
MFPS 2006

Local Reasoning about Tree Update

Uri Zarfaty 1

Department of Computing
Imperial College London

London, UK

Philippa Gardner 2

Department of Computing
Imperial College London

London, UK

Abstract

Separation Logic and Context Logic have been used to reason locally about heap
update and simple tree update. We study local reasoning based on Context Logic
for a more realistic, local tree-update language which combines update commands
with queries. This combination results in updates at multiple locations, which
significantly affects the complexity of the reasoning.

Key words: local reasoning, context logic, tree update

1 Introduction

O’Hearn, Reynolds and Yang introduced the concept of local Hoare reasoning
about heap update based on Separation Logic [10,13,7], a logic for reasoning
about heaps which evolved from Bunched Logic of O’Hearn and Pym [?].
The idea is that, if an update only accesses part of the heap, leaving the
rest unchanged, then this locality property should also be reflected in the
reasoning. With Calcagno, we recently introduced Context Logic [3] to allow
similar reasoning for non-flat structures such as trees. Although we justified
our logic in part by reasoning about simple imperative tree-update commands,
we did not apply our ideas to a full, realistic tree-update language involving
the integration of update commands with queries. This turns out to be a
non-trivial step, in that the combination of update at multiple locations and

1 Email: udz@doc.ic.ac.uk
2 Email: pg@doc.ic.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Zarfaty and Gardner

the non-flat nature of trees means that we cannot directly use O’Hearn et al.’s
small-axiom approach, where commands are specified only on the part of the
heap or tree that they affect. We show in this paper that we are still able to
reason locally about our tree-update language.

First, we describe our language, which to our surprise required some non-
standard, but we believe natural, design choices. We focus on local commands.
A command is local if the result of the command on a tree is the same,
regardless of the context in which that tree is placed. Update commands
for heaps are naturally local. We must work quite hard to find a non-local
command: for example, the command ‘remove all the values 25 from the heap’
is non-local, but would just not be used in practice. In contrast, the current
languages for updating web data are almost all non-local. For example, the
tree-update command ‘dispose all the nodes labelled by tag a’ is non-local.
A natural variant of this command would be ‘dispose all the nodes labelled a

under location (node identifier) n’. This is also non-local, as location n may
not be in the tree but may appear later in a wider context. However, we can
give a local interpretation of this command: if n is in the tree then dispose
all the nodes labelled a; if n is not in the tree then return an error. Our
initial motivation for focusing on such local commands was that they were
essential for our exploration of local reasoning. We now also believe that local
commands are good design practice, when viewing a tree as an updatable data
store rather than a complete document (such as a XML document).

We present a Hoare Logic for reasoning locally about our tree-update lan-
guage. Previous work on local reasoning using Separation Logic has high-
lighted the use of small axioms for specifying local commands. These axioms
only mention the part of the heap affected by the command (the footprint),
and are extended to the full heap using the Frame Rule. For example, consider
the local command ‘dispose n’, which removes an address n from the heap.
This only affects the address n, and its small axiom is

{n 7→ −} dispose n {0},

where the precondition states that the heap is just a cell with address n, and
the postcondition states that the cell has been removed. The precondition
corresponds to the minimal safety condition necessary for the command to
execute.

This small axiom only describes properties about the specific cell n. To
extend to properties about a larger heap, we use the Frame Rule to derive the
triple

{P ∗ (n 7→ −)} dispose {P ∗ 0}

The assertion P ∗(n 7→ −) states that the heap can be split disjointedly into the
cell n with an arbitrary value (the ordering of cells does not matter), and the
rest of the heap with property P which is unaffected by the update command.
The postcondition therefore has the same structure, with the removed cell
specified by 0 and the rest of the heap satisfying P . The small axioms and

2

Zarfaty and Gardner

Frame Rule are elegant, and intuitively express the behaviour of commands.
In addition, the weakest preconditions are derivable, a natural requirement
which is essential for providing verification tools.

Independently, Cardelli and Gordon invented Ambient Logic for reasoning
about static trees, which has a similar reasoning style to Separation Logic.
A natural question is whether we can develop local Hoare reasoning for tree
update (XML update) based on the Ambient Logic. With Calcagno, we have
have shown that this is not possible. Instead, we had to fundamentally change
the way we reason about structured data by introducing Context Logic [?].
Local data update typically identifies the portion of data to be replaced, re-
moves it, and inserts the new data in the same place. With Context Logic,
we can reason about both data and this place of insertion (contexts). We
have shown that Context Logic can be used to develop local Hoare reasoning
about tree update, heap update (analogous to Separation Logic reasoning, an
important sanity check), and term rewriting (which escaped reasoning using
Separation Logic).

