
Imperial College London

Department of Computing

Reasoning with Time and Data Abstractions

Pedro da Rocha Pinto

September 2016

Supervised by Philippa Gardner

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

1

2

Declaration

I herewith certify that all material in this thesis which is not my own work has been properly

acknowledged.

Pedro da Rocha Pinto

3

4

Copyright

The copyright of this thesis rests with the author and is made available under a Creative Commons

Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit

the thesis on the condition that they attribute it, that they do not use it for commercial purposes and

that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must

make clear to others the licence terms of this work.

5

6

Abstract

In this thesis, we address the problem of verifying the functional correctness of concurrent programs,

with emphasis on fine-grained concurrent data structures. Reasoning about such programs is challenging

since data can be concurrently accessed by multiple threads: the reasoning must account for the

interference between threads, which is often subtle. To reason about interference, concurrent operations

should either be at distinct times or on distinct data.

We present TaDA, a sound program logic for verifying clients and implementations that use abstract

specifications that incorporate both abstract atomicity—the abstraction that operations take effect

at a single, discrete instant in time—and abstract disjointness—the abstraction that operations act

on distinct data resources. Our key contribution is the introduction of atomic triples, which offer an

expressive approach for specifying program modules.

We also present Total-TaDA, a sound extension of TaDA with which we can verify total correctness

of concurrent programs, i.e. that such programs both produce the correct result and terminate. With

Total-TaDA, we can specify constraints on a thread’s concurrent environment that are necessary to

guarantee termination. This allows us to verify total correctness for nonblocking algorithms and express

lock- and wait-freedom. More generally, the abstract specifications can express that one operation

cannot impede the progress of another, a new non-blocking property that we call non-impedance.

Finally, we describe how to extend TaDA for proving abstract atomicity for data structures that

make use of helping—where one thread is performing an abstract operation on behalf of another—and

speculation—where an abstract operation is determined by future behaviour.

7

8

To the people who are still alive.

9

10

Contents

1 Introduction 19

1.1 Contributions and Thesis Outline . 19

2 Background 22

2.1 Concurrent Modules . 22

2.1.1 A Spin Counter Implementation . 22

2.1.2 A Ticket Lock Client . 23

2.2 Proof Outlines . 24

2.3 Sequential Specification . 26

2.4 Auxiliary State . 27

2.5 Interference Abstraction . 29

2.6 Resource Ownership . 30

2.7 Atomicity . 33

3 Informal Development 35

3.1 Spin Counter . 36

3.1.1 Atomic Specification . 36

3.1.2 Implementation . 38

3.2 Ticket Lock . 40

3.2.1 CAP Specification . 40

3.2.2 Implementation . 42

4 TaDA Logic 46

4.1 Programming Language . 46

4.2 Operational Semantics . 47

4.3 Assertion Language . 53

4.4 Program Logic . 54

4.5 Model . 61

4.5.1 Semantic Assertions . 66

4.5.2 Semantic Judgements . 68

4.6 Soundness . 71

5 Using TaDA 90

5.1 Spin Lock . 90

5.1.1 Atomic Specification . 90

5.1.2 CAP Specification . 92

5.1.3 Implementation . 95

11

5.2 Multiple Compare-and-Set (MCAS) . 96

5.2.1 Atomic Specification . 96

5.2.2 Implementation . 97

5.2.3 Resource Transfer . 99

5.3 Deque . 101

5.3.1 Atomic specification . 101

5.3.2 Implementation . 102

6 Related Work 107

7 Reasoning about Termination 108

7.1 Motivating Examples . 110

7.1.1 Atomic Specification . 111

7.1.2 Clients . 112

7.1.3 Implementations . 115

7.2 Logic . 118

7.3 Case Study: Treiber’s Stack . 120

7.3.1 Atomic Specification . 121

7.3.2 Implementation . 121

7.4 Semantics and Soundness . 123

7.5 Non-blocking Properties . 127

7.5.1 Lock-freedom . 127

7.5.2 Wait-freedom . 129

7.5.3 Non-impedance . 131

7.5.4 Related Work . 132

8 Extending the logic 133

8.1 Motivating Examples . 134

8.1.1 Ticket Lock . 134

8.1.2 Two-step Counter . 138

8.2 Case Study: Michael-Scott Queue . 141

8.2.1 Atomic Specification . 143

8.2.2 Implementation . 143

9 Conclusions 149

9.1 Future Work . 149

9.1.1 Tool Support . 149

9.1.2 Helping/Speculation . 149

9.1.3 Higher-order Support . 150

9.1.4 Weak Memory . 150

9.1.5 Liveness . 150

9.1.6 Fault Tolerance . 150

12

List of Figures

2.1 A counter module. 23

2.2 A ticket lock implemented using the counter module. 24

2.3 Reasoning about concurrent increments using auxiliary state. 28

2.4 Reasoning about concurrent increments using interference abstraction. 29

2.5 Ownership-based reasoning for concurrent increments. 33

3.1 Proof outline for the read operation. 40

3.2 Proof outline for the incr operation. 41

3.3 Proof outline for the wkincr operation. 42

3.4 A ticket lock implementation using the counter module. 42

3.5 Proof outline for the release operation. 44

3.6 Proof outline for the acquire operation. 45

4.1 Programming language proof rules of the TaDA logic. 56

4.2 Atomicity proof rules of the TaDA logic. 57

4.3 Auxiliary proof rules of the TaDA logic. 59

5.1 Derivation of the release specification. 94

5.2 Derivation of the acquire specification. 94

5.3 Spin lock operations. 94

5.4 Proof outline for the acquire operation. 96

5.5 The abstract specification for the MCAS module. 97

5.6 Multiple compare-and-set module operations. 98

5.7 Proof of the dcas implementation. 100

5.8 Snark deque operations. 103

5.9 Examples of a deque before and after performing popLeft, which uses 3cas to updated

pointers c, d and e. 104

5.10 Proof of the popLeft implementation. 106

7.1 Spin counter operations. 111

7.2 Proof of a sequential client of the counter. 113

7.3 Proof of a concurrent client of the counter. 115

7.4 Proof of total correctness of increment. 117

7.5 Backoff increment. 118

7.6 Proof of total correctness of backoff increment. 119

7.7 Stack operation specifications. 120

7.8 Treiber’s stack operations. 122

13

7.9 Proof of total correctness of Treiber’s stack pop operation. 124

7.10 Proof of total correctness of Treiber’s stack push operation. 125

8.1 Axioms for proxy modalities. 137

8.2 Auxiliary predicate describing the shared resources of the ticket lock. 138

8.3 Proof of correctness of the acquire operation. 139

8.4 Proof of correctness of the release operation. 140

8.5 Auxiliary predicate describing the set of configurations for the two-step counter. . . . 140

8.6 Proof of correctness of the readVal operation. 142

8.7 Proof of correctness of the incrVal operation. 142

8.8 Michael-Scott Queue implementation. 144

8.9 Auxiliary predicates to describe the shared resources of the Michael-Scott queue. . . . 146

8.10 Proxies and witnesses for the Michael-Scott queue. 146

8.11 Proof of correctness of dequeue operation. 148

14

List of Theorems

2.1 Remark (Conventions) . 25

2.2 Remark (On disjoint resources) . 31

3.1 Remark (On the abstractly-typed parameters) . 37

4.1 Definition (Variable Names) . 46

4.2 Definition (Expressions) . 46

4.3 Definition (Boolean Expressions) . 46

4.4 Definition (Function Names) . 47

4.5 Definition (Commands) . 47

4.6 Definition (Function Bodies) . 47

4.7 Definition (Programs) . 47

4.8 Definition (Program Values) . 47

4.9 Definition (Variable Store) . 47

4.10 Definition (Semantics of Expressions) . 48

4.11 Definition (Semantics of Boolean Expressions) . 48

4.12 Definition (Extended Commands) . 48

4.13 Definition (Continuations) . 48

4.14 Definition (Threads) . 49

4.15 Definition (Labels of Atomic Commands) . 49

4.16 Definition (Function Environment) . 49

4.17 Definition (Thread Operational Semantics) . 49

4.18 Definition (Extend Commands Operational Semantics) 49

4.19 Definition (Thread Identifiers) . 51

4.20 Definition (Thread Pools) . 51

4.21 Definition (Heaps) . 51

4.22 Definition (Program States) . 51

4.23 Definition (Thread Pool Operational Semantics) . 51

4.24 Definition (Addresses) . 52

4.25 Definition (Interpretation of Atomic Commands) . 52

4.26 Definition (Program Operational Semantics) . 53

4.27 Definition (Logical Expressions) . 53

4.28 Definition (Assertions) . 53

4.29 Definition (Function Specification Context) . 54

4.30 Definition (Atomic Judgements) . 55

4.31 Definition (Proof System) . 55

4.32 Definition (Program Variables Sets) . 58

15

4.33 Definition (Modified Sets) . 58

4.34 Definition (Variable Names) . 61

4.35 Definition (Guards and Guard Algebras) . 61

4.36 Definition (Abstract States and Transition Systems) 62

4.37 Definition (Abstract Region Types) . 62

4.38 Definition (Abstract Predicates) . 62

4.39 Definition (Levels) . 62

4.1 Remark (On levels) . 62

4.40 Definition (Region Identifiers) . 62

4.41 Definition (Region Assignments) . 62

4.42 Definition (Guard Assignments) . 63

4.43 Definition (Region States) . 63

4.44 Definition (Worlds) . 63

4.45 Definition (World Predicates) . 63

4.2 Remark (Intuitionistic Interpretation) . 64

4.46 Definition (Worlds with Atomic Tracking) . 64

4.47 Definition (Atomicity Context) . 64

4.48 Definition (Rely Relation) . 64

4.49 Definition (Stable Predicates) . 65

4.50 Definition (Region Interpretation) . 65

4.51 Definition (Abstract Predicate Interpretation) . 65

4.52 Definition (Region Collapse) . 65

4.53 Definition (Abstract Predicate Collapse) . 66

4.3 Remark (On the interpretation of abstract predicates) 66

4.54 Definition (Reification) . 66

4.55 Definition (Guarantee Relation) . 66

4.4 Remark (On reification) . 66

4.56 Definition (Variable Interpretations) . 67

4.57 Definition (Logical Expressions Semantics) . 67

4.58 Definition (Assertion Semantics) . 67

4.59 Definition (Primitive Atomic Satisfaction Judgement) 68

4.60 Definition (View Shift) . 68

4.61 Definition (Semantic Judgement) . 68

4.62 Definition (Function Environment and Function Context Agreement) 70

4.63 Definition (Semantic Judgement with Function Context) 70

4.1 Theorem (Soundness of Commands) . 71

4.2 Lemma (Skip Rule) . 71

4.3 Lemma (Sequencing Rule) . 71

4.4 Lemma (Loop Rule) . 74

4.5 Lemma (Conditional Rule) . 75

4.6 Lemma (Stack Frame) . 75

4.7 Lemma (FunctionCall Rule) . 77

16

4.8 Lemma (Fork Rule) . 78

4.9 Lemma (Allocation Rule) . 79

4.10 Lemma (Assignment Rule) . 79

4.11 Lemma (Lookup Rule) . 79

4.12 Lemma (Mutation Rule) . 80

4.13 Lemma (CompareAndSet Rule) . 80

4.14 Lemma (OpenRegion Rule) . 80

4.15 Lemma (UseAtomic Rule) . 82

4.16 Lemma (UpdateRegion Rule) . 83

4.17 Lemma (Drop Context) . 86

4.18 Lemma (MakeAtomic Rule) . 86

4.19 Lemma (Frame Rule) . 88

4.20 Lemma (Substitution Rule) . 88

4.21 Lemma (Consequence Rule) . 88

4.22 Lemma (AExists Rule) . 88

4.23 Lemma (AWeakening1 Rule) . 88

4.24 Lemma (AWeakening2 Rule) . 89

4.25 Lemma (AWeakening3 Rule) . 89

5.1 Remark (On alternative implementations) . 96

7.1 Definition (Semantic Judgement) . 123

7.1 Lemma (Loop Rule) . 126

7.2 Definition ((m,n)-bounded General Client) . 128

7.2 Theorem (Hoffmann et al. [30]) . 128

7.3 Theorem (Lock-freedom) . 128

7.4 Theorem (Wait-freedom) . 129

7.5 Theorem (Wait-free Operation) . 130

17

Acknowledgements

Foremost, I am grateful to my supervisor, Philippa Gardner, for her continued encouragement,

enthusiasm and guidance during this research. I am equally thankful to Thomas Dinsdale-Young for

his constant support, mentoring and patience. I am also indebted to Gian Ntzik for all the discussions

throughout the years that have vastly improved my work.

I would like to thank my amazing collaborators — Kristoffer Just Andersen, Lars Birkedal, Mike

Dodds, Julian Sutherland, Mark Wheelhouse, Shale Xiong — who have been wonderful to work with.

As well as my colleagues at Imperial who make up the stimulating and friendly environment in which I

have been privileged to work.

Finally, I would like to thank my family and my friends for the unconditional support and encour-

agement to pursue my interests and believing in me. In particular, my wonderful wife, Anita, whose

love and support made this possible.

18

1 Introduction

The specification and verification of concurrent program modules is a difficult problem. When concurrent

threads work with shared data, the resulting behaviour can be complex. Two abstractions provide useful

simplifications: atomicity, stating that operations effectively act at distinct times; and disjointness,

stating that operations effectively act on disjoint resources. While programmers routinely work with

sophisticated combinations of these two abstractions, existing reasoning techniques, in contrast, tend

to have limitations with respect to one or the other.

Two of the most widely used and influential techniques related to these two abstractions are

linearisability [26], a correctness condition that specified that the operations of a concurrent module

appear to behave atomically; and Concurrent Abstract Predicates (CAP) [12], an approach that offers

support for reasoning about abstract disjoint resources and for specification of program modules.

With linearisability, each operation is given a sequential specification, and operations are asserted to

behave atomically with respect to each other. Therefore, linearisability is a whole-module property: if

we extend a module with an operation, we have to redo the linearisability proof to check that this new

operation respects the atomicity of the others, and vice versa. Moreover, all operations are required to

be atomic, so we can not specify non-atomic operations.

The CAP approach is based on concurrent separation logic, which provide concurrent reasoning

based on the fundamental principle that resources are disjoint. Using CAP, it is possible to reason

about shared resources as if they were disjoint, allowing for sophisticated concurrent implementations

to be verified against simple specifications. However, in CAP, shared resources can only be accessed

using primitive atomic operations, and operations provided by concurrent modules are rarely primitive

atomic. Consequently, the abstract resources provided by a module are not easily shared and the

nesting of modules is difficult.

Linearisability and CAP have complementary virtues and weaknesses. Linearisability gives strong,

whole-module specifications based on abstract atomicity; CAP gives weaker, independent specifications

based on abstract disjointness. Linearisability supports nested modules, but whole-module specifications

make it difficult to extend modules; CAP supports the extension of modules, but the weak specifications

make building up nested modules more difficult. Linearisability does not constrain the client, thus

placing significant burden on the implementation; CAP constrains the client to use specific disjoint

resources, enabling more flexibility in the implementation.

We propose a solution that combines the virtues of both approaches.

1.1 Contributions and Thesis Outline

Our main contribution is TaDA, a program logic for Time and Data Abstraction, which extends

Concurrent Abstract Predicates [12] with rules for deriving and using atomic triples. We show how the

logic supports vertical reasoning about modules by verifying implementations that are built on the

19

top of each other. We thus demonstrate that TaDA combines the benefits of abstract atomicity and

abstract disjointness within a single program logic.

Moreover, we show how to extend TaDA to prove termination of non-blocking programs. We name

this extension Total-TaDA and use it to prove several examples with increasing difficulty. We provide

and prove relations between our specifications and lock-freedom and wait-freedom for modules and

operations. We also present a new non-blocking property, called non-impedance, which enables us to

describe that one operation cannot prevent the progress of another.

The last part of the thesis proposes a possible extension to the original logic that focusses on

algorithms that exhibit helping and speculation with respect to an atomic specification. We propose a

way to adapt TaDA to handle these algorithms and apply it to the ticket lock, which exhibits helping,

a counter that requires speculation, and a Michael-Scott queue, which uses speculation.

The outline of the thesis is as follows:

• Chapter 2 provides the technical background that motivates the rest of the thesis. We start

by introducing two concurrent modules — a counter and a ticket lock — and describing some

of the challenges with reasoning about them. We give a brief introduction to Hoare reasoning,

introduces the proof rules and how they can be used to reason about programs. We then survey a

range of verification techniques for specifying concurrent modules, highlighting four key concepts

in particular: auxiliary state, interference abstraction, resource ownership and atomicity.

• In chapter 3, we present an informal development of the TaDA logic using the counter and the

ticket lock examples previously introduced. We show how our approach can be used to give

abstract specifications, using atomic triples, which allow for modular reasoning and overcome the

problems described throughout chapter 2.

• We formalise the programming language in chapter 4. We define the syntax and semantics of the

TaDA logic and prove the soundness of the logic.

• In chapter 5, we apply the logic to a series of modules that are built on the top of each other. We

show how the logic supports vertical reasoning about modules, by verifying an implementation

of multiple-compare-and-set (MCAS) using the lock specification, and an implementation of

a concurrent double-ended queue (deque) using the MCAS specification. We show that our

approach is modular and that it can verify the operations of a module independently and provide

abstract specifications.

• In chapter 6, we discuss related work and its advantages and disadvantages with respect to

our work.

• In chapter 7, we present Total-TaDA, a program logic that extends TaDA with support for

verifying the total correctness of non-blocking concurrent programs. We verify the total correctness

of non-blocking algorithms, such as counters and Treiber’s stack. We relate our specifications to

the standard definitions of lock- and wait-freedom and propose a new non-blocking property we

call non-impedance. We show that our extension is sound by adapting the semantics used for

TaDA.

20

• In chapter 8, we propose a technique to reason about advanced concurrent algorithms that make

use of helping and speculation. We apply the technique to the ticket lock, a novel two-step

counter, and a Michael-Scott queue.

• Finally, in chapter 9 we summarise the contributions and raise several research questions.

Collaboration

Chapter 2 is heavily inspired by work done in collaboration with Dinsdale-Young and Gardner. Much

of it was previously published in Steps in Modular Specifications for Concurrent Modules (Invited

Tutorial Paper) [9]. Chapter 4 and chapter 5 are based on joint work with Dinsdale-Young and Gardner

and part of it was published in TaDA: A Logic for Time and Data Abstraction [8]. The termination

work in chapter 7 was undertaken with Dinsdale-Young, Gardner and Sutherland, and published in

Modular Termination Verification for Non-blocking Concurrency [10]. Further examples of modules

verified using TaDA are available in Abstract Specifications for Concurrent Maps [64].

21

2 Background

This chapter introduces the terminology and notation used in the thesis and provides a systematic

overview of a range of techniques for specifying and verifying concurrent modules that introduced the

concepts that this work is built upon.

The specification and verification of a concurrent program are difficult problems. When concurrent

threads work with shared data, the resulting behaviour can be complicated. In order to specify such

modules, we require effective abstractions for capturing such complex behaviour. We will describe the

main concepts related to specifying and verifying concurrent programs that have emerged over the last

few decades. In particular, we restrict our exposition to those concepts on which this work is based:

auxiliary state, interference abstraction, resource ownership and atomicity.

We highlight the challenges of specifying a concurrent module by using the counter module as an

illustrative example in §2.1. We require a specification to be expressive enough for verifying the intended

clients of the module. We also require the specification to be opaque, in that the implementation

details do not leak into the specification.

Using the counter module, we present a range of historical verification techniques for concurrency:

• Owicki-Gries [49] introduces auxiliary state to abstract the internal state of threads (§2.4);

• rely/guarantee [34] introduces interference abstraction to abstract the interactions between

different threads (§2.5);

• concurrent separation logic [47] introduces resource ownership to encode interference abstraction

as auxiliary state (§2.6);

• linearisability [26] introduces atomicity as a way to abstract the effects of an operation (§2.7).

Later, we show in §3 how to combine these techniques to provide expressive ways for specifying

concurrent modules.

2.1 Concurrent Modules

2.1.1 A Spin Counter Implementation

We consider the implementation of a concurrent counter shown in Figure 2.1. We make use of three

atomic operations (operations that take effect at a single, discrete instant in time) that manipulate the

heap. The operation x := [E]; reads the value of the heap position E and assigns it to the variable x.

The operation [E1] := E2; stores the value E2 in the heap position E1. Finally, the compare-and-set

(CAS) operation x := CAS(E1,E2,E3); checks if the value at heap position E1 is equal to E2: if so, it

replaces it with the value E3 and assigns 1 to x; otherwise, x is assigned 0.

Here, the read operation returns the value of the counter. The incr operation increments the value

of the counter and returns the old value, it is robust to to other threads incrementing the counter.

22

function makeCounter() {
x := alloc(1); // Allocate a single cell

[x] := 0; // Initialise the value at x with 0

return x;

}

function read(x) {
v := [x]; // Get value at address x

return v;

}

function incr(x) {
do {
v := [x]; // Get value at x

b := CAS(x, v, v + 1); // Compare value at x with v and

// set it to v + 1 if they are the same

} while (b = 0); // Retry if the CAS failed

return v;

}

function wkIncr(x) {
v := [x]; // Get value at address x

[x] := v + 1; // Set value at x with v + 1

return v;

}

Figure 2.1: A counter module.

This is done by using the compare-and-set to atomically update the value of the counter. The wkincr

just increments the value of the counter assuming that no other thread is performing any increment

concurrently.

A specification should describe how each operation affects the value of the counter. A specification

should require the counter to exist as a precondition for each operation, since operations will not work

unless the memory holding the counter is allocated. A specification should also describe the permitted

interference from the context of concurrent operations. Intuitively, the read and incr operations are

robust with respect to concurrent operations that change the value of the counter. By contrast, the

potentially faster wkIncr requires that there is no concurrent operation that changes the value of the

counter between the read and the increment of the value in order to behave as intended.

2.1.2 A Ticket Lock Client

Let us now consider the ticket lock [42] module that uses the counter module to provide synchronisation.

The code for the lock is given in Figure 2.2. The lock uses two counters, the ticket counter next and

the serving counter owner, which both initially have the value 0. A thread acquires the lock by calling

the acquire operation. This operation increments the next counter to obtain a notional ticket. When

the value of the owner counter agrees with this ticket, the thread has acquired the lock. It can then

use whatever resources are protected by the lock, without interference from other threads. Control of

these resources is relinquished by calling the release operation. This increments the owner counter,

passing the lock on to the next waiting thread. Intuitively, the use of incr for the acquire operation

23

function makeLock() {
next := makeCounter(); // Allocate ticket counter

owner := makeCounter(); // Allocate serving counter

x := alloc(2); // Allocate two cells

[x.next] := next; // Initialise first cell with ticket counter address

[x.owner] := owner; // Initialise second cell with serving counter address

return x;

}

function acquire(x) {
next := [x.next]; // Get address of the ticket counter

owner := [x.owner]; // Get address of the serving counter

t := incr(next); // Take a ticket

do {
v := read(owner); // Get serving counter value

} while (v 6= t); // Wait for serving value to match the ticket

}

function release(x) {
owner := [x.owner]; // Get address of the serving counter

wkIncr(owner); // Increment the serving counter

}

where E.next def
= E E.owner def

= E + 1.

Figure 2.2: A ticket lock implemented using the counter module.

is necessary, since it needs to be robust with respect to concurrent threads taking tickets. The use of

wkIncr for the release operation is possible, since only the thread holding the lock should release it.

The challenge is to develop a concurrent specification of the counter module that would be strong

enough to allow us to reason about the ticket lock. This mandates a precise description of how

each operation affects the value of the counter, and a detailed account of interference to capture the

fundamental distinction between incr and wkIncr.

The counter and its ticket lock client are realistic examples that illustrate some of the key difficulties in

specifying and reasoning about concurrent modules. We are looking for a formal specification technique

that would allow us to express such specifications and formally verify both their implementations as

well as programs that use such specifications.

2.2 Proof Outlines

Before examining any techniques, we need to introduce some notation for formally proving properties

of programs. Tony Hoare introduced Hoare triples [29] of the form
{
P
}
C
{
Q
}

with the main goal

of specifying the behaviour of sequential programs. A triple associates the predicates P and Q with

a program C, where P is the precondition and Q is the postcondition of the program. The meaning

of the triple is that if a program C is run in a state described by P then it will not fault, and if it

terminates, the resulting state will be described by Q.

Hoare also introduced a formal system with a set of rules for rigorous reasoning about imperative

programs, which included the following proof rules:

24

Skip

`
{
P
}
skip;

{
P
}

Sequencing

`
{
P
}

C1

{
R
}

`
{
R
}

C2

{
Q
}

`
{
P
}
C1 C2

{
Q
}

Loop

`
{
P ∧ B

}
C
{
P
}

`
{
P
}
while (B) {C}

{
P ∧ ¬B

}
Conditional

`
{
P ∧ B

}
C1

{
Q
}

`
{
P ∧ ¬B

}
C2

{
Q
}

`
{
P
}
if (B) {C1} else {C2}

{
Q
}

Assignment

`
{
P [E/x]

}
x := E;

{
P
}

Consequence

P ′ ` P `
{
P
}
C
{
Q
}

Q ` Q′

`
{
P ′
}
C
{
Q′
}

The Skip rule asserts that the skip; does not change the state of the program.

The Sequencing rule allows us to compose programs that are executed sequentially.

The Loop rule states that there is a loop invariant, P , which is preserved by the loop body C. After

the loop is finished, the invariant P still holds, and moreover B must be caused the loop to end.

The Conditional rule states that if both branches of the conditional establish Q, then the

postcondition of the whole satisfies Q.

The Assignment rule states that, after the assignment, any precondition that was true still holds

for the variable. P [E/x] denotes the assertion P in which each free occurrence of x has been replaced

by the expression E.

The Assignment rule states that, after the assignment, the variable x has value E where each

occurrence of x has been replaced by v.

The Consequence rule allows to strengthen the precondition and weaken the postcondition.

Remark 2.1 (Conventions). When doing proofs with Hoare triples, we generally do not mention the

names of the rules, such as the rules that are used to reason about the constructs of the language. We

implicitly use the rule of consequence and do not expand its steps. Moreover, when we explicitly apply

rules we denote them wth a vertical bar, where the name of the rule is given sideways on the left of

the bar.

In order to illustrate how this reasoning system works in practice, we will start by showing a program

which manipulates the store. Given a program C with the following specification:

`
{
x = v

}
C
{
x = 2

}
,

by the precondition, we know that , before the execution of the program, x contains some value v.

During the execution, the program is allowed to change x to any value, as long as when the program

terminates, the value of x is set to 2.

We can show that C def
= if (x 6= 2) {x := 2; } else {skip; } satisfies the specification by constructing

25

the following derivation: {
x = v

}

C
o
n
d
it
io
n
a
l

if (x 6= 2) {{
x = v ∧ x 6= 2

}

C
o
n
se

q
u
e
n
c
e

{
x = v

}

A
ss
ig
n
m
e
n
t {

x = v
}

x := 2;{
x = 2

}
{
x = 2

}{
x = 2

}
} else {{

x = v ∧ x = 2
}

C
o
n
se

q
u
e
n
c
e

{
x = 2

}
S
k
ip

{
x = 2

}
skip;{
x = 2

}{
x = 2

}{
x = 2

}
}{

x = 2
}

The original proof system did not account for programs that manipulate the heap, such as the

counter, or concurrency. We extend the first-order assertion language to heaps, using the syntax x 7→ v

to assert that the heap, at address x, holds value v.

2.3 Sequential Specification

We can give a sequential specification for the counter module using Hoare triples:

`
{
True

}
makeCounter()

{
ret 7→ 0

}
`
{
x 7→ n

}
read(x)

{
x 7→ n ∧ ret = n

}
`
{
x 7→ n

}
incr(x)

{
x 7→ n+ 1 ∧ ret = n

}
`
{
x 7→ n

}
wkIncr(x)

{
x 7→ n+ 1 ∧ ret = n

}
With standard Hoare logic, we can use this specification to verify sequential clients that call the counter

operations. However, this specification gives no information about the behaviour of the operations in a

concurrent setting.

26

2.4 Auxiliary State

Owicki and Gries [49] developed the first tractable proof technique for concurrent programs, identifying

the importance of reasoning about interference between threads and of using auxiliary state. With the

Owicki-Gries method, each thread is given a sequential proof. When the threads are composed, we

must check that they do not interfere with each other’s proofs. This is achieved by extending standard

Hoare logic with the Owicki-Gries rule for parallel composition:

OG-Parallel

`OG

{
P1

}
C1

{
Q1

}
`OG

{
P2

}
C2

{
Q2

}
non-interference

`OG

{
P1 ∧ P2

}
C1 ‖ C2

{
Q1 ∧Q2

}
The non-interference side condition constrains the proof derivations for C1 and C2. It requires that

every intermediate assertion between atomic actions in the proof of C1 must be preserved by every

atomic action in the proof of C2, and vice-versa.

An abstract specification for the counter needs to be robust with respect to the non-interference

condition. However, in general, the condition will vary depending on the concurrent context. Let us

assume that the client may invoke any of the counter operations concurrently, but will not directly

interact with the state of the counter. That is, we will only consider interference caused by the counter

operations themselves. To this end, we can use an invariant — an assertion that is preserved by each

atomic action in the module. For the counter, the invariant ∃n. x 7→ n asserts that the counter at x is

allocated and has some value.

We can give the following specification for the counter module:

`OG

{
True

}
makeCounter()

{
∃n. ret 7→ n

}
`OG

{
∃n. x 7→ n

}
read(x)

{
∃n,m. x 7→ n ∧ ret = m

}
`OG

{
∃n. x 7→ n

}
incr(x)

{
∃n,m. x 7→ n ∧ ret = m

}
`OG

{
∃n. x 7→ n

}
wkIncr(x)

{
∃n,m. x 7→ n ∧ ret = m

}
However, these specifications are too weak to specify clients such as the ticket lock. They lose all

information about the value of the counter, and give no information about how the operations change

this value. In fact, the read operation could change the value of the counter and still satisfy the

specification! Unfortunately, assertions that describe the precise value of the counter are not invariant.

The Owicki-Gries method is able to provide stronger specifications by using auxiliary state, which

records extra information about the execution history via auxiliary variables. The code is instrumented

with auxiliary code, which updates the auxiliary variables. Since the auxiliary code only updates

auxiliary variables, it has no effect on the program behaviour, and so can be erased — it is not required

when the program is run.

By way of example, consider two threads that both increment a counter, as in Figure 2.3. The

auxiliary variables y and z, with initial values 0, are used to record the contribution (i.e. the number

of increments) of each thread. For each thread, the code of the incr operation is instrumented with

code that updates the auxiliary variables when the CAS operations succeed. The auxiliary variables

27

{
True

}
x := makeCounter();{

x 7→ 0
}

y := 0;

z := 0;{
x 7→ 0 ∧ y = 0 ∧ z = 0

}{
x 7→ y + z ∧ y = 0

}
do {
v1 := [x];〈
b1 := CAS(x, v1, v1 + 1);

if (b1 6= 0) {y := y + 1; }

〉
} while (b1 = 0);{
x 7→ y + z ∧ y = 1

}

{
x 7→ y + z ∧ z = 0

}
do {
v2 := [x];〈
b2 := CAS(x, v2, v2 + 1);

if (b2 6= 0) {z := z + 1; }

〉
} while (b2 = 0);{
x 7→ y + z ∧ z = 1

}{
x 7→ 2 ∧ y = 1 ∧ z = 1

}{
x 7→ 2

}
Figure 2.3: Reasoning about concurrent increments using auxiliary state.

must be updated at the same instant as the counter, so that the counter always holds the sum of the

two contributions — our invariant. This is expressed in the angle brackets, 〈 〉, which indicate that the

CAS and auxiliary code should be executed in a single atomic step.

The resulting specification of the two-increment program is strong, with precise information about

the initial and final value of the counter. However, it comes at the price of modularity. Firstly, each

use of the incr operation requires the underlying implementation to be extended with auxiliary code

to increment the appropriate auxiliary variable. A modular proof would not modify the module code

for each use by the client. Secondly, the incr operations require different specifications depending on

the client’s use: in our example, the assertion x 7→ y + z uses auxiliary variables y and z; with three

threads, the specification requires three auxiliary variables. A modular proof would give a specification

for the module that captures all use cases. Thirdly and more subtly, the Owicki-Gries method requires

the global non-interference condition. To meet this, we made the implicit assumption that the client

only interacts with the state of the counter through the counter operations. A modular proof would be

explicit about such assumptions about the behaviour of the client.

Thesis

The concept of auxiliary state, introduced in the Owicki-Gries method, is important in specifying

concurrent modules. Auxiliary state abstracts the internal state of threads. It is more convenient

to reason using auxiliary variables than to consider the program counter and local variables of each

thread in describing invariants. This abstraction is a step towards compositional reasoning. As we

shall see, various subsequent approaches have taken a more modular approach to auxiliary state than

that provided by auxiliary variables in the Owicki-Gries method.

28

{
True

}
x := makeCounter();{

x 7→ 0
}

// Weaken assertion{
∃n. x 7→ n ∧ n ≥ 0

}{
∃n. x 7→ n ∧ n ≥ 0

}
incr(x);{
∃n. x 7→ n ∧ n ≥ 1

}
{
∃n. x 7→ n ∧ n ≥ 0

}
incr(x);{
∃n. x 7→ n ∧ n ≥ 1

}{
∃n. x 7→ n ∧ n ≥ 1

}
Figure 2.4: Reasoning about concurrent increments using interference abstraction.

2.5 Interference Abstraction

Jones [34] introduced interference abstraction, providing the rely/guarantee method as a way to improve

the compositionality of the Owicki-Gries approach. To avoid the global non-interference condition,

specifications explicitly constrain the interference from the concurrent context, and describe the

interference that a thread may cause. To this end, each specification incorporates two relations—the

rely and guarantee relations—that abstract the interference between threads. The rely relation abstracts

the actions of other threads; each assertion in the derivation must be stable under all of these actions.

The guarantee relation abstracts the actions in the derivation; each atomic update by the thread must

be described by the guarantee.

Rely/guarantee specifications have the form R,G `RG
{
P
}
C
{
Q
}

, where R and G are the rely

and guarantee relations respectively. We denote the elements of the rely and guarantee relations in

terms of actions P Q that describe the changes performed. When composing concurrent threads,

the guarantee of each thread must be included in the rely of the other. The parallel composition rule

is therefore adapted to:

RG-Parallel

R ∪G2, G1 `RG
{
P1

}
C1

{
Q1

}
R ∪G1, G2 `RG

{
P2

}
C2

{
Q2

}
R,G1 ∪G2 `RG

{
P1 ∧ P2

}
C1 ‖ C2

{
Q1 ∧Q2

}
The rely/guarantee specifications for the read and incr operations are:

A, ∅ `RG
{
∃n. x 7→ n

}
read(x)

{
∃n. x 7→ n ∧ ret ≤ n

}
A,A `RG

{
∃n. x 7→ n

}
incr(x)

{
∃n. x 7→ n+ 1 ∧ ret ≤ n

}
where A = {x 7→ n x 7→ n+ 1 | n ∈ N}. The read specification has an empty guarantee relation

indicating that nothing is changed by the read. It has the rely relation A, stating that other threads

can only increment the counter, and that they can do so as many times as they like. The incr relation

has the same rely relation. Its guarantee relation is also A, stating that the increment can increase the

value of the counter. The guarantee must be defined for all n, as the context can change the counter

value. This means that we cannot express that the incr operation only does a single increment.

29

The rely/guarantee specification for the wkIncr operation is subtle. Recall that, intuitively, the

wkIncr operation is intended to be used when no other threads are concurrently updating the counter.

As a first try, we can give a simple specification with a rely condition that enforces this constraint:

∅, G `RG
{
x 7→ n

}
wkIncr(x)

{
x 7→ n+ 1 ∧ ret = n

}
where G , {x 7→ n x 7→ n+ 1}. The rely relation is empty, so this specification cannot be used in

a context where concurrent updates may occur. This means that the guarantee relation can be very

precise, consisting of a single action. Effectively, the increment will appear as a single atomic operation.

Although this specification captures some of the intended behaviour of wkIncr, it is insufficient to

reason about the ticket lock. With the ticket lock, it is possible for two invocations of the wkIncr

operation to be executing concurrently. Only one thread can call release at any one time, because

only one thread can have the lock. However, suppose one thread calling release has executed the

body of wkIncr. Then, a second thread may correctly conclude that it now has the lock and release it,

before the call of the first thread has returned. This results in a concurrent invocation of wkIncr. By

ruling out all concurrent updates to the counter with an empty rely relation, the above specification

does not allow this concurrent behaviour.

By changing the rely, we can allow such concurrent updates, but that would weaken the specification:

R,G `RG
{
x 7→ n

}
wkIncr(x)

{
∃n′ ≥ n+ 1. x 7→ n′ ∧ ret = n

}
where R = {x 7→ m x 7→ m+ 1 | m > n} and G is as before. Notice that the rely states that

concurrent increments can only happen when the value of the counter is above n. Also notice that, in

weakening the rely, we must weaken the postcondition to make it stable.

In summary, this specification is again too weak to reason about the ticket lock. It is possible to

instrument the code with auxiliary variables, as with the Owicki-Gries method, but this would again

lead to a loss of modularity.

Thesis

The concept of interference abstraction, introduced in the rely/guarantee method, is important in

specifying concurrent modules. By abstracting the interactions between different threads, specifications

can express constraints on their concurrent contexts. This abstraction leads to more compositional

reasoning: since the interference is part of the specification, we do not need to examine proofs in

order to justify parallel composition. While they may specify it differently, some form of interference

abstraction is generally present in subsequent concurrency verification approaches.

2.6 Resource Ownership

In the Owicki-Gries and rely/guarantee approaches, auxiliary variables provide a mechanism for

reasoning about which threads can do what and when. For instance, auxiliary variables can be used to

reason about the contribution of individual threads to the counter, as we demonstrated in §2.4, or that

one thread can increment a counter after another. O’Hearn introduced a style of reasoning based on

30

resource ownership, developing concurrent separation logic [47] which provides an alternative, more

modular approach to such reasoning.

Concurrent separation logic is a Hoare logic, with assertions describing data (such as heap cells or

counter objects) treated as resources. Each operation acts on specific resources, with the precondition

conferring ownership of the resources it represents. When threads operate on disjoint resources, they

do not interfere and so their effects can be simply combined. This principle is embodied in the disjoint

parallel composition rule:
Parallel{
P1

}
C1

{
Q1

} {
P2

}
C2

{
Q2

}
{
P1 ∗ P2

}
C1 ‖ C2

{
Q1 ∗Q2

}
where P1 ∗ P2 describes the disjoint combination of the resources of P1 and P2.

Remark 2.2 (On disjoint resources). The separating conjunction ∗ is based on separation logic [31, 51],

which concurrent separation logic builds upon. Its key idea was to treat heap memory as a resource,

which can be subdivided into disjoint resources. Heap operations, such as updating the value of a

heap cell, require parts of the heap for their execution. These operations are local with respect to the

specific resource they operate, as they do no affect other parts of the heap. This idea is expressed in

the following rule:
Frame{

P
}
C
{
Q
}

{
P ∗R

}
C
{
Q ∗R

}
The frame rule of separation logic allows us to reason about programs in a local way, i.e. we can focus

our reasoning on the resource that the program manipulates, and any additional resource, which would

not be affected by the program, can be added on. This is possible because ∗ enforces disjointness.

We can think of ownership as embodying specialised notions of auxiliary state and interference

abstraction. Ownership is a form of auxiliary state and an abstraction that we use for reasoning:

the program does not explicitly record which threads own what resources. Ownership implements a

simple interference abstraction: threads may update the resources that they own, and disjointness of

ownership enforces that they cannot interfere with the resources of other threads.

In the original concurrent separation logic, it was only possible to reason about shared resource that

had been transferred between threads through synchronisation. In [47], conditional critical regions

provide the synchronisation mechanism. Subsequent approaches [63, 18, 15] added support for reasoning

about fine-grained concurrency by incorporating various styles of rely/guarantee reasoning over shared

resources. Building on this work, the concurrent abstract predicates (CAP) [12] approach introduces

abstractions over these shared resources that may be split, effectively allowing concurrent manipulation

at the abstract level. Let us illustrate this on the example of a counter.

We use the abstract predicate Counter(x, n) to denote the existence of a counter at memory location

x with the value n. In the counter implementation we are reasoning with, the abstract predicate is

instantiated by the implementation as x 7→ n.

Treating the abstract predicate Counter(x, n) as a resource, we could use the original sequential

specification as a concurrent one. However, for multiple threads to use the counter, they would have

to transfer the resource between each other using some form of synchronisation. Such a specification

31

effectively enforces sequential access to the counter. This is because the client has no mechanism for

dividing the resource: in particular,

Counter(x, n) =⇒ Counter(x, n) ∗ Counter(x, n)

does not hold.

Following Boyland [4], Bornat et al. [2] introduced permission accounting to separation logic. This

allows shared resources to be divided by associating with them a fraction in the interval (0, 1]. Shared

resources may be subdivided by splitting this fraction. For instance, we may associate fractions with

our counter resource and declare the logical axiom:

Counter(x, n, π1 + π2) ⇐⇒ Counter(x, n, π1) ∗ Counter(x, n, π2)

for π1 + π2 ≤ 1. We can now modify our counter specification to give concurrent read access:{
Counter(x, n, π)

}
read(x)

{
Counter(x, n, π) ∗ ret = n

}
{
Counter(x, n, 1)

}
incr(x)

{
Counter(x, n+ 1, 1) ∗ ret = n

}
{
Counter(x, n, 1)

}
wkIncr(x)

{
Counter(x, n+ 1, 1) ∗ ret = n

}
Notice that we require full permission (the 1) in order to perform either increment operation. This

means that only concurrent reads are permitted; concurrent updates must be synchronised with all

other concurrent accesses (both increments and reads). If only partial permission were necessary, then

the specification for read would be incorrect, since it could no longer guarantee that the value being

read matched the resource it had.

It is possible to specify concurrent increments by changing how we interpret the counter predicate

Counter(x, n, π). Now, the resource Counter(x, n, π) no longer asserts that the value of the counter is n,

except if π = 1. Instead, it asserts that the thread is contributing n to the value of the counter; other

threads may also have contributions. We can split this counter resource by declaring the logical axiom:

Counter(x, n1 + n2, π1 + π2) ⇐⇒ Counter(x, n1, π1) ∗ Counter(x, n2, π2)

for n1, n2 ∈ N and π1, π2 ∈ (0, 1]. We then specify our counter operations as:{
Counter(x, n, π)

}
read(x)

{
Counter(x, n, π) ∗ ret ≥ n

}
{
Counter(x, n, 1)

}
read(x)

{
Counter(x, n, 1) ∗ ret = n

}
{
Counter(x, n, π)

}
incr(x)

{
Counter(x, n+ 1, π) ∗ ret ≥ n

}
{
Counter(x, n, 1)

}
incr(x)

{
Counter(x, n+ 1, 1) ∗ ret = n

}
{
Counter(x, n, 1)

}
wkIncr(x)

{
Counter(x, n+ 1, 1) ∗ ret = n

}
At last, we have a specification that allows concurrent reads and increments.

Figure 2.5 shows how it can be used to verify the example of two concurrent increments. Whereas

in Figure 2.3 each thread was instrumented with different auxiliary code, here the code has not been

32

changed. Rather than each thread having an auxiliary variable to record its contribution to the counter,

the contribution is recorded in auxiliary resources that are owned by the thread and encapsulated

in the Counter(x, n, π) predicate. This idea of subjective auxiliary state is at the core of subjective

concurrent separation logic (SCSL) [37] (and the subsequent FCSL [44, 52]).

This specification still has some weaknesses. The wkIncr operation must still be synchronised with

the other operations. Also, sequenced reads will never see decreasing values of the counter (since the

contribution is not changed and only provides the lower bound). It is possible to describe a more

elaborate permission system that allows wkIncr in the presence of reads, and to extend the predicate to

record the last known value as a lower bound for reads. This would give us a more useful, if somewhat

cumbersome, specification. However, it would still not handle the ticket lock.

While a ticket lock has been verified using CAP [12], the proof depends on the atomicity of the

underlying counter operations in order to synchronise access to shared resources. The proof does not

work with any of our abstract specifications, since they simply do not embody the necessary atomicity.

Thesis

The concept of resource ownership, developed by concurrent separation logic and its successors, is

important in specifying concurrent modules. The idiom of ownership can be seen as a form of auxiliary

state, which critically embodies a notion of disjointness and interference abstraction. Various approaches

have explored the power of ownership for reasoning about concurrency [12, 37, 59, 44, 55, 54, 52, 35].

While it is an effective concept, and can be used to give elegant specifications, something more is

required to provide the strong specifications we are seeking.

2.7 Atomicity

Atomicity is the abstraction that an operation takes effect at a single, discrete instant in time. The

concurrent behaviour of such operations is equivalent to a sequential interleaving of the operations, and

a client can use such operations as if they were simple atomic operations. A well-known correctness

condition for atomicity, which identifies when the operations of a concurrent module appear to behave

atomically, is linearisability [26].

Using the linearisability approach, each operation is given a sequential specification. The operations

are then proved to behave atomically with respect to each other. One way of seeing this is that there is

an instant during the invocation of each operation at which that operation appears to take effect. This

{
Counter(x, 0, 1)

}{
Counter(x, 0, 0.5) ∗ Counter(x, 0, 0.5)

}{
Counter(x, 0, 0.5)

}
incr(x){
Counter(x, 1, 0.5)

}
{
Counter(x, 0, 0.5)

}
incr(x){
Counter(x, 1, 0.5)

}{
Counter(x, 1, 0.5) ∗ Counter(x, 1, 0.5)

}{
Counter(x, 2, 1)

}
Figure 2.5: Ownership-based reasoning for concurrent increments.

33

instant is referred to as the linearisation point. With linearisability, the interference of every operation

is tolerated at all times by any of the other operations. Consequently, the interference abstraction is

deemed to be the module boundary.

Given our sequential specification for the counter in §2.3, is our implementation linearisable? If

we only consider the read and incr operations, then yes, it is. However, the addition of the wkIncr

operation breaks linearisability. The problem with wkIncr is that, for instance, two concurrent calls

can result in the counter only being incremented once. This is not consistent with atomic behaviour.

The essence of the problem is that we only envisage calling wkIncr in a concurrent context where

there are no other increments. In such a case, it would appear to behave atomically. By itself, the

sequential specification cannot express this constraint. We need an interference abstraction that

constrains the concurrent context.

Alternatively, we could adapt the sequential specification to abstract the changes to the counter

value performed by wkIncr, allowing it to be used concurrently with other increments, as follows:

`
{
True

}
makeCounter()

{
ret 7→ 0

}
`
{
x 7→ n

}
read(x)

{
x 7→ n ∧ ret = n

}
`
{
x 7→ n

}
incr(x)

{
x 7→ n+ 1 ∧ ret = n

}
`
{
x 7→ n

}
wkIncr(x)

{
∃n. x 7→ n ∧ ret ≤ n

}
The new specification allows us to see the operations as if they were behaving atomically with respect

to each other. However, the specification for wkIncr loses information about the state of the counter.

