usion term. The weak

form of Equation 2.14 after integration by parts of the advection and di�usion terms is:

�

�

q
⇥T

⇥t
dX =

�

��

q(⇥T � uT ) · n ds�
�

�

⇥q ·⇥T dX +

�

�

⇥q · uT dX (2.15)

Only the spatial derivatives are discretised using the finite element method in this example.

Although it is possible to discretise time with the finite element method, it is presently uncom-

mon to do so in practice. Discretising the time derivative with a theta scheme [HNW93] where

� = 0.5 yields the following:
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� = 0.5 yields the following:

  Weak form: 

The advection-
diffusion problem: 
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 Here we compare 
performance against 
two production 
codes solving the 
same problem on the 
same mesh: 

 Fluidity: Fortran/
C++ 
 DOLFIN: the 
FEniCS project’s 
implementation 
of UFL 

 

  Graph shows speedup over Fluidity on one core 
of a 12-core Westmere node  

Fermi M2050 

Firedrake – single-node performance 
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These results are preliminary 
and are presented for 
discussion purposes – see 
Rathgeber, Ham, Mitchell et 
al, 
http://arxiv.org/abs/
1501.01809 
for more systematic 
evaluation 
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Where did the domain-specific advantage come 
from? 
 UFL (the Unified Form Language, inherited from the 
FEniCS Project) 
  Delivers spectacular expressive power 
  Reduces scope for coding errors 
  Supports flexible exploration of different models, 
different PDEs, different solution schemes 

 Building on PyOP2 
  Handles MPI, OpenMP, CUDA, OpenCL  
  Completely transparently 

  PyOP2 uses runtime code generation 
  So we don’t need to do static analysis 
  So the layers above can freely exploit unlimited 
abstraction 
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Where did the domain-specific advantage come 
from? 
 The adjoint of the PDE characterises the sensitivity of the 
PDE’s solution to input variables; it is usually derived by 
automatic differentiation of the solver code: 

 
 With UFL we have access to the PDE so we can generate 
the adjoint solver directly: 

2 P. E. FARRELL ET AL.

discrete forward equations
implement model by hand

����������������! forward code

algorithmic di↵erentiation

??y

adjoint code

Fig. 1.1: The traditional approach to developing adjoint models. The forward model
is implemented by hand, and its adjoint derived either by hand or with the assistance
of an algorithmic di↵erentiation tool.

nontrivial to implement by hand on a large and complex code. For parallel compu-
tations, these di�culties are magnified by the fact that the control flow of parallel
communications reverses in the adjoint solve: forward sends become adjoint receives,
and forward receives become adjoint sends [45].

The traditional approach to model development is to implement the forward code
by hand in a low-level language (typically Fortran or C++). While this allows the
programmer a high degree of control over each memory access and floating point
operation, implementing these codes usually takes a large amount of time, and the
mathematical structure of the problem to be solved is irretrievably interwoven with
implementation details of how the solution is to be achieved. Then the adjoint code is
produced, either by hand or with the assistance of an algorithmic di↵erentiation (AD)
tool (figure 1.1). Such AD tools take as input a forward model written in a low-level
language, and derive the associated discrete adjoint model, through some combination
of source-to-source transformations and operator overloading. However, this process
requires expert knowledge of both the tool and the model to be di↵erentiated [38, pg.
xii ]. The root cause of the di�culty which AD tools have is that they operate on
low-level code in which implementation details and mathematics are inseparable and
therefore must both be di↵erentiated: AD tools must concern themselves with matters
such as memory allocations, pointer analyses, I/O, and parallel communications (e.g.
MPI or OpenMP).

A variant of this approach is to selectively apply AD to small sections of the model,
and then to connect and arrange these di↵erentiated routines by hand to assemble the
discrete adjoint equations [14, 8, 37]. This approach attempts to re-introduce as much
as possible of the distinction between mathematics and implementation; however, it
requires even more expertise than a näıve black-box application of AD.

Algorithmic di↵erentiation treats models as a sequence of elementary instructions,
where an instruction is typically a native operation of the programming language such
as addition, multiplication or exponentiation. Instead, we consider a new, higher-
level abstraction for developing discrete adjoint models: to treat the model as a
sequence of equation solves. This o↵ers an alternative approach to the development
of discrete adjoint models, and is implemented in an open-source software library
called libadjoint.