The local Hoare reasoning for tree update presented in our initial paper [?]
uses analogous small axioms and Frame Rule to those given for the heap case.
In this paper, we show that such reasoning is not feasible for the local tree-
update language presented here, because the commands act at a number of
different locations in the tree rather than just one location. For example,
consider the local tree command ‘dispose l’, where variable l has value {m, n},
typically obtained from a query. The footprint of this command is complex:
m and n might be in disjoint parts of the tree, or one node might be under
the other. It is therefore not possible to reason simply using small axioms.
Nevertheless, local Hoare reasoning is still possible for our language, using a
different axiom style where the preconditions describe arbitrary trees satisfying
appropriate safety properties. For example, our axiom for ‘dispose l’ is

{✸l ∧ x} dispose l {fold (λn, Q.(∃a, k, y. an:k[y] ◮ Q)(0)) x l}

The precondition specifies the safety property that all the locations denoted
by l are in the given tree, and equates the given tree with a value x which we
use in the postcondition. If l had value {n}, then the postcondition amounts to
∃a, k, y. (an:k[y] ◮ x)(0), which specifies that it is possible to replace an empty
subtree 0 by the tree an:k[y] to obtain the original tree x. For an arbitrary

location set l, the inductive fold assertion picks locations n one by one from l,
replaces empty subtrees by trees of the form an:k[y], to eventually obtain the
original tree x. This axiom is not small, since the precondition does not specify
the exact part of the tree touched by the command (the nodes denoted by l).
Our reasoning is still local in that we can apply the Frame Rule to extend the
reasoning to a larger tree. It is also comparatively easy to use, in that the
axioms compose to provide safety conditions for complex programs and the
derivations of the weakest preconditions shows a high level of regularity.

Our axiom style is undoubtedly less elegant than the small-axiom ap-

3

Zarfaty and Gardner

proach. The point is that we have identified an example of local update
where simple small-axiom reasoning is not feasible. In this paper, we demon-
strate that it is possible to do local reasoning, albeit with non-small axioms.
It remains future work to investigate whether, by moving to a significantly
more complex context structure, we can regain the small-axiom approach.

Related Work

We have recently seen our axiom style in Biri and Galmiche’s work [2] on
Hoare reasoning about a simple tree-update language without multiple loca-
tions. Partially inspired by our work on Context Logic, they propose resource
trees as an alternative model of XML documents. They implement unique
node addresses using sibling uniqueness, which allows for a total composition
operator on trees and a partial composition operator on the resources inside
the trees. They provide Hoare reasoning for their update language, based on
Bunched Logic and path reasoning (with unique solutions) instead of Context
Logic. Their work is based on our simple update language studied in [?],
rather than a language with multiple locations as studied here. It is not clear
from their discussion whether it is possible to use the small-axiom approach
instead (they have the Frame Property for all but one commands) or whether,
as we suspect, their path reasoning requires the non-small approach.

2 Tree Model

Our tree model consists of a labelled tree structure, with uniquely identified
nodes and a set of pointers at each node: node identifiers allow us to update
trees locally, labels allow us to traverse trees using path expressions, and
pointers provide links to other parts of the data structure. This model is an
adaptation of the ‘trees with pointers’ model studied by Cardelli, Gardner and
Ghelli [4] with sets of pointers instead of the individual pointers used in [3].
It is similar to the trees studied in the book ‘Data on the Web’ [1], which
again has individual pointers and in addition requires that the pointers are
not dangling. Our tree model can be described in XML notation using ID and
IDREF type attributes.

Given infinite sets of node names n ∈ N and labels a ∈ A, we define the
links at a particular node to be a finite node set L ∈ Pfin(N). Trees T ∈ T
and contexts C ∈ C are defined as follows:

T ::= 0 | an:L[T] | T | T C ::= − | an:L[C] | T |C | C | T

The insertion of a tree in a context is written C(T) and defined in the standard
way. We assume a simple structural congruence on trees and contexts, denoted
by T1 ≡ T2 and C1 ≡ C2, which states that parallel composition (|) is
commutative and associative with identity 0. An alternative choice would

4

Zarfaty and Gardner

have been to use non-commutative composition, to fit more closely with the
XML notation. This choice requires a trivial change to our reasoning.