Linearisability is related to the notion of contextual refinement. With contextual refinement,

the behaviour of program code is described by (more abstract) specification code.1 Contextual

refinement asserts that the specification code can be replaced by the program code in any context,

without introducing new observable behaviours; we say that the program code contextually refines the

specification code. Filipović et al. [19] have shown that, under certain assumptions about a programming

language, linearisability implies contextual refinement for that language. For a linearisable module,

each operation contextually refines the operation itself executed atomically. For instance, incr(x)

contextually refines 〈incr(x)〉.
CaReSL [59] is a logic for proving contextual refinement of concurrent programs. CaReSL makes

use of auxiliary state, interference abstraction and ownership in its proof technique. However, these

concepts are not exposed in their specifications. This means that it is not obvious what a suitable

specification of wkIncr in CaReSL should be.

Thesis

The concept of atomicity, put forward by linearisability, is important in specifying concurrent modules.

Atomicity can be seen as a form of interference abstraction: it effectively guarantees that the only

observable interference from an operation will occur at a single instant in its execution. This is a

powerful abstraction, since a client need not consider intermediate states of an atomic operation (which,

for non-atomic operations, might violate invariants) but only the overall transformation it performs.

1In general, the specification code need not be directly executable, although it does have a semantics.

34

3 Informal Development

In chapter 2, we have considered a number of proof methods for verifying concurrent programs:

Owicki-Gries, rely/guarantee, concurrent separation logics and linearisability. For each method, we

have identified a particularly valuable contribution towards specifying concurrent modules.

In this chapter we combine this contributions to produce specifications that are both expressive and

modular. We propose a solution that combines the virtues of each of the approaches. Specifically, we

introduce a new atomic triple judgement for specifying abstract atomicity in a program logic. The

simplest form of atomic triple judgement is

`
〈
P
〉
C
〈
Q
〉

where P and Q are assertions in the style of separation logic, and C is a program. This judgement is

read as “C atomically updates P to Q”. The program may actually take multiple steps, but each step

before the atomic update from P to Q must preserve the assertion P . Before the atomic update occurs,

the concurrent environment may also update the state, provided that the assertion P is preserved. As

soon as the atomic update has happened, the environment can do whatever it likes; it is not constrained

to preserve Q. At the same time, the program C may no longer have access to the resources in Q.

The atomicity of C is only expressed with respect to the abstraction defined by P . If the environment

makes an observation at a lower level of abstraction, it may perceive multiple updates rather than

this single atomic update. For example, suppose that a set module, which provides an atomic remove

operation, is implemented using a linked list. The implementation might first mark a node as deleted

before removing it from the list, and the environment could observe the change from “marked” to

“removed”. This low-level step, however, does not change the abstract set; the change already occurred

when the node was marked.

Atomic triples are our key contribution, as they allow us to overcome the limitations of the

linearisability and CAP approaches. Atomic triples can be used to access shared resources concurrently,

rather than relying on primitive atomic operations to do so. This makes it easier to build modules

on top of each other. Atomic triples specify operations with respect to an abstraction, so they can

be proved independently. This makes it possible to extend modules at a later date, and mix together

both atomic and non-atomic operations, as well as operations working at different levels of abstraction.

Atomic triples can specify clear constraints on how a client can use them. For instance, they can

enforce that the unlock operation on a lock should not be called by two threads at the same time (§5.1).

Furthermore, atomic triples can specify the transfer of resources between a client and a module. For

instance, they can specify an operation that non-atomically stores the result of an atomic read into a

buffer provided by a client (§5.2.3).

In order to illustrate our notion of atomicity for a program, we start by showing two simple programs

35

which manipulate the heap. First, let us consider a program C1 with the following specification:

`
〈
x 7→ 0 ∨ x 7→ 1

〉
C1

〈
x 7→ 2

〉
By the precondition, we know that x can be only 0 or 1. The program is allowed to change x to 0 or 1

without this change being considered as part of the atomic update. This is because the abstraction

boundary defined by the precondition allows for such interference to happen. The environment is

required to maintain that condition until C1 assigns 2 to x. When C1 assigns 2 to x, that update is

considered to be atomic and at that point, C1 no longer has access to the memory position x, as the

environment is allowed to do anything with it.

Consider now a variation of the previous specification, featuring the TaDA-specific quantifier

A

:

`

A

v ∈ {0, 1} .
〈
x 7→ v

〉
C2

〈
x 7→ 2

〉
As in the previous example, the precondition here can either be x 7→ 0 or x 7→ 1, but the abstraction

boundary introduced by the

A

quantifier is more precise. The environment is still allowed to change

(multiple times) the value of x to any of those two values until the atomic update of C2 occurs. On the

other hand, C2 is no longer allowed to change x, unless to perform the atomic update. The environment

is the only one allowed to change the state for any v. At some point, C2 will perform its atomic

update, writing 2 to x and at that point, as in the previous example, it will no longer have access to

the memory position and the environment will be allowed to do anything with it.

We introduce TaDA by showing how to specify and verify the counter and the ticket lock modules

shown in chapter 2.

3.1 Spin Counter

We consider the counter implementation from §2.1.1 and give for it a strong specification that allows

us to prove the ticket lock. Using TaDA, we prove that the implementation satisfies this specification.

3.1.1 Atomic Specification

The counter operations are specified in terms of an abstract predicate [50] that represents the state

of a counter: Counter(s, x, n) asserts the existence of a counter at address x, with value n. The first

parameter s ranges over an abstract type (in this case, T1), which captures implementation-specific

information about the counter1. This parameter serves a technical purpose that we shall address

shortly. The predicate confers ownership of the counter: it is not possible to have more than one

Counter(s, x, n) for the same value of x.

The specification for the makeCounter operation is a simple Hoare triple:

`
{
True

}
makeCounter()

{
∃s ∈ T1.Counter(s, ret, 0)

}
The operation creates a new counter, which is initially set to value 0, and returns its address. The

specification says nothing about the granularity of the operation. In fact, the granularity is hardly

1To the client, the type is opaque; the implementation realises the type appropriately.

36

relevant, since no concurrent environment can meaningfully observe the effects of makeCounter until

its return value is known—that is, once the operation has been completed.

Remark 3.1 (On the abstractly-typed parameters). Many of the proofs of abstract atomicity conclude

with a step that quantifies over some fixed parameters in the representation of the data-structure. This

generally presumes a rule of the form:

`
〈
P (x)

〉
C
〈
Q(x)

〉
`
〈
∃x. P (x)

〉
C
〈
∃x.Q(x)

〉
However, such a rule is unsound in general: in the conclusion, we assume that the environment is able

to change the value of x, while in the premiss the value cannot be changed. To avoid this unsoundness,

we instead expose the parameter (x in this case). The client does not need to know any particular

information about x, only that it should not be changed; hence, the type of x can be abstracted.

The specification for the incr(x) operation uses an atomic triple:

`

A

n ∈ N.
〈
Counter(s, x, n)

〉
read(x)

〈
Counter(s, x, n) ∗ ret = n

〉
Intuitively, this specification states that the read operation will read the state of the counter atomically,

even in the presence of concurrent updates by the environment that may change the value of the

counter, which are possible, as n is bound by

A

. However, the environment must preserve the counter

and cannot, for instance, deallocate it.

This atomicity means that the resources in the specification may be shared—that is, concurrently

accessible by multiple threads. Sharing in this way is not possible with ordinary Hoare triples, since

they make no guarantee that intermediate steps preserve invariants on the resources. The atomic

triple, by contrast, makes a strong guarantee: as long as the concurrent environment guarantees that

the (possibly) shared resource Counter(s, x, n) is available for some n, the read operation will preserve

Counter(s, x, n) until it reads it; after reading, the operation no longer requires Counter(s, x, n), and

is consequently oblivious to subsequent transformations by the environment (such as another thread

incrementing the counter).

It is significant that the notion of atomicity is tied to the abstraction in the specification. The

predicate Counter(s, x, n) could abstract multiple underlying states in the implementation. If we were

to observe the underlying state, the operation might no longer appear to be atomic.

Specifying incr is similar:

`

A

n ∈ N.
〈
Counter(s, x, n)

〉
incr(x)

〈
Counter(s, x, n+ 1) ∗ ret = n

〉
The specification states that incr operation will increment the counter atomically and return its

previous value. Note that when the operation returns, the counter might have been incremented by

another thread if the counter is shared.

The last operation can be specified as follows:

∀n ∈ N. `
〈
Counter(s, x, n)

〉
wkincr(x)

〈
Counter(s, x, n+ 1)

〉

37

The wkincr will atomically update the counter from n to n+ 1, as long the environment guarantees

that the shared counter will not change the value before the atomic update. The specification assumes

that the environment will not change the value of the counter, since n is not bound by

A

. This means

that if the counter is shared, other threads can concurrently only perform read operations until the

counter has been incremented. Technically, it is possible for other incr or wkincr operations to occur

between the update and the return of the operation.

3.1.2 Implementation

To verify this implementation against the atomic specification, we must give a concrete interpretation

of the abstract predicate Counter. For this, we need to introduce the notion of a shared region. A

shared region encapsulates some resource that is available to multiple threads2. In our example, this

resource will be a heap cell that stores the value of the counter described by x 7→ n. A shared region is

associated with a protocol, which determines how its contents change over time. Following iCAP [54],

the state of a shared region is abstracted, and protocols are expressed as transition systems over these

abstract states. A thread may only change the abstract state of a region when it has the guard resource

associated with the transition to be performed. An interpretation function associates each abstract

state of a region with a concrete assertion. In summary, to specify a region we must supply the guards

for the region, an abstract state transition system that is labelled by these guards, and a function

interpreting abstract states as assertions.

In TaDA, guards consist of abstract resources taken from any separation algebra. This gives us more

flexibility in specifying complex usage patterns for regions. For the counter, we need only a very simple

guard separation algebra: there is a single, indivisible guard named Inc, as well as the empty guard 0.

As a separation algebra, guard resources must have a partial composition operator that is associative

and commutative. In this case, 0 • x = x = x • 0, for x ∈ {0, Inc}, and Inc • Inc is not allowed.

The transition system for the region will allow the counter to be incremented using the guard Inc.

This is specified by the labelled transition system:

Inc : ∀n. n n+ 1

It remains to give an interpretation for the abstract states of the transition system. To do so, we must

have a name for the type of region we are defining; we shall use Counter. It is possible for multiple

regions to be associated with the same region type name. To distinguish between them, each region

has a unique region identifier, which is typically annotated as a subscript. A region specification may

take some parameters that are used in the interpretation. With Counter, for instance, the address of

the counter is such a parameter. We thus specify the type name, region identifier, parameters and

state of a region in the form Countera(x, n).

The region interpretation for CAPLock is given by:

I(Countera(x, n)) , x 7→ n.

With this interpretation, the heap cell that contains the value of the counter is always in the region.

2Similar constructs exist in other logics such as [63, 11, 18, 12].

38

We can now give an interpretation to the predicate Counter(s, x, n) and the abstract type T1:

T1 , RId

Counter(a, x, n) , Countera(x, n) ∗ [Inc]a

where RId is the set of region identifiers. The abstract predicate asserts that there exists a region with

identifier a and is in state n. It also states that there is a guard [Inc]a, which is used to update the

region. Note that the first parameter of the Counter predicate fixes the region identifier.

To prove the implementations against our atomic specifications, we use TaDA’s MakeAtomic rule.

A slightly simplified version of this rule is as follows:

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

a : x ∈ X Q(x) `
{
∃x ∈ X. ta(~z, x) ∗ a Z⇒ �

}
C
{
∃x ∈ X, y ∈ Q(x). a Z⇒ (x, y)

}
`

A

x ∈ X.
〈
ta(~z, x) ∗ [G]a

〉
C
〈
∃y ∈ Q(x). ta(~z, y) ∗ [G]a

〉
This rule establishes that C atomically updates the region a, from some state x ∈ X to some state

y ∈ Q(x). To do so, it requires the guard G for the region, which must permit the update according to

the appropriate transition system Tt(G)∗, where t is the region type; this is established by the first

premiss. In our case, the region type t will be Counter, the guard G will be Inc, and the transition

system will be Tt(Inc) = {(n, n+ 1) | x ∈ N}. We use ∗ to denote reflexive-transitive closure.

We use ta(~z, x) to represent a region with region type t, identifier a, parameters ~z and abstract state x.

In our example, the region is parametrised with the address of the counter and the abstract state is

a natural number. The second premiss introduces two new notations. The first, a : x ∈ X Q(x),

is called the atomicity context. The atomicity context records the abstract atomic action that is to

be performed. The second, a Z⇒ −, is the atomic tracking resource. The atomic tracking resource

indicates whether the atomic update has occurred (the a Z⇒ � indicates it has not) and, if so, the state

of the shared region immediately before and after (the a Z⇒ (x, y)). The resource a Z⇒ � also plays

two special roles that are normally filled by guards. Firstly, it limits the interference on region a: the

environment may only update the state so long as it remains in the set X, as specified by the atomicity

context. Secondly, it confers permission for the thread to update the region from state x ∈ X to any

state y ∈ Q(x); in doing so, the thread also updates a Z⇒ � to a Z⇒ (x, y). This permission is expressed

by the UpdateRegion rule (see below), and ensures that the atomic update only happens once.

In essence, the second premiss is capturing the notion of atomicity (with respect to the abstraction

in the conclusion) and expressing it as a proof obligation. Specifically, the region must be in the state

x for some x ∈ X, which may be changed by the environment, until at some point the thread updates

it to some y ∈ Q(x). The atomic tracking resource bears witness to this.

The second key proof rule is the UpdateRegion rule, which deals with using the atomicity tracking

resource to update the region. A simplified version of this rule is as follows:

`

A

x ∈ X.
〈
I(ta(~z, x)) ∗ P (x)

〉
C
〈
∃y ∈ Q(x). I(ta(~z, y)) ∗Q1(x, y) ∨ I(ta(~z, x)) ∗Q2(x)

〉
a : x ∈ X Q(x) `

{
∃x ∈ X. ta(~z, x) ∗ P (x) ∗ a Z⇒ �

}
C

{
∃x ∈ X. (∃y ∈ Q(x). Q1(x, y) ∗

a Z⇒ (x, y) ∨ ta(~z, x) ∗Q2(x) ∗ a Z⇒ �)

}

39

Note that if y = x in the postcondition, the abstract state of the region is not changed and we can

either perform the atomic update or not.

A

n ∈ N.〈
Counter(s, x, n)

〉

A
b
st

r
a
c
t

:
s

=
a

〈
Countera(x, n) ∗ [Inc]a

〉

M
a
k
e
A
t
o
m
ic

a : n ∈ N n `{
∃n ∈ N.Countera(x, n) ∗ a Z⇒ �

}

U
p
d
a
t
e
R
e
g
io
n

A

n ∈ N.〈
x 7→ n

〉
v := [x];〈
x 7→ n ∗ v = n

〉
{
∃n ∈ N. a Z⇒ (n, n) ∗ v = n

}
return v;{
∃n ∈ N. a Z⇒ (n, n) ∗ ret = n

}〈
Countera(x, n) ∗ [Inc]a ∗ ret = n

〉〈
Counter(s, x, n) ∗ ret = n

〉
Figure 3.1: Proof outline for the read operation.

The proof of the read implementation is given in Figure 3.1. The proof first massages the specification

into a form where we can apply the MakeAtomic rule. The atomicity context allows the region a to

be in any state. The UpdateRegion rule performs the atomic action, leaving the region in the same

state, and recording the state in the atomic tracking resource. The proof of the incr implementation

is follows a similar style and is given in Figure 3.2. The main difference is that, when entering the loop,

it first performs a read operation and stores the current value of the counter in v. The OpenRegion

rule is used to open the region without changing its abstract state. We then use the UpdateRegion

rule to conditionally perform the atomic action. If the atomic compare-and-set operation succeeds,

we transition the region from state n to n+ 1 and update the atomic tracking component. Finally,

the proof of the wkincr implementation fixes the value of the region and follows the same style as the

previous proofs. Given the fact that the environment is not allowed to change the abstract state of the

region until the update, the proof does not need to existentially quantity the state of the region in

order to make the assertions stable.

3.2 Ticket Lock

We define a lock module with the operations acquire and release and a constructor makeLock. We

consider the ticket lock implementation from §2.1.2 and show how to use the atomic specification from

the counter to prove the correctness of the ticket lock. We recall the implementation in Figure 3.4.

3.2.1 CAP Specification

We start by specifying the lock module using a specification based on ownership transfer from CAP [12].

The specification provides two abstract predicates: IsLock(x), which is a non-exclusive resource that

40

A

n ∈ N.〈
Counter(s, x, n)

〉
A
b
st

r
a
c
t

:
s

=
a

〈
Countera(x, n) ∗ [Inc]a

〉
M
a
k
e
A
t
o
m
ic

a : n ∈ N n+ 1 `{
∃n ∈ N.Countera(x, n) ∗ a Z⇒ �

}
do {{
∃n ∈ N.Countera(x, n) ∗ a Z⇒ �

}
O
p
e
n
R
e
g
io
n A

n ∈ N.〈
x 7→ n

〉
v := [x];〈
x 7→ n ∗ v = n

〉
{
∃n ∈ N.Countera(x, n) ∗ a Z⇒ � ∗ n ≥ v

}

U
p
d
a
t
e
R
e
g
io
n A

n ∈ N.〈
x 7→ n ∗ n ≥ v

〉
b := CAS(x, v, v + 1);〈

if b = 0 then x 7→ n
else x 7→ n+ 1 ∗ v = n

〉
{
∃n ∈ N. if b = 0 then Countera(x, n) ∗ a Z⇒ � else a Z⇒ (n, n+ 1) ∗ v = n

}
} while (b = 0);{
∃n ∈ N. a Z⇒ (n, n+ 1) ∗ v = n

}
return v;{
∃n ∈ N. a Z⇒ (n, n+ 1) ∗ ret = n

}〈
Countera(x, n+ 1) ∗ [Inc]a ∗ ret = n

〉〈
Counter(s, x, n+ 1) ∗ ret = n

〉
Figure 3.2: Proof outline for the incr operation.

allows a thread to compete for the lock; and Locked(x), which is an exclusive resource that represents

that the thread has acquired the lock, and allows it to release the lock. The lock is specified as follows:

`
{
True

}
makeLock()

{
IsLock(ret)

}
`
{
Locked(x)

}
release(x)

{
True

}
`
{
IsLock(x)

}
acquire(x)

{
IsLock(x) ∗ Locked(x)

}
IsLock(x) ⇐⇒ IsLock(x) ∗ IsLock(x)

Locked(x) ∗ Locked(x) =⇒ False

When a thread acquires the lock, it gets holds of the Locked(x) that can be used to subsequently

release the lock. The last two axioms allow us to duplicate the non-exclusive resource describing the

existence of a lock and guarantee that two threads cannot hold the Locked(x) resource at the same time.

41

〈
Counter(s, x, n)

〉

A
b
st

r
a
c
t

:
s

=
a

〈
Countera(x, n) ∗ [Inc]a

〉

M
a
k
e
A
t
o
m
ic

a : n n+ 1 `{
Countera(x, n) ∗ a Z⇒ �

}

O
p
e
n
R
e
g
io
n 〈

x 7→ n
〉

v := [x];〈
x 7→ n ∗ v = n

〉
{
Countera(x, n) ∗ a Z⇒ � ∗ v = n

}

U
p
d
a
t
e
R
e
g
io
n 〈

x 7→ n ∗ v = n
〉

[x] := v + 1;〈
x 7→ n+ 1 ∗ v = n

〉
{
a Z⇒ (n, n+ 1) ∗ v = n

}
return v;{
a Z⇒ (n, n+ 1) ∗ ret = n

}〈
Countera(x, n+ 1) ∗ [Inc]a ∗ ret = n

〉〈
Counter(s, x, n+ 1) ∗ ret = n

〉
Figure 3.3: Proof outline for the wkincr operation.

function makeLock() {
next := makeCounter();

owner := makeCounter();

x := alloc(2);

[x.next] := next;

[x.owner] := owner;

return x;

}

function acquire(x) {
next := [x.next];

owner := [x.owner];

t := incr(next);

do {
v := read(owner);

} while (v 6= t);

}

function release(x) {
owner := [x.owner];

wkIncr(owner);

}

where

E.next def
= E

E.owner def
= E + 1.

Figure 3.4: A ticket lock implementation using the counter module.

3.2.2 Implementation

To verify this implementation against the atomic specification, we must first give a concrete interpre-

tation of the abstract predicates. Let us recall that the ticket lock comprises two counters: the first

counter records the next available ticket, whereas the second counter records the ticket which currently

holds the lock. The lock is considered unlocked when the two counters are equal. In order for a thread

to acquire the lock, it must obtain a ticket by incrementing the first counter and then needs to wait

until the second counter reaches the value of the obtained ticket. To release the lock, a thread simply

increments the second counter.

To verify the implementation, we introduce a new region type, TLock. The abstract state of the

region will be a natural number n, and there are an infinite amount of them. The abstract state n

represents the ticket that currently holds the lock. We associate three guards with the region type.

42

We have the guard Pending(n,m) that keeps track of how many tickets are being held by threads

operating on the lock. We also have a unique guard Key(v), for each n ≤ v < m that represent each

ticket, and the empty guard 0.

We define the partial composition operator in the following way: 0 • x = x = x • 0 for x ∈
{0}]{Pending(n) | n ∈ N}]{Key(n) | n ∈ N}. Pending(n1,m1)•Pending(n2,m2) is not allowed

and Key(n) •Key(m) is only allowed for n 6= m. Moreover, Pending(n,m) •Key(v) is allowed if and

only if n ≤ v < m. This ensures that there can only be tickets for a particular v if they correspond to

the ones tracked by the guard Pending(n,m). Finally, we define the composition to allow the creation

and destruction of Key(v) guards as follows:

Pending(n,m) = Pending(n,m+ 1) •Key(m), if n ≤ m
Pending(n,m) •Key(n) = Pending(n+ 1,m), if n < m

The first equality allows us to create new guards and the second allows us to remove guards as long as

they have the minimum value.

For the guards, we have constructed an instance of the authoritative monoid of Iris [35]. An

alternative approach would be to have only Key guards, one for each natural number, and define

Pending in terms of those Key elements, such as the ones used in [7, 12].

The labelled transition system is as follows:

Key(n) : n n+ 1

It guarantees that a thread must hold the guard Key(n) in order to perform the transition.

We also give an interpretation to each abstract state as follows:

I(TLocka(x, s, t, owner,next, n)) , ∃m.x.owner 7→ owner ∗ x.next 7→ next ∗ Counter(s, owner, n)

∗ Counter(t,next,m) ∗ [Pending(n,m)]a ∗ n ≤ m

The region has five parameters, x is the address of the lock and allows us to retrieve both counter

addresses, located at owner and next respectively. Moreover, we also have s and t, which correspond

to the each counter abstract predicate.

We now define the interpretation of the predicates as follows:

IsLock(x) , ∃a, s, t, owner,next, n.TLocka(x, s, t, owner,next, n)

Locked(x) , ∃a, s, t, owner,next, n.TLocka(x, s, t, owner,next, n) ∗ [Key(n)]a

The abstract predicate IsLock(x) asserts there is a region with identifier a and the region is in some

state n. Locked(x) asserts the same as the previous and additionally states that there is a guard

[Key(n)]a which will be used to update the region. Note that by holding the Locked(x) exclusively, we

guarantee that the region abstract state cannot by changed by the environment, as they do not hold

the necessary guards to perform such update.

It remains to prove the specifications for the operations and the axioms. The key proof is the

43

{
Locked(x)

}
A
b
st

r
a
c
t

;
E
x
is
t
s:
a
,
s,
t,

o
w

n
er

,
n

ex
t {

∃n.TLocka(x, s, t, owner,next, n) ∗ [Key(n)]a
}

owner := [x.owner];{
∃n.TLocka(x, s, t, owner,next, n) ∗ [Key(n)]a ∗ owner = owner

}
E
x
is
t
s:
n

{
TLocka(x, s, t, owner,next, n) ∗ [Key(n)]a ∗ owner = owner

}
U
se

A
t
o
m
ic

〈
∃m.x.owner 7→ owner ∗ x.next 7→ next ∗ Counter(s, owner, n) ∗ Counter(t,next,m)
∗ [Pending(n,m)]a ∗ n ≤ m ∗ [Key(n)]a ∗ owner = owner

〉
wkincr(owner);〈
∃m.x.owner 7→ owner ∗ x.next 7→ next ∗ Counter(s, owner, n+ 1)
∗ Counter(t,next,m) ∗ [Pending(n+ 1,m)]a ∗ n ≤ m ∗ owner = owner

〉
{
∃n.TLocka(x, s, t, owner,next, n)

}{
∃n.TLocka(x, s, t, owner,next, n)

}
{
True

}
Figure 3.5: Proof outline for the release operation.

UseAtomic rule. A simplified version of the rule is as follows:

∀x ∈ X. (x, f(x)) ∈ Tt(G)∗ `

A

x ∈ X.
〈
I(ta(~z, x)) ∗ P (x) ∗ [G]a

〉
C
〈
I(ta(~z, f(x))) ∗Q(x)

〉
`
{
∃x ∈ X. ta(~z, x) ∗ P (x) ∗ [G]a

}
C
{
∃x ∈ X. ta(~z, f(x)) ∗Q(x)

}
This rule allows a region a, with region type t, to be opened so that it may be updated by C, from

some state x ∈ X to state f(x). In order to do so, the precondition must include a guard G that is

sufficient to perform the update to the region, in accordance with the labelled transition system — this

is established by the first premiss.

The proofs of the release and acquire operations are given in Figure 3.5 and Figure 3.6. In the

release proof, the interesting step is the use of the UseAtomic, where we first fix the region for some

n by owning the guard Key(n) which guarantees that the assertion is stable. We then open the region

and combine the Key(n) with the Pending(n,m) when the counter is atomically incremented. After

this happens, the guard Key(n) is lost and as such we need to weaken to postcondition to allow an

arbitrary n. In the end, we weaken the postcondition to True to satisfy the specification. It would also

be possible to give a specification that has IsLock(x) as the postcondition instead.

The acquire proof uses the

A

quantifier in the premiss of the UseAtomic rule to account for the

fact that, in the precondition, the lock could be in any state n. The first use of the UseAtomic

rule increments the counter and retrieves a Key(t) for the value read. After the read, because we

own Key(t), we can guarantee that the state of the region cannot be larger than t, i.e. that the

environment does not have the necessary guards to perform such a transition. The loop then simply

waits until the state of the region matches the ticket. When that happens, we know it cannot change

as long as we own the guard Key(t) and as such we can satisfy the Locked(x) predicate.

The axiom IsLock(x) ⇐⇒ IsLock(x) ∗ IsLock(x) follows from the duplicability of region assertions:

i.e. TLocka(x, owner,next, n) ≡ TLocka(x, owner,next, n) ∗TLocka(x, owner,next, n). Finally, the

axiom Locked(x) ∗ Locked(x) =⇒ False follows from the fact that Key(n) •Key(n) is undefined.

44

{
IsLock(x)

}
A
b
st

r
a
c
t

;
E
x
is
t
s:
a
,
s,
t,

o
w

n
er

,
n

ex
t

{
∃n.TLocka(x, s, t, owner,next, n)

}
next := [x.next];
owner := [x.owner];{
∃n.TLocka(x, s, t, owner,next, n) ∗ next = next ∗ owner = owner

}
U
se

A
t
o
m
ic

A

n.〈
Counter(s, owner, n) ∗ Counter(t,next,m) ∗ [Pending(n,m)]a
∗ n ≤ m ∗ next = next ∗ owner = owner

〉
t := incr(x.next);〈
Counter(s, owner, n) ∗ Counter(t,next,m+ 1) ∗ [Pending(n,m+ 1)]a
∗ n ≤ m ∗ [Key(t)]a ∗ t = m ∗ next = next ∗ owner = owner

〉
{
∃n.TLocka(x, s, t, owner,next, n) ∗ [Key(t)]a ∗ n ≤ t ∗ next = next ∗ owner = owner

}
do {{
∃n.TLocka(x, s, t, owner,next, n) ∗ [Key(t)]a ∗ n ≤ t ∗ next = next ∗ owner = owner

}

U
se

A
t
o
m
ic

A

n.〈
Counter(s, owner, n) ∗ Counter(t,next,m) ∗ [Pending(n,m)]a
∗ n ≤ m ∗ [Key(t)]a ∗ n ≤ t ∗ next = next ∗ owner = owner

〉
v := read(x.owner);〈
Counter(s, owner, n) ∗ Counter(t,next,m) ∗ [Pending(n,m)]a
∗ n ≤ m ∗ [Key(t)]a ∗ n ≤ t ∗ n = v ∗ next = next ∗ owner = owner

〉
{
∃n.TLocka(x, s, t, owner,next, n) ∗ [Key(t)]a ∗ n ≤ t ∗ n ≥ v

∗ next = next ∗ owner = owner

}
} while (v 6= t);{
∃n.TLocka(x, s, t, owner,next, n) ∗ [Key(t)]a ∗ n = t

}{
Locked(x)

}
Figure 3.6: Proof outline for the acquire operation.

The counter specifications shown in this section are strong: a client can derive the abstract disjoint

specifications from them. Moreover, they are strong enough to support synchronisation: the correctness

of the ticket lock can be justified from the counter specifications. These approaches to specification

are expressive enough to enforce obligations on both the client and the implementation. By contrast,

CAP specifications tend to unduly restrict the client (e.g. a counter specification cannot be used for

synchronisation), while linearisability specifications tend to unduly restrict the implementation (e.g. a

counter cannot provide a wkincr operation).

45

4 TaDA Logic

We formalise the TaDA logic and prove the soundness of the proof system. In order to do so, we first

present the programming language (§4.1) and give its operational semantics (§4.2). We then formalise

the program logic in §4.4 and present a system of proof rules for reasoning about programs. Finally,

we provide the semantics for the logic (§4.5) and show the soundness of the proof system in §4.6.

4.1 Programming Language

We consider an imperative programming language with dynamically allocated heap and mutable local

variables. The operations that manipulate the heap are atomic. Local variables have local scope, in

that they can only be accessed within a function. Moreover, the language supports the spawning of

new threads using a fork command.

Definition 4.1 (Variable Names). Assume a set of variable names Var, ranged over by x, y, z, . . .

Definition 4.2 (Expressions). The set of integer-valued expressions Expr, ranged over by E,E1, . . . ,

is defined by the grammar:

E ::= x

| v

| E1 + E2

| E1 − E2

| E1 × E2

| E1 ÷ E2

where v ∈ Z.

Expressions can be either variables or integer constants or the compositions of these two using

standard binary arithmetic operations.

Definition 4.3 (Boolean Expressions). The set of boolean expressions BExpr, ranged over by B,B1, . . . ,

is defined by the grammar:

B ::= true

| false

| E1 = E2

| E1 < E2

| B1 and B2

| B1 or B2

| not B

Boolean expressions can be either constants (true and false), or comparisons on expressions, or

boolean combinations of boolean expressions.

46

Definition 4.4 (Function Names). Assume a set of function names Fun, ranged over by f, g, . . .

Definition 4.5 (Commands). The set of commands Cmd, ranged over by C,C1, . . . , is defined by the

following grammar:

C ::= skip; Empty command

| C1 C2 Sequencing

| while (B) {C} Loop

| if (B) {C1} else {C2} Conditional

| x := f(~E); Function call

| fork f(~E); Spawn thread

| x := alloc(E); Allocation

| x := E; Assignment

| x := [E]; Lookup

| [E1] := E2; Mutation

| x := CAS(E1,E2,E3); Compare-and-set

We identify commands up to associativity of sequencing: that is, (C1 C2) C3 = C1 (C2 C3).

Note that we can encode the command do {C} while (B) as C while (B) {C}.

Definition 4.6 (Function Bodies). The set of function bodies FunBody, ranged over by F,F1, . . . , is

defined as:

F ::= C return E;

For simplicity, we restrict the return of a function to occur only at the end. When we are not

interested on the return value we might omit it, in such cases consider it to be sugar syntax for a

function with a return at the end with some expression.

Definition 4.7 (Programs). The set of programs Prog, ranged over by P,P1, . . . , is defined as a finite

sequence of function definitions:

P ::= ε | P, function f(~x) {F}

where function names are assumed to be pairwise distinct.

4.2 Operational Semantics

We present the operational semantics of the programming language as a Views-style [13] labelled

transition system. Transitions are labelled by atomic actions. The labelled transition system splits

the control-flow aspect of the execution from the heap-transforming aspect of the execution which is

represented by the labels of each transition.

Definition 4.8 (Program Values). Fix the set of program values Val
def
= Z to be the integers, ranged

over by v, v1, . . .

Definition 4.9 (Variable Store). A variable store Store
def
= Var→ Val is a total function from program

variables to program values, ranged over by σ, σ1, . . .

47

Definition 4.10 (Semantics of Expressions). The semantics of expressions EJ−K− : Expr×Store→ Val,

is defined with respect to the variable store by:

EJxKσ
def
= σ(x)

EJvKσ
def
= v

EJE1 + E2Kσ
def
= EJE1Kσ + EJE2Kσ

EJE1 − E2Kσ
def
= EJE1Kσ − EJE2Kσ

EJE1 × E2Kσ
def
= EJE1Kσ × EJE2Kσ

EJE1 ÷ E2Kσ
def
=

EJE1Kσ ÷ EJE2Kσ if EJE2Kσ 6= 0

42 otherwise.

Note that the store is a total function and, as such, if a variable is not initialised, then its value will be

arbitrary but consistent in the sense that multiple accesses of the same variable returns the same value.

Definition 4.11 (Semantics of Boolean Expressions). The semantics of boolean expressions BJ−K− :

BExpr × Store→ Bool, is defined with respect to the variable store by:

BJtrueKσ
def
= True

BJfalseKσ
def
= False

BJE1 = E2Kσ
def
= EJE1Kσ = EJE2Kσ

BJE1 < E2Kσ
def
= EJE1Kσ < EJE2Kσ

BJB1 and B2Kσ
def
= BJB1Kσ ∧ BJB2Kσ

BJB1 or B2Kσ
def
= BJB1Kσ ∨ BJB2Kσ

BJnot BKσ
def
= ¬BJBKσ

The programming language allows function calls inside a function body. This requires the creation

of a new store that is used to evaluate the body of the function being called. We model the stack of

stores and the current execution point using continuations.

In order to define the operational semantics over commands, we extend the commands to include

execution stacks that occur as a result of a function called.

Definition 4.12 (Extended Commands). The set of extended commands ExtCmd, ranged over by

c, c1, . . . , is defined by the following grammar:

c ::= x := (σ, c return E;) ;

| C
| c C

The first construct represents the execution stack. It is used to keep track of the point to which

the function call occurred along with each store for each of the successive function calls. The second

construct represents the current command being executed. Finally, the third construct allows us to

sequence extended commands with commands.

Definition 4.13 (Continuations). The set of continuations Cont, ranged over by k, k1, . . . , is defined

48

by the following grammar:

k ::= c return E;

Definition 4.14 (Threads). A thread Thread
def
= Store × Cont is a pair of variable store and a

continuation, ranged over by t, t1, . . .

Definition 4.15 (Labels of Atomic Commands). The set of transition labels AAction, ranged over by

α, is described by the following grammar:

α ::= id Unchanged

| alloc(v1, v2) Allocation

| read(v1, v2) Lookup

| write(v1, v2) Mutation

| cas(v1, v2, v3, v4) Compare-and-set

| spawn(f, ~v) Fork thread

| Fault

The labels of atomic commands describe all possible operations that can manipulate the heap. Note

that the labels alloc(v1, v2), read(v1, v2) and cas(v1, v2, v3, v4) use the last argument to represent the

returned values. In the label alloc, v1 to represents the size of heap allocated and v2 its address. In the

label read, v1 is the heap address being read and v2 the value stored at that address. Finally, in the

label cas, v1 is the heap address that the compare-and-set is performed on, v2 is the expected value, v3

the new value and v4 represents if the operation was successful or not.

Definition 4.16 (Function Environment). A function environment FEnv
def
= Fun⇀fin (Var∗×FunBody)

is a finite partial mapping from function names to parameters and bodies, ranged over by η. We denote

a well-defined lookup as η(f) = (~x,F). Moreover, we refer to the parameters as vars(η(f)) and to the

body of the function as code(η(f)). A function environment for a given program P must coincide with

its function definitions.

Definition 4.17 (Thread Operational Semantics). The thread operational semantics is defined as a

labelled transition relation of individual threads

− −−→− − : Thread× AAction× FEnv × Thread

defined by the following rule:

FunctionStep

(σ1, c1)
α−→η (σ2, c2)

(σ1, c1 return E;)
α−→η (σ2, c2 return E;)

The FunctionStep reduces extended command in the function body until it is equal to skip;.

Definition 4.18 (Extend Commands Operational Semantics). The extended commands operational

semantics is defined as a labelled transition relation

(−,−)
−−→− (−,−) : Store× ExtCmd× AAction× FEnv × Store× ExtCmd

49

defined by the following rules:

Skip

(σ, skip; c)
id−→η (σ, c)

Sequencing

(σ1, c1)
α−→η (σ2, c2)

(σ1, c1 C)
α−→η (σ2, c2 C)

LoopTrue

BJBKσ = True

(σ, while (B) {C}) id−→η (σ,C while (B) {C})

LoopFalse

BJBKσ = False

(σ, while (B) {C}) id−→η (σ, skip;)

ConditionalTrue

BJBKσ = True

(σ, if (B) {C1} else {C2})
id−→η (σ,C1)

ConditionalFalse

BJBKσ = False

(σ, if (B) {C1} else {C2})
id−→η (σ,C2)

FunctionCall

EJ~EKσ1 = σ2(vars(η(f)))(
σ1, x := f(~E);

)
id−→η (σ1, x := (σ2, code(η(f))) ;)

FunctionCallStep

(σ1, c1)
α−→η (σ2, c2)

(σ3, x := (σ1, c1 return E;) ;)
α−→η (σ3, x := (σ2, c2 return E;) ;)

Return

(σ1, x := (σ2, skip; return E;) ;)
id−→η (σ1[x 7→ EJEKσ2], skip;)

Fork

(
σ, fork f(~E);

)
spawn(f,EJ~EKσ)−−−−−−−−−→η (σ, skip;)

Allocation

(σ, x := alloc(E);)
alloc(EJEKσ ,v)−−−−−−−−→η (σ[x 7→ v], skip;)

Assignment

(σ, x := E;)
id−→η (σ[x 7→ EJEKσ], skip;)

Lookup

(σ, x := [E];)
read(EJEKσ ,v)−−−−−−−−→η (σ[x 7→ v], skip;)

Mutation

(σ, [E1] := E2;)
write(EJE1Kσ ,EJE2Kσ)−−−−−−−−−−−−−→η (σ, skip;)

50

CompareAndSet

(σ, x := CAS(E1,E2,E3);)
cas(EJE1Kσ ,EJE2Kσ ,EJE3Kσ ,v)−−−−−−−−−−−−−−−−−−→η (σ[x 7→ v], skip;)

The Skip leaves the state unchanged and continues on the next command. The Sequencing

performs a step of c1, reducing it to c2, when it is not equal to skip;. The LoopTrue reduces to a

sequence containing the body of the loop, followed by the loop itself. This corresponds to executing

once the loop body if the boolean expression holds. The LoopFalse reduces to skip; if the boolean

expression does not hold, stopping the loop. The ConditionalTrue and ConditionalFalse simply

reduce the conditional to one of its branches, without affecting the state, depending on whether the

boolean expression holds. The FunctionCall creates a new store to execute the function body. The

FunctionCallStep executes steps in a function previously called. Note that the function previously

called may contain further function calls. The Return terminates a function previously called and

destroys its store. The Spawn spawns a new thread, which has no effect for the current thread. Finally,

the remaining cases perform basic operations on the state of the program.

Definition 4.19 (Thread Identifiers). Assume a set of thread identifiers TId.

Definition 4.20 (Thread Pools). A thread pool T ∈ ThreadPool
def
= TId⇀fin Thread is a finite partial

function from thread identifiers to threads.

Definition 4.21 (Heaps). A heap Heap
def
= Addr ⇀fin Val is a finite partial function from addresses to

values, ranged over by h, h1, . . . Heaps form a partial commutative monoid (Heap,], ∅), where] is the

disjoint union of partial functions, and ∅ is the partial function with the empty domain. The structure

of the partial commutative monoid induces a resource order ≤, defined as follows:

h1 ≤ h2
def⇐⇒ ∃h3. h1] h3 = h2.

Note that ≤ is a partial order.

Definition 4.22 (Program States). A program state is a pair of a heap and a thread pool. Moreover,

program states are enriched with an exceptional faulting state, denoted , to represent the result of an

invalid memory access:

State
def
= (Heap] { })× ThreadPool

Definition 4.23 (Thread Pool Operational Semantics). The labelled transition relation of a thread

pool

− −−→− − : ThreadPool× AAction× FEnv × ThreadPool

is defined by:

ThreadReturn

T ‖ (σ, skip; return E;)
id−→η T

ThreadSpawn

t
spawn(f,~v)−−−−−−→η t

′ σ(vars(η(f))) = ~v

T ‖ t id−→η T ‖ t′ ‖ (σ, code(η(f)))

51

ThreadStep

t
α−→η t

′ α /∈ {spawn(f, ~v) | f ∈ Fun, ~v ∈ Val∗}

T ‖ t α−→η T ‖ t′

The ThreadReturn reduces the number of threads in the thread pool when the thread has finished

its execution. A thread being executed can perform a fork operation spawning a new thread, while

the other operations have no effect on the number of threads in the thread pool. The ThreadSpawn

creates a new thread when an existing thread performs a fork operation. The newly created thread has

a store σ with the parameters of the function initialised by the values passed by the fork operation.

The ThreadStep updates a thread in the thread pool, by performing a non-spawn action as defined

by the thread operational semantics.

Definition 4.24 (Addresses). Fix the set of addresses Addr
def
= Z+ to be the set of positive integers,

where Addr ⊆ Val.

Definition 4.25 (Interpretation of Atomic Commands). The Interpretation of atomic action labels is

given as a function

J−K : AAction→ Heap→ P(Heap] { })

that associates each atomic command with a non-deterministic state transformer and is defined as

follows:

JidK def
= λh. {h}

Jalloc(v1, v2)K def
= λh.



{h[~v3 7→ ~v4] | ~v4 ∈ Valv1} if v1 > 0 and v2 ∈ Addr and

{v2, . . . , v2 + v1 − 1} ∩ dom(h) = ∅

and ~v3 = (v2, . . . , v2 + v1 − 1)

∅ if v1 > 0 and v2 ∈ Addr and

{v2, . . . , v2 + v1 − 1} ∩ dom(h) 6= ∅

or v1 > 0 and v2 /∈ Addr

{ } otherwise.

Jread(v1, v2)K def
= λh.


{h} if v1 ∈ dom(h) and h(v1) = v2

∅ if v1 ∈ dom(h) and h(v1) 6= v2

{ } otherwise.

Jwrite(v1, v2)K def
= λh.

{h[v1 7→ v2]} if v1 ∈ dom(h)

{ } otherwise.

Jcas(v1, v2, v3, v4)K def
= λh.



{h[v1 7→ v3]} if v1 ∈ dom(h) and h(v1) = v2 and v4 6= 0

{h} if v1 ∈ dom(h) and h(v1) 6= v2 and v4 = 0

{ } v1 /∈ dom(h)

∅ otherwise.

Jspawn(f, ~v)K def
= λh. {h}

J K def
= λh. { }

52

For a heap h, the set of states JαK(h) is the set of possible outcomes of running the atomic command

α. If the set is empty, then the command diverges. We lift non-deterministic state transformers to

heaps or the faulting state by letting JαK() = { }.

Definition 4.26 (Program Operational Semantics). The single step transition relation of a program

− −−→− − : State× AAction× FEnv × State

is defined by the following rule:
ProgramStep

T
α−→η T

′ h′ ∈ JαK(h)

(h, T) −→η (h′, T ′)

The program operational semantics combines the execution of the thread pool and the updates

performed by each thread on the heap, as described by the atomic commands α.

4.3 Assertion Language

We now present an assertion language for defining predicates. As well as standard separation logic

connectives, the logic includes regions, guards, abstract predicates, atomicity tracking resources and

view shifts.

Definition 4.27 (Logical Expressions). Assume a set of logic expressions LExpr, ranged over by

e, e1,

Definition 4.28 (Assertions). The set of assertions Assn, ranged over by P,Q,R, P1, . . . are defined

53

inductively as follows:

P,Q,R ::= False Falsehood

| True Truthfulness

| P ∗Q Separating conjunction

| x 7→ y Heap cell

| P ∧Q Conjunction

| P ∨Q Disjunction

| ∃x. P Existential quantification

| ∀x. P Universal quantification

| P =⇒ Q Implication (material)

| tλa(~z, x) Shared region a, of type t, with level λ,

parametrised by ~z and with abstract state x

| I(tλa(~z, x)) Interpretation of a shared region a, of type t, with level λ,

parametrised by ~z and with abstract state x

| [G(~z)]a Guard G for region a, parametrised by ~z

| a Z⇒ � Atomicity tracking resource for region a,

allowing atomic update

| a Z⇒ ♦ Atomicity tracking resource for region a,

not allowing atomic update

| a Z⇒ (x, y) Atomicity tracking resource for region a,

witnessing an atomic update from x to y

| a(~z) Abstract predicate a parametrised by ~z

where

• x, y ∈ LExpr ranges over logical expressions and ~z denotes vectors of logical expressions.

• a ∈ RId ranges over region identifiers,

• λ ∈ Level ranges over levels,

• a ∈ APName ranges over abstract predicates names.

4.4 Program Logic

The TaDA proof system is presented here for the programming language in §4.1.

Definition 4.29 (Function Specification Context). Function specification contexts assign specifications

to function symbols. They are generated by the following grammar, where ~z is a sequence of logical

variables:

Γ ∈ FunctionCtxt ::= ε

| Γ,

λ;A `

A

x ∈ X.
〈
Pp(~z)

∣∣∣P (x, ~z)
〉

f(~z)

E

y ∈ Y.
〈
Qp(x, y, ~z, ret)

∣∣∣Q(x, y, ~z, ret)
〉


54

Definition 4.30 (Atomic Judgements). The generalised form of atomic judgements in TaDA is:

Γ;λ;A `

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

Here, Pp is the private precondition, P (x) is the public precondition, Qp(x, y) is the private postcondition,

and Q(x, y) is the public postcondition. The private precondition is independent of x, since the

environment can change x. The two parts of the postcondition are linked by y, which is chosen

arbitrarily by the implementation when the atomic operation appears to take effect.

Formally, we only consider a single variable bound by

A

or

E

. However, it is often useful to consider

multiple such variables. We treat this as syntactic sugar which can be interpreted using Cartesian

product and projection functions. We also drop the binder altogether when the variable ranges over

the set 1.