When libadjoint is applied to a low-level forward code, the developer must an-
notate the forward model. This involves embedding calls to the libadjoint library
that record the temporal structure of the equations as they are solved. The recorded
information is analogous to a tape in AD, but at a higher level of abstraction. Us-

4 P. E. FARRELL ET AL.

discrete forward equations
FEniCS system

����������! forward code

libadjoint

??y

discrete adjoint equations
FEniCS system

����������! adjoint code

Fig. 1.2: The approach to adjoint model development advocated in this paper. The
user specifies the discrete forward equations in a high-level language similar to math-
ematical notation; the discrete forward equations are explicitly represented in mem-
ory in the UFL format [2, 1]. libadjoint automatically derives the corresponding
in-memory representation of the discrete adjoint equations, from the in-memory rep-
resentation of the forward problem. Both the forward and adjoint equations are then
passed to the FEniCS system, which automatically generates and executes the code
necessary to compute the forward and adjoint solutions.

2. The fundamental abstraction of libadjoint. In this section, we detail
the basic abstraction upon which libadjoint is based. This abstraction is to treat the
model as a sequence of equation solves. This abstraction applies to both stationary
and time-dependent systems of partial di↵erential equations, and to both linear and
nonlinear systems.

2.1. Mathematical framework. We consider systems of discretised partial dif-
ferential equations expressed in the fundamental abstract form

A(u)u = b(u), (2.1)

where u is the vector of all prognostic variables, b(u) is the source term, and A(u)
the entire discretisation matrix. In the time-dependent case, u is a block-structured
vector containing all the values of the unknowns at all the time levels, A is a matrix
with a lower-triangular block structure containing all of the operators featuring in the
forward model, and b is a block-structured vector containing all of the right-hand side
terms for all of the equations solved in the forward model. The block-lower-triangular
structure of A is a consequence of the forward propagation of information through
time: later values depend on earlier values, but not vice versa.

It is to be emphasised that writing the model in this format (2.1) does not imply
that the whole of A is ever assembled at once, or the whole of u stored in memory.
For instance, the forward solver will typically assemble one block-row of A, solve it
for a block-component of u, forget as much as possible, and step forward in time.

Letm be some parameter upon which the forward equations depend. For example,
m could be a boundary condition, initial condition, or coe�cient appearing in the
equations. The tangent linear model associated with (2.1) is then given by

(A+G�R)
du

dm
= �

@F

@m
, (2.2)

FEniCS/Firedrake
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Local assembly code generated by Firedrake for a Helmholtz 
problem on a 2D triangular mesh using Lagrange p = 1 elements. 
The local assembly operation computes a small dense submatrix 
Essentially computing (for example) integrals of flows across facets 
These are combined to form a global system of simultaneous 
equations capturing the discretised conservation laws expressed by 
the PDE 

COFFEE: Optimisation of kernels 

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly A:5

LISTING 1: Local assembly code generated by Firedrake for a Helmholtz problem on a 2D
triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3] = {{...}}
static const double X D01[3][3] = {{...}}

for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[j][k] += ((Y[i][k]*Y[i][j]+
+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

LISTING 2: Local assembly code generated by Firedrake for a Burgers problem on a 3D tetra-
hedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double **coords, double **w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {...}
static const double X1 D001[5][12] = {{...}}
static const double X2 D001[5][12] = {{...}}
//11 other basis functions definitions.
...
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,...)
...
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, ...)
...

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k])+...+(K8*X2 D001[i][k]))*((K2*X2 D100[i][j])+...+(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

(2) Definition of basis functions used, intuitively, to interpolate the contribution to the
PDE solution over the element. The choice of basis functions is expressed in UFL
directly by users. In the generated code, they are represented as global read-only
two dimensional arrays (i.e., using static const in C) of double precision floats.

(3) Evaluation of the element matrix in an affine loop nest, in which the integration is
performed.