A well-formed tree or context is one where the node identifiers are unique.
We assume that all trees and contexts are well-formed. We write Nodes(T)
for the set of node identifiers of a tree T . We are not directly concerned with
the actual names of the node identifiers: our update language does not refer
to them directly, just like standard heap update, and the append command
renames the tree to be inserted to avoid name clashes, again standard practice.
We say that two trees are equivalent modulo renaming, written T1 ≃ T2, if each
can be mapped onto the other by renaming its node identifiers and any internal
pointers. We give a standard example [1] of a tree with pointers, to illustrate
our notation. We also use this example later in the paper to show the effect
of an example update program.

countryn1:{n2,n3}[T1] | cityn2:{n1}[T2] | cityn3:{n1}[T3]

3 A Local Update Language

We provide a core update language for our tree model, integrating primi-
tive update commands with query commands. Unlike update for relational
databases, update languages for trees have rarely been studied in depth (but
see [11]). We highlight the importance of local query and update commands
for our trees. This emphasis is non-standard. Most of the languages in the
literature are non-local: for example, the query command ‘return all the nodes
labelled a’ is not local, in that its behaviour on a tree changes depending on
the context of the tree. In contrast, our interpretation of the query ‘return all
the nodes labelled a under l’ is local: either it succeeds and returns a set of
nodes if the locations given by l are in the tree, or it fails and gives an error.
With our view of a tree as a possibly large store of data, rather than a closed
document (XML document), we believe it is good design practice to work with
local commands. Locality is essential for the local reasoning studied in this
paper.

3.1 Storage Model and Expressions

Our data storage model consists of two components: a store s ∈ S that
maps variables to values, and a working tree T . Our command language uses
three types of variables: VarT = {x, y, . . .} for trees; VarL = {k, l, . . . } for
links; and VarA = {a, b, . . . } for labels. A store is a partial, finite function
s : (VarA ⇀fin A)× (VarL ⇀fin Pfin(N))× (VarT ⇀fin T). We do not require
store variables for node identifiers, since our language only deals with updates
at sets of locations. We write [s|x← v] to mean s overwritten with s(x) = v.

5

Zarfaty and Gardner

We define tree expressions ET , link expressions EL and label expressions EA:

ET ::= x | 0 EL ::= l | ∅ EA ::= a | a ∈ A

We write [[E]]s for the valuation of E with respect to a store s. Note that
expressions do not refer to explicit node identifiers, just as expressions in
heap-update languages do not refer explicitly to heap addresses. Instead our
language refers to identifiers only indirectly, by querying a tree to obtain sets
of node identifiers or using the ‘new’ command to create new nodes with fresh
identifiers.

3.2 Local Queries

We give an abstract account of local queries. All our results will be given at
this abstract level. In Sect. 3.3, we describe a specific query language to help
with examples and illustrate that local queries can still be expressive.

Definition. A query q : S × T → Pfin(N) ∪ {error} is a function such that
q(s, T) ∈ Pfin(N) implies q(s, T) ⊆ Nodes(T). A query q is local if and only
if ∀s, T, L, C. q(s, T) = L and C(T) well-formed implies q(s, C(T)) = L.

Our definition is non-standard. We make an essential distinction between
returning the empty set when no nodes satisfy a query, and an ‘error’ when
the query is ill-defined on the tree: for example, if it tries to follow a dangling
pointer. This follows from our decision to work with local queries: if a tree
is sufficient to make a local query execute without error, then the query is
guaranteed never to ‘go beyond’ that tree, and will return the same result on
any larger tree. We explain this further in Sect. 3.3 where we give specific
examples of local queries.

3.3 A Local Query Language

For our results, we will work with abstract queries. Here we briefly describe a
local query language, motivated by XPATH [12], to help with examples and
show that we have not lost much expressive power by moving to local queries:

q ::= l/π | q ∪ q | q ∩ q | q − q query
π ::= πa :: πf | π/π | π ∪ π | π ∩ π | π − π path

πa ::= self | child | descendant | parent | link path axis
πf ::= EA | ∗ label filter

A basic query l/π is ‘rooted’ by an initial set of nodes given by a variable
l. It then ‘follows’ in the tree the paths given by π. Each path step consists
of a path axis which describes the next ‘movements’, dependent on a label
condition being satisfied. The path axes are self-explanatory, except perhaps
for the ‘link’ axis which ‘follows’ all the pointers from the current nodes.