We define Γ;λ;A `
{
P
}
C
{
Q
}

as sugar for Γ;λ;A `

A

x ∈ 1.
〈
P
∣∣∣True〉 C

E

y ∈ 1.
〈
Q
∣∣∣True〉.

We implicitly require the pre- and postcondition assertions in our judgements to be stable: that is,

they must account for any updates other threads could have sufficient resources to perform. We will

late define stability formally in the next section.

Definition 4.31 (Proof System). The derivation rules for atomic judgements of the form

Γ;λ;A `

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

are given in Figure 4.1, Figure 4.2 and Figure 4.3.

The proof rules in Figure 4.1 are related to the programming language.

The Skip rule asserts that the skip; does not change the state of the program. An alternative would

be specify the pre- and postcondition as True.

The Sequencing rule allows us to compose programs that are executed sequentially.

The Loop rule states that there is a loop invariant, Pp, which is preserved by the loop body C.

After the loop is finished, the invariant Pp still holds, and moreover B must be caused the loop to end.

The Conditional rule states that if both branches of the conditional establish Qp, then the

postcondition of the whole satisfies Qp.

The FunctionCall rule and Fork rule establish the conditions for the functions to be called.

Essentially, in order to call a function, we have to have enough resources. In the case of the fork

operation, the ownership of Pp is transferred to the newly created thread.

The Allocation rule allocates memory and returns the address on x.

The Assignment rule states that, after the assignment, the variable x has value E where each

occurrence of x has been replaced by v. The Mutation rule and the CompareAndSet rule are

similar, but manipulate the heap instead.

The main proof rules to handle abstract atomicity are shown in Figure 4.2. The first three rules allow

us to access the content of a shared region by using an atomic command. With all of the rules, the

update to the shared region must be atomic, so its interpretation is in the public part in the premiss.

The region is in the public part in the conclusion also, but may be moved by applying atomicity

weakening. The last rule is used to prove that a command is atomic.

55

Skip

Γ;λ;A `
{
Pp
}
skip;

{
Pp
}

Sequencing

Γ;λ;A `
{
Pp
}
C1

{
Rp
}

Γ;λ;A `
{
Rp
}
C2

{
Qp
}

Γ;λ;A `
{
Pp
}
C1 C2

{
Qp
}

Loop
Γ;λ;A `

{
Pp ∗ B

}
C
{
Pp
}

Γ;λ;A `
{
Pp
}
while (B) {C}

{
Pp ∗ ¬B

}
Conditional
Γ;λ;A `

{
Pp ∗ B

}
C1

{
Qp
}

Γ;λ;A `
{
Pp ∗ ¬B

}
C2

{
Qp
}

Γ;λ;A `
{
Pp
}
if (B) {C1} else {C2}

{
Qp
}

FunctionCall(
λ;A `

A

x ∈ X.
〈
Pp(~z)

∣∣P (x, ~z)
〉
f(~z)

E

y ∈ Y.
〈
Qp(x, y, ~z, ret)

∣∣Q(x, y, ~z, ret)
〉)
∈ Γ

Γ;λ;A `

A

x ∈ X.
〈
Pp(~z) ∗ ~z = ~E

∣∣∣P (x, ~z)
〉

x := f(~E);

E

(y, r) ∈ Y × Val.
〈
Qp(x, y, ~z, r) ∗ x = r

∣∣Q(x, y, ~z, r)
〉

Fork(
λ; ∅ `

A

x ∈ 1.
〈
Pp(~z)

∣∣True〉 f(~z)

E

y ∈ 1.
〈
Qp(~z, ret)

∣∣True〉) ∈ Γ

Γ;λ;A `
{
Pp(~z) ∗ ~z = ~E

}
fork f(~E);

{
True

}
Allocation

Γ;λ;A `
{
E = v ∗ v > 0

}
x := alloc(E);

{
x 7→ ∗ . . . ∗ (x + v − 1) 7→

}
Assignment

Γ;λ;A `
{
x = v

}
x := E;

{
x = E[v/x]

}
Lookup

Γ; 0;A `

A

v ∈ Val.
〈
z = E

∣∣ z 7→ v
〉
x := [E];

E

y ∈ 1.
〈
x = v

∣∣ z 7→ v
〉

Mutation

Γ; 0;A `

A

v ∈ Val.
〈
z1 = E1 ∗ z2 = E2

∣∣ z1 7→ v
〉

[E1] := E2;

E

y ∈ 1.
〈
True

∣∣ z1 7→ z2

〉
CompareAndSet

Γ; 0;A `

A

v1 ∈ Val.
〈
z = E1 ∗ v2 = E2 ∗ v3 = E3

∣∣ z 7→ v1

〉
x := CAS(E1,E2,E3);

E

y ∈ 1.
〈
(v1 = v2 ∗ x 6= 0) ∨ (v1 6= v2 ∗ x = 0)

∣∣ (v1 = v2 ∗ z 7→ v3) ∨ (v1 6= v2 ∗ z 7→ v1)
〉

Function
code(η(f)) = C return E; vars(η(f)) = ~x

Γ;λ;A `

A

x ∈ X.
〈
Pp(~z) ∗ ~x = ~z

∣∣P (x, ~z)
〉

C

E

(y, ret) ∈ Y × Val.
〈
Qp(x, y, ~z, ret) ∗ ret = E

∣∣Q(x, y, ~z, ret)
〉

Γ;λ;A `

A

x ∈ X.
〈
Pp(~z)

∣∣P (x, ~z)
〉
f(~z)

E

y ∈ Y.
〈
Qp(x, y, ~z, ret)

∣∣Q(x, y, ~z, ret)
〉

Figure 4.1: Programming language proof rules of the TaDA logic.

56

OpenRegion
Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣ I(tλa(~z, x)) ∗ P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣ I(tλa(~z, x)) ∗Q(x, y)
〉

Γ;λ+ 1;A `

A

x ∈ X.
〈
Pp
∣∣ tλa(~z, x) ∗ P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣ tλa(~z, x) ∗Q(x, y)
〉

UseAtomic
a /∈ A ∀x ∈ X. (x, f(x)) ∈ Tt(G)∗

Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣ I(tλa(~z, x)) ∗ P (x) ∗ [G]a

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣ I(tλa(~z, f(x))) ∗Q(x, y)
〉

Γ;λ+ 1;A `

A

x ∈ X.
〈
Pp
∣∣ tλa(~z, x) ∗ P (x) ∗ [G]a

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣ tλa(~z, f(x)) ∗Q(x, y)
〉

UpdateRegion

Γ;λ;A `

A

x ∈ X.
〈
Pp

∣∣∣∣ I(tλa(~z, x)) ∗ P (x)

〉
C

E

(y, w) ∈ Y ×W.
〈
Qp(x, y, w)

∣∣∣∣ I(tλa(~z, w)) ∗Q1(x, y, w)

∨ I(tλa(~z, x)) ∗Q2(x, y)

〉

Γ;λ+ 1; a : x ∈ X W,A `

A

x ∈ X.
〈
Pp
∣∣ tλa(~z, x) ∗ P (x) ∗ a Z⇒ �

〉
C

E

(y, w) ∈ Y ×W.
〈
Qp(x, y, w)

∣∣∣∣ tλa(~z, w) ∗Q1(x, y, w) ∗ a Z⇒ (x,w)

∨ tλa(~z, x) ∗Q2(x, y) ∗ a Z⇒ �

〉
MakeAtomic

a /∈ A {(x, y) | x ∈ X, y ∈ Y } ⊆ Tt(G)∗

Γ;λ′; a : x ∈ X Y ,A `
{
Pp ∗ ∃x ∈ X. tλa(~z, x) ∗ a Z⇒ �

}
C
{
∃x ∈ X, y ∈ Y.Qp(x, y) ∗ a Z⇒ (x, y)

}
Γ;λ′;A `

A

x ∈ X.
〈
Pp
∣∣ tλa(~z, x) ∗ [G]a

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣ tλa(~z, y) ∗ [G]a
〉

Figure 4.2: Atomicity proof rules of the TaDA logic.

The OpenRegion rule allows us to access the contents of a shared region without updating its

abstract state. The command may change the concrete state of the region, so long as the abstract

state is preserved.

The UseAtomic rule allows us to update the abstract state of a shared region. To do so, it is

necessary to have a guard for the region being updated, such that the change in state is permitted by

this guard according to the transition system associated with the region. This rule takes a C which

(abstractly) atomically updates the region a from some state x ∈ X to the state f(x). It requires the

guard G for the region, which allows the update according to the transition system, as established by

one of the premisses. Another premiss states that the command C performs the update described by

the transition system of region a in an atomic way. This allows us to conclude that the region a is

updated atomically by the command C. Note that the command is not operating at the same level of

abstraction as the region a. Instead it is working at a lower level of abstraction, which means that if it

is atomic at that level it will also be atomic at the region a level.

The UpdateRegion rule similarly allows us to update the abstract state of a shared region, but

this time the authority comes from the atomicity context instead of a guard. In order to perform such

an update, the atomic update to the region must not already have happened, indicated by a Z⇒ � in

the precondition of the conclusion. In the postcondition, there are two cases: either the appropriate

update happened, or no update happened. If it did happen, the new state of the region is some w ∈W ,

and both x and w are recorded in the atomicity tracking resource. If it did not, then both the region’s

abstract state and the atomicity tracking resource are unchanged. The premiss requires the command

to make a corresponding update to the concrete state of the region. The atomicity context and tracking

resource are not present in the premiss; their purpose is rather to record information about the atomic

57

update that is performed for use further down the proof tree.

It is necessary for the update region rule to account for both the case where the update occurs and

where it does not. One might expect that the case with no update could be dealt with by the open region

rule, and the results combined using a disjunction rule. However, a general disjunction rule is not sound

for atomic triples. (If we have 〈P1〉C 〈Q〉 and 〈P2〉C 〈Q〉, we may not have 〈P1 ∨ P2〉C 〈Q〉 since C
might rely on the environment not changing between P1 and P2.) The proof of the atomic specification

for the spin lock uses the conditional nature of the update region rule.

We revisit the MakeAtomic rule. As before, a guard in the conclusion must permit the update in

accordance with the transition system for the region. This is replaced in the premiss by the atomicity

context and atomicity tracking resource, which tracks the occurrence of the update. One difference is

the inclusion of the private state, which is effectively preserved between the premiss and the conclusion.

A second difference is the

E

-binding of the resulting state of the atomic update. This allows the private

state to reflect the result of the update.

Until now, we have elided a detail of the proof system: region levels. Each judgement of TaDA

includes a region level λ in the context. This level is simply a number that indicates that only regions

below level λ may be opened in the derivation of the judgement. For this to be meaningful, each region

is associated with a level (indicated as a superscript) and rules that open regions require that the level

of the judgement is higher than the level of the region being opened. The purpose of the levels is

to ensure that a region can never be opened twice in a single branch of the proof tree, which could

unsoundly duplicate resources. The rules that open regions enforce this by requiring the level of the

conclusion (λ+ 1) to be above the level of the region (λ), which is also the level of the premiss. For

our examples, the level of each module’s regions just needs to be greater than the levels of modules

that it uses.

In all of our examples, the atomicity context describes an update to a single region. In the logic, there

is no need to restrict in this way, and an atomicity context A may describe updates to multiple regions

(although only one update to each). Both atomic and non-atomic judgements may have atomicity

contexts.

The last set of rules is given in Figure 4.3. In order to define the Frame rule, we introduce two

auxiliary functions.

Definition 4.32 (Program Variables Sets). The set of program variables in an assertion is denoted by

pvars(P).

Definition 4.33 (Modified Sets). The set of modified variables, mods(−) : Cmd→ P(Var), is defined

58

Frame
mods(C) ∩ pvars(R′) = ∅ mods(C) ∩ pvars(R(x)) = ∅

Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣Q(x, y)
〉

Γ;λ;A `

A

x ∈ X.
〈
R′ ∗ Pp

∣∣R(x) ∗ P (x)
〉
C

E

y ∈ Y.
〈
R′ ∗Qp(x, y)

∣∣R(x) ∗Q(x, y)
〉

Substitution
f : X ′ → X g : Y ′ → Y

Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣P (x)

〉
C

E

y′ ∈ Y ′.
〈
Qp(x, g(y′))

∣∣Q(x, g(y′))
〉

Γ;λ;A `

A

x′ ∈ X ′.
〈
Pp
∣∣P (f(x′))

〉
C

E

y ∈ Y.
〈
Qp(f(x′), y)

∣∣Q(f(x′), y)
〉

Consequence

λ;A ` Pp � P ′p ∀x ∈ X, y ∈ Y. λ;A ` Q′p(x, y) � Qp(x, y)

∀x ∈ X, y ∈ Y. λ;A ` Q′(x, y) � Q(x, y)

Γ;λ;A `

A

x ∈ X.
〈
P ′p
∣∣P (x)

〉
C

E

y ∈ Y.
〈
Q′p(x, y)

∣∣Q′(x, y)
〉

Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣Q(x, y)
〉

AExists
Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣Q(x, y)
〉

Γ;λ;A `

A

z ∈ 1.
〈
Pp
∣∣∃x ∈ X.P (x)

〉
C

E

x ∈ X, y ∈ Y.
〈
Qp(x, y)

∣∣Q(x, y)
〉

AWeakening1
Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣P ′ ∗ P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣Q′(x, y) ∗Q(x, y)
〉

Γ;λ;A `

A

x ∈ X.
〈
Pp ∗ P ′

∣∣P (x)
〉
C

E

y ∈ Y.
〈
Qp(x, y) ∗Q′(x, y)

∣∣Q(x, y)
〉

AWeakening2
Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣Q(x, y)
〉

∀x ∈ X.Γ;λ;A `

A

z ∈ 1.
〈
Pp
∣∣P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣Q(x, y)
〉

AWeakening3
λ′ ≤ λ Γ;λ′;A `

A
x ∈ X.

〈
Pp
∣∣P (x)

〉
C

E
y ∈ Y.

〈
Qp(x, y)

∣∣Q(x, y)
〉

Γ;λ;A `

A

x ∈ X.
〈
Pp
∣∣P (x)

〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣Q(x, y)
〉

Figure 4.3: Auxiliary proof rules of the TaDA logic.

for a given command as follows:

mods(skip;) = ∅
mods(C1 C2) = mods(C1) ∪mods(C2)

mods(while (B) {C}) = mods(C)

mods(if (B) {C1} else {C2}) = mods(C1) ∪mods(C2)

mods(x := f(~E);) = {x}
mods(fork f(~E);) = ∅

mods(x := alloc(E);) = {x}
mods(x := E;) = {x}

mods(x := [E];) = {x}
mods([E1] := E2;) = ∅

mods(x := CAS(E1,E2,E3);) = {x}

The functions are going to be used to guarantee that a command that modifies program variables

does not invalidate the frame.

59

The Frame rule, as in separation logic, allows us to add the same resources to the pre- and

postcondition, which are untouched by the command. Our frame rule separately adds to both the

private and public parts. Note that the frame for the public part may be parametrised by the

A

-bound

variable x, additionally we require the frame to be stable as the pre- and postcondition assertions.

The Substitution rule allows us to change the domain of

A

-bound variables. A consequence of

this rule is that we can instantiate

A

-variables much like universally quantified variables, simply by

choosing X ′ to be a single-element set.

The Consequence rule allows to strengthen the precondition and weaken the postcondition, using

view shifts which we define later in Definition 4.60.

The AExists allows us to eliminate existential quantifiers in the public state in the premiss of the

conclusion.

The AWeakening1 rule allows us to convert private state from the conclusion into public state in

the premiss. The first effectively implements a non-atomic specification with an atomic specification,

dividing the assertions between the public and private parts. This allows us to forget about the

(abstract) atomicity of an operation.

The AWeakening2 rule allow us to widen the interference from the conclusion to the premiss. This

rule combined with AWeakening1 allows us make a implement a fully non-atomic specification with

an atomic specification that potentially supports more interference.

The AWeakening3 rule allow us to implement a specification with a command that requires a

lower level.

Previously in chapter 3 we have introduced simplified versions of the MakeAtomic, UpdateRegion

and UseAtomic rules. We will show that they can be derived from the existing rules.

We start with the MakeAtomic rule, recall the simplified rule as follows:

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

a : x ∈ X Q(x) `
{
∃x ∈ X. ta(~z, x) ∗ a Z⇒ �

}
C
{
∃x ∈ X, y ∈ Q(x). a Z⇒ (x, y)

}
`

A

x ∈ X.
〈
ta(~z, x) ∗ [G]a

〉
C
〈
∃y ∈ Q(x). ta(~z, y) ∗ [G]a

〉
Take A = ∅, then a /∈ A holds trivially. Take Pp = True, Qp = True, and Y = Q(x) and we have

established that the simplified version follows from the MakeAtomic rule.

The simplified version of the UpdateRegion rule is as follows (renaming y as w):

`

A

x ∈ X.
〈
I(ta(~z, x)) ∗ P (x)

〉
C
〈
∃w ∈ Q(x). I(ta(~z, w)) ∗Q1(x,w) ∨ I(ta(~z, x)) ∗Q2(x)

〉
a : x ∈ X Q(x) `

{
∃x ∈ X. ta(~z, x) ∗ P (x) ∗ a Z⇒ �

}
C

{
∃x ∈ X. (∃w ∈ Q(x). Q1(x,w) ∗

a Z⇒ (x,w) ∨ ta(~z, x) ∗Q2(x) ∗ a Z⇒ �)

}

Starting from the UpdateRegion rule, take A = ∅, Pp = True, Qp = True, Y = 1, W = Q(x), we

have:

Γ;λ+ 1; a : x ∈ X Q(x) `

A

x ∈ X.
〈
True

∣∣∣ tλa(~z, x) ∗ P (x) ∗ a Z⇒ �
〉

C

E

w ∈ Q(x).

〈
True

∣∣∣∣∣ tλa(~z, w) ∗Q1(x,w) ∗ a Z⇒ (x,w)

∨ tλa(~z, x) ∗Q2(x) ∗ a Z⇒ �

〉

60

We apply the Consequence rule to weaken the postcondition, forgetting about the region in the case

there was an atomic update.

Γ;λ+ 1; a : x ∈ X Q(x) `

A

x ∈ X.
〈
True

∣∣∣ tλa(~z, x) ∗ P (x) ∗ a Z⇒ �
〉

C

E

w ∈ Q(x).

〈
True

∣∣∣∣∣ Q1(x,w) ∗ a Z⇒ (x,w)

∨ tλa(~z, x) ∗Q2(x) ∗ a Z⇒ �

〉

We apply the AExists rule to weaken the abstract state of the region x and similarly the Consequence

rule for the postcondition we have:

Γ;λ+ 1; a : x ∈ X Q(x) `

A

z ∈ 1.
〈
True

∣∣∣ ∃x ∈ X. tλa(~z, x) ∗ P (x) ∗ a Z⇒ �
〉

C

E

y ∈ Q(x).

〈
True

∣∣∣∣∣ ∃x ∈ X.Q1(x, y) ∗ a Z⇒ (x, y)

∨ tλa(~z, x) ∗Q2(x) ∗ a Z⇒ �

〉

Finally, we apply the Consequence rule to the postcondition to move the existencial quantification

of w ∈ Q(x) and AWeakening1 to move the whole public state to the private state, essentially

converting the atomic triple into a normal Hoare triple.

Finally, the simplified UseAtomic rule is as follows:

∀x ∈ X. (x, f(x)) ∈ Tt(G)∗ `

A

x ∈ X.
〈
I(ta(~z, x)) ∗ P (x) ∗ [G]a

〉
C
〈
I(ta(~z, f(x))) ∗Q(x)

〉
`
{
∃x ∈ X. ta(~z, x) ∗ P (x) ∗ [G]a

}
C
{
∃x ∈ X. ta(~z, f(x)) ∗Q(x)

}
Starting from the UseAtomic rule, take A = ∅, Pp = True, Qp = True and Y = 1 we have:

Γ;λ+ 1; ∅ `

A

x ∈ X.
〈
True

∣∣∣ tλa(~z, x) ∗ P (x) ∗ [G]a

〉
C

E

y ∈ 1.
〈
True

∣∣∣ tλa(~z, f(x)) ∗Q(x)
〉

We apply the AExists rule to weaken the abstract state of the region x and similarly the Consequence

rule for the postcondition we have:

Γ;λ+ 1; ∅ `

A

z ∈ 1.
〈
True

∣∣∣ ∃x ∈ X. tλa(~z, x) ∗ P (x) ∗ [G]a

〉
C

E

y ∈ 1.
〈
True

∣∣∣ ∃x ∈ X. tλa(~z, f(x)) ∗Q(x)
〉

Finally, we apply the AWeakening1 to move the whole public state to the private state, essentially

converting the atomic triple into a normal Hoare triple.

4.5 Model

We now present the semantic model of the TaDA program logic, which we will use to define the

semantics for the assertions and judgements in the logic.

Definition 4.34 (Variable Names). Assume a set of logic variable names LVar, ranged over by x, y,

61

Definition 4.35 (Guards and Guard Algebras). Assume a set Guard that will contain all guards that

we might wish to use, ranged over by g, g1, . . . A guard algebra ζ = (G, •,0,1) consists of:

• a carrier set G ⊆ Guard;

• an associative, commutative partial binary operator • : G× G⇀ G;

• an identity element 0 ∈ G, with 0 • g = g for all g ∈ G; and

• a maximal element 1 ∈ G, with g ≤ 1 for all g ∈ G,

where

g1 ≤ g2
def⇐⇒ ∃g3. g1 • g3 = g2.

Let GAlg denote the set of all guard algebras, ranged ranged over by ζ and Gζ denote the carrier set

for guard algebra ζ.

Note that a guard algebra is a separation algebra (in the sense of [13]) with a single unit, 0.

Definition 4.36 (Abstract States and Transition Systems). Assume a set AState that will contain

all abstract region states that we might wish to use. For a given guard algebra ζ, a guard-labelled

transition system T : Gζ →mon P(AState× AState) is a mapping from guards to relations between

abstract states. Let T (g)∗ denote the reflexive-transitive closure of the relation T (g) for g ∈ Gζ . Let

ASTSζ denote the set of all ζ-labelled transition systems.

The mapping is monotone with respect to the resource ordering (≤ζ) and subset ordering (⊆),

meaning that having more guard resource permits more transitions.

Definition 4.37 (Abstract Region Types). Assume a set RTName of region type names. An abstract

region typing

t ∈ ARType
def
= RTName→

∐
ζ∈GAlg

ASTSζ

maps region type names to pairs of guard algebras and guard-labelled transition systems.

Definition 4.38 (Abstract Predicates). Assume a set APName of abstract predicate names. An

abstract predicate a ∈ APName× Val∗ consists of an abstract predicate name and a list of parameters.

An abstract predicate bag b ∈ APBag
def
= Mfin(APName× Val∗) is a finite multiset of abstract predicates.

Abstract predicate bags form a separation algebra (APBag,∪, ∅), where ∪ is multiset union, and ∅ is the

empty multiset. Abstract predicate bags are ordered by the usual subset order ⊆, which corresponds

to the resource order.

Definition 4.39 (Levels). Assume a level λ ∈ Level
def
= N. Levels are ordered by the usual well-founded

ordering on natural numbers.

Remark 4.1 (On levels). It would be possible to take the levels from a more general well-founded

order. This might be useful if we need some kind of unbounded nesting of regions.

Definition 4.40 (Region Identifiers). Assume a countably infinite set of region identifiers, RId.

Definition 4.41 (Region Assignments). A region assignment r ∈ RAss
def
= RId⇀fin Level×RTName×

Val∗ is a finite partial function from region identifiers to levels and parametrised region type names.

Region assignments are ordered by extension ordering: r1 ≤ r2
def⇐⇒ ∀a ∈ dom(r1). r2(a) = r1(a).

62

For the following semantic definitions, we assume a fixed abstract region typing t ∈ ARType.

Definition 4.42 (Guard Assignments). Given a region assignment r, a guard assignment

γ ∈ GAssr
def
=

∏
a∈dom(r)

Gζ(t(r(a)))

is a mapping from the regions declared in r to guards of the appropriate type for each region. Guard

assignments form a separation algebra (GAssr, •, λa.0ζ(t(r(a)))), where • is the pointwise lift of the

guard combination operators:

γ1 • γ2
def
= λa. γ1(a) • γ2(a)

For γ1 ∈ GAssr1 , γ2 ∈ GAssr2 with r1 ≤ r2, guards assignments are ordered pointwise-extensionally:

γ1 ≤ γ2
def⇐⇒ ∀a ∈ dom(γ1). γ1(a) ≤ γ2(a).

Definition 4.43 (Region States). Given a region assignment r, a region state

ρ ∈ RStater
def
= dom(r)→ AState

is a mapping from the regions declared in r to abstract states. For ρ1 ∈ RStater1 , ρ2 ∈ RStater2 with

r1 ≤ r2, region states are ordered extensionally: ρ1 ≤ ρ2
def⇐⇒ ∀a ∈ dom(ρ1). ρ1(a) = ρ2(a).

Definition 4.44 (Worlds). A world

w ∈World
def
=

∐
r∈RAss

(Heap× APBag × GAssr × RStater)

consists of a region assignment, a heap, an abstract predicate bag, a guard assignment, and a region

state. Worlds can be combined, provided they agree on the region assignment and region state, by

combining the remaining components in the appropriate separation algebras. Thus, worlds form a

(multi-unit) separation algebra (World, •, emp) where

(r, h1, b1, γ1, ρ) • (r, h2, b2, γ2, ρ)
def
= (r, h1] h2, b1 ∪ b2, γ1 • γ2, ρ)

emp
def
=
{

(r, ∅, ∅, λa.0ζ(t(r(a))), ρ)
∣∣ r ∈ RAss, ρ ∈ RStater

}
Worlds are also ordered by the product order. If w1 ≤ w2, then w2 may be obtained from w1 by

introducing new regions (with arbitary associated type name and state) and adding heap, abstract-

predicate and guard resources.

Definition 4.45 (World Predicates). A world predicate P ∈WPred
def
= P↑(World) is a set of worlds

that is upwards closed with respect to the world ordering. That is, if w ∈ P and w ≤ w′ then w′ ∈ P .

This is also sometimes called intuitionistic interpretation.

The composition operator on worlds is lifted to world predicates:

P1 ∗ P2
def
= {w | ∃w1 ∈ P1, w2 ∈ P2. w = w1 • w2}

63

(That the results is upwards closed is not difficult to check: any extension to the composition of two

worlds can be tracked back and applied to one of the components.) The ∗ operator is associative and

commutative with identity World. To denote ∗ iterated over a finite set X, we write �x∈X P (x).

Remark 4.2 (Intuitionistic Interpretation). An alternative approach would be to define world pred-

icates using a classical interpretation. This would require changes in the proof rules, such as the

MakeAtomic, to make sure that they do not forget regions.

Definition 4.46 (Worlds with Atomic Tracking). The atomic tracking separation algebra is defined

to be ((AState× AState)] {�,♦} , •, (AState× AState) ∪ {♦}), where • is defined by

� • ♦ = � = ♦ • �

♦ • ♦ = ♦

(x, y) • (x, y) = (x, y)

and undefined in all other cases. The resource ordering on this separation algebra is characterised by

the two rules: k ≤ k (for all k ∈ (AState× AState)] {�,♦}) and ♦ ≤ �.

Given a finite set of region identifiers R ⊆fin RId, a world with atomic tracking ϕ ∈ AWorldR
def
=

World× (R → (AState× AState)] {�,♦}) consists of a world together with a mapping that associates

atomic tracking resources with each region in R. The mapping records if an atomic update has taken

place on a region, and, if so, what state change the region underwent in the update. Specifically, ♦

and � record that the atomic update has not yet happened, while (x, y) records that the update has

happened, and it entailed updating the abstract state from x to y. The difference between ♦ and � is

that � embodies a right to perform the update, while ♦ does not.

By lifting • to maps, the maps form a separation algebra. Consequently, by combining the operators

of its components, AWorldR is also an ordered separation algebra. We consider that World = AWorld∅.

As with worlds, we consider predicates over worlds with atomic tracking P ∈ AWPredR
def
= P↑(AWorldR)

to be upwards-closed sets. These predicates similarly have a ∗ operator.

Definition 4.47 (Atomicity Context). An atomicity context A ∈ AContext
def
= RId ⇀fin AState ⇀

P(AState) is a (finite) partial mapping from region identifiers to partial, non-deterministic abstract

state transformers. In the context of proving that an operation is abstractly atomic, the atomicity

context records the abstract operation to be performed. This has implications in terms of both how the

thread performing the operation and the environment can update the region mentioned in the context.

Definition 4.48 (Rely Relation). For a given atomicity context A ∈ AContext, with R = dom(A),

the rely relation RA ⊆ AWorldR ×AWorldR is the smallest reflexive-transitive relation that satisfies the

following rules:

g # g′ (s, s′) ∈ Tt(n)(g
′)∗ (d(a) ∈ {�,♦} ⇒ s′ ∈ dom(A(a)))

(r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s], d) RA (r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s′], d)

(s, s′) ∈ A(a)

(r[a 7→ n], h, b, γ, ρ[a 7→ s], d[a 7→ ♦]) RA (r[a 7→ n], h, b, γ, ρ[a 7→ s′], d[a 7→ (s, s′)])

Interference by the environment is abstracted by the rely relation.

64

The first rule expresses that the environment may make any update to a region for which it can

have a guard that permits it in the corresponding transition system. (It can only have such a guard if

it is compatible with the guard held by the thread, expressed as g # g′.) The exception to this is that,

if an atomic update is pending then the environment must not take the state outside of those on which

the atomic operation is set to perform.

The second rule expresses that having the � entitles one to perform an update corresponding to

that expressed in the atomicity context.

Note that interference is explicitly confined to the shared regions and atomic tracking resources.

Furthermore, extending the atomicity context decreases the possible interference of the environment.

Definition 4.49 (Stable Predicates). Given an atomicity context A ∈ AContext, the stable predicates

are those which are closed under the associated rely relation:

A � P stable
def⇐⇒ RA (P) ⊆ P .

We call the stable predicates views (as in [13]) and denote the set of views (in atomicity context A) by

ViewA. Note that if A′ is an extension of A then ViewA ⊆ View′A. We drop the subscript when the

empty atomicity context is intended.

If A′ is an extension of A, we have a coercion from ViewA to ViewA′ by extending the atomicity

tracking component for the additional regions in every possible way.

Stable predicates are closed under ∗. That is

A � P stable ∧ A � Q stable =⇒ A � P ∗Q stable

Definition 4.50 (Region Interpretation). A region interpretation I ∈ RInterp
def
= Level× RTName×

Val∗ × RId × AState → View associates a view with each abstract state of each parametrised region

type.

The parameters are used to specify, for example, the address of a data structure contained in the

region. The region identifier is often a necessary parameter as it is common for a region interpretation

to refer to guards for the region. Here, we have purposely avoided having region interpretations directly

referring to region interpretations. Impredicative CAP [54] does support this by constructing the

relevant domains in the topos of trees. We opt for a simpler, if less powerful, alternative: breaking

self-reference by indirection through region type names.

Definition 4.51 (Abstract Predicate Interpretation). An abstract predicate interpretation ι ∈
APInterp

def
= APName× Val∗ → View associates a view with each abstract predicate.

For the following, assume a fixed region interpretation I and abstract predicate interpretation ι.

Definition 4.52 (Region Collapse). Given a level λ ∈ Level, the region collapse of a world ϕ ∈ AWorldR′

is a set of worlds given by:

ϕ↓λ
def
=

{
ϕ · (w′, ∅)

∣∣∣∣∣ w′ ∈ �
{a | ∃λ′<λ.rϕ(a)=(λ′,−,−)}

I(rϕ(a), a, ρϕ(a))

}

where rϕ and ρϕ are projections of region assignments and region states respectively, from ϕ. This

operation is lifted to predicates in a straightforward manner: P↓λ
def
=
⋃
ϕ∈P ϕ↓λ.

65

Definition 4.53 (Abstract Predicate Collapse). The one-step abstract predicate collapse of a world is

a set of worlds given by:

(r, h, b, γ, ρ, d)�1
def
=

{
(r, h, ∅, γ, ρ, d) · (w, ∅)

∣∣∣∣ w ∈ �
a∈b

ι(a)

}

This is lifted to predicates: P �1
def
=
⋃
ϕ∈P ϕ�1. The one-step collapse is iterated to give the multi-step

collapse: P �n+1
def
= (P �n)�1.

The abstract predicate collapse of a predicate applies the multi-step collapse to collapse all abstract

predicates:

P �
def
= {ϕ | ∃n. ϕ ∈ P �n ∧ bϕ = ∅}

where bϕ is a projection of abstract predicate bags from ϕ.

Remark 4.3 (On the interpretation of abstract predicates). This approach to interpreting abstract

predicates is different from the usual one. It effectively gives a step-indexed interpretation to the

predicates: the concrete interpretation is given by the finite unfolding. If a predicate cannot be made

fully concrete by finite unfolding, then its semantics will be False.

Definition 4.54 (Reification). The reification operation on worlds collapses the regions and the

abstract predicates, and then considers only the heap portion:

bϕcλ
def
=
{
hϕ′

∣∣ ϕ′ ∈ ϕ↓λ�}
This operation is lifted to predicates in the usual manner.

Definition 4.55 (Guarantee Relation). Given a level λ ∈ Level, and atomicity context A ∈ AContext,

the guarantee relation Gλ;A ⊆ AWorldR′ × AWorldR′ is defined as:

ϕ Gλ;A ϕ
′ def⇐⇒ ∀a. (∃λ′ ≥ λ. rϕ(a) = (λ′,−,−)) =⇒ ρϕ(a) = ρϕ′(a) ∧

∀a ∈ domA.

 (dϕ(a) = dϕ′(a) ∧ ρϕ(a) = ρϕ′(a)) ∨(
dϕ(a) = � ∧ dϕ′(a) = (ρϕ(a), ρϕ′(a))

∧ (ρϕ(a), ρϕ′(a)) ∈ A(a)

)
The guarantee relation enforces that regions with level λ or higher cannot be modified. It also enforces

that regions mentioned in the atomicity context can only be updated using the atomicity context.

Remark 4.4 (On reification). It will be necessary to enforce that each execution step preserves regions

above a certain level, because these regions will simply be dropped by the reification. If we didn’t

constrain them in this way, a thread could change them as it liked (resources permitting) without even

making a concrete update!

4.5.1 Semantic Assertions

Logical variables in assertions are interpreted over the set of values Val and we assume that RId ⊆ Val,

so that variables may range over region identifiers. In the semantics of assertions, free variables are

evaluated using a variable interpretation, which maps variables to values.

66

Definition 4.56 (Variable Interpretations). The set of variable Interpretations is Interp
def
= LVar→ Val,

and is ranged over by i, i1, . . .

Definition 4.57 (Logical Expressions Semantics). We assume an appropriate semantics for logical

expressions

J−K− : LExpr × Interp→ Val

Definition 4.58 (Assertion Semantics). The semantics of assertions

J−K(−,−,−) : Assn× Interp× RInterp× APInterp→ ViewA

is inductively defined as follows:

JFalseK(i,I,ι)
def
= ∅

JTrueK(i,I,ι)
def
= AWorld

JP ∧QK(i,I,ι)
def
=
{
ϕ
∣∣ ϕ ∈ JP K(i,I,ι) and ϕ ∈ JQK(i,I,ι)

}
JP ∨QK(i,I,ι)

def
=
{
ϕ
∣∣ ϕ ∈ JP K(i,I,ι) or ϕ ∈ JQK(i,I,ι)

}
J∃x. P K(i,I,ι)

def
=

⋃
v∈Val

JP K(i[x 7→v],I,ι)

J∀x. P K(i,I,ι)
def
=

⋂
v∈Val

JP K(i[x 7→v],I,ι)

JP ∗QK(i,I,ι)
def
=
{
ϕ
∣∣ there exists ϕ1 ∈ JP K(i,I,ι), ϕ2 ∈ JQK(i,I,ι) s.t. ϕ = ϕ1 • ϕ2

}
Jx 7→ yK(i,I,ι)

def
= {ϕ ∈ AWorld | hϕ(JxKi) = JyKi}

JP =⇒ QK(i,I,ι)
def
=
{
ϕ
∣∣ ϕ ∈ JP K(i,I,ι) =⇒ ϕ ∈ JQK(i,I,ι)

}
Jtλa(~z, x)K(i,I,ι)

def
= {ϕ ∈ AWorld | rϕ(JaKi) = (JλKi, t, J~zKi) and ρϕ(JaKi) = JxKi}

JI(tλa(~z, x))K(i,I,ι)
def
= I(tJλKi

a (J~zKi, JxKi))

J[G(~z)]aK(i,I,ι)
def
= {ϕ ∈ AWorld | G(J~zKi) ≤ γϕ(JaKi)}

Ja Z⇒ �K(i,I,ι)
def
= {ϕ ∈ AWorld | dϕ(JaKi) = �}

Ja Z⇒ ♦K(i,I,ι)
def
= {ϕ ∈ AWorld | dϕ(JaKi) = ♦ or dϕ(JaKi) = �}

Ja Z⇒ (x, y)K(i,I,ι)
def
= {ϕ ∈ AWorld | dϕ(JaKi) = (JxKi, JyKi)}

Ja(~z)K(i,I,ι)
def
= ι(a(J~zKi))

The False assertion is not satisfied by any world. The True assertion is satisfied by any world.

Conjunction and disjunction have the usual semantics. The existencial quantifier is satisfied by all

worlds in which the predicate P holds for some assignment of x. The universal quantifier is satisfied by

all worlds in which the predicate P holds for all assignments of x. The P ∗Q assertion is interpreted for

worlds with atomicity tracking in a similar style as explained in Definition 4.45. The x 7→ y assertion is

satisfied by any world that contains a heap cell with address x and value y. The P =⇒ Q is satisfied

by the usual first order logic semantics. The tλa(~z, x) assertion is satisfied by any world that contains

67

a region with identifier a such that it’s level, type, parameters and abstract state match the region

assertion. The semantics of region interpretation is described in Definition 4.52. The [G(~z)]a assertion

is satisfied by any world that contains guards for the region with identifier a that are at least G. The

assertions relating to the atomicity tracking component are described in Definition 4.46. Finally, the

abstract predicate semantics is described in Definition 4.53.

4.5.2 Semantic Judgements

In the Views Framework [13], primitive atomic actions are abstracted to relations on views by means of

an atomic satisfaction judgement. Here, we have an analogous judgement, but which is more complex

as it expresses the role of an action in performing an abstractly-atomic operation.

Definition 4.59 (Primitive Atomic Satisfaction Judgement). The primitive atomic satisfaction judge-

ment λ;A � 〈P 〉 α 〈Q〉, where λ ∈ Level, A ∈ AContext, α ∈ AAction and P,Q ∈ ViewA, is defined

as:

λ;A � 〈P 〉 α 〈Q〉 def⇐⇒ ∀R ∈ ViewA. ∀ϕ ∈ P ∗R.∀h ∈ bϕcλ. ∀h′ ∈ JαK(h).

∃ϕ′. ϕ Gλ;A ϕ
′ ∧ h′ ∈ bϕ′cλ ∧ ϕ′ ∈ Q ∗R.

The primitive atomic satisfaction judgement incorporates two assertions: P , the precondition; and

Q, the post condition which the atomic update will satisfy. Note that the action α changes the worlds

according to the guarantee and level.

Definition 4.60 (View Shift). We define view shifts as:

λ;A � P � Q def⇐⇒ λ;A � 〈P 〉 id 〈Q〉

View shifts allows us to change views, such as allocating regions or weakening the type of a variable

to a supertype, as long as the underlying program state remains the same.

For constructing a new region we can use the following view shift:

RegionCreation

G ∈ Gt ∀a. λ′;A � P ∗ [G]a � I(tλa(~z, x)) ∗Q(a)

λ′;A � P � ∃a. tλa(~z, x) ∗Q(a)

The premiss states that if we pick a guard G, from the guard algebra for the region type we want to

create, and combined with predicate P it implies the interpretation of the region for abstract state x.

The predicate Q(a) may contain guards from the newly created region. Then we can create a new

region, which includes creating G as well.

View shifts can also be used to repartition where no concrete state changes. We use view shifts in

the rule of consequence to move resources between regions. Finally, the view shift includes material

implication and as such it subsumes the traditional one.

Definition 4.61 (Semantic Judgement). The semantic judgement

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

68

where

• η ∈ FEnv is a function environment;

• λ ∈ Level is a level strictly greater than that of any region that will be affected by the program;

• A ∈ AContext is the atomicity context, which constrains updates to regions on which an abstractly

atomic update is to be performed;

• Pp ∈ Store→ ViewA is the private part of the precondition, which does not correspond to resources

in some opened shared region, and is parametrised by the valuation of program variables;

• P ∈ X → ViewA is the public part of the precondition, which may correspond to resources from

some opened shared regions, and is parametrised by x ∈ X that tracks the precondition at the

atomic update and by the valuation of program variables;

• c ∈ ExtCmd is the program under consideration;

• Qp ∈ X × Y → Store→ ViewA is the private part of the postcondition, which is parametrised by

x ∈ X that tracks the precondition at the atomic update, by y ∈ Y that tracks the postcondition

at the atomic update, and by the valuation of program variables;

• Q ∈ X × Y → ViewA is the public part of the postcondition, which is similarly parametrised by

x ∈ X and y ∈ Y , and by the valuation of program variables;

is defined to be the most-general judgement that holds when the following conditions hold:

• For all σ, σ1 ∈ Store, c1 ∈ ExtCmd, α ∈ AAction with (σ, c)
α−→η (σ1, c1), for all x ∈ X, there

exists P ′p ∈ Store→ ViewA, P ′′p ∈ X × Y → Store→ ViewA such that

η;λ;A �
〈
Pp(σ) ∗ P (x)

〉
α
〈
P ′p(σ1) ∗ P (x) ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗Q(x, y)

〉
(4.1)

η;λ;A �

A

x ∈ X.
〈
P ′p

∣∣∣P (x)
〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

, (4.2)

and for all y ∈ Y , η;λ;A �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
. (4.3)

• For all σ, σ1 ∈ Store, c1 ∈ ExtCmd, f, ~v with (σ, c)
spawn(f,~v)−−−−−−→η (σ1, c1), for all x ∈ X, there exist

P ′p ∈ Store → ViewA, P ′′p ∈ X × Y → Store → ViewA and Pf ∈ Store → View such that for all

σf ∈ Store with vars(η(f)) = ~x, σf(~x) = ~v and code(η(f)) = C return E;,

λ;A � Pp(σ) ∗ P (x) � P ′p(σ1) ∗ Pf(σf) ∗ P (x) ∨ ∃y ∈ Y. P ′′p (σ1) ∗ Pf(σf) ∗Q(x, y), (4.4)

η;λ;A �

A

x ∈ X.
〈
P ′p

∣∣∣P (x)
〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

, (4.5)

for all y ∈ Y , η;λ;A �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
, (4.6)

and η;λ; ∅ �

A

x ∈ 1.
〈
λσf. Pf(~z) ∗ σf(~x) = ~z

∣∣∣True〉
C

E

(y, ret) ∈ 1× Val.
〈
λσf. Qf(~z, ret) ∗ ret = EJEKσf

∣∣∣True〉. (4.7)

69

• If c = skip; then, for all σ ∈ Store, x ∈ X, there exists y ∈ Y such that

λ;A � Pp(σ) ∗ P (x) � Qp(x, y, σ) ∗Q(x, y). (4.8)

Here, we adopt the syntax η;λ;A �
{
Pp

}
c
{
Qp

}
as shorthand for

η;λ;A �

A

x ∈ 1.
〈
Pp

∣∣∣True〉 c E

y ∈ 1.
〈
Qp

∣∣∣True〉.

The semantic judgement breaks down into three mutually-exclusive cases: two progressing and one

terminating. The first case covers normal progress, where the thread performs some atomic action

(possibly id) described by (4.1). The action may or may not perform the atomic update: the two new

private views express the outcome of each case. In the case where the atomic update is not performed,

the continuation (4.2) takes up this obligation. In the case where the atomic update is performed, the

continuation (4.3) loses responsibility for the public part.

The second case covers forking a new thread. This is just like the first case, taking the action id

(4.4), but with an additional obligation on the semantics of the new thread: we must split the private

part to give a precondition for both the continuation (4.6) and the newly-forked thread (4.7). Note

that the forked thread does not participate in the atomic action of the original thread.

The third case covers ordinary termination. In this case, the atomic action must be performed by

the id action (since the thread is not going to perform any further actions) enforced by (4.8).

Definition 4.62 (Function Environment and Function Context Agreement). The function environment

and function context agreement, given by

− � − : FEnv × FunctionCtxt→ Bool

is defined inductively as follows:

η � ε
def⇐⇒ True

η � Γ,

λ;A `

A

x ∈ X.
〈
Pp(~z)

∣∣∣P (x, ~z)
〉

f(~z)

E

y ∈ Y.
〈
Qp(x, y, ~z, ret)

∣∣∣Q(x, y, ~z, ret)
〉


def⇐⇒ η � Γ and η;λ;A �

A

x ∈ X.
〈
λσ. Pp(~z) ∗ σ(~x) = ~z

∣∣∣P (x, ~z)
〉

C

E

(y, ret) ∈ Y × Val.
〈
λσ.Qp(x, y, ~z, ret) ∗ ret = EJEKσ

∣∣∣Q(x, y, ~z, ret)
〉

where vars(η(f)) = ~x and code(η(f)) = C return E;

70

Definition 4.63 (Semantic Judgement with Function Context).

Γ;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

def⇐⇒

∀η ∈ FEnv. η � Γ =⇒ η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉

c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉


4.6 Soundness

We prove that the TaDA program logic is sound with respect to the operational semantics.

Theorem 4.1 (Soundness of Commands). If

Γ;λ;A `

A

~x ∈ X.
〈
Pp

∣∣∣P (~x)
〉
C

E

~y ∈ Y.
〈
Qp(~x, ~y)

∣∣∣Q(~x, ~y)
〉

is provable in the logic, then

Γ;λ;A �

A

~x ∈ X.
〈
Pp

∣∣∣P (~x)
〉
C

E

~y ∈ Y.
〈
Qp(~x, ~y)

∣∣∣Q(~x, ~y)
〉

holds semantically.

To prove the Soundness of Commands theorem, we show that the proof rules hold semantically.

Lemma 4.2 (Skip Rule). For all η ∈ FEnv, λ ∈ Level, A ∈ AContext:

η;λ;A �
{
Pp

}
skip;

{
Pp

}
(4.9)

Proof. To establish (4.9), it is sufficient to establish the sub-condition (4.8):

λ;A � Pp(σ) � Pp(σ) (4.10)

The (4.10) sub-condition follows from the reflexivity of view shift.

Lemma 4.3 (Sequencing Rule). For all η ∈ FEnv, λ ∈ Level, A ∈ AContext, suppose that

η;λ;A �
{
Pp

}
C1

{
Rp

}
(4.11)

and

η;λ;A �
{
Rp

}
C2

{
Qp

}
(4.12)

then

η;λ;A �
{
Pp

}
C1 C2

{
Qp

}
(4.13)

Proof. The proof is by coinduction. We have two cases two consider, when C1 = skip; or otherwise.