Table I shows the variable names we will use in the upcoming code snippets to refer to
the various kernel objects.
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Local assembly code generated by Firedrake for a Helmholtz 
problem on a 2D triangular mesh using Lagrange p = 1 elements. 
The local assembly operation computes a small dense submatrix 
Essentially computing (for example) integrals of flows across facets 
These are combined to form a global system of simultaneous 
equations capturing the discretised conservation laws expressed by 
the PDE 

COFFEE: Optimisation of kernels 

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly A:5

LISTING 1: Local assembly code generated by Firedrake for a Helmholtz problem on a 2D
triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3] = {{...}}
static const double X D01[3][3] = {{...}}

for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[j][k] += ((Y[i][k]*Y[i][j]+
+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

LISTING 2: Local assembly code generated by Firedrake for a Burgers problem on a 3D tetra-
hedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double **coords, double **w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {...}
static const double X1 D001[5][12] = {{...}}
static const double X2 D001[5][12] = {{...}}
//11 other basis functions definitions.
...
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,...)
...
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, ...)
...

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k])+...+(K8*X2 D001[i][k]))*((K2*X2 D100[i][j])+...+(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

(2) Definition of basis functions used, intuitively, to interpolate the contribution to the
PDE solution over the element. The choice of basis functions is expressed in UFL
directly by users. In the generated code, they are represented as global read-only
two dimensional arrays (i.e., using static const in C) of double precision floats.

(3) Evaluation of the element matrix in an affine loop nest, in which the integration is
performed.

Table I shows the variable names we will use in the upcoming code snippets to refer to
the various kernel objects.
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COFFEE: Optimisation of kernels 

A:8 F. Luporini et al.

LISTING 3: Local assembly code for the Helmholtz problem in Listing 1 after application of
padding, data alignment, and licm, for an AVX architecture. In this example, sub-expressions
invariant to j are identical to those invariant to k, so they can be precomputed once in the r loop.
void helmholtz(double A[3][4], double **coords) {
#define ALIGN attribute ((aligned(32)))
// K, det = Compute Jacobian (coords)

static const double W[3] ALIGN = {...}
static const double X D10[3][4] ALIGN = {{...}}
static const double X D01[3][4] ALIGN = {{...}}

for (int i = 0; i<3; i++) {
double LI 0[4] ALIGN;
double LI 1[4] ALIGN;
for (int r = 0; r<4; r++) {
LI 0[r] = ((K1*X D10[i][r])+(K3*X D01[i][r]));
LI 1[r] = ((K0*X D10[i][r])+(K2*X D01[i][r]));

}
for (int j = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
A[j][k] += (Y[i][k]*Y[i][j]+LI 0[k]*LI 0[j]+LI 1[k]*LI 1[j])*det*W[i]);

}
}

delegation to the compiler through standard pragmas (unroll). Tiling at the level of
vector registers is an additional feature of COFFEE. Based on the observation that
the evaluation of the element matrix can be reduced to a summation of outer prod-
ucts along the j and k dimensions, a model-driven vector-register tiling strategy can
be implemented. If we consider the code snippet in Listing 3 and we ignore the pres-
ence of the operation det*W3[i], the computation of the element matrix is abstractly
expressible as

Ajk =
X

x⇤B0�B
y⇤B00�B

xj · yk j, k = 0, ..., 2 (1)

where B is the set of all basis functions (or temporary variables, e.g., LI 0) accessed in
the kernel, whereas B⇥ and B⇥⇥ are generic problem-dependent subsets. Regardless of
the specific input problem, by abstracting from the presence of all variables indepen-
dent of both j and k, the element matrix computation is always reducible to this form.
Figure 2 illustrates how we can evaluate 16 entries (j, k = 0, ..., 3) of the element ma-
trix using just 2 vector registers, which represent a 4⇥4 tile, assuming |B⇥| = |B⇥⇥| = 1.
Values in a register are shuffled each time a product is performed. Standard compiler
auto-vectorization for both GNU and Intel compilers, instead, executes 4 broadcast
operations (i.e., “splat” of a value over all of the register locations) along the outer di-
mension to perform the calculation. In addition to incurring a larger number of cache
accesses, it needs to keep between f = 1 and f = 3 extra registers to perform the same
16 evaluations when unroll-and-jam is used, with f being the unroll-and-jam factor.