Consider the first case where C1 = skip;. The only possible reduction is (σ, skip; C2)
id−→η (σ,C2),

and so the first case of the semantic judgement applies. We have to establish the following sub-conditions,

71

by finding a suitable P ′p and P ′′p :

λ;A �
〈
Pp(σ)

〉
id
〈
P ′p(σ) ∨ ∃y ∈ 1. P ′′p (x, y, σ)

〉
(4.14)

η;λ;A �
{
P ′p

}
C2

{
Qp

}
(4.15)

and for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
C2

{
Qp

}
(4.16)

Take P ′p = λσ.Rp and P ′′p = λσ.False, the (4.16) sub-condition becomes trivial, while the (4.15) follows

from the assumption (4.12). The (4.14) sub-condition follows the assumption (4.11) and the definition

of semantic judgment case (4.8) when c = skip;.

Consider the second case where C1 is not a skip. It must be the case that (σ,C1 C2)
α−→η (σ1, c3 C2),

where (σ,C1)
α−→η (σ1, c3) for some α and c3. We consider cases on whether α is a spawn action.

If α /∈ {spawn(f, ~v) | f ∈ Fun, ~v ∈ Val∗}, the first condition of the semantic judgement is the only

one that may apply. We have to establish the following sub-conditions to show (4.13), by finding a

suitable P ′p and P ′′p :

λ;A �
〈
Pp(σ)

〉
α
〈
P ′p(σ) ∨ ∃y ∈ 1. P ′′p (x, y, σ1)

〉
(4.17)

η;λ;A �
{
P ′p

}
c3 C2

{
Qp

}
(4.18)

and for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
c3 C2

{
Qp

}
(4.19)

From the assumption (4.11) and the definition of semantic judgement we have that:

λ;A �
〈
Pp(σ)

〉
α
〈
P ′p(σ) ∨ ∃y ∈ 1. P ′′p (x, y, σ1)

〉
(4.20)

η;λ;A �
{
P ′p

}
c3

{
Rp

}
(4.21)

and for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
c3

{
Rp

}
(4.22)

The (4.17) sub-condition follows from (4.20). To establish (4.18), we have from (4.21)

η;λ;A �
{
P ′p

}
c3

{
Rp

}
and from (4.12)

η;λ;A �
{
Rp

}
C2

{
Qp

}
By the coinductive hypothesis, we have

η;λ;A �
{
P ′p

}
c3 C2

{
Qp

}
To establish (4.19), we have from (4.22) for all y ∈ 1

η;λ;A �
{
P ′′p (x, y)

}
c3

{
Rp

}
and from (4.12)

η;λ;A �
{
Rp

}
C2

{
Qp

}

72

By the coinductive hypothesis, we have

η;λ;A �
{
P ′′p (x, y)

}
c3 C2

{
Qp

}

If α = spawn(f, ~v), where f ∈ Fun and ~v ∈ Val∗, the second condition of the semantic judgement is

the only one that may apply. We have to establish the following sub-conditions to show (4.13), where

σf ∈ Store with vars(η(f)) = ~x, σf(~x) = ~v and code(η(f)) = C return E;, by finding a suitable P ′p, Pf

and P ′′p :

λ;A � Pp(σ) � P ′p(σ1) ∗ Pf(σf) ∨ ∃y ∈ 1. P ′′p (σ1) ∗ Pf(σf) (4.23)

η;λ;A �
{
P ′p

}
c3 C2

{
Qp

}
(4.24)

for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
c3 C2

{
Qp

}
(4.25)

and η;λ; ∅ �

A

x ∈ 1.
〈
λσf. Pf(~z) ∗ σf(~x) = ~z

∣∣∣λσf.True〉
C

E

(y, ret) ∈ 1× Val.
〈
λσf. Qf(~z, ret) ∗ ret = EJEKσf

∣∣∣λσf.True〉. (4.26)

From the assumption (4.11) and the definition of semantic judgement we have that:

λ;A � Pp(σ) � P ′p(σ1) ∗ Pf(σf) ∨ ∃y ∈ 1. P ′′p (σ1) ∗ Pf(σf) (4.27)

η;λ;A �
{
P ′p

}
c3

{
Rp

}
(4.28)

for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
c3

{
Rp

}
(4.29)

and η;λ; ∅ �

A

x ∈ 1.
〈
λσf. Pf(~z) ∗ σf(~x) = ~z

∣∣∣λσf.True〉
C

E

(y, ret) ∈ 1× Val.
〈
λσf. Qf(~z, ret) ∗ ret = EJEKσf

∣∣∣λσf.True〉. (4.30)

The (4.23) sub-condition follows from (4.27) and the (4.26) sub-condition follows from (4.30). To

establish (4.24), we have from (4.28)

η;λ;A �
{
P ′p

}
c3

{
Rp

}
and from (4.12)

η;λ;A �
{
Rp

}
C2

{
Qp

}
By the coinductive hypothesis, we have

η;λ;A �
{
P ′p

}
c3 C2

{
Qp

}
Finally, to establish (4.25), we have from (4.29) for all y ∈ 1

η;λ;A �
{
P ′′p (x, y)

}
c3

{
Rp

}

73

and from (4.12)

η;λ;A �
{
Rp

}
C2

{
Qp

}
By the coinductive hypothesis, we have

η;λ;A �
{
P ′′p (x, y)

}
c3 C2

{
Qp

}

Lemma 4.4 (Loop Rule). For all η ∈ FEnv, λ ∈ Level, A ∈ AContext, suppose that

η;λ;A �
{
Pp ∗ B

}
C
{
Pp

}
(4.31)

then

η;λ;A �
{
Pp

}
while (B) {C}

{
Pp ∗ ¬B

}
(4.32)

Proof. Since while (B) {C} has two possible reductions, both with transition id, to show (4.32), it is

sufficient to establish:

η;λ;A �
{
Pp ∗ B

}
C while (B) {C}

{
Pp ∗ ¬B

}
(4.33)

η;λ;A �
{
Pp ∗ ¬B

}
skip;

{
Pp ∗ ¬B

}
(4.34)

This is sufficient since the first condition of the semantic judgement is the only one that may apply.

For reduction (σ, while (B) {C}) id−→η (σ,C while (B) {C}) (which requires BJBKσ = True), we have

to establish the following sub-conditions, by finding a suitable P ′p and P ′′p :

λ;A �
〈
Pp(σ)

〉
id
〈
P ′p(σ) ∨ ∃y ∈ 1. P ′′p (x, y, σ)

〉
(4.35)

η;λ;A �
{
P ′p

}
C while (B) {C}

{
Pp ∗ ¬B

}
(4.36)

and for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
C while (B) {C}

{
Pp ∗ ¬B

}
(4.37)

Take P ′p = Pp ∗ B and P ′′p = λσ.False. The (4.35) and (4.37) sub-conditions become trivial, while

the (4.36) reduces to (4.33). For the reduction (σ, while (B) {C}) id−→η (σ, skip;) (which requires

BJBKσ = False), we have to establish the following sub-conditions, by finding a suitable P ′p and P ′′p :

λ;A �
〈
Pp(σ)

〉
id
〈
P ′p(σ) ∨ ∃y ∈ 1. P ′′p (x, y, σ)

〉
(4.38)

η;λ;A �
{
P ′p

}
skip;

{
Pp ∗ ¬B

}
(4.39)

and for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
skip;

{
Pp ∗ ¬B

}
(4.40)

Take P ′p = Pp ∗ ¬B and P ′′p = λσ.False. Similarly, the (4.38) and (4.40) sub-conditions are trivial and

the (4.39) reduces to (4.34).

To establish (4.33), we have from (4.31)

η;λ;A �
{
Pp ∗ B

}
C
{
Pp

}

74

By the coinductive hypothesis, we have

η;λ;A �
{
Pp

}
while (B) {C}

{
Pp ∗ ¬B

}
Now (4.33) follows from the above by the Sequencing Rule Lemma.

It is trivial to establish (4.34) by applying the Skip Rule Lemma.

Lemma 4.5 (Conditional Rule). For all η ∈ FEnv, λ ∈ Level, A ∈ AContext:

η;λ;A �
{
Pp ∗ B

}
C1

{
Qp

}
(4.41)

and

η;λ;A �
{
Pp ∗ ¬B

}
C2

{
Qp

}
(4.42)

then

η;λ;A �
{
Pp

}
if (B) {C1} else {C2}

{
Qp

}
(4.43)

Proof. Since if (B) {C1} else {C2} has two possible reductions, both with transition id, the first

condition of the semantic judgement is the only one that may apply. For reduction

(σ, if (B) {C1} else {C2})
id−→η (σ,C1)

(which requires BJBKσ = True), we have to establish the following sub-conditions, by finding a suitable

P ′p and P ′′p :

η;λ;A �
〈
Pp(σ)

〉
id
〈
P ′p(σ) ∨ ∃y ∈ 1. P ′′p (x, y, σ)

〉
(4.44)

η;λ;A �
{
P ′p

}
C1

{
Qp

}
(4.45)

and for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
C1

{
Qp

}
(4.46)

Take P ′p = Pp ∗ B and P ′′p = λσ.False, the (4.44) and (4.46) sub-conditions become trivial, while the

(4.45) follows from (4.41). For the reduction

(σ, if (B) {C1} else {C2})
id−→η (σ,C2)

(which requires BJBKσ = False), we have to establish the following sub-conditions, by finding a suitable

P ′p and P ′′p :

η;λ;A �
〈
Pp(σ)

〉
id
〈
P ′p(σ) ∨ ∃y ∈ 1. P ′′p (x, y, σ)

〉
(4.47)

η;λ;A �
{
P ′p

}
C2

{
Qp

}
(4.48)

and for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
C2

{
Qp

}
(4.49)

Take P ′p = Pp ∗ ¬B and P ′′p = λσ.False. Similarly, the (4.47) and (4.49) sub-conditions are trivial and

the (4.48) follows from (4.42).

75

Lemma 4.6 (Stack Frame). For all η ∈ FEnv, λ ∈ Level, A ∈ AContext, suppose that

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉

c

E

(y, r) ∈ Y × Val.
〈
λσ.Qp(x, y, r) ∗ r = EJEKσ

∣∣∣Q(x, y, r)
〉 (4.50)

then

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉

x := (σ, c return E;) ;

E

(y, r) ∈ Y × Val.
〈
Qp(x, y, r) ∗ x = r

∣∣∣Q(x, y, r)
〉 (4.51)

Proof. The proof is by coinduction. We have three cases to consider, one for each condition of the

semantic judgment.

Consider the case where c = skip;. To establish (4.51) we have to show that:

λ;A � Pp ∗ P (x) � Qp(x, y, r) ∗ x = R ∗Q(x, y, r) (4.52)

From (4.50) and the third condition of the semantic judgement we have that:

λ;A � Pp ∗ P (x) � Qp(x, y, r) ∗ r = EJEKσ ∗Q(x, y, r) (4.53)

We are perform a view shift, corresponding to the id action

(σ1, x := (σ, skip; return E;) ;)
id−→η (σ1[x 7→ EJEKσ], skip;) (4.54)

To establish (4.52), we have r = EJEKσ from (4.53) and x = EJEKσ from (4.54).

Consider the case where c is not skip and performs an action α /∈ {spawn(f, ~v) | f ∈ Fun, ~v ∈ Val∗},
the first condition of the semantic judgement is the only one that may apply. For reduction

(σ1, x := (σ, c return E;) ;)
α−→η (σ1, x := (σ2, c2 return E;) ;), where (σ, c)

α−→η (σ2, c2), we have to

establish the following sub-conditions to show (4.51), by finding a suitable P ′p and P ′′p :

λ;A �
〈
Pp ∗ P (x)

〉
α
〈
P ′p ∗ P (x) ∨ ∃(y, r) ∈ Y × Val. P ′′p (x, y, r) ∗ x = R ∗Q(x, y, r)

〉
(4.55)

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉

x := (σ2, c2 return E;) ;

E

(y, r) ∈ Y × Val.
〈
P ′p(x, y, r)

∣∣∣Q(x, y, r)
〉 (4.56)

and for all (y, r) ∈ Y × Val, η;λ;A �
{
P ′′p (x, y, r)

}
x :=

(
σ′, c2 return E;

)
;
{
Qp(x, y, r) ∗ x = r

}
(4.57)

We have from (4.50) and the first condition of the semantic judgement, for (σ, c)
α−→η (σ2, c2), we

76

have that:

λ;A �
〈
Pp ∗ P (x)

〉
α
〈
P ′p ∗ P (x) ∨ ∃(y, r) ∈ Y × Val. P ′′p (x, y, r) ∗ r = EJEKσ ∗Q(x, y, r)

〉
(4.58)

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉

c2

E

(y, r) ∈ Y × Val.
〈
P ′p(x, y, r)

∣∣∣Q(x, y, r)
〉 (4.59)

and for all (y, r) ∈ Y × Val, η;λ;A �
{
P ′′p (x, y, r)

}
c2

{
λσ.Qp(x, y, r) ∗ r = EJEKσ

}
(4.60)

Take P ′p and P ′′p from (4.58), then we have established (4.55) sub-condition. We have (4.58), by the

coinductive hypothesis, we have (4.56) sub-condition. Similarly, we have (4.60), by the coinductive

hypothesis, we have (4.57) sub-condition.

Finally, the case where c performs a fork action follows the same reasoning.

Lemma 4.7 (FunctionCall Rule). For all η ∈ FEnv, λ ∈ Level, A ∈ AContext, Γ ∈ FunctionCtxt,

suppose that η � Γ and(
λ;A `

A

x ∈ X.
〈
Pp(~z)

∣∣∣P (x, ~z)
〉
f(~z)

E

y ∈ Y.
〈
Qp(x, y, ~z, ret)

∣∣∣Q(x, y, ~z, ret)
〉)
∈ Γ (4.61)

then

η;λ;A �

A

x ∈ X.
〈
Pp(~z) ∗ ~z = ~E

∣∣∣P (x, ~z)
〉

x := f(~E);

E
(y, r) ∈ Y × Val.

〈
Qp(x, y, ~z, r) ∗ x = r

∣∣∣Q(x, y, ~z, r)
〉 (4.62)

Proof. Since x := f(~E); has only one possible reduction with transition id, the first condition of the

semantic judgement is the only one that may apply. For reduction(
σ, x := f(~E);

)
id−→η (σ, x := (σf, code(η(f))) ;) ,

where EJ~EKσ = σf(vars(η(f))), to show (4.62), we have to establish the following sub-conditions, where

σf ∈ Store with vars(η(f)) = ~xf, σf(~x) = ~z and code(η(f)) = C return Ef;, by finding a suitable P ′p

and P ′′p :

η;λ;A �
〈
Pp(~z, σ) ∗ P (x, ~z)

〉
id
〈
P ′p(~z, σ) ∗ P (x, ~z) ∨ ∃(y, r) ∈ Y × Val. P ′′p (x, y, ~z, σ) ∗Q(x, y, ~z)

〉
(4.63)

η;λ;A �

A

x ∈ X.
〈
P ′p(~z)

∣∣∣P (x, ~z)
〉

x := (σf,C return Ef;) ;

E

(y, r) ∈ Y × Val.
〈
Qp(x, y, ~z) ∗ x = r

∣∣∣Q(x, y, ~z)
〉 (4.64)

and for all (y, r) ∈ Y × Val, η;λ;A �
{
P ′′p (x, y, ~z)

}
x := (σf,C return Ef;) ;

{
Qp(x, y, ~z) ∗ x = r

}
(4.65)

Take P ′p = λσ. Pp and P ′′p = λσ.False. Recall that Pp does not depend on the store σ. The (4.63)

sub-condition follows from the reflexivity of view shift and (4.65) sub-condition is trivial.

77

To establish (4.64), we have from (4.61)(
λ;A `

A

x ∈ X.
〈
Pp(~z)

∣∣∣P (x, ~z)
〉
f(~z)

E

y ∈ Y.
〈
Qp(x, y, ~z, ret)

∣∣∣Q(x, y, ~z, ret)
〉)
∈ Γ

By definition (4.62), we have that

η;λ;A �

A

x ∈ X.
〈
λσf. Pp(~z) ∗ σf(~xf) = ~z

∣∣∣P (x, ~z)
〉

C

E

(y, r) ∈ Y × Val.
〈
λσf. Qp(x, y, ~z, r) ∗ r = EJEKσf

∣∣∣Q(x, y, ~z, r)
〉 (4.66)

where vars(η(f)) = ~xf and code(η(f)) = C return Ef;.

The (4.64) sub-condition follows from Lemma (4.6), given we have (4.66).

Lemma 4.8 (Fork Rule). For all η ∈ FEnv, λ ∈ Level, A ∈ AContext, Γ ∈ FunctionCtxt, suppose that

η � Γ and (
λ; ∅ `

A

x ∈ 1.
〈
Pp(~z)

∣∣∣True〉 f(~z)

E

y ∈ 1.
〈
Qp(~z, ret)

∣∣∣True〉) ∈ Γ (4.67)

then

Γ;λ;A �
{
Pp(~z) ∗ ~z = ~E

}
fork f(~E);

{
True

}
(4.68)

Proof. Since fork f(~E); has only one possible reduction with transition α = spawn(f, ~v), where

f ∈ Fun and ~v ∈ Val∗, the second condition of the semantic judgement is the only one that may

apply. For reduction
(
σ, fork f(~E);

)
spawn(f,~v)−−−−−−→η (σ, skip;), where ~v = EJ~EKσ, to show (4.68), we

have to establish the following sub-conditions, where σf ∈ Store with vars(η(f)) = ~x, σf(~x) = ~v and

code(η(f)) = C return E;, by finding a suitable P ′p, Pf and P ′′p and Qf:

λ;A � Pp(~z, σ) � P ′p(σ1) ∗ Pf(σf) ∨ ∃y ∈ 1. P ′′p (σ1) ∗ Pf(σf) (4.69)

η;λ;A �
{
P ′p

}
skip;

{
True

}
(4.70)

for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
skip;

{
True

}
(4.71)

and η;λ; ∅ �

A

x ∈ 1.
〈
λσf. Pf(~z) ∗ σf(~x) = ~z

∣∣∣True〉
C

E

(y, r) ∈ 1× Val.
〈
λσf. Qf(~z, r) ∗ r = EJEKσf

∣∣∣True〉. (4.72)

Take P ′p = λσ.True, Pf = λσf. Pp(~z), P
′′
p = λσ.True and Qf = λσf. Qp(~z, r), the (4.70) sub-condition

follows from the reflexivity of view shift. The (4.70) and (4.71) sub-conditions follow directly from the

Skip Rule Lemma.

To establish (4.72), we have from (4.67)(
λ; ∅ `

A

x ∈ 1.
〈
Pp(~z)

∣∣∣True〉 f(~z)

E

y ∈ 1.
〈
Qp(~z, ret)

∣∣∣True〉) ∈ Γ

78

By definition (4.62), we have that

η;λ;A �

A

x ∈ X.
〈
λσf. Pp(~z) ∗ σf(~x) = ~z

∣∣∣True〉
C

E

(y, ret) ∈ 1× Val.
〈
λσf. Qp(~z, ret) ∗ ret = EJEKσf

∣∣∣True〉 (4.73)

where vars(η(f)) = ~x and code(η(f)) = C return E;. The (4.72) sub-condition follows directly from

(4.73).

Lemma 4.9 (Allocation Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η;λ;A �
{
E = w ∗ w > 0

}
x := alloc(E);

{
x 7→ ∗ . . . ∗ (x + w − 1) 7→

}
(4.74)

Proof. Since x := alloc(E); has only one possible reduction

(σ, x := alloc(E);)
alloc(EJEKσ ,v)−−−−−−−−→η (σ[x 7→ v], skip;)

To show (4.74), we have to establish the following sub-conditions, by finding a suitable P ′p and P ′′p :

η;λ;A �
〈
E = w ∗ w > 0

〉
alloc(EJEKσ, v)

〈
P ′p(σ[x 7→ v]) ∨ ∃y ∈ 1. P ′′p (x, y, σ[x 7→ v])

〉
(4.75)

η;λ;A �
{
P ′p

}
skip;

{
x 7→ ∗ . . . ∗ (x + w − 1) 7→

}
(4.76)

and for all y ∈ 1, η;λ;A �
{
P ′′p (x, y)

}
skip;

{
x 7→ ∗ . . . ∗ (x + w − 1) 7→

}
(4.77)

Take P ′p = λσ. x 7→ ∗ . . . ∗ (x + w − 1) 7→ and P ′′p = λσ.False, To establish (4.75), fix R ∈ ViewA,

ϕ ∈ E = w ∗ w > 0 ∗R, h ∈ bϕcλ, h′ ∈ Jalloc(EJEKσ, v)K(h). Let

ϕ′ = (rϕ, h
′, bϕ, γϕ, ρϕ, dϕ).

By the interpretation of atomic commands, given that w > 0, it must be that

h′ = ∅[v 7→ k0, . . . , v + w − 1 7→ kw−1]] h

and

ϕ′ ∈ x 7→ ∗ . . . ∗ (x + w − 1) 7→ ∗R

Finally, the (4.77) becomes trivial and (4.76) follows from the Skip Rule Lemma.

Lemma 4.10 (Assignment Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η;λ;A �
{
x = v

}
x := E;

{
x = E[v/x]

}
(4.78)

Proof. The proof follows directly from the operational semantics and is similar to that for the Allo-

cation rule.

79

Lemma 4.11 (Lookup Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η; 0;A �

A

v ∈ Val.
〈
z = E

∣∣∣ z 7→ v
〉
x := [E];

E

y ∈ 1.
〈
x = v

∣∣∣ z 7→ v
〉

(4.79)

Proof. The proof follows directly from the operational semantics and is similar to that for the Allo-

cation rule.

Lemma 4.12 (Mutation Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η; 0;A �

A

v ∈ Val.
〈
z1 = E1 ∗ z2 = E2

∣∣∣ z1 7→ v
〉

[E1] := E2;

E

y ∈ 1.
〈
True

∣∣∣ z1 7→ z2

〉
Proof. The proof follows directly from the operational semantics and is similar to that for the Allo-

cation rule.

Lemma 4.13 (CompareAndSet Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η; 0;A �

A

v1 ∈ Val.
〈
z = E1 ∗ v2 = E2 ∗ v3 = E3

∣∣∣ z 7→ v1

〉
x := CAS(E1,E2,E3);

E

y ∈ 1.
〈

(v1 = v2 ∗ x 6= 0) ∨ (v1 6= v2 ∗ x = 0)
∣∣∣ (v1 = v2 ∗ z 7→ v3) ∨ (v1 6= v2 ∗ z 7→ v1)

〉
Proof. The proof follows directly from the operational semantics and is similar to that for the Allo-

cation rule.

Lemma 4.14 (OpenRegion Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣ I(tλa(~z, x)) ∗ P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ I(tλa(~z, x)) ∗Q(x, y)
〉

(4.80)

then

η;λ+ 1;A �

A

x ∈ X.
〈
Pp

∣∣∣ tλa(~z, x) ∗ P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ tλa(~z, x) ∗Q(x, y)
〉

(4.81)

Proof. Consider the case where c is not skip and performs an action α /∈ {spawn(f, ~v) | f ∈ Fun, ~v ∈ Val∗},
the first condition of the semantic judgement is the only one that may apply. For reduction

(σ, c)
α−→η (σ1, c1), to show (4.81), we have to establish the following sub-conditions, by finding a

suitable P ′p and P ′′p :

η;λ+ 1;A �

〈
Pp(σ) ∗ tλa(~z, x) ∗ P (x)

〉
α

〈
P ′p(σ1) ∗ tλa(~z, x) ∗ P (x) ∨

∃y ∈ Y. P ′′p (x, y, σ1) ∗ tλa(~z, x) ∗Q(x, y)

〉
(4.82)

η;λ+ 1;A �

A

x ∈ X.
〈
P ′p

∣∣∣ tλa(~z, x) ∗ P (x)
〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ tλa(~z, x) ∗Q(x, y)
〉

(4.83)

and for all y ∈ Y , η;λ+ 1;A �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
(4.84)

80

By (4.80), there are P ′p and P ′′p with:

η;λ;A �

〈
Pp(σ) ∗ I(tλa(~z, x)) ∗ P (x)

〉
α

〈
P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∨

∃y ∈ Y. P ′′p (x, y, σ1) ∗ I(tλa(~z, x)) ∗Q(x, y)

〉
(4.85)

η;λ;A �

A

x ∈ X.
〈
P ′p

∣∣∣ I(tλa(~z, x)) ∗ P (x)
〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ I(tλa(~z, x)) ∗Q(x, y)
〉

(4.86)

and for all y ∈ Y , η;λ;A �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
(4.87)

To establish (4.82), fix x ∈ X, R ∈ ViewA, ϕ ∈ Pp(σ) ∗ tλa(~z, x) ∗ P (x) ∗ R, h ∈ bϕcλ+1, h′ ∈ JαK(h).

There will be some ϕ ∈ Pp(σ) ∗ I(tλa(~z, x)) ∗ P (x) ∗R, with rϕ = rϕ and ρϕ = ρϕ, and bϕcλ = bϕcλ+1,

and so h ∈ bϕcλ. The ϕ corresponds to ϕ with all regions at level λ collapsed. (Recall that rϕ and ρϕ

are projections of region states and region assignments from ϕ.)

By (4.85), there is some ϕ′ with ϕ Gλ;A ϕ′, h
′ ∈ bϕ′cλ and

ϕ′ ∈
(
P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗ I(tλa(~z, x)) ∗Q(x, y)

)
∗R

We have the following cases for ϕ′:

• ϕ′ ∈ P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∗R. In this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(~z, x)) ∗ �
a′ ∈ RId

a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ P ′p(σ1) ∗ P (x) ∗R. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′).

Hence, by the guarantee, ϕ′ ∈ P ′p(σ1) ∗ tλa(~z, x) ∗ P (x) ∗R, and by construction bϕ′cλ+1 = bϕ′cλ
and ϕ Gλ+1;A ϕ

′.

• ϕ′ ∈ P ′′p (x, y, σ1) ∗ I(tλa(~z, x)) ∗Q(x, y) ∗R for some y ∈ Y . In this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(~z, x)) ∗ �
a′ ∈ RId

a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ P ′′p (x, y, σ1) ∗Q(x, y) ∗R. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′).

Hence, by the guarantee, ϕ′ ∈ P ′′p (x, y, σ1) ∗ tλa(~z, x) ∗Q(x, y) ∗R, and by construction bϕ′cλ+1 =

bϕ′cλ and ϕ Gλ+1;A ϕ
′.

81

In each case we have ϕ′ which satisfies ϕ Gλ+1;A ϕ
′, h′ ∈ bϕ′cλ+1 and

ϕ′ ∈
(
P ′p(σ1) ∗ tλa(~z, x) ∗ P (x) ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗ tλa(~z, x) ∗Q(x, y)

)
∗R.

So we have established (4.82).

The (4.86) sub-condition follows from (4.86) and the coinductive hypothesis. The (4.84) sub-condition

follows from (4.87) and the AWeakening3 Rule Lemma.

The remaining cases are simpler, or follow a similar reasoning.

Lemma 4.15 (UseAtomic Rule). For all η ∈ FEnv, λ ∈ Level, A ∈ AContext, a /∈ A and ∀x ∈
X. (x, f(x)) ∈ Tt(G)∗:

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣ I(tλa(~z, x)) ∗ P (x) ∗ [G]a

〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ I(tλa(~z, f(x))) ∗Q(x, y)
〉

(4.88)

then

η;λ+ 1;A �

A

x ∈ X.
〈
Pp

∣∣∣ tλa(~z, x) ∗ P (x) ∗ [G]a

〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ tλa(~z, f(x)) ∗Q(x, y)
〉
(4.89)

Proof. Consider the case where c is not skip and performs an action α /∈ {spawn(f, ~v) | f ∈ Fun, ~v ∈ Val∗},
the first condition of the semantic judgement is the only one that may apply. For reduction

(σ, c)
α−→η (σ1, c1), to show (4.89), we have to establish the following sub-conditions, by finding a

suitable P ′p and P ′′p :

η;λ+ 1;A �

〈
Pp(σ) ∗ tλa(~z, x) ∗ P (x) ∗ [G]a

〉
α

〈
P ′p(σ1) ∗ tλa(~z, x) ∗ P (x) ∗ [G]a ∨

∃y ∈ Y. P ′′p (x, y, σ1) ∗ tλa(~z, f(x)) ∗Q(x, y)

〉
(4.90)

η;λ+ 1;A �

A

x ∈ X.
〈
P ′p

∣∣∣ tλa(~z, x) ∗ P (x) ∗ [G]a

〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ tλa(~z, f(x)) ∗Q(x, y)
〉

(4.91)

and for all y ∈ Y , η;λ+ 1;A �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
(4.92)

By (4.88), there are P ′p and P ′′p with:

η;λ;A �

〈
Pp(σ) ∗ I(tλa(~z, x)) ∗ P (x) ∗ [G]a

〉
α

〈
P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∗ [G]a ∨

∃y ∈ Y. P ′′p (x, y, σ1) ∗ I(tλa(~z, f(x))) ∗Q(x, y)

〉
(4.93)

η;λ;A �

A

x ∈ X.
〈
P ′p

∣∣∣ I(tλa(~z, x)) ∗ P (x) ∗ [G]a

〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ I(tλa(~z, f(x))) ∗Q(x, y)
〉

(4.94)

and for all y ∈ Y , η;λ;A �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
(4.95)

To establish (4.90), fix x ∈ X, R ∈ ViewA, ϕ ∈ Pp(σ) ∗ tλa(~z, x) ∗ P (x) ∗ [G]a ∗ R, h ∈ bϕcλ+1,

h′ ∈ JαK(h). There will be some ϕ ∈ Pp(σ) ∗ I(tλa(~z, x)) ∗ P (x) ∗ [G]a ∗R, with rϕ = rϕ and ρϕ = ρϕ,

82

and bϕcλ = bϕcλ+1, and so h ∈ bϕcλ. By (4.93), there is some ϕ′ with ϕ Gλ;A ϕ′, h
′ ∈ bϕ′cλ and

ϕ′ ∈
(
P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∗ [G]a ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗ I(tλa(~z, f(x))) ∗Q(x, y)

)
∗R

We have the following cases for ϕ′:

• ϕ′ ∈ P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∗ [G]a ∗R. In this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(~z, x)) ∗ �
a′ ∈ RId

a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ P ′p(σ1) ∗ P (x) ∗ [G]a ∗R. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′).

Hence, by the guarantee, ϕ′ ∈ P ′p(σ1)∗tλa(~z, x)∗P (x)∗[G]a∗R, and by construction bϕ′cλ+1 = bϕ′cλ
and ϕ Gλ+1;A ϕ

′.

• ϕ′ ∈ P ′′p (x, y, σ1) ∗ I(tλa(~z, f(x))) ∗Q(x, y) ∗R for some y ∈ Y . In this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(~z, f(x))) ∗ �
a′ ∈ RId

a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ P ′′p (x, y, σ1) ∗Q(x, y) ∗R. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ [a 7→ f(x)], dϕ′′).

Hence, by the guarantee, ϕ′ ∈ P ′′p (x, y, σ1) ∗ tλa(~z, f(x)) ∗ Q(x, y) ∗ R, and by construction

bϕ′cλ+1 = bϕ′cλ and ϕ Gλ+1;A ϕ
′.

In each case we have ϕ′ which satisfies ϕ Gλ+1;A ϕ
′, h′ ∈ bϕ′cλ+1 and

ϕ′ ∈
(
P ′p(σ1) ∗ tλa(~z, x) ∗ P (x) ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗ tλa(~z, f(x)) ∗Q(x, y)

)
∗R.

So we have established (4.90).

The (4.94) sub-condition follows from (4.94) and the coinductive hypothesis. The (4.92) sub-condition

follows from (4.95) and the AWeakening3 Rule Lemma.

The remaining cases are simpler, or follow a similar reasoning.

83

Lemma 4.16 (UpdateRegion Rule). Suppose that a /∈ A and

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣ I(tλa(~z, x)) ∗ P (x)
〉

C

E

(y, w) ∈ Y ×W.

〈
Qp(x, y, w)

∣∣∣∣∣ I(tλa(~z, w)) ∗Q1(x, y, w)

∨ I(tλa(~z, x)) ∗Q2(x, y)

〉 (4.96)

Then

η;λ+ 1;A′ �

A

x ∈ X.
〈
Pp

∣∣∣ tλa(~z, x) ∗ P (x) ∗ a Z⇒ �
〉

C

E

(y, w) ∈ Y ×W.

〈
Qp(x, y, w)

∣∣∣∣∣ tλa(~z, w) ∗Q1(x, y, w) ∗ a Z⇒ (x,w)

∨ tλa(~z, x) ∗Q2(x, y) ∗ a Z⇒ �

〉 (4.97)

where A′ = (a : x ∈ X W,A).

Proof. Suppose that (σ, c)
α−→η (σ1, c1) with α ∈ AAction.

Fix x ∈ X. From our assumption (4.96), there are P ′p and P ′′p with

λ;A �

〈
Pp(σ) ∗ I(tλa(~z, x)) ∗ P (x)

〉
α〈

P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∨
∃(y, w) ∈ Y ×W.P ′′p (x, y, σ1) ∗

(
I(tλa(~z, w)) ∗Q1(x, y, w) ∨ I(tλa(~z, x)) ∗Q2(x, y)

) 〉
(4.98)

λ;A �

A

x ∈ X.
〈
P ′p

∣∣∣ I(tλa(~z, x)) ∗ P (x)
〉

c1

E

(y, w) ∈ Y ×W.
〈
Qp(x, y)

∣∣∣ I(tλa(~z, w)) ∗Q1(x, y, w) ∨ I(tλa(~z, x)) ∗Q2(x, y)
〉 (4.99)

∀(y, w) ∈ Y ×W. λ;A �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
(4.100)

We will show that these P ′p and P ′′p (x, y, w) = P ′′p (x, y, w) ∗ a Z⇒ (x,w) work to establish our goal.

Fix R ∈ ViewA′ , ϕ ∈ Pp(σ) ∗ tλa(~z, x) ∗ P (x) ∗ a Z⇒ � ∗R, h ∈ bϕcλ+1, h′ ∈ JαK(h).

Let R ∈ ViewA be such that

R = removedonea


R ∗ �

a′ ∈ RId

a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))


.

That is, we open all regions at level λ (except a) with their states as given by ϕ and remove the

atomicity tracking for a.

There will be some ϕ ∈ Pp ∗ I(tλa(~z, x)) ∗ P (x) ∗R with rϕ = rϕ and ρϕ = ρϕ, and bϕcλ = bϕcλ+1,

84

and so h ∈ bϕcλ. By (4.98), there is some ϕ′ with ϕ Gλ;A ϕ′, h
′ ∈ bϕ′cλ and

ϕ′ ∈

(
P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∨

∃(y, w) ∈ Y ×W.P ′′p (x, y, w, σ1) ∗
(
I(tλa(~z, w)) ∗Q1(x, y, w) ∨ I(tλa(~z, x)) ∗Q2(x, y)

)) ∗R
We have the following cases for ϕ′:

• ϕ′ ∈ P ′p(σ1) ∗ I(tλa(~z, x)) ∗ P (x) ∗R. In this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(~z, x)) ∗ �
a′ ∈ RId

a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ P ′p(σ1) ∗ P (x) ∗R. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′ [a 7→ �]).

Hence, by the guarantee, ϕ′ ∈ P ′p(σ1) ∗ tλa(~z, x) ∗ P (x) ∗R, and by construction bϕ′cλ+1 = bϕ′cλ.

Also ϕ Gλ+1;A′ ϕ′.

• ϕ′ ∈ P ′′p (x, y, w, σ1)∗I(tλa(~z, w))∗Q1(x, y, w)∗R for some (y, w) ∈ Y ×W . In this case, ϕ′ = ϕ′′•ϕ′

where

ϕ′ ∈ I(tλa(~z, w)) ∗ �
a′ ∈ RId

a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ P ′′p (x, y, w, σ1) ∗Q1(x, y, w) ∗R. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ [a 7→ w], dϕ′′ [a 7→ (x,w)]).

Hence, by the guarantee, ϕ′ ∈ P ′′p (x, y, w, σ1) ∗ tλa(~z, w) ∗ Q1(x, y, w) ∗ R, and by construction

bϕ′cλ+1 = bϕ′cλ. Also ϕ Gλ+1;A′ ϕ′.

• ϕ′ ∈ P ′′p (x, y, w, σ1) ∗ I(tλa(~z, x)) ∗Q2(x, y) ∗R for some (y, w) ∈ Y ×W . In this case, ϕ′ = ϕ′′ •ϕ′

where

ϕ′ ∈ I(tλa(~z, x)) ∗ �
a′ ∈ RId

a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ P ′′p (x, y, w, σ1) ∗Q2(x, y) ∗R. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′ [a 7→ �]).

Hence, by the guarantee, ϕ′ ∈ P ′′p (x, y, w, σ1) ∗ tλa(~z, x) ∗ Q2(x, y) ∗ R, and by construction

bϕ′cλ+1 = bϕ′cλ. Also ϕ Gλ+1;A′ ϕ′.

85

In each case we have ϕ′ which satisfies ϕ Gλ+1;A ϕ
′, h′ ∈ bϕ′cλ+1 and

ϕ′ ∈

 P ′p(σ1) ∗ tλa(~z, x) ∗ P (x) ∗ a Z⇒ � ∨

∃(y, w) ∈ Y ×W.P ′′p (x, y, w, σ1) ∗

(
tλa(~z, w) ∗Q1(x, y, w) ∗ a Z⇒ (x,w)

∨ tλa(~z, x) ∗Q2(x, y) ∗ a Z⇒ �

)  ∗R.

So we have established that

λ+ 1;A′ �

〈
Pp(σ) ∗ tλa(~z, x) ∗ P (x) ∗ a Z⇒ �

〉
α〈 P ′p(σ1) ∗ tλa(~z, x) ∗ P (x) ∗ a Z⇒ � ∨

∃(y, r) ∈ Y ×W.P ′′p (x, y, w, σ1) ∗

(
tλa(~z, w) ∗Q1(x, y, w) ∗ a Z⇒ (x,w) ∨

tλa(~z, x) ∗Q2(x, y) ∗ a Z⇒ �

) 〉.

By (4.99), it follows from the coinductive hypothesis that

λ+ 1;A′ �

A

x ∈ X.
〈
P ′p

∣∣∣ tλa(~z, x) ∗ P (x) ∗ a Z⇒ �
〉

c

E

(y, w) ∈ Y ×W.

〈
Qp(x, y, w)

∣∣∣∣∣ tλa(~z, w) ∗Q1(x, y, w) ∗ a Z⇒ (x,w) ∨
tλa(~z, x) ∗Q2(x, y) ∗ a Z⇒ �

〉

Fix y ∈ Y and w ∈W . Because P ′′p (x, y, w) = P ′′p (x, y, w) ∗ a Z⇒ (x,w), we can extend the atomicity

context and have

λ+ 1;A′ �
{
P ′′p (x, y, w)

}
c1

{
Qp(x, y, w)

}

Lemma 4.17 (Drop Context). If, for P ∈ ViewA, Q, x ∈ X, y ∈ Y

η;λ; a : x ∈ X Y ,A �
{
P ∗ a Z⇒ (x, y)

}
c
{
∃x, y.Q(x, y) ∗ a Z⇒ (x, y)

}
then

η;λ;A �
{
P
}
c
{
Q(x, y)

}
Lemma 4.18 (MakeAtomic Rule). Suppose that

{(x, y) | x ∈ X, y ∈ Y } ⊆ Tt(G)∗

η;λ′;A �
{
Pp ∗ ∃x ∈ X. tλa(~z, x) ∗ a Z⇒ �

}
c
{
∃x ∈ X, y ∈ Y.Qp(x, y) ∗ a Z⇒ (x, y)

}
where A = a : x ∈ X Y ,A′ and a /∈ dom(A′). Then

η;λ′;A′ �

A

x ∈ X.
〈
Pp

∣∣∣ tλa(~z, x) ∗ [G]a

〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ tλa(~z, y) ∗ [G]a

〉
Proof. The proof is by coinduction. Consider the case where c performs an action. Suppose that

(σ, c)
α−→η (σ1, c1) with α ∈ AAction. It is sufficient to show that, for all x ∈ X there exist P ′p and P ′′p

such that

86

η;λ′;A �
〈
Pp(σ) ∗ P (x)

〉
α
〈
P ′p(σ1) ∗ P (x) ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗Q(x, y)

〉
(4.101)

η;λ′;A �

A

x ∈ X.
〈
P ′p

∣∣∣P (x)
〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

, (4.102)

and for all y ∈ Y , η;λ′;A �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
. (4.103)

By the premiss, there must be some P ′p with

λ′;A �
〈
Pp(σ) ∗ ∃x ∈ X. tλa(~z, x) ∗ a Z⇒ �

〉
α
〈
P ′p(σ1)

〉
(4.104)

λ′;A �
{
P ′p

}
c1

{
∃x ∈ X, y ∈ Y.Qp(x, y) ∗ a Z⇒ (x, y)

}
. (4.105)

Fix x ∈ X. Fix R ∈ ViewA′ . Fix ϕ ∈ Pp(σ) ∗ tλa(~z, x) ∗ [G]a ∗R.

Let P ′p = λσ.
{
ϕ ∈ AWorlddomA′

∣∣ ϕ • a Z⇒ � ∈ P ′p(σ)
}

.

Let P ′′p (x, y) = λσ.
{
ϕ ∈ AWorlddomA′

∣∣ ϕ • a Z⇒ (x, y) ∈ P ′p(σ)
}

.

Let R = R ∗ [G]a ∗ a Z⇒ −. (R is stable with respect to A since the additional interference will be

a : x ∈ X Y , and the subset of R that is compatible with [G]a must be closed under this.) Let

ϕ = ϕ•a Z⇒ �. By construction, bϕcλ′ = bϕcλ′ . We have that ϕ ∈ (Pp(σ)∗∃x ∈ X. tλa(~z, x)∗a Z⇒ �)∗R.

By (4.104) there exists ϕ′ with

ϕ Gλ′;A ϕ′, (4.106)

h′ ∈ bw′cλ′ , (4.107)

and ϕ′ ∈ P ′p(σ1) ∗R. (4.108)

From (4.106) we can be sure that dϕ′ 6= ♦. Indeed, since dϕ = � and ρϕ = x, it must be that either

dϕ′ = � or dϕ = (x, y) for some y ∈ Y .

Let ϕ′ be such that ϕ ∈ ϕ′ ∗ a Z⇒ −. Now

ϕ′ ∈ P ′p(σ1) ∗ tλa(~z, x) ∗ [G]a ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗ tλa(~z, y)

since ϕ′ ∈ P ′p(σ1) ∗ R, by (4.108). By (4.106) and definitions, we get ϕ Gλ′;A ϕ′. By construction

bϕ′cλ′ = bϕ′cλ′ so h′ ∈ bϕ′cλ′ by (4.107). Hence, we have established

λ′;A �
〈
Pp(σ) ∗ tλa(~z, x) ∗ [G]a

〉
α
〈
P ′p(σ1) ∗ tλa(~z, x) ∗ [G]a ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗ tλa(~z, y)

〉
.

We have that P ′p ∗ ∃x ∈ X. tλa(~z, x) ∗ a Z⇒ � � P ′p and is stable with respect to A. From (4.105), by

left consequence and the coinductive hypothesis, we have

λ′;A �

A

x ∈ X.
〈
P ′p

∣∣∣ tλa(~z, x) ∗ [G]a

〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣ tλa(~z, y) ∗ [G]a

〉
Finally, from (4.105) and Lemma 4.17, we have, for all y ∈ Y

λ′;A′ �
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
.

87

The remaining cases are simpler, or follow similar reasoning.

Lemma 4.19 (Frame Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext, suppose mods(c) ∩
pvars(R′) = ∅, mods(c) ∩ pvars(R(x)) = ∅ and

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

then

η;λ;A �

A

x ∈ X.
〈
R′ ∗ Pp

∣∣∣R(x) ∗ P (x)
〉
c

E

y ∈ Y.
〈
R′ ∗Qp(x, y)

∣∣∣R(x) ∗Q(x, y)
〉

Proof. The proof follows directly from the definition of semantic judgement and follows a similar

reasoning to that for the OpenRegion rule.

Lemma 4.20 (Substitution Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext, suppose

f : X ′ → X, g : Y ′ → Y and

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y′ ∈ Y ′.
〈
Qp(x, g(y′))

∣∣∣Q(x, g(y′))
〉

then

η;λ;A �

A

x′ ∈ X ′.
〈
Pp

∣∣∣P (f(x′))
〉
c

E

y ∈ Y.
〈
Qp(f(x′), y)

∣∣∣Q(f(x′), y)
〉

Proof. The proof follows directly from the definition of semantic judgement and follows a similar

reasoning to that for the OpenRegion rule.

Lemma 4.21 (Consequence Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext, suppose

λ;A � Pp � P ′p, ∀x ∈ X, y ∈ Y. λ;A � Q′p(x, y) � Qp(x, y), ∀x ∈ X, y ∈ Y. λ;A � Q′(x, y) � Q(x, y)

and

η;λ;A �

A

x ∈ X.
〈
P ′p

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Q′p(x, y)

∣∣∣Q′(x, y)
〉

then

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

Proof. The proof follows directly from the definition of semantic judgement and follows a similar

reasoning to that for the OpenRegion rule using the definition of view shift.

Lemma 4.22 (AExists Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

then

η;λ;A �

A

z ∈ 1.
〈
Pp

∣∣∣∃x ∈ X.P (x)
〉
c

E

x ∈ X, y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

Proof. The proof follows directly from the definition of semantic judgement and follows a similar

reasoning to that for the OpenRegion rule.

Lemma 4.23 (AWeakening1 Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P ′ ∗ P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q′(x, y) ∗Q(x, y)
〉

88

then

η;λ;A �

A

x ∈ X.
〈
Pp ∗ P ′

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y) ∗Q′(x, y)

∣∣∣Q(x, y)
〉

Proof. The proof follows directly from the definition of semantic judgement and follows a similar

reasoning to that for the OpenRegion rule.

Lemma 4.24 (AWeakening2 Rule). For all η ∈ FEnv, λ ∈ Level and A ∈ AContext:

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

then

∀x ∈ X. η;λ;A `

A

z ∈ 1.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

Proof. The proof follows directly from the definition of semantic judgement and follows a similar

reasoning to that for the OpenRegion rule.

Lemma 4.25 (AWeakening3 Rule). For all η ∈ FEnv, λ, λ′ ∈ Level, A ∈ AContext, suppose λ′ ≤ λ
and:

η;λ′;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

then

η;λ;A �

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

Proof. The proof follows directly from the definition of semantic judgement and follows a similar

reasoning to that for the OpenRegion rule.

89

5 Using TaDA

In this chapter, we use the TaDA logic on a series of examples. We first specify an atomic lock

module (§5.1). From this specification, we then derive the CAP-style lock specification given in §3.2,

which illustrates the weakening of the atomic specification to a specific use case. We also prove that

a spin lock implementation satisfies the atomic lock specification. We show how the logic supports

vertical reasoning about modules, by verifying an implementation of multiple-compare-and-set (MCAS)

using the lock specification (§5.2), and an implementation of a concurrent double-ended queue (deque)

using the MCAS specification (§5.3). Moreover, we demonstrate how to apply the logic to fit the

different protocols required by each concurrent module.

The examples demonstrate that TaDA combines the benefits of abstract atomicity and abstract

disjointness within a single program logic. Further examples can be found in [64] where we use TaDA

to prove a concurrent skiplist map implementation and various clients.

5.1 Spin Lock

We define a lock module with the operations acquire and release and a constructor makeLock,

similarly to the one shown in §3.2.

5.1.1 Atomic Specification

The lock operations are specified using abstract predicates that represent the state of a lock: Lock(s, x, v)

asserts the existence of a lock, addressed by x, that is in the unlocked state when v = 0 and is in the

locked state when v = 1. These predicates confer ownership of the lock: it is not possible to have more

than one Lock(s, x, v) for the same value of x. This contrasts with the style of specification given with

CAP [12] shown in §3.2.1, but we shall see how the CAP specification can be derived using the atomic

specification given here.

The specification for the makeLock operation is a simple Hoare triple:

λ;A `
{
True

}
makeLock()

{
∃s ∈ T1. Lock(s, ret, 0)

}
The operation allocates a new lock, which is initially unlocked, and returns its address. The specification

says nothing about the granularity of the operation. In fact, the granularity is hardly relevant, since

no concurrent environment can meaningfully observe the effects of makeLock until its return value is

known—that is, once the operation has completed.

In the context of the specification, λ is a constant number that indicates the level of the specification.

To a client, λ is abstract (much like Lock(s, x, v) is); different implementations may fix different values

for λ. The purpose of the level in our specifications is to prevent certain unsound circularities. This is

achieved by requiring the level to be reduced at each step where such a circularity could be introduced.

90

The specification for the release operation uses an atomic triple:

λ;A `
〈
Lock(s, x, 1)

〉
release(x)

〈
Lock(s, x, 0)

〉
Intuitively, this specification means that release will atomically take the lock x from the locked to

unlocked state. The atomic triple makes a strong guarantee: as long as the concurrent environment

guarantees that the (possibly) shared resource Lock(s, x, 1) is available, the release operation will

preserve Lock(s, x, 1) until it transforms it into Lock(s, x, 0); after the transformation, the operation

no longer requires Lock(s, x, 0), and is consequently oblivious to subsequent transformations by the

environment (such as another thread acquiring the lock).

It is significant that the notion of atomicity is tied to the abstraction in the specification. The

predicate Lock(s, x, v) could abstract multiple underlying states in the implementation. If we were to

observe the underlying state, the operation might no longer appear to be atomic.

Specifying the acquire operation is more subtle. It can be called regardless of whether the lock is in

the locked or unlocked state, and always results in setting it to the locked state (if it ever terminates).

A first attempt at a specification might, therefore, be:

λ;A `
〈
Lock(s, x, 0) ∨ Lock(s, x, 1)

〉
acquire(x)

〈
Lock(s, x, 1)

〉
This specification has two significant flaws. Firstly, it allows acquire to do nothing at all when

the lock is already locked. This is contrary to what it should do, which is wait for it to become

unlocked and then (atomically) lock it. Secondly, as the level of abstraction given by the precondition

is Lock(s, x, 0) ∨ Lock(s, x, 1), an implementation could change the state of the lock arbitrarily without

appearing to have done anything. In particular, an implementation could transition between the two

states any number of times, so long as it is in the Lock(s, x, 1) state when it finishes.

A second attempt to overcome these issues might be:

λ;A `
〈
Lock(s, x, 1)

〉
acquire(x)

〈
False

〉
λ;A `

〈
Lock(s, x, 0)

〉
acquire(x)

〈
Lock(s, x, 1)

〉
In the left-hand triple, the lock is initially locked; the implementation may not terminate, nor change

the state of the lock. In the right-hand triple, the lock is initially unlocked; the implementation may

only make one atomic transformation from unlocked to locked. These specifications have a subtle flaw,

in that they assume that the environment will not change the state of the lock. They prevent us from

having multiple threads competing to acquire the lock, which is the essential purpose of a lock.

An equivalent specification makes use of a boolean logical variable:

∀v ∈ {0, 1} . λ;A `
〈
Lock(s, x, v)

〉
acquire(x)

〈
Lock(s, x, 1) ∗ v = 0

〉
The variable v records the state of the lock when the atomic operation takes effect. In particular, it

cannot take effect unless the lock is already unlocked.

These specifications do not express the subtlety that the interference permitted before the atomic

update is different for the environment and the operation. The environment should be allowed to

change the value of v (i.e. acquire and release the lock) but the lock operation should not. The correct

91

specification expresses this by binding the variable v in a new way:

λ;A `

A

v ∈ {0, 1} .
〈
Lock(s, x, v)

〉
acquire(x)

〈
Lock(s, x, 1) ∗ v = 0

〉
The special role of v (indicated by the pseudo-quantifier

A

) is in distinguishing the constraints on the

environment and on the thread before the atomic operation takes effect. Specifically, the environment

is at liberty to change the value of v for which the precondition holds (that is, lock and unlock the

lock), but the thread executing the operation must preserve the value of v (that is, it cannot lock or

unlock the lock except by performing the atomic operation).

5.1.2 CAP Specification

The atomic specification of the lock captures its essence as a synchronisation primitive. In practice, a

lock is often used to protect some resource. We demonstrate how a CAP-style lock specification [12],

which views the lock as a mechanism for protecting a resource invariant, can be derived from the atomic

specification. This illustrates a typical use of a TaDA specification: first prove a strong abstract-atomic

specification; then specialise to whatever is required by the client.

The specification provides two abstract predicates: IsLock(x), which is a non-exclusive resource that

allows a thread to compete for the lock; and Locked(x), which is an exclusive resource that represents

that the thread has acquired the lock, and allows it to release the lock. The lock is specified as follows:

λ′;A `
{
True

}
makeLock()

{
IsLock(ret)

}
λ′;A `

{
Locked(x)

}
release(x)

{
True

}
λ′;A `

{
IsLock(x)

}
acquire(x)

{
IsLock(x) ∗ Locked(x)

}
IsLock(x) ⇐⇒ IsLock(x) ∗ IsLock(x)

Locked(x) ∗ Locked(x) =⇒ False

To implement this specification, we must provide an interpretation for the abstract predicates IsLock

and Locked. For this, we need to introduce a shared region. As in CAP, a shared region encapsulates

some resource that is available to multiple threads. In our example, this resource will be the predicates

Lock(s, x, v), plus some additional guard resource (described below). A shared region is associated with

a protocol, which determines how its contents change over time. Following iCAP [54], the state of a

shared region is abstracted, and protocols are expressed as transition systems over these abstract states.

A thread may only change the abstract state of a region when it has the guard resource associated

with the transition to be performed. An interpretation function associates each abstract state of a

region with a concrete assertion. In summary, to specify a region we must supply the guards for the

region, an abstract state transition system that is labelled by these guards, and a function interpreting

abstract states as assertions.

For the CAPLock, we need only a very simple guard separation algebra: there is a single, indivisible

guard named Unlock, as well as the empty guard 0. As a separation algebra, guard resources must

have a partial composition operator that is associative and commutative. In this case, 0 •x = x = x •0

for all x ∈ {0,Unlock}, and Unlock •Unlock is not defined.

92

The transition system for the region will have two states: 0 and 1, corresponding to unlocked and

locked states respectively. Intuitively, any thread should be allowed to lock the lock, if it is unlocked,

but only the thread holding the ‘key’ should be able to unlock it. This is specified by the labelled

transition system:

0 : 0 1

Unlock : 1 0

It remains to give an interpretation for the abstract states of the transition system. To do so, we

must have a name for the type of region we are defining; we shall use CAPLock. It is possible for

there to be multiple regions associated with the same region type name. To distinguish them, each

region has a unique region identifier, which is typically annotated as a subscript. Each region is also

associated with a level, annotated as a superscript, to avoid circularity. A region specification may

take some parameters that are used in the interpretation. With CAPLock, for instance, the address

of the lock is such a parameter. We thus specify the type name, region identifier, the region level,

parameters and state of a region in the form CAPLockλ
′
a (s, x, v).

The region interpretation for CAPLock is given by:

I(CAPLockλ
′
a (s, x, 0)) , Lock(s, x, 0) ∗ [Unlock]a

I(CAPLockλ
′
a (s, x, 1)) , Lock(s, x, 1)

With this interpretation, the guard Unlock is in the region when it is in the unlocked state. This

means that, when a thread acquires the lock, it takes ownership of the guard and the lock invariant by

removing them from the region. Having the guard Unlock allows the thread to subsequently release

the lock, returning the guard and invariant to the region.

We can now give an interpretation to the predicates IsLock(x) and Locked(x):

IsLock(x) , ∃a, s ∈ T1, v ∈ {0, 1} .CAPLockλ
′
a (s, x, v)

Locked(x) , ∃a, s ∈ T1.CAPLockλ
′
a (s, x, 1) ∗ [Unlock]a

We also interpret the level λ′ as λ′ , λ+ 1, where λ is the level of the atomic lock specification.

It remains to prove the specifications for the operations and the axioms.

The proofs of the release and acquire operations are given in Figure 5.1 and Figure 5.2. In the

release proof, note that the immediate postcondition of the UseAtomic rule is not stable, since it is

possible for the environment to acquire the lock. For illustrative purposes, we weaken it minimally to a

stable assertion, although it could be weakened to True directly.

While a region is opened, it must not be re-opened. This is enforced by requiring the level in the

context of the conclusion of UseAtomic to be higher than the level of the region being opened, which

is also the level in the context of the premiss. We see this in the proof for release as λ′ = λ + 1

is higher than the level of the CAPLock region, namely λ. The atomic specification for release

indicates that it only opens regions below level λ. In particular, this assures us that it will not reopen

the CAPLock region. Since the level constraints are typically straightforward, we shall omit them

from subsequent proof outlines.

93

{
Locked(x)

}

A
b
st

r
a
c
t

{
∃a, s.CAPLockλ

′

a (s, x, 1) ∗ [Unlock]a

}

E
x
is
t
s:
a
,

s

〈
CAPLockλ

′

a (s, x, 1) ∗ [Unlock]a

〉

U
se

A
t
o
m
ic

〈
Lock(s, x, 1) ∗ [Unlock]a

〉

F
r
a
m
e

:
[U

n
l
o
c
k

] a 〈
Lock(s, x, 1)

〉
release(x)〈
Lock(s, x, 0)

〉
〈
Lock(s, x, 0) ∗ [Unlock]a

〉〈
CAPLockλ

′

a (s, x, 0)
〉

// weaken to stabilise{
∃a, s, v ∈ {0, 1} .CAPLockλ

′

a (s, x, v)
}{

True
}

Figure 5.1: Derivation of the release specification.{
IsLock(x)

}

A
b
st

r
a
c
t

;
E
x
is
t
s
a
,

s

{
∃v ∈ {0, 1} .CAPLockλ

′
a (s, x, v)

}

U
se

A
t
o
m
ic

A

v ∈ {0, 1} .〈
Lock(s, x, v) ∗ v = 1 ∨ (Lock(s, x, v) ∗ [Unlock]a) ∗ v = 0

〉

F
r
a
m
e

:
v

=
0
→

[U
n
l
o
c
k

] a

A

v ∈ {0, 1} .〈
Lock(s, x, v)

〉
acquire(x)〈
Lock(s, x, 1) ∗ v = 0

〉

〈
Lock(s, x, 1) ∗ [Unlock]a

〉{
CAPLockλ

′
a (s, x, 1) ∗ [Unlock]a

}{
IsLock(x) ∗ Locked(x)

}
Figure 5.2: Derivation of the acquire specification.

function makeLock() {
v := alloc(1);
[v] := 0;
return v;
}

function release(x) {
[x] := 0;
}

function acquire(x) {
do {
b := CAS(x, 0, 1);

} while (b = 0);
}

Figure 5.3: Spin lock operations.

94

The lock proof uses the

A

quantifier in the premiss of the UseAtomic rule to account for the

fact that, in the precondition, the lock could be in either state. The proof uses the frame rule,

with a frame that is conditional on the state of the lock. To derive the final postcondition, we

use the fact that region assertions, since they refer to shared resource, are freely duplicable: i.e.

CAPLockλ
′
a (s, x, 1) ≡ CAPLockλ

′
a (s, x, 1) ∗CAPLockλ

′
a (s, x, 1).

The axiom IsLock(x) ⇐⇒ IsLock(x) ∗ IsLock(x) follows from the duplicability of region assertions.

Finally, the axiom Locked(x) ∗ Locked(x) =⇒ False follows from Unlock •Unlock being undefined.

Note that neither of the bad specifications for acquire(x) could be used in this derivation: the first

because there would be no way to express that the frame [Unlock]a is conditional on the state of the

lock; and the second because we could not combine both cases in a single derivation.

5.1.3 Implementation

We consider a spin lock implementation of the atomic lock specification. The code is given in Figure 5.3.

To verify this implementation against the atomic specification, we must give a concrete interpretation of

the abstract predicates. To do this, we introduce a new region type, SLock, with only one non-empty

guard for a SLock region, named G, much as for CAPLock. There are two states for an SLock

region: 0 and 1, representing unlocked and locked, respectively. The key difference from CAPLock is

that transitions in both directions are guarded by G. The labelled transition system is as follows:

G : 0 1

G : 1 0

We also give an interpretation to each abstract state:

I(SLock0
a(x, 0)) , x 7→ 0

I(SLock0
a(x, 1)) , x 7→ 1

We now define the interpretation of the abstract predicate:

Lock(a, x, v) , SLock0
a(x, v) ∗ [G]a

The abstract predicate Lock(a, x, v) asserts there is a region with identifier a and that the region is in

state v, where v is 0 when the region is unlocked and 1 when the region is locked. It also states that

there is a guard [G]a, which will be used to update the region. Note that the SLock region here is at

level 0, since it is not necessary to open any further regions when the SLock region is opened.

To prove the implementation against our atomic specification, we use the MakeAtomic rule. The

proof of the acquire(x) implementation is given in Figure 5.4. The proof first massages the specification

into a form where we can apply the MakeAtomic rule. The atomicity context allows the region a to be

in either state, but insists that it must have been in the unlocked state when the atomic operation takes

effect. The UpdateRegion rule conditionally performs the atomic action—transitioning the region

from state 0 to 1, and recording this in the atomic tracking resource—if the atomic compare-and-set

operation succeeds. The MakeAtomic rule achieves this, by requiring that the implementation

can only update the abstract region state once and also that the environment cannot invalidate the

95

A

v ∈ {0, 1} .〈
Lock(s, x, v)

〉

A
b
st

r
a
c
t

〈
SLocka(x, v) ∗ [G]a

〉

M
a
k
e
A
t
o
m
ic

a : v ∈ {0, 1} 1 ∗ v = 0 `{
∃v ∈ {0, 1} .SLocka(x, v) ∗ a Z⇒ �

}
do {{
∃v ∈ {0, 1} .SLocka(x, v) ∗ a Z⇒ �

}

U
p
d
a
t
e
R
e
g
io
n A

n ∈ {0, 1} .〈
x 7→ n

〉
b := CAS(x, 0, 1);〈

(x 7→ 1 ∗ n = 0 ∗ b = 1) ∨
(x 7→ n ∗ n 6= 0 ∗ b = 0)

〉
{
∃v ∈ {0, 1} .SLocka(x, v) ∗
(a Z⇒ (0, 1) ∗ b = 1 ∨ a Z⇒ � ∗ b = 0)

}
} while (b = 0);{
a Z⇒ (0, 1) ∗ b = 1

}〈
SLocka(x, 1) ∗ [G]a ∗ v = 0

〉〈
Lock(s, x, 1) ∗ v = 0

〉
Figure 5.4: Proof outline for the acquire operation.

precondition for any v ∈ {0, 1}, until the implementation performs the atomic update. This means

that the environment is allows to change the abstract region state to any state, as long as it is 0 or 1.

The proofs for makeLock and release are similar, and as such, we omit them.

Remark 5.1 (On alternative implementations). It is possible to prove the following alternative

implementation of release with the same atomic specification:

λ;A `
〈
Lock(s, x, 1)

〉
[x] := 1; [x] := 0;

〈
Lock(s, x, 0)

〉
The first write to x has no effect, since the specification asserts that the lock must be locked initially.

This code would clearly not be atomic in a different context; it would not satisfy the specifica-

tion `
〈
Lock(s, x, 0) ∨ Lock(s, x, 1)

〉
release(x)

〈
Lock(s, x, 0)

〉
, for example. Since the specification

constrains the client, it allows flexibility in the implementation.

5.2 Multiple Compare-and-Set (MCAS)

We look at an interface over the heap which provides atomic double- (dcas) and triple-compare-and-set

(3cas) operations, in addition to the basic read, write and compare-and-set operations.

5.2.1 Atomic Specification

Our atomic specification makes use of two abstract predicates: MCL(s, l) to represent an instance of

the MCAS module with address l; and MCP(s, l, x, v) to represent the “MCAS heap cell” at address x

with value v, protected by instance l. There is an abstract disjointness, as we can view each heap cell

as disjoint from the others at the abstract level, even if that is not the case with the implementation

96

itself. The specification for creating the interface, transferring memory cells to and from it as well as

manipulating it is given in Figure 5.5.

λ;A `
{
True

}
makeMCL()

{
MCL(s, ret)

}
λ;A `

{
MCL(s, l) ∗ x 7→ v

}
makeMCP(l, x)

{
MCP(s, l, x, v)

}
λ;A `

{
MCP(s, l, x, v)

}
unmakeMCP(l, x)

{
x 7→ v

}
λ;A `

A

v.
〈
MCP(s, l, x, v)

〉
read(l, x)

〈
ret = v ∗MCP(s, l, x, v)

〉
λ;A `

A

v.
〈
MCP(s, l, x, v)

〉
write(l, x, w)

〈
MCP(s, l, x, w)

〉
λ;A `

A

v.

〈
MCP(s, l, x, v)

〉
cas(l, x, v1, v2)

〈
if v = v1 then ret = 1 ∗MCP(s, l, x, v2)

else ret = 0 ∗MCP(s, l, x, v)

〉
λ;A `

A

v, w.
〈
MCP(s, l, x, v) ∗MCP(s, l, y, w)

〉
b := dcas(l, x, y, v1, w1, v2, w2);〈 if v = v1 ∗ w = w1

then b = 1 ∗MCP(s, l, x, v2) ∗MCP(s, l, y, w2)
else b = 0 ∗MCP(s, l, x, v) ∗MCP(s, l, y, w)

〉

λ;A `

A

v, w, u.
〈
MCP(s, l, x, v) ∗MCP(s, l, y, w) ∗MCP(s, l, z, u)

〉
b := 3cas(l, x, y, z, v1, w1, u1, v2, w2, u2);〈 if v = v1 ∗ w = w1 ∗ u = u1

then b = 1 ∗MCP(s, l, x, v2) ∗MCP(s, l, y, w2) ∗MCP(s, l, z, u2)
else b = 0 ∗MCP(s, l, x, v) ∗MCP(s, l, y, w) ∗MCP(s, l, z, u)

〉

MCL(s, l) ⇐⇒ MCL(s, l) ∗MCL(s, l)

MCP(s, l, x, v) ∗MCP(s, l, x, w) =⇒ False

Figure 5.5: The abstract specification for the MCAS module.

5.2.2 Implementation

We give a straightforward coarse-grained implementation of the MCAS specification. The full code is

given in Figure 5.6. The operation makeMCL creates a lock which protects updates to pointers under the

control of the module. The other operations simply acquire the lock, perform the appropriate reads and

writes, and then release the lock. The module supports different kinds of compare-and-set operations,

that allow more than one pointer to be updated atomically. The makeMCP and unmakeMCP operations

allow pointers to be moved to the module and from the module. The read operation has to acquire the

lock as well, this prevents reading intermediate states of the compare-and-set operations that update

more than one pointer. Moreover, the unmakeMCP also has to acquire the lock to guarantee that no

other operation is attempting to read the pointer. By acquiring the lock it ensures full ownership over

the pointer which can then be moved away from the module.

We interpret the abstract predicates using a single shared region, with type name MCAS. The

abstract states of the region are partial heaps, which represent the part of the heap that is protected

by the module. For instance, the abstract state x 7→ v • y 7→ w indicates that heap cells x and y are

under the protection of the module, with logical values v and w respectively. Note that the physical

97

function makeMCL() {
l := makeLock();
return l;

}

function makeMCP(l, x) {
skip;

}

function read(l, x) {
acquire(l);
v := [x];
release(l);
return v;

}

function write(l, x, v) {
acquire(l);
[x] := v;
release(l);

}

function dcas(l, x, y, v1, w1, v2, w2) {
acquire(l);
v := [x];
w := [y];
if (v = v1 and w = w1) {

[x] := v2;
[y] := w2;
r := 1;

} else {
r := 0;

}
release(l);
return r;

}

function unmakeMCP(l, x) {
acquire(l);
release(l);

}

function cas(l, x, v1, v2) {
acquire(l);
v := [x];
if (v = v1) {

[x] := v2;
r := 1;

} else {
r := 0;

}
release(l);
return r;

}

function 3cas(l, x, y, z, v1, w1, u1, v2, w2, u2) {
acquire(l);
v := [x];
w := [y];
u := [z];
if (v = v1 and w = w1 and u = u1) {

[x] := v2;
[y] := w2;
[z] := u2;
r := 1;

} else {
r := 0;

}
release(l);
return r;
}

Figure 5.6: Multiple compare-and-set module operations.

values at x and y need not be the same as their logical values, specifically when the lock has been

acquired and they are being modified.

For the MCAS region, there are five kinds of guards. The Own(x) guard confers ownership of the

heap cell at address x under the control of the region. This guard is used by all operations of the

module that access the heap cell x. In order to ensure that there can only be one instance of Own(x)

we require Own(x) •Own(x) to be undefined. We amalgamate the Own guards for heap cells that

are not currently under the protection of the module into Owned(X), where X is the set of all cells

that are protected. We define the following equality on guards:

Owned(X) = Owned(X] {x}) •Own(x)

Initially, the set X will be empty. When we add an element x 7→ v to the region, we get a guard

Own(x) that allows us to manipulate the abstract state for that particular x. There can be only one

Owned guard, we enforce this by requiring Owned(X) •Owned(Y) is not defined.

The remaining guards are effectively used as auxiliary state. When a thread acquires the lock, it

removes some heap cells from the shared region in order to access them. The Locked(h) guard will

98

be used to record that the heap cells in h have been removed in this way. The thread that acquired

the lock will have a corresponding Key(h) guard. When it releases the lock, the two guards will be

reunited inside the region to form the Unlocked guard. This is expressed by the following equivalence:

Unlocked = Locked(h) •Key(h)

The transition system for the region is parametric in each heap cell. It allows anyone to add the

resource x 7→ v to the region. There is no need to guard this action, as the resource is unique and

as such only one thread can do it for a particular value of x. It allows the value of x to be updated

using the guard Own(x). Finally, given the guard Own(x), x 7→ v can be removed from the region.

We formally define the transition system as follows:

0 : ∀h, x, v. h x 7→ v • h

Own(x) : ∀h, v, w. x 7→ v • h x 7→ w • h

Own(x) : ∀h, x, v. x 7→ v • h h

We define the interpretation of abstract states for the MCAS region:

I(MCASa(s
′, l, h)) , [Owned(dom(h))]a ∗ (Lock(s′, l, 0) ∗ h ∗ [Unlocked]a ∨

∃h1, h2. Lock(s′, l, 1) ∗ h1 ∗ [Locked(h2)]a ∗ h = h1 • h2)

Internally, the region may be in one of two states, indicated by the disjunction. Either the lock l is

unlocked, and the heap cells corresponding to the abstract state of the region are actually in the region,

as well as the Unlocked guard, or the lock l is locked, and some portion h1 of the abstract heap is in

the region, while the remainder h2 has been removed, together with the Key(h2) guard, leaving behind

the Locked(h2) guard. In both cases, the Owned(dom(h)) guard belongs to the region, encapsulating

the Own guards for heap addresses that are not protected.

We now give an interpretation to the predicates as follows:

MCL((a, s′), l) , ∃h.MCASa(s
′, l, h)

MCP((a, s′), l, x, v) , ∃h.MCASa(s
′, l, x 7→ v • h) ∗ [Own(x)]a

The predicate MCL(s, l) states the existence of the shared region, but makes no assumptions about its

state. The predicate MCP(s, l, x, v) states that there is x with value v, which it owns, and possibly

other heap cells in the region. The axiom MCP(s, l, x, v) ∗MCP(s, l, x, w) =⇒ False follows from the

fact that Own(x) •Own(x) is not defined.

We can now prove that the specification is satisfied by the implementation. We show the dcas

command in Fig. 5.7. The other commands have very similar proofs.

5.2.3 Resource Transfer

Consider an addition to the MCAS module: the readTo operation takes an MCAS heap cell and an

ordinary heap cell and copies the value of the former into the latter. Such an operation could be

99

A

v, w.〈
MCP(s, l, x, v) ∗MCP(s, l, y, w)

〉
A
b
st

r
a
c
t

:
s

=
(a
,s

′)

〈
∃h.MCASa(s′, l, x 7→ v • y 7→ w • h) ∗ [Own(x)]a ∗ [Own(y)]a

〉
M
a
k
e
A
t
o
m
ic

a : x 7→ v • y 7→ w • h if v = v1 ∧ w = w1 then x 7→ v2 • y 7→ w2 • h
else x 7→ v • y 7→ w • h `{

∃h, v, w.MCASa(s′, l, x 7→ v • y 7→ w • h) ∗ a Z⇒ �
}

O
p
e
n
R
e
g
io
n

A

h.〈 Lock(s′, l, 0) ∗ h ∗ [Unlocked]a ∨
Lock(s′, l, 1) ∗ ∃h1, h2. h = (h1 • h2) ∧ h1

∗ [Locked(h2)]a

 ∗ [Owned(dom(h))]a ∗ a Z⇒ �

〉
acquire(l); // remove from the shared region the two heap cells〈
∃h1. Lock(s′, l, 1) ∗ h1 ∗ [Locked(x 7→ v • y 7→ w)]a ∧ h = (h1 • x 7→ v • y 7→ w) ∗
[Owned(dom(h))]a ∗ a Z⇒ � ∗ [Key(x 7→ v • y 7→ w)]a ∗ x 7→ v • y 7→ w

〉
{
∃h.MCASa(s′, l, x 7→ v • y 7→ w • h) ∗ a Z⇒ � ∗ [Key(x 7→ v • y 7→ w)]a ∗ x 7→ v • y 7→ w

}
v := [x]; w := [y]; // the environment cannot access either cell{
∃h.MCASa(s′, l, x 7→ v • y 7→ w • h) ∗ a Z⇒ � ∗ [Key(x 7→ v • y 7→ w)]a
∗ x 7→ v • y 7→ w ∧ v = v ∧ w = w

}
if (v = v1 and w = w1) { // perform conditional update on the heap cells

[x] := v2;
[y] := w2;
r := 1;
} else {
r := 0;
}{
∃h.MCASa(s′, l, x 7→ v • y 7→ w • h) ∗ a Z⇒ � ∗ [Key(x 7→ v • y 7→ w)]a ∧ v = v ∧ w = w ∗
if v = v1 ∧ w = w1 then r = 1 ∧ x 7→ v2 • y 7→ w2 else r = 0 ∧ x 7→ v • y 7→ w

}

U
p
d
a
t
e
R
e
g
io
n

A

h.〈∃h1. h = (h1 • x 7→ v • y 7→ w) ∧ Lock(s′, l, 1) ∗ [Owned(dom(h))]a ∗
[Locked(x 7→ v • y 7→ w)]a ∗ [Key(x 7→ v • y 7→ w)]a ∗ h1∗
if v = v1 ∧ w = w1 then r = 1 ∧ x 7→ v2 • y 7→ w2 else r = 0 ∧ x 7→ v • y 7→ w

〉
release(l); // put the heap cells in the shared region and update

// its abstract state if the heap cells were modified〈
U(s′, l, 0) ∗ [Owned(dom(h))]a ∗ [Unlocked]a ∗
if v = v1 ∧ w = w1 then h[x 7→ v2, y 7→ w2] else h

〉
{
∃h. if v = v1 ∧ w = w1 then a Z⇒ (x 7→ v • y 7→ w • h, x 7→ v2 • y 7→ w2 • h) ∗ r = 1

else a Z⇒ (x 7→ v • y 7→ w • h, x 7→ v • y 7→ w • h) ∗ r = 0

}
return r;〈

(if v = v1 ∧ w = w1 then ret = 1 ∧ ∃h.MCASa(s′, l, x 7→ v2 • y 7→ w2 • h)
else ret = 0 ∧ ∃h.MCASa(s′, l, x 7→ v • y 7→ w • h)) ∗ [Own(x)]a ∗ [Own(y)]a

〉
〈

if v = v1 ∧ w = w1 then ret = 1 ∧MCP(s, l, x, v2) ∗MCP(s, l, y, w2)
else ret = 0 ∧MCP(s, l, x, v) ∗MCP(s, l, y, w)

〉
Figure 5.7: Proof of the dcas implementation.

implemented as follows:

function readTo(l, x, y) {
v := read(l, x);

[y] := v;

}

This implementation atomically reads the MCAS cell at x, then writes the value to the cell at y. The

overall effect is non-atomic, in the sense that a concurrent environment could update x and then

witness y being updated to the old value of x. However, if the environment’s interaction is confined to

the MCAS cell, the effect is atomic.

100

TaDA allows us to specify this kind of partial atomicity by splitting the pre- and postcondition of

an atomic judgement into a private and a public part. The private part will contain resources that are

particular to the thread—in this example, the heap cell at y. When the atomic triple is used to update

a region (e.g. with the UseAtomic rule), these private resources cannot form part of the region’s

invariant. The public part will contain resources that can form part of a region’s invariant — in this

example, the MCAS cell at x.

The readTo operation can be specified as follows:

`

A

v, w.
〈
y 7→ w

∣∣∣MCP(s, l, x, v)
〉
readTo(l, x, y)

〈
y 7→ v

∣∣∣MCP(s, l, x, v)
〉

One way of understanding such specifications is in terms of ownership transfer between a client and a

module, as in [22]: ownership of the private precondition is transferred from the client; ownership of the

private postcondition is transferred to the client. In this example, the same resources (albeit modified)

are transferred in and out, but this need not be the case in general. For instance, an operation could

allocate a fresh location in which to store the retrieved value, which is then transferred to the client.

5.3 Deque

We show how to use TaDA to specify a double-ended queue (deque) and verify its fine-grained

implementation. A deque allows elements to be inserted and removed from both ends of a list.

This example shows that TaDA can scale to multiple levels of abstraction: the deque uses MCAS,

which uses the lock, which is based on primitive atomic heap operations. This proof development would

not be possible with CAP, since atomicity is central to the abstractions at each level. It would also not

be possible using traditional approaches to linearisability, since separation of resources between and

within abstraction layers is also crucial.

We define a constructor makeDeque(), that creates a new empty deque. The deque supports the

insertion and removal of elements from the left side and the right side. On the left side we can

insert using pushLeft(d, v) and remove using popLeft(d). The right side has similar operations,

pushRight(d, v) and popRight(d).

5.3.1 Atomic specification

We represent the deque state by the abstract predicate Deque(s, d, vs). It asserts that there is a deque

at address d with list of elements vs.

The makeDeque() operation creates an empty deque and returns its address. It has the following

specification:

λ;A `
{
True

}
makeDeque()

{
∃s ∈ T8.Deque(s, ret, [])

}
The operations pushLeft(d, v) and popLeft(d) are specified to update the state of the deque atomically:

λ;A `

A

vs.
〈
Deque(s, d, vs)

〉
pushLeft(d, v)

〈
Deque(s, d, v : vs)

〉
λ;A `

A

vs.

〈
Deque(s, d, vs)

〉
popLeft(d)

〈
if vs = [] then v = 0 ∗ Deque(s, d, vs)

else vs = v : vs′ ∗ ret = v ∗ Deque(s, d, vs′)

〉

101

The pushLeft(d, v) operation adds the value v to the left of the deque. The popLeft(d) operation

tries to remove an element from the left end of the deque. However, if the deque is empty, then it

returns 0 and does not change its state. Otherwise, it removes the element at the left, updating the

state of the deque, and returns the removed valued. The pushRight and popRight operations have

analogous specifications, operating on the right end of the deque.

5.3.2 Implementation

We consider an implementation that represents the deque as a doubly-linked list of nodes, based on

the Snark linked-list deque [16]. The code is shown in Figure 5.8.

An example of the shape of the data structure is shown in Figure 5.9. Each node consists of a

left-link pointer, a right-link pointer, and a value. There are two anchor variables, left hat and right hat

(l̂ and r̂ in the figure), that generally point to the leftmost and rightmost node in the list, except when

the deque is empty. When the deque is not empty, its leftmost node’s left-link and the rightmost node’s

right-link point to a so-called dead node—a node whose left- and right-links point to itself (e.g. node a

in the figure). When the deque is empty, then the left hat and the right hat point to dead nodes.

We focus on the popLeft implementation. This implementation first reads the left hat value to a

local variable. It then reads the left-link of the node referenced by that variable. If both values are

the same, it means that the node is dead and the list might be empty. It is necessary to recheck the

left hat to confirm, since the node might have died since the left hat was first read. If the deque is

indeed empty, the operation returns 0; otherwise it is restarted. If the left node is not dead, it tries to

atomically update the left hat to point to the node to its right, and, at the same time, update the left

node to be dead. This could fail, in which case the operation restarts. An example of such an update

is shown in Figure 5.9. In order to update three pointers atomically, the implementation makes use of

the 3cas command described in §5.2.

To verify the popLeft operation, we introduce a new region type, Deque. The region has two

parameters, d standing for the deque address and L for the MCAS address. There is only one non-empty

guard for the region, named G. We represent the abstract state by a tuple (ns, ds) where: ns is a list

of pairs of node addresses and values, the values representing the elements stored in the deque; and

ds is a set of pairs of nodes addresses and values that were part of the deque, but are now dead. We

maintain the set of dead nodes to guarantee that after a node is removed from the deque, its value can

still be read. In order to change the abstract state of the deque, we require the guard G. The labelled

transition system is as follows:

G : ∀n, v, ns, ds. (ns, ds) ((n, v) : ns, ds)

G : ∀n, v, ns, ds. (ns, ds) (ns : (n, v), ds)

G : ∀n, v, ns, ds. ((n, v) : ns, ds) (ns, ds] {(n, v)})
G : ∀n, v, ns, ds. (ns : (n, v), ds) (ns, ds] {(n, v)})

In order to provide an interpretation for the abstract state, we first define a number of auxiliary

predicates. A node predicate at address n in the deque is defined using the MCAS cells predicates:

node(s, L, n, l, r, v) ≡ MCP(s, L, n.left, l) ∗MCP(s, L, n.right, r) ∗ n.value 7→ v

102

function makeDeque() {
L := makeMCL();

n := makeNode(0, 0, 0);

write(L, n.left, n);

write(L, n.right, n);

p := alloc(3);

[p.left] := n; // left hat

[p.right] := n; // right hat

[p.mcl] := L; // pointer to MCAS interface

[p.dummy] := n; // pointer to dummy node

makeMCP(L, p.left);

makeMCP(L, p.right);

return p;

}

function makeNode(L, l, r, v) {
n := alloc(3);

[n.left] := l;

[n.right] := r;

[n.value] := v;

makeMCP(L, l);

makeMCP(L, r);

return n;

}

function pushLeft(d, v) {
L := [d.mcl];

m := [d.dummy];

n := makeNode(L, m, 0, v);

while (true) {
lh := read(L, d.left);

lhL := read(L, lh.left);

if (lhL = lh) {
write(L, n.right, m);

rh := read(L, d.right);

b := dcas(L, d.left, lh.right, lh, rh, n, n);

if (b = 1) {
return ;

}
} else {
write(L, n.right, lh);

b := dcas(L, d.left, lh.left, lh, lhL, n, n);

if (b = 1) {
return ;

}
}

}
}

function popLeft(d) {
L := [d.mcl];

while (true) {
lh := read(L, d.left);

lhR := read(L, lh.right);

lhL := read(L, lh.left);

if (lhL = lh) { // left hat seems dead

lh2 := read(L, d.left);

if (lh2 = lhL) { // left hat confirmed dead

return 0;

} // left hat not dead — try again

} else {
b := 3cas(L, d.left, lh.right, lh.left,

lh, lhR, lhL, lhR, lh, lh);

if (b = 1) {
v := [lh.value];

return v;

}
}

}
}

where

E.left def
= E E.right def

= E + 1 E.value def
= E + 2 E.mcl def

= E + 2 E.dummy def
= E + 3.

Figure 5.8: Snark deque operations.

103

?

a

2 9 3 ?

b

l̂ r̂

c

e

d

2

a

9 3 ?

b

l̂ r̂

c

e

d

Figure 5.9: Examples of a deque before and after performing popLeft, which uses 3cas to updated
pointers c, d and e.

Here, l and r are the left- and right-link addresses. The L parameter is the address of the MCAS

lock. A dead node is defined as:

dead(s, L, n, v) ≡ node(s, L, n, n, n, v)

We also define a predicate to stand for the doubly-linked list that contains all the elements in the list,

(i.e. the shaded nodes in the figure).

dlseg(s, L, l, r, n,m, ns) ≡ ns = [] ∗ l = m ∗ r = n ∨

∃v, ns′, p. ns = (l, v) : ns′ ∗ node(s, L, l, n, p, v) ∗ dlseg(s, L, p, r, l,m, ns′)

We define a predicate to include the dead nodes (ds) as well as the doubly-linked list:

dls(s, L, l, r, ns, ds) ≡ ∃a, b. (a,−), (b,−) ∈ ds ∗ dlseg(s, L, l, r, a, b, ns) ∗ �
(n,v)∈ds

dead(s, L, n, v)

Note that there must be at least one dead node in ds.

Our last auxiliary predicate is used to represent the whole deque: the double linked list; the anchors

left hat and right hat; and the reference to the MCAS interface.

deque(s, d, L, ns, ds) ≡ ∃l, r. dls(s, L, l, r, ns, ds) ∗

MCP(s, L, d.left, l) ∗MCP(s, L, d.right, r) ∗ d.mcl 7→ L ∗MCL(s, L)

104

We now define the interpretation of abstract states as follows:

I(Dequea(s, d, L, (ns, ds))) , deque(s, d, L, ns, ds)

We define the interpretation of the Deque predicate as follows:

Deque((a, s′, L), d, vs, (ns, ds)) , Dequea(s
′, d, L, ns, ds) ∗ [G]a ∗ vs = proj 2(ns)

where proj 2 is the second projection over the list of pairs ns.

We show the proof of the popLeft operation in Figure 5.10. To prove the implementation against

our atomic specifications, we use the MakeAtomic rule again. The UpdateRegion rule is applied

at two different points. The first one is when performing a read to confirm that the left hat is dead.

We require the UpdateRegion rule as there is a possibility that the deque is empty and as such this

corresponds to the atomic update, which requires updating the atomicity tracking component. The

second point is when performing the 3cas operation to remove an element of the deque, in the case of

success it corresponds to the atomic update. The remaining proofs are similar.

We have shown that by using TaDA, we can prove atomicity for fine-grained implementations that

use other concurrent implementations. We achieve scalability by using atomicity to abstract the

updates at each abstraction level.

We have shown how we can use atomicity in our specifications to build up abstraction levels. The

deque’s abstract atomic specification is implemented using the abstract atomicity of the MCAS, which

is, in turn, implemented using the abstract atomicity of the lock. With CAP, we could not do this

because we cannot specify atomicity, only weaker specifications.

105

A

vs.〈
Deque(d, vs)

〉
A
b
st

r
a
c
t

:
s

=
(a
,s
′ ,
L

),
t

=
(n
s,
d
s)

A

(ns, vs).〈
Dequea(s

′, d, L, ns, ds) ∗ [G]a ∗ vs = proj 2(ns)
〉

M
a
k
e
A
t
o
m
ic

a : (ns, ds) if ns = [] then (ns, ds) else (ns′, (n, v) : ds) ∗ ns = (n, v) : ns′ `{
∃ns, ds.Dequea(s

′, d, L, ns, ds) ∗ a Z⇒ �
}

L := [d.mcl];
while (true) {{
∃ns, ds.Dequea(s

′, d, L, ns, ds) ∗ a Z⇒ � ∗ L = L
}

lh := read(L, d.left); lhR := read(L, lh.right); lhL := read(L, lh.left);
∃ns, ds.Dequea(s

′, d, L, ns, ds) ∗ a Z⇒ � ∗ L = L ∗
if lh = lhL then (lh,−) ∈ ds

else {(lh,−), (lhL,−), (lhR,−)} ∈ ns++ ds


if (lhL = lh) { // left hat seems dead{
∃ns, ds.Dequea(s

′, d, L, ns, ds) ∗ a Z⇒ � ∗ L = L ∗ (lhL,−) ∈ ds
}

U
p
d
a
t
e
R
e
g
io
n A

ns, ds.〈
deque(s′, d, L, ns, ds) ∗ L = L ∗ (lhL,−) ∈ ds

〉
lh2 := read(L, d.left);〈
deque(s′, d, L, ns, ds) ∗ L = L ∗
(lh2 = lhL→ ns = [])

〉
{
∃ns, ds.Dequea(s

′, d, L, ns, ds) ∗ L = L ∗
if lh2 = lhL then a Z⇒ ([], ds), ([], ds) else a Z⇒ �

}
if (lh2 = lhL) { // left hat confirmed dead
return 0;{
∃ds. ret = 0 ∗ a Z⇒ ([], ds), ([], ds)

}
} // left hat not dead — try again
} else {{
∃ns, ds.Dequea(s

′, d, L, ns, ds) ∗ a Z⇒ � ∗ L = L ∗
{(lh,−), (lhL,−), (lhR,−)} ∈ ns++ ds

}

U
p
d
a
t
e
R
e
g
io
n

A

ns, ds.〈
deque(s′, d, L, ns, ds) ∗ L = L ∗
{(lh,−), (lhL,−), (lhR,−)} ∈ ns++ ds

〉
b := 3cas(L, d.left, lh.right, lh.left, lh, lhR, lhL, lhR, lh, lh);〈
∃ns′, v. if b = 1 then

(
deque(s′, d, L, ns′, (lh, v) : ds) ∗

L = L ∗ (lh, v) ∈ ds ∗ ns = (lh, v) : ns′

)
else deque(s′, d, L, ns, ds) ∗ L = L

〉
∃ns, ds, v. if b = 1 then

(
a Z⇒ ((lh, v) : ns, ds), (ns, (lh, v) : ds)

∗ L = L ∗ (lh, v) ∈ ds

)
else Dequea(s

′, d, L, ns, ds) ∗ a Z⇒ � ∗ L = L


if (b = 1) {
v := [lh.value]; return v;{
∃ns, ds. ret = v ∗ a Z⇒ ((lh, v) : ns, ds), (ns, (lh, v) : ds)

}
} } }〈if vs = [] then ret = 0 ∗Dequea(s

′, d, L, ns, ds) ∗ [G]a

else

(
∃ns′, v. ns = (n, v) : ns′ ∗ ret = v ∗

Dequea(s
′, d, L, ns′, (n, v) : ds) ∗ [G]a ∗ vs′ = proj 2(ns′)

)〉
〈

if vs = [] then ret = 0 ∗ Deque(d, vs)
else ∃vs′, v. vs = v : vs′ ∗ ret = v ∗ Deque(d, vs′)

〉

Figure 5.10: Proof of the popLeft implementation.

106

6 Related Work

TaDA inherits from a family of logics deriving from concurrent separation logic [47]: RGSep [63],

Deny-Guarantee [15], CAP [12], Higher-Order CAP (HOCAP) [55] and Impredicative CAP (iCAP) [54].

In particular, it makes use of dynamic shared regions with capability resources (called guards in TaDA)

that determine how the regions may be updated. Following iCAP, TaDA eschews the use of boxed

assertions to describe the state of shared regions and instead represents regions by abstract states. The

protocol for updating the region is specified as a transition system on these abstract states, labelled by

guards. This use of transition systems to describe protocols derives from previous work by Dreyer et

al. [17], and also appears in Turon et al. [61] as “local life stories”.

By treating the abstract state-space of a region as a separation algebra, it is possible to localise

updates on it, as in the MCAS example (§5.2). Such locality is in the spirit of local life stories [61],

and can be seen as an instance of Ley-Wild and Nanevski’s “subjective auxiliary state” [37].

While HOCAP and iCAP do not support abstract atomic specifications, they support an approach to

atomicity introduced by Jacobs and Piessens [32] that achieves similar effects. In their work, operations

may be parametrised by an update to auxiliary state that is performed when the abstract atomic

operation appears to take effect. This update is performed atomically by the implementation, and can

therefore involve shared regions. This approach is inherently higher-order, which has the disadvantage

of leading to complex specifications, which are parametrised by the specification of the auxiliary code

that performs the atomic update.

Recently, Iris [35] combined TaDA with iCAP [54] into a new higher order program logic, which

encodes TaDA’s proof rules in logic. Atomic triples have been encoded using view shifts in Iris [35]

by interpreting them as specifications in the Jacobs-Piessens style. This captures the intensional

meaning behind atomic triples—that is, what they can be used for—which in TaDA is expressed

through the proof rules for using atomic triples. Because it is higher-order, it has expressive power to

handle higher-order programs and reentrancy. TaDA takes a first-order approach, leading to simpler

specifications. An alternative treatment of TaDA, in a refinement calculus setting, can be found in [45].

There has been extensive work understanding and generalising linearisability, especially in light of

work on separation logic. Vafeiadis [63] has combined the ownership given by his RGSep reasoning with

linearisability. Gotsman and Yang [22] have generalised linearisability to include ownership transfer

of memory between a client and a module, which is also supported by our approach. We can do

ownership transfer with the private and the public components. Filipovic et al. [19] have demonstrated

that linearisability can be viewed as a particular proof technique for contextual refinement. Turon et

al. [59] have introduced CaReSL, a logic that combines contextual refinement and Hoare-style reasoning

to prove higher-order concurrent programs. Like linearisability, contextual refinement requires a

whole-module approach.

107

7 Reasoning about Termination

Throughout this thesis, we have proved properties of programs using the partial correctness interpre-

tation: if a program is run in a state satisfying the precondition and the program terminates, then

the resulting state will be described by the postcondition. In some programs, it is also important to

know that they terminate. To prove such a property is especially challenging for concurrent programs.

When multiple threads are changing some shared resource, knowing if each thread terminates can often

depend on the behaviour of the other threads and even on the scheduler that decides which thread

should run at a particular moment.