The storage layout of A, however, is incorrect after the application of this outer-
product-based vectorization (op-vect, in the following). It can be efficiently restored
with a sequence of vector shuffles following the pattern highlighted in Figure 3, ex-
ecuted once outside of the ijk loop nest. The generated pseudo-code for the simple
Helmholtz problem when using op-vect is shown in Figure 4.
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Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly A:5

LISTING 1: Local assembly code generated by Firedrake for a Helmholtz problem on a 2D
triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X D10[3][3] = {{...}}
static const double X D01[3][3] = {{...}}

for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[j][k] += ((Y[i][k]*Y[i][j]+
+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

LISTING 2: Local assembly code generated by Firedrake for a Burgers problem on a 3D tetra-
hedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double **coords, double **w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {...}
static const double X1 D001[5][12] = {{...}}
static const double X2 D001[5][12] = {{...}}
//11 other basis functions definitions.
...
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,...)
...
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, ...)
...

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k])+...+(K8*X2 D001[i][k]))*((K2*X2 D100[i][j])+...+(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

(2) Definition of basis functions used, intuitively, to interpolate the contribution to the
PDE solution over the element. The choice of basis functions is expressed in UFL
directly by users. In the generated code, they are represented as global read-only
two dimensional arrays (i.e., using static const in C) of double precision floats.

(3) Evaluation of the element matrix in an affine loop nest, in which the integration is
performed.

Table I shows the variable names we will use in the upcoming code snippets to refer to
the various kernel objects.
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COFFEE: Performance impact 

Fairly serious, realistic example: static linear elasticity, p=2 
tetrahedral mesh, 196608 elements  
Including both assembly time and solve time 
Single core of Intel Sandy Bridge 
Compared with Firedrake loop nest compiled with Intel’s icc 
compiler version 13.1 

At low p, matrix insertion overheads dominate assembly time 
At higher p, and with more coefficient functions (f=2), we get up to 
1.47x overall application speedup 

A:20 F. Luporini et al.

��

����

��

����

��

����

��

����

�	
	�� 	�� �	
	�� 	��


�
��
��
�	
��
���

��
��
��
��

�������	���	��������������	��

�������������������������
��	���	�����	� ����

!�������
�	�"�
#�$��

��%����%��

(a)

��

���

���

���

���

���

���

�	�

�
�

���

�
�
�� 
�� �
�
�� 
��

��
��
��
�

��
���

��
��
��
��

�������
���
��������������
��

 �!����"���!���"!������#����
"#�
��!"�
�$����

%�����"#
 
"&�
'�(��

��)����)��

(b)

Fig. 9: Performance improvement over non-optimized code for the static linear elas-
ticity equation. The tetrahedral mesh is composed of 196608 elements. Experiments
were executed on a single core of a Sandy Bridge architecture.

invariant code motion, alignment and padding, and expression splitting. We recall that
the cost of the insertion of the computed local element matrices (and vectors) in the
global matrix (vector) is incorporated in assembly.

We first notice that, in the scenario [f = 1, p = 1], the assembly is dominated by
matrix insertion: despite the application of several transformations, only a minimal
performance gain is achieved. This changes instantly increasing p or f . In these sce-
narios, not only the cost of assembly becomes larger with respect to solve, but also does
it make insertion cost negligible. In such cases, the transformations automatically ap-
plied by COFFEE successfully decrease the impact of assembly over solve. Interesting
is the fact that generalized loop-invariant code motion was particularly invasive, with
23 temporaries generated and several redundancies discovered (see Section 3.2).

In these experiments, we observe a maximum performance improvement of 1.47�
over the non-optimized local assembly code, obtained in the case [f = 2, p = 2]. How-
ever, we reiterate the fact that full-application speed ups rise proportionally with the
amount of time spent in assembly and, therefore, with the complexity of the equa-
tion. By increasing polynomial order and number of coefficient functions, or by simply
studying a different, more complex equation, it is our experience that performance
gains become increasingly more relevant. The choice of studying the static linear elas-
ticity equation was to show that even relatively simple problems can be characterized
by a large proportion of execution time spent in assembly.

6. GENERALITY OF THE APPROACH AND APPLICABILITY TO OTHER DOMAINS
We have demonstrated that our cross-loop optimizations for arithmetic intensity are
effective in the context of automated code generation for finite element local assembly.
In this section, we discuss about their applicability in other computational domains
and, more in general, their integrability within a general-purpose compiler.

We observe that our choice was to develop COFFEE as a separate, self-contained
software module, with clear input/output interfaces, rather then incorporating it
within PyOP2. This was motivated by two critical aspects that characterize the gener-
ality of our research.