We have applied TaDA to reason about fine-grained concurrency, which is characterised by the use

of low-level synchronisation operations (such as compare-and-set). A well-known class of fine-grained

concurrent programs is that of non-blocking algorithms. With non-blocking algorithms, suspension

of a thread cannot halt the progress of other threads: the progress of a single thread cannot require

another thread to be scheduled. Thus, if the interference from the environment is suitably restricted,

the operations are guaranteed to terminate.

If we prove that a program produces the correct results and also always completes in a finite time,

we establish total correctness. Turing [58] and Floyd [20] introduced the use of well-founded relations,

combined with partial-correctness arguments, to prove the termination of sequential programs. The

same technique is general enough to prove concurrent programs, too. However, previous applications

of this technique in the concurrent setting, which we discuss in §7.5.4, do not support straightforward

reasoning about clients.

In this chapter, we extend TaDA with well-founded termination reasoning. With the resulting logic,

Total-TaDA, we can prove total correctness of fine-grained concurrent programs. The novelty of our

approach is in using TaDA’s abstraction mechanisms to specify constraints on the environment necessary

to ensure termination. It retains the modularity of TaDA and abstracts the internal termination

arguments. We demonstrate our approach on a counter module and a stack module.

We observe that Total-TaDA can be used to verify standard non-blocking properties of algorithms.

However, our specifications capture more: we propose the concept of non-impedance that our spec-

ifications suggest. We say that one operation impedes another if the second can be prevented from

terminating by repeated concurrent invocations of the first. This concept seems important to the

design and use of non-blocking algorithms, where we have some expectation about how clients use the

algorithm, and what progress guarantees they expect.

Using an atomic triple, an increment operation of a counter is specified as:

`

A

n ∈ N.
〈
Counter(s, x, n)

〉
incr(x)

〈
Counter(s, x, n+ 1) ∗ ret = n

〉
The internal structure of the counter is abstracted using the abstract predicate [50] Counter(s, x, n),

which states that there is a counter at address x with value n, whereas s abstracts implementation-

108

specific information about the counter. The specification says that the incr atomically increments the

counter by 1. The environment is allowed to update the counter to any value of n as long as it is a

natural number. The specification enforces obligations on both the client and the implementation: the

client must guarantee that the counter is not destroyed and that its value is a natural number until

the atomic update occurs; and the implementation must guarantee that it does not change the value of

the counter until it performs the specified atomic action. Working at the abstraction of the counter

means that each operation can be verified without knowing the rest of the operations of the module.

Consequently, modules can be extended with new operations without having to re-verify the existing

operations. Additionally, the implementation of incr can be replaced by another implementation

that satisfies the same specification, without needing to re-verify the clients that make use of the

counter. While atomic triples are expressive, they do not guarantee termination. In particular, an

implementation could block, deadlock or live-lock and still be considered correct.

Non-blocking Algorithms

In general, guaranteeing the termination of concurrent programs is a difficult problem. In particular,

termination could depend on the behaviour of the scheduler (whether or not it is fair) and on other

threads that might be competing for resources. We focus on non-blocking programs. Non-blocking

programs have the benefit that their termination is not dependent on the behaviour of the scheduler.

There are two common non-blocking properties: wait-freedom [25] and lock-freedom [41]. Wait-

freedom requires that operations complete irrespective of the interference caused by other threads:

termination cannot depend on the amount of interference caused by the environment. Lock-freedom

is less restrictive. It requires that, when multiple threads are performing operations, then at least

one of them must make progress. This means that a thread might never terminate if the amount of

interference caused by the environment is unlimited.

TaDA is well suited to reasoning about interference between threads. In particular, we can write

specifications that limit the amount of interference caused by the client, and so guarantee termination

of lock-free algorithms in Total-TaDA. We will see how both wait-freedom and lock-freedom can be

expressed in Total-TaDA.

Moreover, there is another non-blocking property in the literature called obstruction-freedom [27]. It

is the weakest requirement, guaranteeing progress only if a thread is run in isolation for a sufficiently

long amount of time. In the presence of other operations, it can cause a livelock with each thread

undoing the work done by other threads.

We cannot express in general obstruction-freedom in Total-TaDA, as these programs do not may

not terminate without further constraints. It is possible to reason about this class of algorithms in

Total-TaDA if one limits the amount of interference to guarantee termination.

Termination

Well-founded relations provide a general way to prove termination. In particular, Floyd [20] used

well-founded relations to prove the termination of sequential programs. In fact, it is sufficient to use

ordinal numbers [6] without losing expressivity. A Loop rule, using ordinals and adapted from Floyd’s

109

work, has the form:

Loop

∀γ ≤ α. `τ
{
P (γ) ∧ B

}
C
{
∃β. P (β) ∧ β < γ

}
`τ
{
P (α)

}
while (B) {C}

{
∃β. P (β) ∧ ¬B ∧ β ≤ α

}
The loop invariant P (γ) is parametrised by an ordinal γ (the variant) which is decreased by every

execution of the loop body C. Because ordinals cannot have infinite descending chains, the loop must

terminate in a finite number of steps. This proof rule allows termination reasoning to be localised

to the individual loops in the program. In this chapter, we extend TaDA with termination based on

ordinal numbers, using the Loop rule given above.

Total-TaDA

We obtain the program logic Total-TaDA by modifying TaDA to have a total-correctness semantics. The

details are given in §7.2. With Total-TaDA, we can specify and verify non-blocking algorithms. Wait-

free operations always terminate, independently of the operations performed by the environment. For

lock-free operations, however, we need to restrict the amount of interference the environment can cause

in order to guarantee termination. Our key insight is that, as well as bounding the number of iterations

of loops, ordinals can bound the interference on a module. This allows us to give total-correctness

specifications for lock-free algorithms. In §7.1, we specify and verify lock-free implementations of a

counter. The specification introduces ordinals to bound the number of times a client may update the

counter. This makes it possible to guarantee that the lock-free increment operation will terminate, since

either it will succeed or some other concurrent increment will succeed. As the number of increments is

bounded, the operation must eventually succeed.

Total-TaDA retains the modularity of TaDA. In particular, we can verify the termination of clients

of modules using the total-correctness specifications, without reference to the implementation. We

show an example of this in §7.1.2. Since the client only depends on the specification, we can replace

the implementation. In §7.1.3, we show that two different implementations of a counter satisfy the

same total-correctness specification. With Total-TaDA, we can verify the operations of a module

independently, exploiting locality.

As a case study for Total-TaDA, we show how to specify and verify both functional correctness

and termination of Treiber’s stack in §7.3. In §7.4, we present the total-correctness semantics and the

soundness proof of Total-TaDA. In §7.5, we show how lock-freedom and wait-freedom can be expressed

with Total-TaDA specifications. We also introduce the concept of non-impedance in §7.5.3 and argue

for its value in specifying non-blocking algorithms.

7.1 Motivating Examples

We introduce Total-TaDA by providing specifications of the operations of a counter module. We justify

the specifications by using them to reason about two clients, one sequential and one concurrent. We

show how two different implementations can be proved to satisfy the specification.

Consider a counter module with a constructor makeCounter and two operations: incr, which

increments the value of the counter by 1 and returns its previous value; and read, which returns the

110

value of the counter. We give an implementation of the spin counter operations in Figure 7.1, and an

alternative implementation of incr in Figure 7.5.

7.1.1 Atomic Specification

The Total-TaDA specification for the makeCounter() operation is the following Hoare triple with a

total-correctness interpretation:

∀α. `τ
{
True

}
makeCounter()

{
∃s.Counter(s, ret, 0, α)

}
The counter predicate is extended with an ordinal parameter α that bounds the amount of interference

the counter can sustain. When the value of the counter is updated, the ordinal α must decrease.

The makeCounter() operation allocates a new counter with value 0, and allows the client to pick

an initial ordinal α. If a finite bound on the number of updates can be determined beforehand, then

that bound is an appropriate choice for the ordinal. However, it could be the case that that bound is

determined by subsequent (non-deterministic) operations, in which case an infinite ordinal should be

used. For example, consider the following client program:

x := makeCounter();

m := random();

while (m > 0) { incr(x); m := m− 1; }

Here, the number of increments is bounded by the (finite) value returned by random, but it is not

determined when the counter is constructed. Choosing α = ω (the first infinite ordinal) is appropriate

in this case: the first increment can decrease the ordinal from ω to m− 1, while subsequent increments

simply decrement the ordinal by 1. We will later see examples where higher ordinals must be used.

The increment operation is specified as follows:

∀β. `τ

A

n ∈ N, α.
〈
Counter(s, x, n, α) ∗ α > β(n, α)

〉
incr(x)

〈
Counter(s, x, n+ 1, β(n, α)) ∗ ret = n

〉
The specification resembles the partial-correctness specification given in the introduction, but with

the addition of the ordinal α and the function β. The client chooses how to decrease the ordinal by

providing a function β that determines the new ordinal in terms of the old ordinal and previous value

of the counter. The condition α > β(n, α) requires the client to guarantee that such a decrease is

possible. (So, for example, the client could not use the specification in a situation where the concurrent

environment might reduce the ordinal to zero.) The implementation may rely on the fact that a

function makeCounter() {
x := alloc(1);
[x] := 0;
return x;
}

function incr(x) {
b := 0;
while (b = 0) {
v := [x];
b := CAS(x, v, v + 1);

}
return v;

}

function read(x) {
v := [x];
return v;
}

Figure 7.1: Spin counter operations.

111

counter’s ordinal cannot be increased to guarantee termination.

The read operation is specified as follows:

`τ

A

n∈N, α.
〈
Counter(s, x, n, α)

〉
read(x)

〈
Counter(s, x, n, α) ∗ ret = n

〉
Unlike the increment, the read operation does not affect the ordinal, meaning that the client is not

bounded with respect to the number of reads it performs. Such a specification is possible for operations

that do not impede the progress of other operations. In this case, read does not impede incr or read.

Finally, we have an axiom that allows the client to decrease the ordinal without requiring any

physical operation to be performed:

∀s, n, α, β < α.Counter(s, x, n, α) =⇒ Counter(s, x, n, β)

This is possible because the ordinals do not have any concrete representation in memory. They are

just a logical mechanism to limit the amount of interference over a resource.

The ordinal parameter is exposed in the specification of the counter to allow the implementation

to guarantee that its loops terminate. In a wait-free implementation—where the termination of each

operation is independent of the concurrent operations—it would not be necessary to expose the ordinal

parameter. For this counter, the read operation is wait-free, while the increment operation is lock-free,

since termination depends on bounding the number of interfering increments.

7.1.2 Clients

A Sequential Client

Consider a program that creates a counter and contains two nested loops. As in the previous example,

the outer loop runs a finite but randomly determined number of times. The inner loop also runs a

randomly determined number of times, and increments the counter on each iteration. Figure 7.2 shows

this client, together with its total-correctness proof.

The Loop rule is used for each of the loops: for the outer loop, the variant is n; for the inner loop,

the variant is m. Since the number of iterations of each loop is determined before it is run, the variants

need only be considered up to finite ordinals (i.e. natural numbers). We could modify the code to

use a single loop that conditionally decrements n (and randomises m) or decrements m. This variation

would require a transfinite ordinal for the variant.

As well as enforcing loop termination, ordinals play a role as a parameter to the Counter predicate,

which must be decreased on each increment. When we create the counter, we choose ω2 as the initial

ordinal. We have seen that ω allows us to decrement the counter a non-deterministic (but finite)

number of times. We want to repeat this a non-deterministic (but finite) number of times, so ω ·ω = ω2

is the appropriate ordinal. Once the number n of iterations of the outer loop is determined, we decrease

this to ω · n by using the axiom provided by the counter module. Similarly, when m is chosen, we

decrease the ordinal from ω · n = ω · (n− 1) + ω to ω · (n− 1) + m.

112

A Concurrent Client

Consider a program that creates two threads, each of which increments the counter a finite, but

unbounded, number of times. We again prove this client using the abstract specification of the counter,

as shown in Figure 7.3. For presentation purposes, we present the example using parallel composition

rather than using fork. One could rewrite the example to use fork and encode the join of threads using

auxiliary heap state.

We reuse the Parallel from §2.6:

Parallel{
P1

}
C1

{
Q1

} {
P2

}
C2

{
Q2

}
{
P1 ∗ P2

}
C1 ‖ C2

{
Q1 ∗Q2

}
In this example, the counter is shared between the two threads, which may concurrently update it.

To reason about sharing, we use a shared region.

As in TaDA, a shared region encapsulates some resource that is available to multiple threads. Threads

can access the resource when performing (abstractly) atomic operations, such as incr. The region

presents an abstract state, and defines a protocol that determines how the region may be updated.

Ghost resources, called guards, are associated with transitions in the protocol. The guards for a region

form a partial commutative monoid with the operation •, which is lifted to ∗ in assertions. In order

for a thread to make a particular update, it must have ownership of a guard associated with the

{
True

}
x := makeCounter();{
∃s.Counter(s, x, 0, ω2)

}
n := random();{
∃s.Counter(s, x, 0, ω · n) ∗ (α = n)

}
while (n > 0) {
∀γ.{
∃s, v.Counter(s, x, v, ω · n) ∗ (γ = n) ∗ n > 0

}
m := random();{
∃s, v.Counter(s, x, v, ω · (n− 1) + m) ∗ (γ = n) ∗ n > 0

}

F
r
a
m
e

:
(γ

=
n
)
∗
n
>

0

while (m > 0) {
∀δ.{
∃s, v.Counter(s, x, v, ω · (n− 1) + m) ∗ (δ = m) ∗ m > 0

}
incr(x);{
∃s, v.Counter(s, x, v, ω · (n− 1) + m− 1) ∗ (δ = m) > 0

}
m := m− 1;{
∃s, ζ, v.Counter(s, x, v, ω · (n− 1) + m) ∗ (ζ = m) ∗ ζ < δ

}
}{

∃s, v.Counter(s, x, v, ω · (n− 1)) ∗ (γ = n) ∗ n > 0
}

n := n− 1;{
∃s, β, v.Counter(s, x, v, ω · n) ∗ (β = n) ∗ β < γ

}
}{
∃s, v.Counter(s, x, v, 0)

}
Figure 7.2: Proof of a sequential client of the counter.

113

corresponding transition. All guards are allocated along with the region they are associated with.

For the concurrent client, we introduce a region with type name CClient. This region encapsulates

the shared counter. Accordingly, the region type is parametrised by the address of the counter. The

abstract state of the region records the current value of the counter.

There are two types of guard resources associated with CClient regions. The guard Inc(m,β, π)

provides capability to increment the counter. Conceptually, multiple threads may have Inc guards,

and a fractional permission π ∈ (0, 1] (in the style of [4]) is used to keep track of these capabilities.

The parameter m expresses the local contribution to the value of the counter — the actual value is

the sum of the local contributions. The ordinal parameter β represents a local bound on the number

of increments. Again, the actual bound is a sum of the local bounds. Standard ordinal addition is

inconvenient since it is not commutative; we use the natural (or Hessenberg) sum [28], denoted ⊕,

which is associative, commutative, and monotone in its arguments.

To allow the Inc guard to be shared among threads, we impose the following equivalence on guards:

Inc(n+m,α⊕ β, π1 + π2) = Inc(n, α, π1) • Inc(m,β, π2)

where n ≥ 0, m ≥ 0 and 1 ≥ π1 + π2 > 0. This equivalence expresses that Inc guards can be split (or

joined), preserving the total contribution to the value of the counter, ordinal bound and permission.

The second type of guard resource is Total(n, α), which tracks the actual value of the counter n

and ordinal α. These values should match the totals for the Inc guards, which we enforce by requiring

the following implication to hold:

Total(n, α) • Inc(m,β, 1) defined =⇒ n = m ∧ α = β

We wish to allow the contributions recorded in Inc guards to change, but to do so we must simultaneously

update the Total guard, as expressed by the following equivalence:

Total(n+m,α⊕ β) • Inc(m,β, π) = Total(n+m′, α⊕ β′) • Inc(m′, β′, π)

The possible states of CClient regions are the natural numbers N, representing the value of the

shared counter, together with the distinguished state ◦, representing that the region is no longer

required. The protocol for a region is specified by a guarded transition system, which describes how

the abstract state may be updated in atomic steps, and which guard resources are required to do so.

The transitions for CClient regions are as follows:

Inc(m, γ, π) : n n+ 1 Inc(m, γ, 1) : m ◦

This specifies that any thread with an Inc guard may increment the value of the counter, and a thread

owning the full Inc guard may dispose of the region.

It remains to define the interpretation of the region states:

I(CClienta(s, x, n)) , ∃α.Counter(s, x, n, α) ∗ [Total(n, α)]a

I(CClienta(s, x, ◦)) , True

114

By interpreting the state ◦ as True, we allow a thread transitioning into that state to acquire the

counter that previously belonged to the region. This justifies the last step of the proof in Figure 7.3.

The proof rule that allows us to use the atomic specification of the incr operation to update the

shared region is the UseAtomic rule, inherited from TaDA. The {}-assertions in Total-TaDA are also

required to be stable. That is, the region states must account for the changes that the concurrent

environment could make, under the assumption that it has guards that are compatible with those of

the thread. This is why the state of the CClient region is always existentially quantified in Figure 7.3.{
True

}
x := makeCounter();{
∃s.Counter(s, x, 0, ω ⊕ ω)

}{
∃s, a.CClienta(s, x, 0) ∗ [Inc(0, ω ⊕ ω, 1)]a

}{
∃s, v.CClienta(s, x, v) ∗ [Inc(0, ω, 1

2)]a ∗ 0 ≤ v
}

n := random();
i := 0;{
∃s, v.CClienta(s, x, v) ∗ [Inc(i, n, 1

2)]a ∗ 0 ≤ v ∗ i = 0
}

while (i < n) {

∀β.
{
∃s, v.CClienta(s, x, v) ∗ [Inc(i, β, 1

2)]a ∗ i ≤ v
∗ i < n ∗ β = n− i

}
incr(x); i := i + 1;{
∃s, δ, v.CClienta(s, x, v) ∗ [Inc(i, δ, 1

2)]a ∗ i ≤ v
∗ i ≤ n ∗ δ = n− i ∗ δ < β

}
}{
∃s, v.CClienta(s, x, v) ∗ [Inc(n, 0, 1

2)]a
}

{
∃s, v.CClienta(s, x, v)
∗ [Inc(0, ω, 1

2)]a

}
m := random();
j := 0;
while (j < m) {
incr(x);
j := j + 1;
}{
∃s, v.CClienta(s, x, v)
∗ [Inc(m, 0, 1

2)]a

}
{
∃s, a.CClienta(s, x, n + m) ∗ [Inc(n + m, 0, 1)]a

}{
∃s.Counter(s, x, n + m, 0)

}
Figure 7.3: Proof of a concurrent client of the counter.

7.1.3 Implementations

We prove the total correctness of the two distinct increment implementations against the abstract

specification given in §7.1.1.

Spin Counter Increment

Consider incr as shown in Figure 7.1. Note that the read, write and compare-and-set operations are

atomic. We want to prove the total correctness of incr against the atomic specification. The first step

is to give a concrete interpretation of the abstract predicate Counter(s, x, n, α). We introduce a new

region type, Counter, with only one non-empty guard, G. The abstract states of the region are pairs

of the form (n, α), where n is the value of the counter and α is a bound on the number of increments.

All transitions are guarded by G with the transition:

G : ∀n ∈ N,m ∈ N, α > β. (n, α) (n+m,β)

The transition requires that updates to the state of the region must decrease the ordinal. This allows

us to effectively bound interference, necessary to guarantee the termination of the loop in incr.

115

The interpretation of the Counter region states is defined as follows:

I(Countera(x, n, α)) , x 7→ n

The expression x 7→ n asserts that there exists a heap cell with address x and value n. Note that α is

not represented in the concrete heap, as it is not part of the program. We use it solely to ensure that

the number of operations is finite.

We define the interpretation of the abstract predicate as follows:

Counter(a, x, n, α) , Countera(x, n, α) ∗ [G]a

The abstract predicate Counter(a, x, n, α) asserts that there is a Counter region with identifier a,

address x, and with abstract state (n, α). Furthermore, it encapsulates exclusive ownership of the

guard G, and so embodies exclusive permission to update the counter. (Note that the type of the first

parameter of Counter, which is abstract to the client, is instantiated as RId.)

The specification for the increment is atomic and as such, we use the MakeAtomic rule which is

just the same as that of TaDA. The only difference is that termination is enforced. Whereas in TaDA

it would be possible for an abstract atomic operation to loop forever without performing its atomic

update, in Total-TaDA it is guaranteed to eventually perform the update.

A proof of the increment implementation is shown in Figure 7.4. The atomicity context allows the

environment to modify the abstract state of the counter, without restriction on the number of times.

The Counter transition system enforces that the ordinal α must decrease every time the value of the

counter is increased. This means that the number of times the region’s abstract state is updated is

finite. Our loop invariant is parametrised with a variant γ that takes the value of α at the beginning of

each loop iteration. When we first read the value of the counter n, we can assert: n > v =⇒ γ > α.

If the compare-and-set operation fails, the value of the counter has changed. This can only happen

in accordance with the region’s transition system, and so the ordinal parameter α must have decreased.

As such, the invariant still holds but for a lower ordinal, α < γ. We are localising the termination

argument for the loop, by relating the local variant with the ordinal parametrising the region.

If the compare-and-set succeeds, then we record our update from (v, α) to (v + 1, β(v, α)), where β

is the function chosen by the client that determines how the ordinal is reduced. The MakeAtomic

rule allows us to export this update in the postcondition of the whole operation.

Backoff Increment

Consider a different implementation of the increment operation, given in Figure 7.5, which loops

attempting to perform the operation, like the previous increment. However, if the compare-and-set

fails due to contention, it waits for a random number of iterations before retrying.

Despite the differences to the previous increment, the specification is the same. In fact, we can give

the same interpretation for the abstract predicate Counter(s, x, n, α), and the same guards and regions

that were used for the previous implementation. (Since this is the case, a counter module could provide

both of these operations: the proof system guarantees that they work correctly together.)

The main difference in the proof is that each iteration of the loop depends on not only the amount

of interference on the counter, but also on the variable n that is randomised when the compare-and-set

116

∀β.

A

n ∈ N, α.〈
Counter(s, x, n, α) ∗ α > β(n, α)

〉
A
b
st

r
a
c
t

:
s

=
a

〈
Countera(x, n, α) ∗ [G]a ∗ α > β(n, α)

〉
M
a
k
e
A
t
o
m
ic

a : (n, α) ∧ n ∈ N ∧ α > β(n, α) (n+ 1, β(n, α)) `τ{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ α > β(n, α)

}
b := 0;{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ b = 0 ∗ α > β(n, α)

}
while (b = 0) {
∀γ.{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ b = 0 ∗ γ ≥ α > β(n, α)

}
O
p
e
n
R
e
g
io
n A

n ∈ N, α.〈
x 7→ n ∗ γ ≥ α > β(n, α)

〉
v := [x];〈
x 7→ n ∗ v = n ∗ γ ≥ α > β(n, α) ∗ (n > v =⇒ γ > α)

〉
{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗
γ ≥ α > β(n, α) ∗ n ≥ v ∗ (n > v =⇒ γ > α)

}

U
p
d
a
t
e
R
e
g
io
n A

n ∈ N, α.〈
x 7→ n ∗ γ ≥ α > β(n, α) ∗ n ≥ v ∗ (n > v =⇒ γ > α)

〉
b := CAS(x, v, v + 1);〈
α > β(n, α) ∗ if b = 0 then γ > α ∗ x 7→ n

else x 7→ n+ 1 ∗ v = n

〉
∃n ∈ N, α. γ ≥ α > β(n, α) ∗ if b = 0 then

(
Countera(x, n, α)
∗ a Z⇒ � ∗ γ > α

)
else a Z⇒ ((v, α), (v + 1, β(n, α)))


}{
∃n ∈ N, α. a Z⇒ ((n, α), (n+ 1, β(n, α))) ∗ v = n

}
return v;{
∃n ∈ N, α. a Z⇒ ((n, α), (n+ 1, β(n, α))) ∗ ret = n

}〈
Countera(x, n+ 1, β(n, α)) ∗ [G]a ∗ ret = n

〉〈
Counter(s, x, n+ 1, β(n, α)) ∗ ret = n

〉
Figure 7.4: Proof of total correctness of increment.

fails. Any random number will be smaller than ω, and the maximum amount of times that the

compare-and-set can fail is α, the parameter of the Counter predicate. This is because α is a bound on

the number of times the counter can be incremented. We therefore use ω · α+ n as the upper bound

on the number of loop iterations.

Let γ be equal to ω ·α+n at the start of the loop iteration. At each loop iteration, we have two cases,

when n = 0 or otherwise. In the first case we try to perform the increment by doing a compare-and-set.

If the compare-and-set succeeds, then the increment occurs and the loop will exit. If it fails, then the

environment must have decreased α. This means that γ ≥ ω · α+ ω for the new value of α. We then

set n to be a new random number, which is less than ω, and end up with γ > ω · α+ n. In the second

case of the loop iteration, we simply decrement n by 1 and we know that γ > ω · α + n for the new

value of n. The proof of the backoff increment is shown in Figure 7.6.

117

function incr(x) {
n := 0;

b := 0;

while (b = 0) {
if (n = 0) {
v := [x];

b := CAS(x, v, v + 1);

n := random();

} else {
n := n− 1;

}
}
return v;

}

Figure 7.5: Backoff increment.

7.2 Logic

Total-TaDA is a Hoare logic which can be used to prove total correctness for fine-grained non-blocking

concurrent programs. The logic is essentially the same as for TaDA, simply adapted to incorporate

termination analysis using ordinals in a standard way.

The Total-TaDA proof judgement has the form:

λ;A `τ

A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
C

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉
.

The meaning of the judgement is similar to TaDA’s, however it has a total correctness interpretation,

which additionally enforces that C will eventually terminate. The pre- and postconditions are split into

a private part (the Pp and Qp(x, y)) and a public part (the P (x) and Q(x, y)). The idea is that the

command may make multiple, non-atomic updates to the private part, but must only make a single

atomic update to the public part. Before the atomic update, the environment is allowed to change

the public part of the state, but only by changing the parameter x of P which must remain within X.

After the atomic update, the specification makes no constraint on how the environment modifies the

public state. All that is known is that, immediately after the atomic update, the public and private

parts satisfy the postcondition for a common value of y. The private assertions in our judgements must

be stable: that is, they must account for any updates other threads could have sufficient resources to

perform. The main difference is that the judgement has a total-correctness interpretation, i.e. C must

eventually terminate. We use the τ subscript to emphasise the total-correctness interpretation.

The proof rules are mostly the same as in TaDA, except for the Loop rule and, Function rule,

which use variants to prohibit non-termination as follows:

118

∀β.

A

n ∈ N, α.〈
Counter(s, x, n, α) ∗ α > β(n, α)

〉
A
b
st

r
a
c
t

:
s

=
a

〈
Countera(x, n, α) ∗ [G]a ∗ α > β(n, α)

〉
M
a
k
e
A
t
o
m
ic

a : (n, α) ∧ n ∈ N ∧ α > β(n, α) (n+ 1, β(n, α)) `τ
n := 0; b := 0;{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ n = 0 ∗ b = 0 ∗ α > β(n, α)

}
while (b = 0) {
∀γ.{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ b = 0 ∗ γ ≥ ω · α+ n ∗ α > β(n, α)

}
if (n = 0) {{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ γ ≥ ω · α ∗ α > β(n, α)

}

O
p
e
n
R
e
g
io
n A

n ∈ N, α.〈
x 7→ n ∗ γ ≥ ω · α ∗ α > β(n, α)

〉
v := [x];〈
x 7→ n ∗ v = n ∗ γ ≥ ω · α ∗ α > β(n, α) ∗ (n > v =⇒ γ ≥ ω · α+ ω)

〉
{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ γ ≥ ω · α ∗ α > β(n, α)

∗ n ≥ v ∗ (n > v =⇒ γ ≥ ω · α+ ω)

}

U
p
d
a
t
e
R
e
g
io
n A

n ∈ N, α.〈
x 7→ n ∗ γ ≥ ω · α ∗ α > β(n, α) ∗ n ≥ v ∗ (n > v =⇒ γ ≥ ω · α+ ω)

〉
b := CAS(x, v, v + 1);〈
α > β(n, α) ∗ if b = 0 then γ ≥ ω · α+ ω ∗ x 7→ n else x 7→ n+ 1 ∗ v = n

〉
{
∃n ∈ N, α. α > β(n, α) ∗ if b = 0 then Countera(x, n, α) ∗ a Z⇒ � ∗ γ ≥ ω · α+ ω

else a Z⇒ ((v, α), (v + 1, β(n, α)))

}
n := random();{
∃n ∈ N, α. α > β(n, α) ∗ if b = 0 then Countera(x, n, α) ∗ a Z⇒ � ∗ γ > ω · α+ n

else a Z⇒ ((v, α), (v + 1, β(n, α)))

}
} else {{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ b = 0 ∗ γ ≥ ω · α+ n ∗ α > β(n, α)

}
n := n− 1;{
∃n ∈ N, α.Countera(x, n, α) ∗ a Z⇒ � ∗ b = 0 ∗ γ > ω · α+ n ∗ α > β(n, α)

}
}{
∃n ∈ N, α. α > β(n, α) ∗ if b = 0 then Countera(x, n, α) ∗ a Z⇒ � ∗ γ > ω · α+ n

else a Z⇒ ((v, α), (v + 1, β(n, α)))

}
}{
∃n ∈ N, α, . a Z⇒ ((n, α), (n+ 1, β(n, α))) ∗ v = n

}
return v;{
∃n ∈ N, α. a Z⇒ ((n, α), (n+ 1, β(n, α))) ∗ ret = n

}〈
Countera(x, n+ 1, β(n, α)) ∗ [G]a ∗ ret = n

〉〈
Counter(s, x, n+ 1, β(n, α)) ∗ ret = n

〉
Figure 7.6: Proof of total correctness of backoff increment.

119

Loop

∀γ ≤ α.Γ;λ;A `τ
{
P (γ) ∧ B

}
C
{
∃β. P (β) ∧ β < γ

}
Γ;λ;A `τ

{
P (α)

}
while (B) {C}

{
∃β. P (β) ∧ ¬B ∧ β ≤ α

}
Function

Γ = Γ′, ∀γ < α. λ;A `τ

A

x ∈ X.
〈
Pp(~z, γ)

∣∣∣P (x, ~z)
〉
f(~z)

E

y ∈ Y.
〈
Qp(x, y, ~z, ret)

∣∣∣Q(x, y, ~z, ret)
〉

code(η(f)) = C return E; vars(η(f)) = ~x

Γ′;λ;A `τ

A

x ∈ X.
〈
Pp(~z, α) ∗ ~x = ~z

∣∣∣P (x, ~z)
〉

C

E

(y, ret) ∈ Y × Val.
〈
Qp(x, y, ~z, ret) ∗ ret = E

∣∣∣Q(x, y, ~z, ret)
〉

Γ;λ;A `τ

A

x ∈ X.
〈
Pp(~z, α)

∣∣∣P (x, ~z)
〉
f(~z)

E

y ∈ Y.
〈
Qp(x, y, ~z, ret)

∣∣∣Q(x, y, ~z, ret)
〉

The Loop rule enforces that the number of times that the loop body can run is finite. The rule

allows us to perform a while loop if we can guarantee that each loop iteration decreases the ordinal

parametrising the invariant P . By the finite-chain property of ordinals, there cannot be an infinite

number of iterations.

The Function rule enforces that the number of times that function body can call itself or other

functions is finite. This is enforced similarly to the loop, by decreasing the ordinal parametrising the

precondition of the function. Note that this has a direct impact on the FunctionCall rule and Fork

rule, as they make use of the function specifications. We are guaranteeing that both function calls and

forks occur a finite amount of times within a program.

Moreover, we add a new proof rule to the non-deterministic function used throughout this chapter:

Random

Γ;λ;A `τ
{
True

}
x := random();

{
∃n ∈ N. x = n

}

7.3 Case Study: Treiber’s Stack

We now consider a version of Treiber’s stack [57] to demonstrate how Total-TaDA can be applied to

verify the total correctness of larger modules.

∀α. `τ
{
True

}
makeStack()

{
∃s ∈ T1, t ∈ T2.Stack(s, ret, [], t, α)

}
∀β. `τ

A

vs, t, α.
〈
Stack(s, x, vs, t, α) ∗ α > β(vs, α)

〉
push(x, v)

〈
∃t′. Stack(s, x, v : vs, t′, β(vs, α))

〉
`τ

A

vs, t, α.

〈
Stack(s, x, vs, t, α)

〉
pop(x)

〈
if vs = [] then Stack(s, x, vs, t, α) ∗ ret = 0
else ∃vs′, t′.Stack(s, x, vs′, t′, α) ∗ vs = ret : vs′

〉

Figure 7.7: Stack operation specifications.

120

7.3.1 Atomic Specification

In Figure 7.7, we give the specification of the lock-free stack operations. This is a Total-TaDA

specification satisfiable by a reasonable non-blocking implementation. As with the counter, the

predicate representing the stack is parametrised by an ordinal that bounds the number of operations

on the stack, in order to guarantee termination. The Stack(s, x, vs, t, α) predicate has five parameters:

the address of the stack x; its contents vs; an ordinal α that decreases every time a push operation is

performed; and two parameters, s and t that range over abstract types T1 and T2 respectively. These

last two parameters encapsulate implementation-specific information about the configuration of the

stack (s is invariant, while t may vary) and hence their types are abstract to the client. Note that it is

possible to abstract the parameter t using the AExists rule in this case.

The constructor returns an empty stack, parametrised by an arbitrary ordinal chosen by the client.

The push operation atomically adds an element to the head of the stack. The pop operation atomically

removes one element from the head of the stack, if one is available (i.e. the stack is non-empty);

otherwise it will simply return 0. (As this stack is non-blocking, it would not be possible for the pop

operation to wait for the stack to become non-empty.)

Note that the ordinal parametrising the stack is not required to decrease when popping the stack.

This means that the stack operations cannot be starved by an unbounded number of pop invocations.

This need not be the case in general for a lock-free stack, but it is true for Treiber’s stack. We discuss

the ramifications of this kind of specification further in §7.5.3.

7.3.2 Implementation

Figure 7.8 gives an implementation of the stack operations based on Treiber’s stack [57]. The stack is

represented as a heap cell containing a pointer (the head pointer) to a singly-linked list of the values on

the stack. Values are pushed onto the stack by allocating a new node holding the value to be pushed

and a pointer to the old head of the stack. A compare-and-set operation updates the old head of the

stack to point to the new node. If the operation fails, it will be because the head of the stack has

changed, and so the operation is retried. Values are popped from the stack by moving the head pointer

one step along the list. Again, a compare-and-set operation is used for this update, so if the head of

the stack changes the operation can be retried. If the stack is empty (i.e. the head points to 0), then

pop simply returns 0, without affecting the stack.

To prove correctness of the implementation, we introduce predicates to represent the linked list:

list(x, ns) , (x = 0 ∗ ns = []) ∨ (∃v, l. node(x, v, l) ∗ list(l, ns′) ∗ ns = (x, v) : ns′)

node(n, v, l) , n.value 7→ v ∗ n.next 7→ l

It is important for the correctness of the algorithm that nodes that have been popped can never

reappear as the head of the stack. Otherwise, a pop operation could have seen the node when it was

previously the head, and update the head to point to what was then the next node, but may no longer

be. To account for this, in our representation of the stack we track the set of previously popped nodes,

and ensure that they are disjoint from the nodes in the stack. The stack(x, ns, ds) predicate, therefore,

121

consists of a list starting at address x, with contents ns, and a disjoint set of discarded nodes ds:

stack(x, ns, ds) , list(x, ns) ∗ �
(n,v)∈ds

node(n, v,)

We define a region type TStack to hold the shared data-structure. The type is parametrised by the

address of the stack, and its abstract state consists of a list of nodes in the stack ns, a set of popped

nodes ds, and an ordinal α. The TStack region type has the following interpretation:

I(TStacka(x, ns, ds, α)) , ∃y. x 7→ y ∗ stack(y, ns, ds)

We use a single guard G to give threads permissions to push and pop the stack. The transition system

is given as follows:

G : ∀n, v, ns, ds, α, β < α. (ns, ds, α) ((n, v) : ns, ds, β)

G : ∀n, v, ns, ds, α. ((n, v) : ns, ds, α) (ns, (n, v)] ds, α)

The first action allows us to add an element to the head of the stack. The second action allows us

to remove the top element of the stack, adding it to the set of discarded nodes. There is no explicit

transition for the pop on the empty stack, since this operation does not change the abstract state.

Note that for every transition (ns, ds, α) (ns′, ds′, α′), we have 2 ·α+ |ns| > 2 ·α′+ |ns′|. Pushing

decreases the ordinal, but extends the length of the stack by 1; popping maintains the ordinal, but

decreases the length of the stack. This property allows us to use 2 · α + |ns| as a variant in the

compare-and-set loops, since it is guaranteed to decrease under any interference.

The abstract predicate Stack(s, x, vs, t, α) combines the region and the guard:

Stack(a, x, vs, (ns, ds), α) , TStacka(x, ns, ds, α) ∗ [G]a ∗ vs = snds(ns)

The function snds returns the list of elements of the second elements of the list of pairs ns. Consequently,

vs is the list of values on the stack, rather than address-value pairs.

The proof for the pop operation is given in Figure 7.9. When the stack is non-empty, if the compare-

function makeStack() {
x := alloc(1);

[x] := 0;

return x;

}

function push(x, v) {
y := alloc(2);

[y.value] := v;

do {
z := [x];

[y.next] := z;

b := CAS(x, z, y);

} while (b = 0);

}

function pop(x) {
do {
y := [x];

if (y = 0) { return 0; ; }
z := [y.next];

b := CAS(x, y, z);

} while (b = 0);

v := [y.value];

return v;

}

where
E.value def

= E E.next def
= E + 1.

Figure 7.8: Treiber’s stack operations.

122

and-set fails then another thread must have succeeded in updating the stack, and so reduced the

ordinal or the length of the stack; by basing the loop variant on the ordinal and stack length, we can

guarantee that the operation will eventually succeed.

The proof of the push operation is in Figure 7.10. If the compare-and-set fails, then another thread

must have updated the stack by removing or adding an element. As in the pop operation proof,

updating the stack reduces the ordinal or the length of the stack. We related the loop variant on the

ordinal and the stack length to guarantee that the operation will eventually succeed.

7.4 Semantics and Soundness

The semantics of Total-TaDA are mostly similar to that for TaDA, we will focus on the differences.

We first extend the operational semantics of the language to include the new function as follows:

Random

n ∈ N

(σ, x := random();)
id−→η (σ[x 7→ n], skip;)

We use the same model for assertions as that for TaDA. We also use a similar semantic judgement, �τ ,

which ensures that the concrete behaviours of programs simulate the abstract behaviours represented

by the specifications.

Definition 7.1 (Semantic Judgement). The semantic judgement

η;λ;A �τ
A

x ∈ X.
〈
Pp

∣∣∣P (x)
〉
c

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

where

• η ∈ FEnv is a function environment;

• λ ∈ Level is a level strictly greater than that of any region that will be affected by the program;

• A ∈ AContext is the atomicity context, which constrains updates to regions on which an abstractly

atomic update is to be performed;

• Pp ∈ Store→ ViewA is the private part of the precondition, which does not correspond to resources

in some opened shared region, and is parametrised by the valuation of program variables;

• P ∈ X → ViewA is the public part of the precondition, which may correspond to resources from

some opened shared regions, and is parametrised by x ∈ X that tracks the precondition at the

atomic update and by the valuation of program variables;

• c ∈ ExtCmd is the program under consideration;

• Qp ∈ X × Y → Store→ ViewA is the private part of the postcondition, which is parametrised by

x ∈ X that tracks the precondition at the atomic update, by y ∈ Y that tracks the postcondition

at the atomic update, and by the valuation of program variables;

• Q ∈ X × Y → ViewA is the public part of the postcondition, which is similarly parametrised by

x ∈ X and y ∈ Y , and by the valuation of program variables;

123

A

vs, t, α.〈
Stack(s, x, vs, t, α)

〉
A
b
st

r
a
c
t

:
s

=
a
,
t

=
(n
s,
d
s)

〈
TStacka(x, ns, ds, α) ∗ [G]a ∗ vs = snds(ns)

〉
M
a
k
e
A
t
o
m
ic

a : (ns, ds, α) if ns = [] then (ns, ds, α) else (ns′, (n, v)] ds, α) ∧ ns = (n, v) : ns′ `τ{
∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ �

}
do {
∀γ.{
∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ γ ≥ 2 · α+ |ns|

}
U
p
d
a
t
e
R
e
g
io
n A

ns, ds, α.〈
∃w. x 7→ w ∗ stack(w, ns, ds) ∗ γ ≥ 2 · α+ |ns|

〉
y := [x];〈
x 7→ y ∗ stack(y, ns, ds) ∗ γ ≥ 2 · α+ |ns| ∗
if y = 0 then ns = [] else ∃v. (y, v) = head(ns)

〉
∃ns, ds, α. if y = 0 then a Z⇒ (([], ds, α), ([], ds, α))

else ∃v.
(

TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ (y, v) ∈ ns++ ds ∗
γ ≥ 2 · α+ |ns| ∗ head(ns) 6= (y, v) =⇒ γ > 2 · α+ |ns|

)
if (y = 0) {
return 0;{
∃ds, α. a Z⇒ (([], ds, α), ([], ds, α)) ∗ ret = 0

}
}{
∃ns, ds, v, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ (y, v) ∈ ns++ ds ∗
γ ≥ 2 · α+ |ns| ∗ head(ns) 6= (y, v) =⇒ γ > 2 · α+ |ns|

}
z := [y.next];∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ γ ≥ 2 · α+ |ns| ∗(

(∃v, v′, ns′. ns = [(y, v), (z, v′)] ++ ns′) ∨ (∃v. ns = [(y, v)] ∗ z = 0)
∨(∃v. (y, v) ∈ ns++ ds ∗ head(ns) 6= (y, v) ∗ γ > 2 · α+ |ns|)

)

U
p
d
a
t
e
R
e
g
io
n

A

ns, ds, α.〈∃w. x 7→ w ∗ stack(w, ns, ds) ∗ γ ≥ 2 · α+ |ns| ∗(∃v, v′, ns′. ns = [(y, v), (z, v′)] ++ ns′)
∨ (∃v. ns = [(y, v)] ∗ z = 0)
∨ (∃v. (y, v) ∈ ns++ ds ∗ head(ns) 6= (y, v) ∗ γ > 2 · α+ |ns|)


〉

b := CAS(x, y, z);〈
if b = 0 then ∃w. x 7→ w ∗ stack(w, ns, ds) ∗ γ > 2 · α+ |ns|

else ∃v, ns′. x 7→ z ∗ stack(z, ns′, (y, v)] ds) ∗ ns = (y, v) : ns′

〉

∃ns, ds, α. γ ≥ 2 · α+ |ns| ∗
if b = 0 then TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ γ > 2 · α+ |ns|

else

(
∃v, ns′, ds′, α′. (y, v) ∈ ds′ ∗TStacka(x, ns′, ds′, α′)
∗ a Z⇒ (((y, v) : ns, ds, α), (ns, (y, v)] ds), α)

)


} while (b = 0);{
∃v, ns, ds, α, ns′, ds′, α′. (y, v) ∈ ds′ ∗TStacka(x, ns′, ds′, α′)
∗ a Z⇒ (((y, v) : ns, ds, α), (ns, (y, v)] ds, α))

}
v := [y.value];{
∃ns, ds, α. a Z⇒ (((y, v) : ns, ds, α), (ns, (y, v)] ds, α))

}
return v;{
∃y, ns, ds, α. a Z⇒ (((y, ret) : ns, ds, α), (ns, (y, ret)] ds), α)

}〈
if vs = [] then TStacka(x, ns, ds, α) ∗ [G]a ∗ vs = snds(ns) ∗ ret = 0

else ∃ns′, vs′, y.TStacka(x, ns′, (y, ret)] ds, α) ∗ [G]a ∗ vs′ = snds(ns′) ∗ ns = (y, ret) : ns′

〉
〈
if vs = [] then Stack(s, x, vs, t, α) ∗ ret = 0 else ∃vs′, t′.Stack(s, x, vs′, t′, α) ∗ vs = ret : vs′

〉
Figure 7.9: Proof of total correctness of Treiber’s stack pop operation.

124

∀β.

A

vs, t, α.〈
Stack(s, x, vs, t, α) ∗ α > β(α, vs)

〉

A
b
st

r
a
c
t

:
s

=
a
,
t

=
(n
s,
d
s)

〈
TStacka(x, ns, ds, α) ∗ [G]a ∗ vs = snds(ns) ∗ α > β(α, snds(ns))

〉

M
a
k
e
A
t
o
m
ic

a : (ns, ds, α) ∧ α > β(α, snds(ns)) ((n, v) : ns, ds, β(α, snds(ns))) `τ{
∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ α > β(α, snds(ns))

}
y := alloc(2);{
∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ node(y, ,) ∗ α > β(α, snds(ns))

}
[y] := v;{
∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ node(y, v,) ∗ α > β(α, snds(ns))

}
do {
∀γ.{
∃ns, ds, α. TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ node(y, v,)
∗ α > β(α, snds(ns)) ∗ γ ≥ 2 · α+ |ns|

}

O
p
e
n
R
e
g
io
n A

ns, ds, α.〈
∃y. x 7→ y ∗ stack(y, ns, ds) ∗ α > β(α, snds(ns)) ∗ γ ≥ 2 · α+ |ns|

〉
z := [x];〈
∃y. x 7→ y ∗ stack(y, ns, ds) ∗ z = y ∗ α > β(α, snds(ns)) ∗ γ ≥ 2 · α+ |ns|

〉

∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ node(y, v,)
∗ α > β(α, snds(ns)) ∗ γ ≥ 2 · α+ |ns| ∗
((ns = [] ∗ z = 0) ∨ head(ns) = (z,) ∨ γ > 2 · α+ |ns|)


[y.next] := z;
∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗ node(y, v, z) ∗
α > β(α, snds(ns)) ∗ γ ≥ 2 · α+ |ns| ∗
((ns = [] ∗ z = 0) ∨ head(ns) = (z,) ∨ γ > 2 · α+ |ns|)



U
p
d
a
t
e
R
e
g
io
n

A

ns, ds, α.〈∃w. x 7→ w ∗ stack(w, ns, ds) ∗ node(y, v, z) ∗
α > β(α, snds(ns)) ∗ γ ≥ 2 · α+ |ns| ∗
((ns = [] ∗ z = 0) ∨ head(ns) = (z,) ∨ γ > 2 · α+ |ns|)

〉
b := CAS(x, z, y);〈

if b = 0 then ∃w. x 7→ w ∗ stack(w, ns, ds) ∗ node(y, v,) ∗ γ > 2 · α+ |ns|
else x 7→ y ∗ stack(y, ((y, v) : ns, ds))

〉
if b = 0 then

(
∃ns, ds, α.TStacka(x, ns, ds, α) ∗ a Z⇒ � ∗

node(y, v,) ∗ α > β(α, snds(ns)) ∗ γ > 2 · α+ |ns|

)
else ∃ns, ds, α. a Z⇒ ((ns, ds, α), ((y, v) : ns, ds, β(α, snds(ns))))


} while (b = 0);{
∃ns, ds, α. a Z⇒ ((ns, ds, α), ((y, v) : ns, ds, β(α, snds(ns))))

}〈
∃n.TStacka(x, (n, v) : ns, ds, β(α, vs)) ∗ [G]a ∗ v : vs = snds((n, v) : ns)

〉〈
∃t′. Stack(s, x, v : vs, t′, β(α, vs))

〉
Figure 7.10: Proof of total correctness of Treiber’s stack push operation.

125

is defined to be the least-general judgement that holds when the following conditions hold:

• For all σ, σ1 ∈ Store, c1 ∈ ExtCmd, α ∈ AAction with (σ, c)
α−→η (σ1, c1), for all x ∈ X, there

exists P ′p ∈ Store→ ViewA, P ′′p ∈ X × Y → Store→ ViewA such that

η;λ;A �
〈
Pp(σ) ∗ P (x)

〉
α
〈
P ′p(σ1) ∗ P (x) ∨ ∃y ∈ Y. P ′′p (x, y, σ1) ∗Q(x, y)

〉
(7.1)

η;λ;A �τ

A

x ∈ X.
〈
P ′p

∣∣∣P (x)
〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

, (7.2)

and for all y ∈ Y , η;λ;A �τ
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
. (7.3)

• For all σ, σ1 ∈ Store, c1 ∈ ExtCmd, f, ~v with (σ, c)
spawn(f,~v)−−−−−−→η (σ1, c1), for all x ∈ X, there exist

P ′p ∈ Store → ViewA, P ′′p ∈ X × Y → Store → ViewA and Pf ∈ Store → View such that for all

σf ∈ Store with vars(η(f)) = ~x, σf(~x) = ~v and code(η(f)) = C return E;,

λ;A � Pp(σ) ∗ P (x) � P ′p(σ1) ∗ Pf(σf) ∗ P (x) ∨ ∃y ∈ Y. P ′′p (σ1) ∗ Pf(σf) ∗Q(x, y), (7.4)

η;λ;A �τ

A

x ∈ X.
〈
P ′p

∣∣∣P (x)
〉
c1

E

y ∈ Y.
〈
Qp(x, y)

∣∣∣Q(x, y)
〉

, (7.5)

for all y ∈ Y , η;λ;A �τ
{
P ′′p (x, y)

}
c1

{
Qp(x, y)

}
, (7.6)

and η;λ; ∅ �τ

A

x ∈ 1.
〈
λσf. Pf(~z) ∗ σf(~x) = ~z

∣∣∣True〉
C

E

(y, ret) ∈ 1× Val.
〈
λσf. Qf(~z, ret) ∗ ret = EJEKσf

∣∣∣True〉. (7.7)

• If c = skip; then, for all σ ∈ Store, x ∈ X, there exists y ∈ Y such that

λ;A � Pp(σ) ∗ P (x) � Qp(x, y, σ) ∗Q(x, y). (7.8)

The key distinction is that, whereas in TaDA the judgement (4.61) is defined coinductively (as a

greatest fixed point), in Total-TaDA the judgement is defined inductively (as a least fixed point). By

the Knaster-Tarski theorem [56], we know it has a least fixed-point. This means that TaDA admits

executions that never terminate, while Total-TaDA requires executions to always terminate: that is,

reach a base case of the inductive definition.

The proof of soundness of Total-TaDA is similar to that for TaDA. The soundness proof consists of

lemmas that justify each of the proof rules for the semantic judgement. Most of the Total-TaDA rules

have similar proofs to the corresponding TaDA rules, but proceed by induction instead of coinduction.

Of course, the Loop and Function rules are different, since termination does not follow trivially. We

give the proof for Loop.

Lemma 7.1 (Loop Rule). Let α be an ordinal. If, for all γ ≤ α,

η;λ;A �τ
{
Pp(γ) ∧ B

}
C
{
∃β. Pp(β) ∧ β < γ

}
(7.9)

then

η;λ;A �τ
{
Pp(α)

}
while (B) {C}

{
∃β. Pp(β) ∧ ¬B ∧ β ≤ α

}
. (7.10)

126

Proof. The proof is by transfinite induction on the ordinal α. As the inductive hypothesis, we shall

assume that the lemma holds for all δ < α. Since while (B) {C} has two possible reductions, both

with transition id, to show (7.10), it is sufficient to establish:

η;λ;A �τ
{
Pp(α) ∧ B

}
C while (B) {C}

{
∃β. Pp(β) ∧ ¬B ∧ β ≤ α

}
(7.11)

η;λ;A �τ
{
Pp(α) ∧ ¬B

}
skip;

{
∃β. Pp(β) ∧ ¬B ∧ β ≤ α

}
(7.12)

This is sufficient since the first condition of the semantic judgement is the only one that may apply. For

the reduction (σ, while (B) {C}) id−→ (σ,C while (B) {C}) (which requires B(σ)), take P ′p = Pp(α)∧B
and P ′′p = False. The first and third sub-conditions become trivial, while the second reduces to (7.11).

For the reduction (σ, while (B) {C}) id−→ (σ, skip;) (which requires ¬B(σ)), take P ′p = Pp(α) ∧ ¬B and

P ′′p = False. Similarly, the first and third sub-conditions are trivial and the second reduces to (7.12).

To establish (7.11), we have from (7.9), for γ = α and renaming β to δ:

η;λ;A �τ
{
Pp(α) ∧ B

}
C
{
∃δ. Pp(δ) ∧ δ < α

}
.

Next, for all δ < α, we have, by the inductive hypothesis1, that

η;λ;A �τ
{
Pp(δ)

}
while (B) {C}

{
∃β. Pp(β) ∧ ¬B ∧ β ≤ δ

}
,

and hence

η;λ;A �τ
{
∃δ. Pp(δ) ∧ δ < α

}
while (B) {C}

{
∃β. Pp(β) ∧ ¬B ∧ β ≤ α

}
.

Now (7.11) follows from the above by the sequencing lemma.

On the other hand, it is trivial to establish (7.12) by choosing α as the witness for β.

7.5 Non-blocking Properties

Non-blocking properties are used to characterise concurrent algorithms that guarantee progress. A

lock-free algorithm guarantees global progress: an individual thread might fail to make progress, but

only because some other thread does make progress. A wait-free algorithm guarantees local progress:

every thread makes progress when it is scheduled. We consider how non-blocking properties can be

formalised using Total-TaDA.

7.5.1 Lock-freedom

We have described lock-freedom in terms of an informal notion of “progress”. In order to properly

characterise modules as lock-free, we need a more formal definition. We can characterise global progress

for a module as follows: at any time, eventually either a pending operation will be completed or another

operation will be begun. If we assume that the number of threads is bounded, then as long as there

are pending module operations, some operation will eventually complete. If the number of threads

1Since we have that ∀γ ≤ α. η;λ;A �τ
{
Pp(γ) ∧ B

}
C

{
∃β. Pp(β) ∧ β < γ

}
, we certainly have that ∀γ ≤ δ. λ;A �τ{

Pp(γ) ∧ B
}
C

{
∃β. Pp(β) ∧ β < γ

}
, since δ < α. This allows us to obtain the consequent of the inductive hypothesis.

127

is unbounded, then there is no guarantee that any operation will complete, even if it is scheduled

arbitrarily often, since additional operations can always begin.

Based on this observation, Gotsman et al. [23] reduced lock-freedom to the termination of a simple

class of programs, the bounded most-general clients (BMGCs) of a module. Hoffmann et al. [30]

generalised the result to apply to algorithms where the identity or the number of threads is significant.

An (m,n)-bounded general client consists of m threads which each invoke n module operations in

sequence. If all such bounded general clients (for all n and m)2 terminate, then the module is lock-free.

Definition 7.2 ((m,n)-bounded General Client). Consider a module M with initialiser init and a

set of operations O. We define the following sets of programs:

Tn = {op1; . . . ; opn | opi ∈ O}

Cm,n = {init; (t1‖ . . . ‖tm) | ti ∈ Tn} .

Theorem 7.2 (Hoffmann et al. [30]). Given a moduleM, if, for all m and n, every program c ∈ Cm,n
terminates, then M is lock free.

Using this theorem, we define a specification pattern for Total-TaDA that guarantees lock-freedom

and follows from the typical specifications we establish for lock-free modules.

Theorem 7.3 (Lock-freedom). Given a module M and some abstract predicate M (with two abstract

parameters and an ordinal parameter), suppose that the following specifications are provable:

∀α. `τ
{
True

}
init

{
∃s, u.M(s, u, α)

}
∀op ∈ O.∀β. `τ

A

u, α.
〈
M(s, u, α) ∧ α > β(α)

〉
op
〈
∃u′.M(s, u′, β(α))

〉
.

Then, M is lock-free.

Proof. By Theorem 7.2, it is sufficient to show that, for arbitrary m,n and c ∈ Cm,n, the program c

terminates. Fix the number of threads m.

We define a region type M whose abstract states consist of vectors x̄ ∈ Nm. We denote by xi, for

1 ≤ i ≤ m, the i-th component of vector x̄. We denote by
∑
x̄ the sum

∑i=m
i=1 xi. Region states are

interpreted as follows:

I(Ma(s, x̄)) , ∃u.M (s, u,
∑
x̄) .

The guard algebra for M consists of m distinct guards G1, . . . ,Gm. Formally, the guards are subsets

of {Gi | 1 ≤ i ≤ m} under disjoint union. The state transition system for M allows a thread holding

guard Gi to decrease the i-th component of the abstract state:

Gi : (∀j 6= i. xj = yj) ∧ xi > yi ∧ x̄ ȳ.

2The bounded most-general client may be seen as the program which non-deterministically chooses among all bounded
general clients.

128

For 1 ≤ i ≤ m, arbitrary n, and op ∈ O, we have{
∃s, x̄.Ma(s, x̄) ∗ [Gi]a ∗ xi = n+ 1

}

E
x
is
t
s

{
∃x̄.Ma(s, x̄) ∗ [Gi]a ∗ xi = n+ 1

}

U
se

A
t
o
m
ic

〈
∃u.M(s, u, k + n+ 1)

〉

A
E
x
is
t
s

A

u, k.〈
M(s, u, k + n+ 1)

〉
op〈
∃u′.M(s, u′, k + n)

〉〈
∃u′.M(s, u′, k + n) ∗ [Gi]a ∗ xi = n

〉{
∃x̄.Ma(s, x̄) ∗ [Gi]a ∗ xi = n

}{
∃s, x̄.Ma(s, x̄) ∗ [Gi]a ∗ xi = n

}
Applying this specification repeatedly (by induction), we have for arbitrary t ∈ Tn

`τ
{
∃s, x̄.Ma(s, x̄) ∗ [Gi]a ∗ xi = n

}
t
{
True

}
Let c = init; (t1‖ . . . ‖tm) ∈ Cm,n be arbitrary. We derive `τ

{
True

}
c
{
True

}
by choosing n ·m as

the initial ordinal and creating an M-region with initial state (n, . . . , n) as follows:{
True

}
init;{

∃s, u.M(s, u, n ·m)
}

// create region{
∃a, s.Ma(s, (n, . . . , n)) ∗ [G1]a ∗ . . . ∗ [Gm]a

}{
∃s, x̄.Ma(s, x̄) ∗ [G1]a ∗ x1 = n

}
t1

{
True

}
. . .

{
∃s, x̄.Ma(s, x̄) ∗ [Gm]a ∗ xm = n

}
tm

{
True

}{
True

}
Consequently, c terminates, as required.

It is straightforward to apply Theorem 7.3 to the modules we have considered.

7.5.2 Wait-freedom

Whereas lock-freedom only requires that some thread makes progress, wait-freedom requires that every

thread makes progress (provided that it is not permanently descheduled). In terms of operations,

this requires that each operation of a module should complete within a finite number of steps. Since

Total-TaDA specifications guarantee that operations terminate, it is simple to describe a specification

that implies that a module is wait-free.

Theorem 7.4 (Wait-freedom). Given a module M and some abstract predicate M (with two abstract

129

parameters), suppose that the following specifications are provable:

`τ
{
True

}
init

{
∃s, t.M(s, u)

}
∀op ∈ O. `τ

A

u.
〈
M(s, u)

〉
op
〈
∃u′.M(s, u′)

〉
.

Then M is wait-free.

Proof. The specifications imply that M is an invariant which is established by the initialiser and

preserved at all times by the module operations. Furthermore, all of the module operations terminate,

assuming the environment maintains M invariant. Consequently, all of the module operations terminate

in the context of an environment calling module operations: the module is wait-free.

Lock-freedom can only be applied to a module as a whole, since it relates to global progress.

Wait-freedom, by contrast, relates to local progress — that the operations of each thread terminate

— and so it is meaningful to consider an individual operation to be wait-free in a context where

other operations may be lock-free or even blocking. By combining (partial-correctness) TaDA and

Total-TaDA specifications (indicated by ` and `τ respectively), we can give a specification pattern

that guarantees wait-freedom for a specific module operation.

Theorem 7.5 (Wait-free Operation). Given a module M and some abstract predicate M (with two

abstract parameters), suppose that the following specifications are provable:

`
{
True

}
init

{
∃s, u.M(s, u)

}
`τ

A

u.
〈
M(s, u)

〉
op
〈
∃u′.M(s, u′)

〉
∀op’ ∈ O. `

A

u.
〈
M(s, u)

〉
op’

〈
∃u′.M(s, u′)

〉
Then op is wait-free.

Proof. As before, M is a module invariant; op is guaranteed to terminate with this invariant, therefore

it is wait-free.

The specifications required by Theorem 7.5 do not follow from those given for our examples. However,

where applicable, the proofs can easily be adapted. For instance, to show that the read operation of

the counter is wait-free, we would remove the ordinals from the region definition, and abstract the

value of the counter. This breaks the termination proof for the increment operations, but we can adapt

it to a partial-correctness proof in TaDA. The termination proof for read does not depend on the

ordinal parameter of the region, and so we can still establish total correctness, as required.

130

7.5.3 Non-impedance

Recall the counter specification from §7.1.1. If we abstract the value and address of the counter (which

are irrelevant to termination), the specification becomes:

∀α. `τ
{
True

}
x := makeCounter();

{
∃s ∈ T1, u ∈ T2.Counter(s, u, α)

}
`τ

A

u, α.
〈
Counter(s, u, α)

〉
read(x)

〈
Counter(s, u, α)

〉
∀β. `τ

A

u, α.
〈
Counter(s, u, α) ∗ α > β(α)

〉
incr(x)

〈
∃u′.Counter(s, u′, β(α))

〉
As the read operation does not change the ordinal, it implies that both the read and incr operations

will terminate in a concurrent environment that performs an unbounded number of reads. This suggests

an alternative approach to characterising lock-free modules in terms of which operations impede each

other—that is, which operations may prevent the termination of an operation if infinitely many of them

are invoked during a (fair) execution of the operation. Our specification implies that read does not

impede either read or incr. This is expressed by edges 1 and 2 in the following non-impedance graph:

incr read 1

2

3

Note that the above specifications for the counter do not by themselves imply that incr does not

impede read (edge 3). This can be demonstrated by considering an alternative implementation of

read, that satisfies the specification but is not wait-free:

do {
v := [x];

w := [x];

} while (v 6= w);

return v;

Recall that we can prove that read is wait-free by giving a different specification as in Theorem 7.5.

An operation is wait-free precisely when every operation does not impede it. For read, this is expressed

by edges 1 and 3 in the above graph.

The stack specification in Figure 7.7, much like the counter specification, implies that pop does not

impede either push or pop:

push pop

The pop operation, however, may be impeded by push.

The non-impedance relationships implied by the stack specification are important for clients. For

instance, consider a producer-consumer scenario in which the stack is used to communicate data from

producers to consumers. When no data is available, consumers may simply loop attempting to pop

the stack. If the pop operation could impede push, then producers might be starved by consumers.

In this situation, we could not guarantee that the system would make progress. This suggests that

non-impedance, which is captured by Total-TaDA specifications, can be an important property of

non-blocking algorithms.

131

7.5.4 Related Work

Hoffmann et al. [30] introduced a concurrent separation logic for verifying total correctness. By adapting

the most-general-client approach of Gotsman et al. [23], they establish that modules are lock-free. They

do not, however, establish functional correctness. This method involves a thread passing “tokens” to

other threads whose lock-free operations are impeded by modifications to the shared state. Subsequent

approaches [3, 40] also use some form of tokens that are used up in loops or function calls. These

approaches require special proof rules for the tokens. When these approaches restrict to dealing with

finite numbers of tokens, support for unbounded non-determinism (as in the backoff increment example

of Figure 7.6) is limited. In our extension of TaDA to reason about termination, named Total-TaDA,

such token passing is not necessary. Instead, we require the client to provide a general (ordinal) limit

on the amount of impeding interference. Consequently, we can guarantee the termination of loops with

standard proof rules.

Jia et al. have introduced loop depth counters to prove lock-freedom [33]. Their approach adds

auxiliary code to the loops that counts the number of times progress towards an operation’s completion

is made. Their approach was applied to stack and queue modules using a tool.

Liang et al. [40] have developed a proof theory for termination-preserving refinement, applying it

to verify linearisability and lock-freedom. Their approach constrains impedance by requiring that

impeding actions correspond to progress at the abstract level. In Total-TaDA, such constraints are

made by requiring that impeding actions decrease an ordinal associated with a shared region. Their

approach does not freely combine lock-free and wait-free specifications, whereas with Total-TaDA we

can reason about lock- and wait-freedom in combination, as well as about more subtle conditions, such

as non-impedance. For example, we can show when a read operation of a lock-free data-structure

is wait-free. Their specifications establish termination-preserving refinement (given a context, if the

abstract program is guaranteed to terminate, then so is the concrete), whereas Total-TaDA specifications

establish termination (in a context, the program will terminate).

Boström and Müller [3] have introduced an approach that can verify termination and progress

properties of concurrent programs. The approach supports blocking concurrency and non-terminating

programs, which Total-TaDA does not. However, the approach does not aim at racy concurrent programs

and cannot deal with any of the examples shown in this chapter. Furthermore, the relationship between

termination and lock- and wait-freedom is not considered.

Of the above approaches, none covers total functional correctness for fine-grained concurrent programs.

With Total-TaDA, we can reason about clients that use modules without knowing their implementation

details. Moreover, with Total-TaDA it is easy to verify module operations independently, with respect

to a common abstraction, rather than considering a whole module at once. Finally, our approach to

specification is unique in supporting lock- and wait-freedom simultaneously, as well as expressing more

subtle conditions, such as non-impedance.

132

8 Extending the logic

We have formally verified that implementations of concurrent data-structures with abstractly atomic

operations. However, implementations can use techniques that make verification difficult. Among the

most challenging of these are helping and speculation [1].

Typically, we would expect that an implementation of an abstractly atomic operation performs some

concrete atomic update during its execution that effects the abstract operation. However, in general it

is possible for this update to be performed by a different thread, which is in the process of performing

another operation. We refer to this scenario as helping : one thread is performing an abstract operation

on behalf of another.

Helping is particularly common in wait-free algorithms, where each operation is guaranteed to

terminate. Suppose that one operation has partially completed when another begins. The second

operation cannot be performed while the first is partially complete, so it must either wait for the first

operation, undo the progress of the first operation, or help complete the first operation. The first two

options do not guarantee termination, so helping becomes the only viable option.

We might also expect that, at the point the abstractly atomic operation of a thread is performed, we

would know this to be the case. However, in general we may only know that it might be the case, and

future behaviour will determine whether it was or not. We refer to this situation as speculation: we

consider speculatively the cases where the abstract operation was and was not performed, and decide

which applies later in the execution.

As an example of speculation, consider a data-structure that implements an abstractly atomic

read operation as follows: it performs two concretely atomic reads and then randomly decides which

result to return. The abstractly atomic read happens at one of the two concretely atomic reads,

but exactly which is determined later. This example is illustrative but is, however, contrived. In

practice, speculation does not arise as a result of random decisions of a single thread but from the

non-deterministic behaviour of the concurrent environment.

We show how to verify abstractly atomic operations of concurrent data-structures that use helping

and speculation by extending TaDA. To prove an atomic specification in TaDA, it is necessary to show

that a single atomic step in the implementation performs the corresponding abstract atomic action.

This is achieved by a special resource that allows the thread to perform the action, and witnesses when

it is completed. However, in TaDA this resource cannot be transferred to other threads, and so it

does not support helping. Our extension, TaDA 2, supports helping by allowing such resources (called

proxies, which embody permission to perform the abstract action, and witnesses, which guarantee that

the action has been performed) to be transferred between threads.

This may seem like a simple change, but it requires significant changes to the semantics and soundness

proof of the logic. In particular, the TaDA semantics of atomic specifications ties the abstractly atomic

update to a concrete atomic operation in the implementation, thus precluding helping.

We support speculation in TaDA 2 by introducing speculative resources. These speculative resources

133

consist of a set of possible (speculative) configurations of proxy and witness resources. When we

speculatively perform the action of a proxy, we introduce cases in the set corresponding to whether or

not the action is performed. We can resolve the speculation by choosing a particular configuration

from the set.

8.1 Motivating Examples

We motivate our work with two examples that implement abstract atomicity using helping and

speculation. Our examples build on an abstract counter module described in §3.1. We start by revising

the ticket lock module (§8.1.1), but now we are going to specify it with an atomic specification. The

ticket lock illustrates helping: when a thread releases the lock, it acquires the lock on behalf of the next

thread waiting for the lock (if any). The second is a counter algorithm that internally increments in

two steps (§8.1.2). The two-step counter illustrates speculation: when multiple threads have partially

completed their increment operations, it will appear that half of them have abstractly incremented the

counter; however, which ‘half’ is determined by the order in which they complete the operation.

8.1.1 Ticket Lock

We consider the ticket lock module from §3.2. The lock uses two counters, next and owner, which

initially have value 0. The counter next is used to generate the tickets and the counter owner is used

to indicate which ticket holds the lock. When their values match the lock is considered to be unlocked.

The acquire operation starts by incrementing the counter next; the previous value of the counter

represents the ticket held by the thread. It then waits until the value in the counter owner matches its

ticket. When they match, the thread has acquired the lock.

The release operation simply increments the value of the counter owner. Since only one thread can

hold a lock at a time, the owner counter is not subject to concurrent increments, and so the wkIncr

operation is appropriate.

Atomic Specification

We introduce an abstract predicate TLock(s, x, l, t) to represent the lock as a resource. The second

parameter, x ∈ Addr, is the address of the lock object. The third parameter, l ∈ {0, 1}, indicates

the state of the lock: 0 for unlocked, 1 for locked. The two parameters, s ∈ T2 and t ∈ T3, range

over abstract types. The types T2 and T3 will capture implementation-specific information about the

configuration of the lock. The ticket lock has the following specification:

`
{
True

}
makeLock()

{
∃s ∈ T2, t ∈ T3.TLock(s, ret, 0, t)

}
`

A

(l, t)∈{0, 1}×T3.
〈
TLock(s, x, l, t)

〉
acquire(x)

〈
TLock(s, x, 1, t) ∗ l = 0

〉
`
〈
TLock(s, x, 1, t)

〉
release(x)

〈
∃t′ ∈ T3.TLock(s, x, 0, t′)

〉
Since the release operation makes use of wkIncr, it is important this operation does not race with

any other increment of the owner counter. Without the t parameter, we could imagine specifying an

operation nop that increments both the owner and next counters in a single atomic step. As this would

134

not conceptually change whether the lock is in the locked or unlocked state, we might specify it as:

`

A

l ∈ {0, 1} .
〈
TLock(s, x, l)

〉
nop(x)

〈
TLock(s, x, l)

〉
However, such an operation causes havoc: a thread waiting to acquire the lock may proceed, even though

the thread that actually holds the lock has not released it! The implementation ties the additional

parameter t to the value of the owner counter. The specification for the release operation consequently

prevents the environment from concurrently modifying this counter (as it is not bound by

A

).

Implementation

In order to verify the specification, we must provide an interpretation for the abstract predicate

TLock(s, x, l, t). For this, we introduce shared regions. As in TaDA, a shared region encapsulates some

resources that may be shared by multiple threads, with the proviso that they can only be accessed by

atomic operations. A shared region has an abstract state (which has a concrete interpretation), and a

protocol that determines how the state can change. A shared region is also equipped with resources

called guards, which determine how threads can update the region’s shared state.

For the ticket lock, we define a region type TLock. The abstract states of TLock regions consist

of pairs (l, n) ∈ {0, 1} × N, where l indicates whether the lock is currently locked and n indicates the

current value of the owner counter. The protocol for the TLock region is specified by the following

transition system, labelled by guards:

G : ∀n ∈ N. (1, n) (0, n+ 1)

G : ∀n ∈ N. (0, n) (1, n)

The first of these transitions allows a thread holding the (unique) guard resource G for the region

to release the lock, increasing the owner counter in doing so. The second transition allows a thread

holding G to acquire the lock, without updating the owner counter.

In addition to the G guard, we define two other types of guards associated with TLock regions.

These guards do not play a role in the protocol, but are used as ghost resources to manage bookkeeping.

The first of these is the Ticket(v, i) guard, where v ∈ N is a number and i ∈ TId is a thread identifier.

This guard represents thread i’s claim to hold the ticket number v, while waiting to acquire the lock.

The final guard Queue(S) accounts for the tickets that have been issued, where S ⊆ N× TId. These

guards are defined to obey the following equation:

Queue(S) = Queue(S] {(v, i)}) •Ticket(v, i) if v /∈ proj 1(S), i /∈ proj 2(S)

As in the previous chapters, • is the composition operator on guard resources, which lifts to ∗ in

assertions. It is associative, with 0 as the neutral element. The following compositions are not allowed:

G •G
Queue(S) •Queue(S′)

Ticket(v, i) •Ticket(v′, i′) if v = v′ or i = i′

Queue(S) •Ticket(v, i) if (v, i) /∈ S

135

It remains to define the state interpretation for TLock regions. However, since the ticket lock

algorithm uses helping, we must first describe how atomic specifications are proved in TaDA 2. There

are two proof rules that are key to atomicity proofs. The first is the MakeAtomic rule, which allows

us to prove that an operation can be seen as abstractly atomic. A slightly simplified version of this

rule is as follows:

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

a : i `
{
∃x ∈ X. ta(z̄, x) ∗

〈 A

x ∈ X Q(x)
∣∣i
a

}
C
{
∃x ∈ X, y ∈ Q(x).

∣∣x y
〉i
a

}
`

A

x ∈ X.
〈
ta(z̄, x) ∗ [G]a

〉
C
〈
∃y ∈ Q(x). ta(z̄, y) ∗ [G]a

〉
The conclusion of the rule specifies that C performs an atomic update, transforming the state of the

region a (of type t and with parameters z̄) from x ∈ X to y ∈ Q(x). The environment may change the

state of the region before the atomic update occurs, so long as the state remains in the set X. Any

update to a shared region has to be justified by a guard for that region; in the conclusion of the rule,

this is the guard resource [G]a. The first premiss of the rule requires that the update from x to y is

permitted by the transition system Tt for region type t given guard G; the superscript ∗ indicates,

again, the reflexive-transitive closure.

While the first premiss ensures that the update is permitted, the second premiss ensures that C
actually performs the atomic update. This is achieved by providing a proxy resource

〈 A

x ∈ X Q(x)
∣∣i
a

in the precondition, which C must update to a witness resource
∣∣x y

〉i
a
, featured in the postcondition.

The proxy resource is conceptually a proxy for [G]a, in that it permits the update to the region by

deriving its authority from the guard resource (which is not present in the premiss). The proxy records

the atomic update to be performed, the region a in which it is to be performed, and has a unique

identifier i: no two proxies or witnesses with the same identifier can coexist. Since the premiss is not

an atomic triple, C may take multiple steps. However, the proxy resource can only be used once, and

in doing so is updated to a witness resource that records the specific update that took place. This

guarantees that C effectively performs an atomic update.

The second key proof rule is the UpdateRegion rule, which deals with using a proxy to update a

region. A simplified version of this rule is as follows:

a : i `

A

x ∈ X.
〈
I(ta(z̄, x)) ∗ p(x)

〉
C
〈
∃y ∈ Q(x).

a
♦
x y

(I(ta(z̄, y)) ∗ q(x, y))

〉
a : i `

A

x ∈ X.
〈
ta(z̄, x) ∗ p(x)

〉
C
〈
∃y ∈ Q(x). ta(z̄, y) ∗ q(x, y)

〉
In this rule, the region ta(z̄, x) in the conclusion is replaced by its interpretation I(ta(z̄, x)) in the

premiss. This allows the resources from the region to be accessed for the duration of an atomic update.

To account for the change to the abstract state of the region (from x to y), it is necessary to update a

proxy to a witness corresponding to the update. This is achieved by the
a
♦
x y

modality, which appears

in the postcondition of the premiss. Intuitively, the assertion
a
♦
x y

P should be read as “it is possible to

obtain P by updating proxy resources to witnesses, corresponding to the update from x to y”. The

UpdateRegion rule subsumes the rule with the same name from TaDA, but also the OpenRegion

rule, as OpenRegion is now just a special case of the new rule.

136

P =⇒
a
♦
x x

P (8.1)(
a
♦
x y

P

)
∗R =⇒

a
♦
x y

(P ∗R) (8.2)

∀x ∈ X, y ∈ Q(x). 〈 A

z ∈ X Q(z)|ia =⇒
a
♦
x y
|x y〉ia (8.3)

a
♦
x y

a
♦
y z

P =⇒
a
♦
x z

P (8.4)

a
♦
x y

(P ∨Q) ⇐⇒
a
♦
x y

P ∨
a
♦
x y

Q (8.5)

∃z.
a
♦
x y

P (z) ⇐⇒
a
♦
x y

(∃z. P (z)) (8.6)

Figure 8.1: Axioms for proxy modalities.

Figure 8.1 gives axioms for working with the proxy modality. Axiom (8.1) means that we do not

need to update a proxy to perform the identity transition. Axiom (8.2) means that we can move a

frame across the proxy modality. Axiom (8.3) allows us to introduce a proxy modality by updating

a suitable proxy to a witness corresponding to the required update; this is the basic rule for using

proxies. Axiom (8.4) allows us to chain proxies together transitively: if we have a proxy that allows a

transition from x to y and another that allows a transition from y to z, then we can use both together

to transition from x to z. Finally, axioms (8.5) and (8.6) mean that the proxy modality distributes

over disjunction and existential quantification.

The proxies and witnesses of TaDA 2 play a similar role to the atomic tracking resources of TaDA.

The most important difference here, however, is that they can be transferred between threads. This

allows one thread to perform the atomic action on behalf of another, by using its proxy.

In the ticket lock, such helping occurs in the release operation. Conceptually, release releases the

lock by incrementing the owner counter. However, if another thread is waiting to acquire the lock,

and has incremented the next counter, the lock does not in fact enter the unlocked state. We resolve

this incongruity by viewing the atomic increment to the owner counter as performing both the unlock

action on behalf of its own thread and the lock action on behalf of the waiting thread. That is, the

unlocking thread helps the locking thread to acquire the lock.

The shared state of the TLock region, therefore, holds proxies and witnesses for threads that are

waiting to acquire the lock. We define an auxiliary predicate T to represent the shared resources

belonging to the TLock region in Figure 8.2.

Lines (8.7) and (8.8) state that the next and owner counters are at addresses y and z, and have

values nxt and own. Line (8.9) gives the guard resource [Queue(S)]r, tracking tickets currently held

by threads waiting to acquire the lock. A thread that increments the next counter from k to k+ 1 will

acquire a ticket resource [Ticket(k, i)]r; by doing so, the pair (k, i) is added to S. In the process, a

thread gives up its proxy resource (with identifier i) so that another thread can lock on its behalf. The

condition on S asserts that there is a ticket for every thread that incremented the next counter but has

yet to acquire the lock, and that all tickets are below nxt (the next available ticket). Line (8.10) states

that there are witnesses for each ticket that successfully acquired the lock, but has not yet reclaimed

its witness. Line (8.11) states that there are proxies for each ticket waiting to acquire the lock.

137

T (a, x, s, t, y, z,nxt , own, S) , x.next 7→ y ∗ Counter(s, y,nxt) (8.7)

∗ x.owner 7→ z ∗ Counter(t, z, own) (8.8)

∗ [Queue(S)]a ∗ {j | own < j < nxt} ⊆ proj 1(S) ⊆ {j | j < nxt}
(8.9)

∗ �
(v,i)∈S

(
v ≤ own =⇒ |(0, v) (1, v)〉ia

)
(8.10)

∗ �
(v,i)∈S

(
v > own =⇒ 〈 A

(l, n) ∈ {0, 1} × N (1, n) ∧ b = 0|ia
)

(8.11)

Figure 8.2: Auxiliary predicate describing the shared resources of the ticket lock.

We define the interpretation of abstract states for the ticket lock region:

I(TLocka(x, s, t, y, z, (l, n))) , ∃m,S. T (a, s, t, x, y, z,m, n, S) ∗m ≥ n ∗ (l = 1 ⇐⇒ m > n)

We can now give the interpretation of the abstract types and abstract predicate as follows:

T2 , RId× T1 × T1 × Addr × Addr

T3 , N

TLock((a, s′, t′, y, z), x, l, n) , TLocka(x, s
′, t′, y, z, (l, n)) ∗ [G]r

where RId is the set of region identifiers and Addr is the set of addresses.

It remains to prove that the implementations of the operations satisfy the specifications, given this

interpretation. The proof for acquire is given in Figure 8.3, and the proof for release in Figure 8.4.

8.1.2 Two-step Counter

Speculation can be observed in many fine-grained implementations, such as the Michael-Scott queue [43]

or Heller et al. lazy set [24]. However, we do not need to look at complex implementations to find

speculation. We propose a simple counter module implemented using the counter previously presented:

function readVal(x) {
v := read(x);

return v / 2;

}

function incrVal(x) {
incr(x);

incr(x);

}

Atomic Specification

The readVal operation consists of reading the current value of the counter and returns the floor of its

value divided by 2. The incrVal operation performs two increments, where each increment is atomic.

This means that in between each increment, other threads can perform reads or other increments. We

138

A

(l, t) ∈ {0, 1} × T3.〈
TLock(s, x, l, t)

〉
A
b
st

r
a
c
t

:
s

=
(a
,s

′ ,
t′
,y
,z

),
t

=
n

A

(l, n) ∈ {0, 1} × N.〈
TLocka(x, s′, t′, y, z, (l, n)) ∗ [G]a

〉
M
a
k
e
A
t
o
m
ic

a : i `{
∃l ∈ {0, 1} , n ∈ N.TLocka(x, s′, t′, y, z, (l, n)) ∗

〈 A

(l, n) ∈ {0, 1} × N (1, n) ∧ b = 0
∣∣i
a

}
next := [x.next];
owner := [x.owner];{
∃l ∈ {0, 1} , n ∈ N.TLocka(x, s′, t′, next, owner, (l, n))

∗
〈 A

(l, n) ∈ {0, 1} × N (1, n) ∧ b = 0
∣∣i
a

}

U
p
d
a
t
e
R
e
g
io
n

A

(l, n) ∈ {0, 1} × N.〈
∃m,S. T (a, x, s′, t′, next, owner,m, n, S) ∗

〈 A

(l, n) ∈ {0, 1} × N (1, n) ∧ b = 0
∣∣i
a

∗m ≥ n ∗ (l = 1 ⇐⇒ m > n)

〉
t := incr(next);〈

a

♦
(l,n) (1,n)

(
∃m,S. T (a, x, s′, t′, next, owner,m+ 1, n, S] {(m, i)})

∗ [Ticket(m, i)]a ∗m+ 1 > n ∗ t = m

)〉
{
∃l ∈ {0, 1} , n ∈ N.TLocka(x, s′, t′, next, owner, (l, n)) ∗ [Ticket(t, i)]a

}
do {{
∃l ∈ {0, 1} , n ∈ N.TLocka(x, s′, t′, next, owner, (l, n)) ∗ [Ticket(t, i)]a

}

U
p
d
a
t
e
R
e
g
io
n

A

(l, n) ∈ {0, 1} × N.〈
∃m,S. T (a, x, s′, t′, next, owner,m, n, S] {(t, i)}) ∗ [Ticket(t, i)]a ∗m ≥ n ∗m > t

〉
v := read(owner);〈

a

♦
(l,n) (l,n)


v = n ∗ if n = t then

(
∃m,S. T (a, x, s′, t′, next, owner,m, n, S)

∗
∣∣(0, t) (1, t)

〉i
a
∗m > n

)
else

(
∃m,S. T (a, x, s′, t′, next, owner,m, n, S] {(t, i)})

∗ [Ticket(t, i)]a ∗m ≥ n

)

〉

{
if v = t then

∣∣(0, t) (1, t)
〉i
a

else ∃l ∈ {0, 1} , n ∈ N.TLocka(x, s′, t′, next, owner, (l, n)) ∗ [Ticket(t, i)]a

}
} while (v 6= t);{∣∣(0, t) (1, t)

〉i
a

}〈
TLocka(x, s′, t′, y, z, (1, n)) ∗ [G]a ∗ b = 0

〉〈
TLock(s, x, 1, t) ∗ l = 0

〉
Figure 8.3: Proof of correctness of the acquire operation.

specify the counter module in a similar way as the counter we use to implement it, as follows:

`
{
True

}
makeCounter()

{
∃s ∈ T2.TSCounter(s, ret, 0)

}
`

A

n ∈ N.
〈
TSCounter(s, x, n)

〉
readVal(x)

〈
TSCounter(s, x, n) ∗ ret = n

〉
`

A

n ∈ N.
〈
TSCounter(s, x, n)

〉
incrVal(x)

〈
TSCounter(s, x, n+ 1)

〉
Implementation

We use the notation Sa(X), where a is a region identifier and X is a set of configurations (lists

containing proxies and witnesses) to denote that we can speculatively choose between any of the

configurations. When we create a region, we have Sa({∅})—only the empty configuration. If we have a

proxy or witness separate from Sa(X), then we can merge it in by adding it to all of the configurations.

We can go from Sa(X) to Sa(Y) if Y ⊆ X. If we can pull out a specific proxy or witness from every

configuration in the set, then we can pull it out from the overall speculation.

139

〈
TLock(s, x, 1, t)

〉
A
b
st

r
a
c
t

:
s

=
(a
,s

′ ,
t′
,y
,z

),
t

=
n

〈
TLocka(x, s′, t′, y, z, (1, n)) ∗ [G]a

〉

M
a
k
e
A
t
o
m
ic

a : i `{
TLocka(x, s′, t′, y, z, (1, n)) ∗

〈
(1, n) (0, n+ 1)

∣∣i
a

}
owner := [x.owner];{

TLocka(x, s′, t′, y, owner, (1, n)) ∗
〈
(1, n) (0, n+ 1)

∣∣i
a

}
U
p
d
a
t
e
R
e
g
io
n

〈
∃m,S. T (a, x, s′, t′, y, owner,m, n, S) ∗

〈
(1, n) (0, n+ 1)

∣∣i
a
∗m > n

〉
wkIncr(owner);

〈if m = n+ 1 then
a

♦
(1,n) (0,n+1)

(
∃m,S. T (a, x, s′, t′, y, owner,m, n+ 1, S)

∗
∣∣(1, n) (0, n+ 1)

〉i
a
∗m > n

)

else
a

♦
(1,n) (0,n+1)

a

♦
(0,n+1) (1,n+1)

(
∃m,S. T (a, x, s′, t′, y, owner,m, n+ 1, S)

∗
∣∣(1, n) (0, n+ 1)

〉i
a
∗m > n

)〉
{∣∣(1, n) (0, n+ 1)

〉i
a

}〈
TLocka(x, s′, t′, y, z, (0, n+ 1)) ∗ [G]a

〉〈
∃t′ ∈ T3.TLock(s, x, 0, t′)

〉
Figure 8.4: Proof of correctness of the release operation.

Ca(X, 0, v)
def
=

{
�
i∈X
〈 A

n ∈ N. n n+ 1|ia

}
Ca(X,m+ 1, v)

def
=
{
|v −m− 1 v −m〉ia ∗ x

∣∣∣ i ∈ X,x ∈ Ca(X \ {i} ,m, v)
}

Figure 8.5: Auxiliary predicate describing the set of configurations for the two-step counter.

To describe the set of configurations for the two-step counter, we define Ca(X,m, v) in Figure 8.5

where X is a set of proxy/witness configurations, 0 ≤ m ≤ |X| is the number of witnesses to have and

v is the current value of the counter.

We extend the proxy modality to handle speculative sets of proxy/witnesses with the axiom:

∀p′ ∈ P ′.∃p ∈ P. p Rx,y p′

Sa
(
P
)

=⇒
a

♦
x y

Sa
(
P ′
)

The premiss requires that we justify the update for each element in the set. Essentially, if we update

the region, we have enough proxies to justify such an update in all configurations. The relation R

enforces this and is defined as follows:

p Rx,x p
(8.12)

p Rx,y p
′ p′ Ry,z p

′′

p Rx,z p
′′

(8.13)

p Rx,y p
′

p ∗ r Rx,z p′ ∗ r
(8.14)

∀x ∈ X, y ∈ Q(x)〈 A

z ∈ X Q(z)
∣∣i
a
Rx,y

∣∣x y
〉i
a

(8.15)

The relation resembles the axioms for proxies, where (8.12) means that we do not need to update a

140

proxy to perform the identity transition. (8.13) allows us to chain proxies together transitively: if we

have a proxy that allows a transition from x to y and another that allows a transition from y to z,

then we can use both together to transition from x to z. (8.14) means that we can frame resources.

Finally, (8.15) allows us to update a suitable proxy to a witness corresponding to the required update.

Note that the MakeAtomic rules enforces that the speculation for an operation must be resolved

before the operation terminates.

For the two-step counter, we introduce a region with type name TSCounter. This region has three

types of guard resources. The unique non-empty guard Inc provides the capability to increment the

counter. The second type of guard resource is Active(X), which tracks the set X of proxy or witness

identifiers of the threads incrementing the counter; these are the threads which have performed the

first increment, but not the second. The last type of guard resource is the Inc(i), which expresses that

the identifier i exists in the set X described by the guard Active(X). We wish to allow threads to

add and remove identifiers from the set X. We enforce this using the following equivalence:

Active(X) = Active(X] {i}) • Inc(i)

The possible states of TSCounter are natural numbers, representing the value of the counter. All

transitions over abstract states of the region are guarded by Inc, which has the following labelled

transition system:

Inc : ∀n ∈ N. n n+ 1

The transition system requires that every update must increase the value of the counter. This is

necessary to guarantee the correctness of the incrVal operation.

I(TSCountera(s
′, x, n)) , ∃m,X.Counter(s′, x,m) ∗ [Active(X)]a

∗ Sa
(
Ca

(
X,
⌊
|X|
2

⌋
,
⌊
m
2

⌋))
∗ (m = 2n ∨m = 2n+ 1)

The interpretation enforces that the threads performing increments (|X| of them) delay the choice of

picking which increment corresponds to which thread until after they have finished.

We now define the interpretation for the abstract types and abstract predicates:

T2 , RId

TSCounter((r, s′), x, n) , TSCountera(s
′, x, n) ∗ [Inc]r

Proofs for the readVal and incrVal operations are shown in Figure 8.6 and Figure 8.7.

8.2 Case Study: Michael-Scott Queue

We now consider the java.util.concurrent package [21] variant of the Michael-Scott queue [43] to

illustrate how we can apply this technique to verify larger modules.

141

A

n ∈ N.〈
TSCounter(s, x, n)

〉
A
b
st

r
a
c
t

:
s

=
(a
,s
′)

A

n ∈ N.〈
TSCountera(s

′, x, n) ∗ [Inc]a
〉

M
a
k
e
A
t
o
m
ic

a : i `{
∃n.TSCountera(s

′, x, n) ∗ 〈 A

n ∈ N. n n|ia
}

U
p
d
a
t
e
R
e
g
io
n

A

n ∈ N.〈
∃m,X.Counter(s′, x,m) ∗ [Active(X)]a ∗ Sa

(
Ca

(
X,
⌊
|X|
2

⌋
,
⌊
m
2

⌋))
∗ (m = 2n ∨m = 2n+ 1) ∗ 〈 A

n ∈ N. n n|ia

〉
v := read(x);〈

a
♦
n n

(
∃m,X.Counter(s′, x,m) ∗ [Active(X)]a ∗ Sa

(
Ca

(
X,
⌊
|X|
2

⌋
,
⌊
m
2

⌋))
∗ (m = 2n ∨m = 2n+ 1) ∗ |n n〉ia ∗ v = m

)〉
{
∃n. (v = 2n ∨ v = 2n+ 1) ∗ |n n〉ia

}
return v / 2;〈

TSCountera(s
′, x, n) ∗ [Inc]a ∗ ret = n

〉〈
TSCounter(s, x, n) ∗ ret = n

〉
Figure 8.6: Proof of correctness of the readVal operation.

A

n ∈ N.〈
TSCounter(s, x, n)

〉

A
b
st

r
a
c
t

:
s

=
(a
,s
′)

〈
TSCountera(s

′, x, n) ∗ [Inc]a
〉

M
a
k
e
A
t
o
m
ic

a : i `{
∃n.TSCountera(s

′, x, n) ∗ 〈 A
n ∈ N. n n+ 1|ia

}

U
p
d
a
t
e
R
e
g
io
n

A

n ∈ N.〈
∃m,X.Counter(s′, x,m) ∗ [Active(X)]a ∗ Sa

(
Ca

(
X,
⌊
|X|
2

⌋
,
⌊
m
2

⌋))
∗ (m = 2n ∨m = 2n+ 1) ∗ 〈 A

n ∈ N. n n+ 1|ia

〉
incr(x);〈

a
♦

bm2c bm+1
2 c

∃m,X.Counter(s
′, x,m+ 1) ∗ [Active(X] {i})]a

∗ Sa
(
Ca

(
X] {i} ,

⌊
|X]{i}|

2

⌋
,
⌊
m+1

2

⌋))
∗ (m+ 1 = 2n+ 1 ∨m+ 1 = 2(n+ 1)) ∗ [Inc(i)]a

〉{
∃n.TSCountera(s

′, x, n) ∗ [Inc(i)]a
}

U
p
d
a
t
e
R
e
g
io
n

A

n ∈ N.〈
∃m,X.Counter(s′, x,m) ∗ [Active(X] {i})]a ∗ Sa

(
Ca

(
X] {i} ,

⌊
|X]{i}|

2

⌋
,
⌊
m
2

⌋))
∗ (m = 2n ∨m = 2n+ 1) ∗ [Inc(i)]a

〉
incr(x);〈

a
♦

bm2c bm+1
2 c

(
∃m,X.Counter(s′, x,m+ 1) ∗ [Active(X)]a ∗ Sa

(
Ca

(
X,
⌊
|X|
2

⌋
,
⌊
m+1

2

⌋))
∗ (m+ 1 = 2n+ 1 ∨m+ 1 = 2(n+ 1)) ∗ ∃v. |v v + 1〉ia

)〉
{
∃v. |v v + 1〉ia

}〈
TSCountera(s

′, x, n+ 1) ∗ [Inc]a
〉〈

TSCounter(s, x, n+ 1)
〉

Figure 8.7: Proof of correctness of the incrVal operation.