Separation of concerns. We believe that in domain-specific frameworks there must
be a clear, logical separation of roles reflecting the various levels of abstractions, with
domain-specialists that can completely abstract from performance optimization. In
Firedrake, for instance, COFFEE decouples the mathematical specification of a fi-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Lu
po

rin
i, 

Va
rb

en
es

cu
 e

t a
l, 

A
C

 T
A

C
O

/H
iP

E
A

C
 2

01
5 



COFFEE 
Where did the domain-specific advantage come 
from? 
 Finite-element assembly kernels have complex structure 
 With rich loop-invariant expression structure 
 And simple dependence structure 

 COFFEE generates C code that we feed to the best 
available compiler 
 COFFEE’s transformations make this code run faster 
 COFFEE does not use any semantic information not 
available to the C compiler 
  But it does make better decisions 
  For the loops we’re interested in Lu
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COFFEE 
Where did the domain-specific advantage come 
from? 

 
  COFFEE does “generalised” loop-invariant code motion (GLICM) 

“an expression in a loop L is invariant with respect to a parent loop P if each of its 
operands is 

defined outside of P,  
or is the induction variable of L,  
or is the induction variable of a superloop of L which is also a subloop of P.” 

We have an implementation for LLVM… preliminary evaluation suggests rather 
few general C programs benefit from GLICM 
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CHAPTER 4. GENERALIZED LOOP-INVARIANT CODE MOTION

GLICM.

1 i n t A[ 1 0 0 ] ;
2 i n t x=0, y=0;
3 f o r ( i n t i =0; i <100; i++) {
4 f o r ( i n t j =0; j <100; j++) {
5 x+=A[ i ] [ i ]⇤A[ n�i ] [ n�i ] ;
6 y+=A[ j ] [ n�j ]⇤A[ n�j ] [ j ] ;
7 }
8 }

(a) Original loop nest.

1 i n t A[ 1 0 0 ] ;
2 i n t x=0, y=0;
3 i n t t1 [ 1 0 0 ] ;
4 f o r ( i n t j =0; j <100; j++) {
5 t1 [ j ]=A[ j ] [ n�j ]⇤A[ n�j ] [ j ] ;
6 }
7 f o r ( i n t i =0; i <100; i++) {
8 i n t t2 = A[ i ] [ i ]⇤A[ n�i ] [ n�i ] ;
9 f o r ( i n t j =0; j <100; j++) {

10 x+=t2 ;
11 y+=t1 ;
12 }
13 }

(b) After LICM and GLICM.

Figure 4.8: A loop nest where loop interchanging and LICM hoist a suboptimal number
of invariant expressions.

Even for programs such as the one in Figure 4.7, where we can use both methods to
hoist the same number of invariant instructions, the GLICM-optimized version might
perform better in practice. Firstly, the cloned loop introduced by GLICM is vectorizable.
If automatic vectorization is enabled, the hoisted operations will be executed using
SIMD instructions, achieving a speed-up compared to the scalar versions. Secondly, loop
interchanging might have other detrimental e↵ects on the runtime of the program, such
as increasing cache misses due to ine�cient memory access patterns.

45

y is variant in j, but recomputed 
on each i iteration 

x is invariant in j – interchange 
doesn’t help 



Conclusions 
 Where do DSO opportunities come from? 
 Domain semantics (eg in SPIRAL) 
 Domain expertise (eg we know that inspector-executor will 
pay off) 
 Domain idiosyncracies (eg for GLICM) 
 Transforming at the right representation 

Eg fusing linear algebra ops instead of loops 
 Data abstraction (eg AoS vs SoA) 

  Or whether to build the global system matrix (in instead 
to use a matrix-free or local-assembly scheme) 

 Runtime code generation is liberating 
We do not try to do static analysis on client code 
We encourage client code to use powerful abstractions 
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 Code:  
http://www.firedrakeproject.org/ 
  http://op2.github.io/PyOP2/ 



PyOP2 is on github 



Firedrake is on github 



The FEniCS project... The book 



Abstraction… 

 computer science is a science of 
abstraction — creating the right model 
for thinking about a problem and 
devising the appropriate mechanizable 
techniques to solve it 
(Aho and Ullman, Foundations of Computer 
Science, Ch1, http://infolab.stanford.edu/
~ullman/focs.html) 