142

8.2.1 Atomic Specification

We start by giving an abstract specification for a non-blocking queue as follows:

`
{
True

}
makeQueue()

{
∃s ∈ T1, t ∈ T2.Queue(s, ret, [], t)

}
`

A

(vs, t) ∈ L1 × T2.
〈
Queue(s, x, vs, t) ∗ v 6= 0

〉
enqueue(x, v)〈

∃vs′, t′.Queue(s, x, vs ′, t′) ∗ vs ′ = vs ++[v]
〉

`

A

(vs, t) ∈ L1 × T2.
〈
Queue(s, x, vs, t)

〉
dequeue(x)〈

if vs = [] then Queue(s, x, vs, t) ∗ ret = 0

else ∃vs ′, t′.Queue(s, x, vs ′, t′) ∗ vs = ret : vs ′

〉

We represent the queue by the abstract predicate Queue(s, x, vs, t). It asserts that there is a queue

at address x and with contents vs, where vs ∈ L1, and L1 is a list containing non-zero integers. The

parameters s ∈ T1 and t ∈ T2 capture implementation-specific information of the queue.

The constructor returns an empty queue. The enqueue operation atomically adds an element to the

end of the queue; this element cannot be 0. This restricts all the elements in the queue from being

equal to 0. The dequeue operation atomically removes an element from the front of the queue, if one

is available (i.e. the queue is not empty); otherwise it will return 0.

8.2.2 Implementation

The queue, given in Figure 8.8, is represented as a non-empty linked list. The first node in the list

is considered to be outside of the queue. Its value is not part of the abstract state of the queue.

Additionally, there are two anchor pointers: the head and the tail. The head pointer always points to

the sentinel node. The sentinel node is a node that is not part of the queue, but points to the node

that contains the first element of the queue. The tail pointer points to a node that is or was in the

queue, as long as the true tail is accessible from that node.

An enqueue operation appends nodes to the end of the list, by updating the next pointer of the

true tail from 0 to the address of the new node. A dequeue operation removes nodes from the front of

the queue by updating the head pointer with a compare-and-set operation to the next node from the

sentinel node. If the queue is empty, then the sentinel node in the list is the only node accessible from

the head pointer and its next pointer has value 0. Note that when a dequeue operation removes a

node from the queue, it is still possible to reach any node in the queue from that node. Moreover, we

set the value of the node to 0 after removing it from the queue. This is an optimisation to improve

garbage collection in the original algorithm and does not affect the correctness of the implementation.

In the enqueue operation, the atomic update always happens if CAS(t.next, s, n) succeeds. Otherwise,

the algorithm retries. There are additional compare-and-set operations used to update the tail pointer.

The outcome of such operations does not affect the abstract state of the queue.

In the dequeue operation, if the queue is not empty and it succeeds in advancing the sentinel node,

the atomic update occurs on the CAS(x.head, h, first). The reading and nullifying the value of the node

does not affect the abstract state of the queue. If the queue is empty, the dequeue operation’s atomic

143

function makeQueue() {
n := alloc(2);
[n.value] := 0;
[n.next] := 0;
x := alloc(2);
[x.head] := n;
[x.tail] := n;
return x;

}

function enqueue(x, v) {
n := alloc(2);
[n.value] := v;
[n.next] := 0;
while (true) {
t := [x.tail];
s := [t.next];
t’ := [x.tail];
if (t = t’) {
if (s = 0) {
b := CAS(t.next, s, n);
if (b = 1) {
CAS(x.tail, t, n)
return

}
} else {
CAS(x.tail, t, s)

}
}
}

}

function dequeue(x) {
while (true) {
h := [x.head];
t := [x.tail];
first := [h.next];
h’ := [x.head];
if (h = h’) {
if (h = t) {
if (first = 0) {
return 0;

} else {
CAS(x.tail, t, first)

}
} else {
b := CAS(x.head, h, first);
if (b = 1) {
v := [first.value];
if (v 6= 0) {

[first.value] := 0;
return v;

}
}
}

}
}
}

where E.head def
= E E.tail def

= E + 1 E.value def
= E E.next def

= E + 1.

Figure 8.8: Michael-Scott Queue implementation.

update depends on a future event. In particular, when the operation performs first := [h.next];,

there are two cases: either h value matches the current head of the queue, or it doesn’t. We can only

be sure that h matches the head of the queue when the queue is empty, and in that case, first has

value 0. However, we cannot determine if the atomic update occurs at this particular point, as it is

dependent on the next read h’ := [x.head]; getting the same value as h. If it is not, then the entire

operation needs to start over.

We want to prove the correctness of the implementation. In both operations, the atomic updates

are always performed by the thread performing the operation. There is no helping involved for the

Michael-Scott queue. However, the dequeue operation can experience speculation when dequeuing

from an empty queue. This happens because we cannot determine if the operation will decide to retry

or not, until a future operation is performed.

In order to prove the correctness of the queue, we define a region type MSQueue. The type is

parametrised by the address of the queue and its abstract state. The abstract state of MSQueue

regions consists of a pair of lists (ds,ns) ∈ L2×L3, where ds is a list of nodes that have been in the queue

plus the initial sentinel node and ns is the list of nodes containing the values currently in the queue. We

define their types as L2 , (Addr× Z× Addr] {0})+ and L3 , (Addr× {v ∈ Z | v 6= 0} × Addr] {0})∗.
Each element of each of the lists contains a node’s address, its value and next pointer. Note that the

144

ds list cannot be empty, since its last element is the sentinel node. Furthermore, the list ns cannot

contain empty values. It is important to the correctness of the algorithm that nodes that have been

removed from the queue cannot reappear again. To account for this, we track all the nodes that have

been previously removed from the head of the queue in the ds list. The protocol that governs how the

MSQueue region can be updated is specified by the transition system as follows:

G : ∀n,m,w, ds. (ds ++[(n, v, 0)], []) (ds ++[(n, v,m)], [(m,w, 0)])

G : ∀n,m,w, ds,ns. (ds,ns ++[(n, v, 0)]) (ds,ns ++[(n, v,m)]++[(m,w, 0)])

G : ∀n,m, ds,ns. (ds, (n, v,m) : ns) (ds ++[(n, v,m)],ns)

There is a single guard G that gives threads permissions to enqueue and dequeue. The first two

transitions allow a thread to enqueue a new value, in the case the queue is empty and otherwise. The

last transition allows a thread to dequeue a value, by moving the node from the list ns to the list ds.

In order to track operations that have observed the queue as empty, but have not yet decided what

action to take, we introduce two guards: Empty(i) and Deq(S). The guard Empty(i), where i ∈ TId,

states the thread i has observed the queue as empty when performing a dequeue operation. The guard

Deq(S) accounts for the Empty(i) guards that have been issued, where S ⊆ TId. These guards are

defined to obey the following equation:

Deq(S) = Deq(S] {i}) •Empty(i) if i /∈ proj 1(S)

When the dequeue succeeds in removing a node from the queue, it nullifies the value of a node. We

need to guarantee that the only thread doing it is the thread that actually removes the node from the

queue. Otherwise, another operation could potentially set the value of the node to 0 before the thread

dequeuing read its value. For this purpose, we introduce a guard Value(n, v), where n ∈ Addr and

v ∈ {v ∈ Z | v 6= 0}, that tracks the value v of the node n when it is part of the queue, and prevents

other threads from manipulating its value. Moreover, we have an additional guard Out(S) to track

how many Value(n, v) have been issued. The guards must satisfy the following equation:

Out(S) = Out(S] {(n, v)}) •Value(n, v) if n /∈ proj 1(S)

We now introduce auxiliary predicates to represent both lists, as well as the data structure of the

queue in Figure 8.9. The node(n, v,m) represents a node at address n, with value v and the next

pointer with value m. The outList(a, x, ds, y) represents the ds linked list, where the sentinel node

when the queue was created has address x, and the most recent node in the list has a next pointer

with value y. We require that the nodes that have been nullified must have the guard Value(x, v) to

record the initial value. The inList(x,ns) represents the ns linked list, where the last node of the ds

list points to its first node with value x, and the last node of the list always has next pointer with

value 0. The predicate queue(a, x, ds,ns) represents the data structure of the queue: The head pointer

points to the last node of the list ds, and the tail pointer points either to the last element of the list

ds or one node in the list ns1. Moreover, we enforce the ds list to have at least one node and that its

last node has a next pointer to the first element of the ns list. The final predicate is used in the proofs

1This contrasts the original Michael-Scott queue algorithm, where the tail pointer points to one of the last two nodes.

145

node(n, v,m)
def
= n.value 7→ v ∗ n.next 7→ m

outList(a, x, ds, y)
def
= (x = y ∗ ds = []) ∨ ∃v, n, ds ′.

(
(node(x, v, n) ∨ node(x, 0, n) ∗ [Value(x, v)]r)
∗ outList(a, n, ds ′, y) ∗ ds = (x, v, n) : ds ′

)
inList(x,ns)

def
= (x = 0 ∗ ns = []) ∨

(
∃v, n,ns ′. node(x, v, n) ∗ inList(n,ns ′) ∗ ns = (x, v, n) : ns ′

)
queue(a, x, ds,ns)

def
= ∃h, t, y, z, v, ds ′, S. x.head 7→ h ∗ x.tail 7→ t ∗ outList(a, y, ds, z) ∗ inList(z,ns)

∗ [Out(S)]a ∗ S = {(n, v) | (n, v,m) ∈ ds} ∗ ds = ds ′++[(h, v, z)]

∗ t ∈ proj 1([(h, v, z)]++ns)

after(x, y, vs)
def
= ∃vs ′. vs = v : vs ′ ∗ (x = v ∗ y ∈ vs ∨ x 6= v ∗ after(x, y, vs ′))

Figure 8.9: Auxiliary predicates to describe the shared resources of the Michael-Scott queue.

PE(i) =

〈

A

(ds,ns)
(ds ′,ns ′) ∧ if ns = []

then ∃ds ′′. ds = ds ′′++[(n, v, 0)] ∧ ds ′ = ds ′′++[(n, v,m)] ∧ ns ′ = [(m,w, 0)]
else ∃ns ′′. ds = ds ′ ∧ ns = ns ′′++[(n, v, 0)] ∧ ns ′ = ns ′′++[(n, v,m), (m,w, 0)]

∣∣∣∣∣∣
i

a

WE(i,m,w, ds,ns, ds ′,ns ′) =

∣∣∣∣∣∣∣∣∣∣
(ds,ns)

(ds ′,ns ′) ∧ if ns = []

then

(
∃ds ′′. ds = ds ′′++[(n, v, 0)] ∧ ds ′ = ds ′′++[(n, v,m)]

∧ ns ′ = [(m,w, 0)]

)
else

(
∃ns ′′. ds = ds ′ ∧ ns = ns ′′++[(n, v, 0)]
∧ ns ′ = ns ′′++[(n, v,m), (m,w, 0)]

)
〉i

a

PD(i) =
〈 A

(ds,ns) if ns = [] then (ds,ns) else (ds ++[(n, v,m)],ns ′) ∧ ns = (n, v,m) : ns ′
∣∣i
a

WD1(i) = ∃ds.
∣∣(ds, []) (ds, [])

〉i
a

WD2(i, n, v, ds,ns, ds ′,ns ′) = ∃m.
∣∣(ds,ns) (ds ′,ns ′) ∧ ns = (n, v,m) : ns ′ ∧ ds ′ = ds ++[(n, v,m)]

〉i
a

Figure 8.10: Proxies and witnesses for the Michael-Scott queue.

to describe that node with address x proceeds the node with address y in the list vs.

We define auxiliary notation for referring to proxies and witnesses for the enqueue and dequeue

operations in Figure 8.10.

In order to describe the set of possible proxies and witnesses when the dequeue operation observes

an empty queue, but has not yet decided if that is the atomic update, we define the following set:

Da(∅)
def
= {True}

Da(X)
def
= {y ∗ x | i ∈ X,x ∈ {PD(i),WD1(i)} , y ∈ Da(X\{i})}

The MSQueue region type has the following interpretation:

I(MSQueuea(x, (ds,ns))) = ∃X. queue(a, x, ds,ns) ∗ [Deq(X)]a ∗ Sa
(
Da(X)

)
The abstract predicate Queue(s, x, vs, (ds,ns)) combines the region and the guard:

T1 , RId

T2 , L2 × L3

Queue(a, x, vs, (ds,ns)) ,MSQueuea(x, (ds,ns)) ∗ [G]a ∗ vs = proj 2(ns)

146

The proof of the dequeue operation is given in Figure 8.11.

When the queue is empty, we speculatively execute the atomic update, and keep the guard Empty(i)

to track it. Note that the node pointed by the head, must always be of the ds list. This means that if

its next pointer is 0, then it must be the case that the queue is empty. If the following read value of the

head pointer matches the previously read, we collapse the speculative state and retrieve the witness.

Otherwise, we retrieve the original proxy from the speculative component and try to update the tail

of the queue. Updating the tail does not affect the abstract state. If the queue was not empty, then

we attempt to update the head to the next node using a compare-and-set. If successful, the atomic

update occurs and we hold the guard Value(n, v) to prevent other threads from nullifying the original

value in the node. We then the read the value from the node and set its value to 0 before returning.

The proof of the enqueue operation is omitted, as it is very similar to the proof for dequeue.

147

A

(vs, t) ∈ L1 × T2.〈
Queue(s, x, vs, t)

〉
A
b
st

r
a
c
t

:
s

=
a
,t

=
(d

s,
n

s)

A

(ds,ns) ∈ L2 × L3.〈
MSQueuea(x, (ds,ns)) ∗ [G]a ∗ vs = proj 2(ns)

〉
M
a
k
e
A
t
o
m
ic

a : i `
while (true) {{
∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i)

}
h := [x.head]; t := [x.tail];{
∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i) ∗ h ∈ proj 1(ds) ∗ (h = t ∨ after(h, t, proj 1(ds ++ns)))

}

U
p
d
a
t
e
R
e
g
io
n

A

(ds,ns) ∈ L2 × L3.〈
∃X. queue(a, x, ds,ns) ∗ [Deq(X)]a ∗ Sa

(
Da(X)

)
∗ PD(i) ∗ h ∈ proj 1(ds)

∗ (h = t ∨ after(h, t, proj 1(ds ++ns)))

〉
first := [h.next];〈if first = 0 then

a

♦
(ds,[]) (ds,[])

(
∃X. queue(a, x, ds,ns) ∗ [Deq(X] {i})]a ∗ Sa

(
Da(X] {i})

)
∗ [Empty(i)] ∗ h ∈ proj 1(ds) ∗ h = t

)
else

a

♦
(ds,ns) (ds,ns)

(
∃X. queue(a, x, ds,ns) ∗ [Deq(X)]a ∗ Sa

(
Da(X)

)
∗ PD(i) ∗ h ∈ proj 1(ds)

∗ (h = t ∨ after(h, t, proj 1(ds ++ns))) ∗ after(h, first, proj 1(ds ++ns))

)〉
if first = 0 then

(
∃ds,ns.MSQueuea(x, (ds,ns)) ∗ [Empty(i)] ∗ h ∈ proj 1(ds) ∗ h = t

)
else

(
∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i) ∗ h ∈ proj 1(ds)

∗ (h = t ∨ after(h, t, proj 1(ds ++ns))) ∗ after(h, first, proj 1(ds ++ns))

) 
h’ := [x.head];
if (h = h’) {
if (h = t) {{

if first = 0 then ∃ds,ns.MSQueuea(x, (ds,ns)) ∗ [Empty(i)] ∗ h ∈ proj 1(ds) ∗ h = t

else ∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i) ∗ h ∈ proj 1(ds) ∗ h = t ∗ after(h, first, proj 1(ds ++ns))

}
if (first = 0) {{

WD1(i)
}

// open region and swap [Empty(i)] by the witness.
return 0;

} else {{
∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i) ∗ h = t ∗ after(h, first, proj 1(ds ++ns))

}
CAS(x.tail, t, first);{
∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i)

}
}
} else {{
∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i) ∗ after(h, first, proj 1(ds ++ns))

}

U
p
d
a
t
e
R
e
g
io
n

A

(ds,ns) ∈ L2 × L3.〈
∃X. queue(a, x, ds,ns) ∗ [Deq(X)]a ∗ Sa

(
Da(X)

)
∗ PD(i) ∗ after(h, first, proj 1(ds ++ns))

〉
b := CAS(x.head, h, first);〈if b = 1 then ∃ds ′,ns ′, v.

a

♦
(ds,ns) (ds′,ns′)

(
∃X. queue(a, x, ds ′,ns ′) ∗ [Deq(X)]a ∗ Sa

(
Da(X)

)
∗WD2(i, first, v, ds,ns, ds ′,ns ′) ∗ [Value(first, v)]a

)
else

a

♦
(ds,ns) (ds,ns)

(
∃X. queue(a, x, ds,ns) ∗ [Deq(X)]a ∗ Sa

(
Da(X)

)
∗ PD(i)

)
〉

if b = 1 then

(
∃ds,ns, ds ′,ns ′, ds ′′,ns ′′, v.MSQueuea(x, (ds,ns))

∗WD2(i, first, v, ds ′,ns ′, ds ′′,ns ′′) ∗ [Value(first, v)]a

)
else ∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i)


if (b = 1) {{
∃ds,ns, ds ′,ns ′, ds ′′,ns ′′, v.MSQueuea(x, (ds,ns))
∗WD2(i, first, v, ds ′,ns ′, ds ′′,ns ′′) ∗ [Value(first, v)]a

}
v := [first.value]; [first.value] := 0;{
∃ds ′,ns ′, ds ′′,ns ′′.WD2(i, first, v, ds ′,ns ′, ds ′′,ns ′′)

}
return v;

}{
∃ds,ns.MSQueuea(x, (ds,ns)) ∗ PD(i)

}
} } }〈if vs = [] then MSQueuea(x, (ds,ns)) ∗ [G]a ∗ ret = 0

else

(
∃vs ′, ds ′,ns ′, n, v,m.MSQueuea(x, (ds ′,ns ′)) ∗ [G]a ∗ vs ′ = proj 2(ns ′) ∗ ns = (n, v,m) : ns ′

∗ ds ′ = ds ++[(n, v,m)]

)〉
〈
if vs = [] then Queue(s, x, vs, t) ∗ ret = 0 else ∃vs ′, t′.Queue(s, x, vs ′, t′) ∗ vs = ret : vs ′

〉
Figure 8.11: Proof of correctness of dequeue operation.

148

9 Conclusions

We have introduced a program logic, TaDA, which uses atomic triples for specifying abstract atomicity,

as well as separation-style Hoare triples for specifying abstract disjointness. With the combination of

abstract atomicity and abstract disjointness that TaDA provides, we can specify and verify modules

which feature both atomic and non-atomic operations, possibly at different levels of abstraction.

Additionally, TaDA allows us to easily extend modules with new operations, as well as build new

modules on top of existing ones.

We have shown how TaDA can be extended to prove termination of non-blocking programs. Using

our abstract specifications, clients can reason about total correctness without needing to know any

of the details of the underlying implementation. Different implementations that satisfy the same

specification may have different termination arguments, but these arguments are never exposed to the

clients. By using ordinals to bound interference, our specifications can express traditional non-blocking

properties. Moreover, they can also capture the notion of non-impedance: that one operation does not

disrupt the progress of another.

Finally, we have proposed a potential extension to the logic to handle more advanced patterns

of concurrency. Using the extension, we were able to give a novel atomic specification to a ticket

lock module and to introduce a two-step counter that exhibits speculation, despite its simplicity.

Additionally, we applied the technique to a larger example and shown that the approach scales. It

remains an open question what the semantic model that justifies such an extension should be.

9.1 Future Work

9.1.1 Tool Support

So far, all of the soundness proofs and proofs shown in this thesis using TaDA or Total-TaDA have

been done by hand. One of our goals is to formalise the logic in a proof assistant, such as Coq, and

prove its soundness. Moreover, we have implemented Caper [14], a semi-automated verification tool,

on a fragment of TaDA. We intend to extend the tool to be able to prove all of the the examples shown.

9.1.2 Helping/Speculation

We have presented a technique that supports reasoning with about abstract atomicity when imple-

mentations make use of helping and speculation chapter 8. It seems clear that we require a different

semantic model. However, it is not clear what changes must be made in order to support the extension.

There are approaches based on contextual refinement that support helping and speculation [59, 39],

but are restricted to linearisability and suffer from the problems described in §2.7. Other approaches

use higher-order to support helping such as [32, 54, 35], but have no support for speculation.

149

9.1.3 Higher-order Support

Recently, Iris [35] combined TaDA with iCAP [54] into a new higher order program logic, which encodes

TaDA’s proof rules in logic. This gives it the expressive power to handle higher-order programs and

reentrancy. It would be interesting to explore if we can encode the extensions presented here to prove

termination and speculation.

9.1.4 Weak Memory

Burkhardt et al. [5] have extended the concept of linearisability to the total store order (TSO) memory

model [48]. Additionally, in recent years, there have been a series of program logics that adapt some of

the program logics described in the background chapter to several weak memory models [62, 60, 36, 53].

An interesting research direction would be to investigate extensions of TaDA that can specify and

verify programs that make use of weak memory models, such as TSO.

9.1.5 Liveness

Blocking

Many concurrent modules make use of blocking, for example by using locks or monitors. Properties

such as starvation-freedom can be expressed in terms of termination, but require the assumption of

a fair scheduler. Some aspects of our approach are likely to be applicable here as well. However, it

is also necessary to constrain future behaviours, for instance, to specify that a lock that has been

acquired will be released in finite time. Liang and Feng [38] have developed Lili, a program logic based

on rely-guarantee and refinement that can verify linearisability and progress properties for concurrent

modules under fair scheduling. Unfortunately, their approach suffers from the same problems common

to linearisability, such as the lack of ownership transfer and not being able to handle modules with

operations such as the wkIncr. Understanding how we could extend our termination extension to

blocking algorithms and overcome the limitations of linearisability-based approaches would be another

interesting research question.

Non-termination

Some programs, such as operating systems, are designed not to terminate. Nonetheless, such programs

should still exhibit progress. It would be interesting to extend Total-TaDA to specify and verify

progress properties of non-terminating systems. Progress can be seen as localised termination, so the

same reasoning techniques should apply. However, it is not clear what kind of specifications will be

necessary to express and verify these properties.

9.1.6 Fault Tolerance

An underlying assumption in our logic is that the machine where the program is running does not fail.

In practice, machines can fail unpredictably for various reasons, e.g. power loss, corrupting resources.

Critical software, e.g. file systems, employ recovery methods to mitigate these effects. In future, we

want to combine abstract atomicity from concurrency with host failure atomicity in the style of [46].

150

Bibliography

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. In Proceedings of the

Third Annual Symposium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK,

July 5-8, 1988, pages 165–175. IEEE Computer Society, 1988. doi: 10.1109/LICS.1988.5115. URL

http://dx.doi.org/10.1109/LICS.1988.5115. (Cited on page 133.)

[2] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. Permission

accounting in separation logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2005, Long Beach, California, USA, January

12-14, 2005, pages 259–270, 2005. doi: 10.1145/1040305.1040327. URL http://doi.acm.org/10.

1145/1040305.1040327. (Cited on page 32.)

[3] Pontus Boström and Peter Müller. Modular Verification of Finite Blocking in Non-terminating

Programs. In John Tang Boyland, editor, 29th European Conference on Object-Oriented Program-

ming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, volume 37 of LIPIcs, pages 639–663.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi: 10.4230/LIPIcs.ECOOP.2015.639.

URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.639. (Cited on page 132.)

[4] John Boyland. Checking Interference with Fractional Permissions. In Static Analysis, 10th

International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, pages

55–72, 2003. doi: 10.1007/3-540-44898-5 4. URL http://dx.doi.org/10.1007/3-540-44898-5_

4. (Cited on pages 32 and 114.)

[5] Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. Concurrent

library correctness on the TSO memory model. In Helmut Seidl, editor, Programming Languages

and Systems - 21st European Symposium on Programming, ESOP 2012, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,

March 24 - April 1, 2012. Proceedings, volume 7211 of Lecture Notes in Computer Science, pages

87–107. Springer, 2012. doi: 10.1007/978-3-642-28869-2 5. URL http://dx.doi.org/10.1007/

978-3-642-28869-2_5. (Cited on page 150.)

[6] Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre. Mathematische Annalen,

49(2):207–246, 1897. ISSN 0025-5831. doi: 10.1007/BF01444205. URL http://dx.doi.org/10.

1007/BF01444205. (Cited on page 109.)

[7] Pedro da Rocha Pinto, Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, and Mark J.

Wheelhouse. A simple abstraction for complex concurrent indexes. In Cristina Videira Lopes

and Kathleen Fisher, editors, Proceedings of the 26th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011, part of

SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages 845–864. ACM, 2011. doi:

151

http://dx.doi.org/10.1109/LICS.1988.5115
http://doi.acm.org/10.1145/1040305.1040327
http://doi.acm.org/10.1145/1040305.1040327
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.639
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/978-3-642-28869-2_5
http://dx.doi.org/10.1007/978-3-642-28869-2_5
http://dx.doi.org/10.1007/BF01444205
http://dx.doi.org/10.1007/BF01444205

10.1145/2048066.2048131. URL http://doi.acm.org/10.1145/2048066.2048131. (Cited on

page 43.)

[8] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. TaDA: A Logic for Time

and Data Abstraction. In Richard Jones, editor, ECOOP 2014 - Object-Oriented Programming

- 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, volume

8586 of Lecture Notes in Computer Science, pages 207–231. Springer, 2014. doi: 10.1007/

978-3-662-44202-9 9. URL http://dx.doi.org/10.1007/978-3-662-44202-9_9. (Cited on

page 21.)

[9] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Steps in Modular

Specifications for Concurrent Modules (Invited Tutorial Paper). Electr. Notes Theor. Comput.

Sci., 319:3–18, 2015. doi: 10.1016/j.entcs.2015.12.002. URL http://dx.doi.org/10.1016/j.

entcs.2015.12.002. (Cited on page 21.)

[10] Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland.

Modular Termination Verification for Non-blocking Concurrency. In Peter Thiemann, editor,

Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016,

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes

in Computer Science, pages 176–201. Springer, 2016. doi: 10.1007/978-3-662-49498-1 8. URL

http://dx.doi.org/10.1007/978-3-662-49498-1_8. (Cited on page 21.)

[11] Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and Wolfram Schulte. VCC:

Contract-based modular verification of concurrent C. In 31st International Conference on Software

Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Companion Volume, pages 429–

430. IEEE, 2009. doi: 10.1109/ICSE-COMPANION.2009.5071046. URL http://dx.doi.org/10.

1109/ICSE-COMPANION.2009.5071046. (Cited on page 38.)

[12] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor

Vafeiadis. Concurrent Abstract Predicates. In Theo D’Hondt, editor, ECOOP 2010 - Object-

Oriented Programming, 24th European Conference, Maribor, Slovenia, June 21-25, 2010. Pro-

ceedings, volume 6183 of Lecture Notes in Computer Science, pages 504–528. Springer, 2010.

doi: 10.1007/978-3-642-14107-2 24. URL http://dx.doi.org/10.1007/978-3-642-14107-2_24.

(Cited on pages 19, 31, 33, 38, 40, 43, 90, 92, and 107.)

[13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok

Yang. Views: compositional reasoning for concurrent programs. In Roberto Giacobazzi and

Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 287–300. ACM,

2013. doi: 10.1145/2429069.2429104. URL http://doi.acm.org/10.1145/2429069.2429104.

(Cited on pages 47, 62, 65, and 68.)

[14] Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Andersen, and Lars Birkedal.

Caper: Automatic Verification for Fine-grained Concurrency. In Programming Languages and

152

http://doi.acm.org/10.1145/2048066.2048131
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1016/j.entcs.2015.12.002
http://dx.doi.org/10.1016/j.entcs.2015.12.002
http://dx.doi.org/10.1007/978-3-662-49498-1_8
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071046
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071046
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://doi.acm.org/10.1145/2429069.2429104

Systems - 26th European Symposium on Programming, ESOP 2017, Lecture Notes in Computer

Science. Springer, 2017. (Cited on page 149.)

[15] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. Deny-Guarantee Reasoning.

In Programming Languages and Systems, 18th European Symposium on Programming, ESOP

2009, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 363–377, 2009. doi: 10.1007/

978-3-642-00590-9 26. URL http://dx.doi.org/10.1007/978-3-642-00590-9_26. (Cited on

pages 31 and 107.)

[16] Simon Doherty, David Detlefs, Lindsay Groves, Christine H. Flood, Victor Luchangco, Paul Alan

Martin, Mark Moir, Nir Shavit, and Guy L. Steele Jr. DCAS is not a silver bullet for nonblocking

algorithm design. In Phillip B. Gibbons and Micah Adler, editors, SPAA 2004: Proceedings of

the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, June

27-30, 2004, Barcelona, Spain, pages 216–224. ACM, 2004. doi: 10.1145/1007912.1007945. URL

http://doi.acm.org/10.1145/1007912.1007945. (Cited on page 102.)

[17] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control effects

on local relational reasoning. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the

15th ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,

Maryland, USA, September 27-29, 2010, pages 143–156. ACM, 2010. doi: 10.1145/1863543.1863566.

URL http://doi.acm.org/10.1145/1863543.1863566. (Cited on page 107.)

[18] Xinyu Feng. Local rely-guarantee reasoning. In Proceedings of the 36th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January

21-23, 2009, pages 315–327, 2009. doi: 10.1145/1480881.1480922. URL http://doi.acm.org/10.

1145/1480881.1480922. (Cited on pages 31 and 38.)

[19] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concurrent

objects. In Giuseppe Castagna, editor, Programming Languages and Systems, 18th European

Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings,

volume 5502 of Lecture Notes in Computer Science, pages 252–266. Springer, 2009. doi: 10.1007/

978-3-642-00590-9 19. URL http://dx.doi.org/10.1007/978-3-642-00590-9_19. (Cited on

pages 34 and 107.)

[20] R. W. Floyd. Assigning Meanings to Programs. Proceedings of the American Mathematical Society

Symposia on Applied Mathematics, 19:19–31, 1967. (Cited on pages 108 and 109.)

[21] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java

Concurrency in Practice. Addison-Wesley, 2006. ISBN 978-0-321-34960-6. (Cited on page 141.)

[22] Alexey Gotsman and Hongseok Yang. Linearizability with Ownership Transfer. In Maciej

Koutny and Irek Ulidowski, editors, CONCUR 2012 - Concurrency Theory - 23rd International

Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings, volume

7454 of Lecture Notes in Computer Science, pages 256–271. Springer, 2012. doi: 10.1007/

153

http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://doi.acm.org/10.1145/1007912.1007945
http://doi.acm.org/10.1145/1863543.1863566
http://doi.acm.org/10.1145/1480881.1480922
http://doi.acm.org/10.1145/1480881.1480922
http://dx.doi.org/10.1007/978-3-642-00590-9_19

978-3-642-32940-1 19. URL http://dx.doi.org/10.1007/978-3-642-32940-1_19. (Cited on

pages 101 and 107.)

[23] Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor Vafeiadis. Proving that non-

blocking algorithms don’t block. In Zhong Shao and Benjamin C. Pierce, editors, Proceedings of

the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2009, Savannah, GA, USA, January 21-23, 2009, pages 16–28. ACM, 2009. doi: 10.1145/1480881.

1480886. URL http://doi.acm.org/10.1145/1480881.1480886. (Cited on pages 128 and 132.)

[24] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, and Nir

Shavit. A lazy concurrent list-based set algorithm. Parallel Processing Letters, 17(4):411–424,

2007. doi: 10.1142/S0129626407003125. URL http://dx.doi.org/10.1142/S0129626407003125.

(Cited on page 138.)

[25] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,

1991. doi: 10.1145/114005.102808. URL http://doi.acm.org/10.1145/114005.102808. (Cited

on page 109.)

[26] Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for Concurrent

Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi: 10.1145/78969.78972. URL

http://doi.acm.org/10.1145/78969.78972. (Cited on pages 19, 22, and 33.)

[27] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization: Double-

ended queues as an example. In 23rd International Conference on Distributed Computing Systems

(ICDCS 2003), 19-22 May 2003, Providence, RI, USA, pages 522–529. IEEE Computer Soci-

ety, 2003. doi: 10.1109/ICDCS.2003.1203503. URL http://dx.doi.org/10.1109/ICDCS.2003.

1203503. (Cited on page 109.)

[28] Gerhard Hessenberg. Grundbegriffe der Mengenlehre. Abhandlungen der Fries’schen Schule / Neue

Folge. Vandenhoeck & Ruprecht, 1906. (Cited on page 114.)

[29] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM, 12(10):576–580,

1969. doi: 10.1145/363235.363259. URL http://doi.acm.org/10.1145/363235.363259. (Cited

on page 24.)

[30] Jan Hoffmann, Michael Marmar, and Zhong Shao. Quantitative Reasoning for Proving Lock-

Freedom. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013,

New Orleans, LA, USA, June 25-28, 2013, pages 124–133. IEEE Computer Society, 2013. doi:

10.1109/LICS.2013.18. URL http://dx.doi.org/10.1109/LICS.2013.18. (Cited on pages 17,

128, and 132.)

[31] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures.

In Chris Hankin and Dave Schmidt, editors, Conference Record of POPL 2001: The 28th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, London, UK, January

17-19, 2001, pages 14–26. ACM, 2001. (Cited on page 31.)

[32] Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency specification.

In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT

154

http://dx.doi.org/10.1007/978-3-642-32940-1_19
http://doi.acm.org/10.1145/1480881.1480886
http://dx.doi.org/10.1142/S0129626407003125
http://doi.acm.org/10.1145/114005.102808
http://doi.acm.org/10.1145/78969.78972
http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://doi.acm.org/10.1145/363235.363259
http://dx.doi.org/10.1109/LICS.2013.18

Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January

26-28, 2011, pages 271–282. ACM, 2011. doi: 10.1145/1926385.1926417. URL http://doi.acm.

org/10.1145/1926385.1926417. (Cited on pages 107 and 149.)

[33] Xiao Jia, Wei Li, and Viktor Vafeiadis. Proving lock-freedom easily and automatically. In

Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP ’15, pages 119–127,

New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3296-5. doi: 10.1145/2676724.2693179. URL

http://doi.acm.org/10.1145/2676724.2693179. (Cited on page 132.)

[34] Cliff B. Jones. Specification and Design of (Parallel) Programs. In IFIP Congress, pages 321–332,

1983. (Cited on pages 22 and 29.)

[35] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and

Derek Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In

Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,

January 15-17, 2015, pages 637–650. ACM, 2015. doi: 10.1145/2676726.2676980. URL http:

//doi.acm.org/10.1145/2676726.2676980. (Cited on pages 33, 43, 107, 149, and 150.)

[36] Ori Lahav and Viktor Vafeiadis. Owicki-gries reasoning for weak memory models. In

Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,

Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Ky-

oto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Com-

puter Science, pages 311–323. Springer, 2015. doi: 10.1007/978-3-662-47666-6 25. URL

http://dx.doi.org/10.1007/978-3-662-47666-6_25. (Cited on page 150.)

[37] Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary state for coarse-grained concurrency.

In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,

2013, pages 561–574. ACM, 2013. doi: 10.1145/2429069.2429134. URL http://doi.acm.org/10.

1145/2429069.2429134. (Cited on pages 33 and 107.)

[38] Hongjin Liang and Xinyu Feng. A program logic for concurrent objects under fair scheduling. In

Rastislav Bod́ık and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,

USA, January 20 - 22, 2016, pages 385–399. ACM, 2016. doi: 10.1145/2837614.2837635. URL

http://doi.acm.org/10.1145/2837614.2837635. (Cited on page 150.)

[39] Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based simulation for verifying

concurrent program transformations. In John Field and Michael Hicks, editors, Proceedings of

the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 455–468. ACM, 2012. doi:

10.1145/2103656.2103711. URL http://doi.acm.org/10.1145/2103656.2103711. (Cited on

page 149.)

[40] Hongjin Liang, Xinyu Feng, and Zhong Shao. Compositional verification of termination-preserving

refinement of concurrent programs. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting

155

http://doi.acm.org/10.1145/1926385.1926417
http://doi.acm.org/10.1145/1926385.1926417
http://doi.acm.org/10.1145/2676724.2693179
http://doi.acm.org/10.1145/2676726.2676980
http://doi.acm.org/10.1145/2676726.2676980
http://dx.doi.org/10.1007/978-3-662-47666-6_25
http://doi.acm.org/10.1145/2429069.2429134
http://doi.acm.org/10.1145/2429069.2429134
http://doi.acm.org/10.1145/2837614.2837635
http://doi.acm.org/10.1145/2103656.2103711

of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-

Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,

Vienna, Austria, July 14 - 18, 2014, pages 65:1–65:10. ACM, 2014. doi: 10.1145/2603088.2603123.

URL http://doi.acm.org/10.1145/2603088.2603123. (Cited on page 132.)

[41] Henry Massalin and Calton Pu. A lock-free multiprocessor OS kernel (abstract). Operating Systems

Review, 26(2):8, 1992. doi: 10.1145/142111.993246. URL http://doi.acm.org/10.1145/142111.

993246. (Cited on page 109.)

[42] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchronization on

Shared-Memory Multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, 1991. doi: 10.1145/

103727.103729. URL http://doi.acm.org/10.1145/103727.103729. (Cited on page 23.)

[43] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In James E. Burns and Yoram Moses, editors, Proceedings of

the Fifteenth Annual ACM Symposium on Principles of Distributed Computing, Philadelphia,

Pennsylvania, USA, May 23-26, 1996, pages 267–275. ACM, 1996. doi: 10.1145/248052.248106.

URL http://doi.acm.org/10.1145/248052.248106. (Cited on pages 138 and 141.)

[44] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. Communicating

state transition systems for fine-grained concurrent resources. In Zhong Shao, editor, Programming

Languages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part

of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,

France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Computer Science, pages

290–310. Springer, 2014. doi: 10.1007/978-3-642-54833-8 16. URL http://dx.doi.org/10.1007/

978-3-642-54833-8_16. (Cited on page 33.)

[45] Gian Ntzik. Reasoning about POSIX File Systems. PhD thesis, Imperial College London, 2016.

(Cited on page 107.)

[46] Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner. Fault-Tolerant Resource Reasoning.

In Xinyu Feng and Sungwoo Park, editors, Programming Languages and Systems - 13th Asian

Symposium, APLAS 2015, Pohang, South Korea, November 30 - December 2, 2015, Proceedings,

volume 9458 of Lecture Notes in Computer Science, pages 169–188. Springer, 2015. doi: 10.1007/

978-3-319-26529-2 10. URL http://dx.doi.org/10.1007/978-3-319-26529-2_10. (Cited on

page 150.)

[47] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-3):

271–307, 2007. doi: 10.1016/j.tcs.2006.12.035. URL http://dx.doi.org/10.1016/j.tcs.2006.

12.035. (Cited on pages 22, 31, and 107.)

[48] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-tso. In Stefan

Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem Proving

in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,

August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science, pages

391–407. Springer, 2009. doi: 10.1007/978-3-642-03359-9 27. URL http://dx.doi.org/10.1007/

978-3-642-03359-9_27. (Cited on page 150.)

156

http://doi.acm.org/10.1145/2603088.2603123
http://doi.acm.org/10.1145/142111.993246
http://doi.acm.org/10.1145/142111.993246
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/248052.248106
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-319-26529-2_10
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-642-03359-9_27

[49] Susan S. Owicki and David Gries. Verifying properties of parallel programs: An axiomatic

approach. Commun. ACM, 19(5):279–285, 1976. doi: 10.1145/360051.360224. URL http:

//doi.acm.org/10.1145/360051.360224. (Cited on pages 22 and 27.)

[50] Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In Jens Palsberg

and Mart́ın Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2005, Long Beach, California, USA, January 12-14,

2005, pages 247–258. ACM, 2005. doi: 10.1145/1040305.1040326. URL http://doi.acm.org/10.

1145/1040305.1040326. (Cited on pages 36 and 108.)

[51] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE

Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,

Proceedings, pages 55–74. IEEE Computer Society, 2002. doi: 10.1109/LICS.2002.1029817. URL

http://dx.doi.org/10.1109/LICS.2002.1029817. (Cited on page 31.)

[52] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Specifying and verifying concurrent algo-

rithms with histories and subjectivity. In Jan Vitek, editor, Programming Languages and Systems

- 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.

Proceedings, volume 9032 of Lecture Notes in Computer Science, pages 333–358. Springer, 2015.

doi: 10.1007/978-3-662-46669-8 14. URL http://dx.doi.org/10.1007/978-3-662-46669-8_14.

(Cited on page 33.)

[53] Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. A separation logic

for fictional sequential consistency. In Jan Vitek, editor, Programming Languages and Systems

- 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.

Proceedings, volume 9032 of Lecture Notes in Computer Science, pages 736–761. Springer, 2015.

doi: 10.1007/978-3-662-46669-8 30. URL http://dx.doi.org/10.1007/978-3-662-46669-8_30.

(Cited on page 150.)

[54] Kasper Svendsen and Lars Birkedal. Impredicative Concurrent Abstract Predicates. In Zhong

Shao, editor, Programming Languages and Systems - 23rd European Symposium on Programming,

ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes

in Computer Science, pages 149–168. Springer, 2014. doi: 10.1007/978-3-642-54833-8 9. URL

http://dx.doi.org/10.1007/978-3-642-54833-8_9. (Cited on pages 33, 38, 65, 92, 107, 149,

and 150.)

[55] Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. Modular reasoning about separation

of concurrent data structures. In Matthias Felleisen and Philippa Gardner, editors, Programming

Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part

of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome,

Italy, March 16-24, 2013. Proceedings, volume 7792 of Lecture Notes in Computer Science, pages

169–188. Springer, 2013. doi: 10.1007/978-3-642-37036-6 11. URL http://dx.doi.org/10.1007/

978-3-642-37036-6_11. (Cited on pages 33 and 107.)

157

http://doi.acm.org/10.1145/360051.360224
http://doi.acm.org/10.1145/360051.360224
http://doi.acm.org/10.1145/1040305.1040326
http://doi.acm.org/10.1145/1040305.1040326
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1007/978-3-662-46669-8_14
http://dx.doi.org/10.1007/978-3-662-46669-8_30
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-642-37036-6_11
http://dx.doi.org/10.1007/978-3-642-37036-6_11

[56] Alfred Tarski et al. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of

Mathematics, 5(2):285–309, 1955. (Cited on page 126.)

[57] R Kent Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM

Almaden Research Center, April 1986. (Cited on pages 120 and 121.)

[58] Alan M. Turing. Checking a Large Routine. In Report of a Conference on High Speed Automatic

Calculating Machines, pages 67–69, 1949. URL http://www.turingarchive.org/browse.php/

B/8. (Cited on page 108.)

[59] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and hoare-style reasoning

in a logic for higher-order concurrency. In Greg Morrisett and Tarmo Uustalu, editors, ACM

SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA

- September 25 - 27, 2013, pages 377–390. ACM, 2013. doi: 10.1145/2500365.2500600. URL

http://doi.acm.org/10.1145/2500365.2500600. (Cited on pages 33, 34, 107, and 149.)

[60] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: navigating weak memory with ghosts,

protocols, and separation. In Andrew P. Black and Todd D. Millstein, editors, Proceedings of

the 2014 ACM International Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014,

pages 691–707. ACM, 2014. doi: 10.1145/2660193.2660243. URL http://doi.acm.org/10.1145/

2660193.2660243. (Cited on page 150.)

[61] Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. Logical

relations for fine-grained concurrency. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’13, Rome, Italy - January 23 - 25, 2013, pages 343–356. ACM, 2013. doi: 10.1145/2429069.2429111.

URL http://doi.acm.org/10.1145/2429069.2429111. (Cited on page 107.)

[62] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: a program logic for C11

concurrency. In Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors, Proceedings

of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems

Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October

26-31, 2013, pages 867–884. ACM, 2013. doi: 10.1145/2509136.2509532. URL http://doi.acm.

org/10.1145/2509136.2509532. (Cited on page 150.)

[63] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and separation

logic. In CONCUR 2007 - Concurrency Theory, 18th International Conference, CONCUR

2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, pages 256–271, 2007. doi: 10.1007/

978-3-540-74407-8 18. URL http://dx.doi.org/10.1007/978-3-540-74407-8_18. (Cited on

pages 31, 38, and 107.)

[64] Shale Xiong, Pedro da Rocha Pinto, Gian Ntzik, and Philippa Gardner. Abstract Specifications

for Concurrent Maps. In Programming Languages and Systems - 26th European Symposium on

Programming, ESOP 2017, Lecture Notes in Computer Science. Springer, 2017. (Cited on pages 21

and 90.)

158

http://www.turingarchive.org/browse.php/B/8
http://www.turingarchive.org/browse.php/B/8
http://doi.acm.org/10.1145/2500365.2500600
http://doi.acm.org/10.1145/2660193.2660243
http://doi.acm.org/10.1145/2660193.2660243
http://doi.acm.org/10.1145/2429069.2429111
http://doi.acm.org/10.1145/2509136.2509532
http://doi.acm.org/10.1145/2509136.2509532
http://dx.doi.org/10.1007/978-3-540-74407-8_18

	Introduction
	Contributions and Thesis Outline

	Background
	Concurrent Modules
	A Spin Counter Implementation
	A Ticket Lock Client

	Proof Outlines
	Sequential Specification
	Auxiliary State
	Interference Abstraction
	Resource Ownership
	Atomicity

	Informal Development
	Spin Counter
	Atomic Specification
	Implementation

	Ticket Lock
	CAP Specification
	Implementation

	TaDA Logic
	Programming Language
	Operational Semantics
	Assertion Language
	Program Logic
	Model
	Semantic Assertions
	Semantic Judgements

	Soundness

	Using TaDA
	Spin Lock
	Atomic Specification
	CAP Specification
	Implementation

	Multiple Compare-and-Set (MCAS)
	Atomic Specification
	Implementation
	Resource Transfer

	Deque
	Atomic specification
	Implementation

	Related Work
	Reasoning about Termination
	Motivating Examples
	Atomic Specification
	Clients
	Implementations

	Logic
	Case Study: Treiber's Stack
	Atomic Specification
	Implementation

	Semantics and Soundness
	Non-blocking Properties
	Lock-freedom
	Wait-freedom
	Non-impedance
	Related Work

	Extending the logic
	Motivating Examples
	Ticket Lock
	Two-step Counter

	Case Study: Michael-Scott Queue
	Atomic Specification
	Implementation

	Conclusions
	Future Work
	Tool Support
	Helping/Speculation
	Higher-order Support
	Weak Memory
	Liveness
	Fault Tolerance