6

Zarfaty and Gardner

Trees Links Labels

Assign x := ET
l′ := EL

l′ := q
a := EA

Lookup x := get-trees at l l′ := get-links at l a := get-labels at l

Update
dispose at l
append ET at l

dispose-links at l
append-links EL at l

set-labels EA at l

Move move l to l′

New l′ := new EA at l

Fig. 1. Basic Update Commands

Notice that an arbitrary ancestor axis is not possible, since it would break our
locality requirement. We also require that all the initial nodes given by l are
in the tree, or the query returns an error. Similarly, we obtain an error when
a query tries to ‘move’ outside the tree, by following either a dangling pointer
or the parent axis at the root of the tree. These conditions make our queries
local. For example, the query l/descendant :: a returns all the nodes labelled
a under the node identifiers given by l if all the identifiers are in the tree.
If one identifier is not in the tree, then the query results in an error. This
choice is analogous to local heap update, which returns an error if an address
is not present in the heap. One could argue that a query should be able to
return a partial answer if at least some of the nodes are in the tree. This is
a reasonable point, but is just not feasible if we require the commands to be
local.

The query semantics for this language is given in the Appendix. Below are
some other simple examples of queries from our language, using some standard
notation: πf for child::πf , ‘..’ for parent::∗ and ‘.’ for self::∗:

• l/city — all ‘city’-labelled child nodes of l

• l/city ∪ link::city — all ‘city’-labelled child nodes or link targets of l.

• l/((../∗) - .) — all the siblings of l. Note that, as a result of the locality
condition, this returns an error for root-level nodes.

3.4 Update Commands

We present our high-level imperative update language for locally manipulat-
ing trees with pointers. The basic commands are given in Fig.1. They include
commands for assignment, lookup and update, each with related forms for
trees, links and labels. They also include a ‘move’ and ‘new’ command. We
assume command sequencing C; C, but do not present looping control com-
mands since they do not contribute to the ideas presented in this paper. The
extension to incorporate such looping commands, and the corresponding ex-
tension to the reasoning, is standard.

The commands should be fairly familiar. There are however some sub-

7

Zarfaty and Gardner

tleties. All of the commands, apart from assignment, act at a set of locations
given by a link variable l. To ensure the locality of the commands, we insist
that all the locations given by l are present in the tree for the commands
to execute; otherwise an error is returned. A number of the commands have
several possible behavioural interpretations: for example, when referring to a
tree at a node, we can refer to the whole tree including the node, or just the
subforest; when appending a tree at a node, we can append it underneath the
node or as a sibling. In this paper we select one behaviour for conciseness (the
former in both the above cases); our choice can be trivially adapted to give
the other behaviours.

The formal operational semantics of update commands is given in the
Appendix. We given an informal (but precise) description here.

Assignment assigns the value of an expression to a variable of the appropriate
type. There is an additional case for links, l′ := q, which evaluates query q
and assigns the resulting set of nodes to a link variable l′.

Lookup gets link, tree or label values from the nodes specified by a link
variable l (where we have chosen the tree value at a node to include both
the subtree at that node and the node itself). Since the result is a set of
values, whereas our language works with just values, there is the issue of how
to combine many values into one. We give one solution for each data type:
for trees, we concatenate the results, renaming nodes as necessary; for links,
we return the union of the results; for labels, we choose at random from the
results. We have chosen to work with these specific solutions for simplicity,
but can easily extend our reasoning to a more abstract approach.

Update updates the trees, links or labels at the nodes specified by a link
variable l. In the tree case, this involves two commands: dispose, which
disposes the trees located at l, or append at l, which appends the value of a
tree expression ET underneath the nodes in l. Direct appending is a partial
operation. We choose to rename the node identifiers and any internal links,
to obtain a total append function. This renaming is standard practice. There
are similarly two link update commands, whilst label update consists of one
command which simply replaces the old labels by new ones.

Move removes one tree from a source location, and adds the exact same
tree at one target location, without renaming any nodes. The moving is only
possible if the target location is not contained inside the source, while the
non-renaming only works if the source and target destination both consist of
just one node. The move command is important, since non-renaming allows us
maintain inbound links. In contrast, the append command gives us no control
over the inbound links: dangling pointers may be captured by renaming, or
may be left dangling.

New creates new nodes at the locations specified by a link variable l. The
new nodes have labels specified by EA and fresh identifiers, which are stored
in a link variable l′. The nodes have no links and no subtrees. These can be

8

Zarfaty and Gardner

added using the other commands.

3.5 Examples

We present two simple programs showing the ease of collapsing a link struc-
ture. The first collapses all the links at a location l; the second only collapses
the links given by a variable l′. On the right, we show the action of ‘collapse-
all-links’ on the example tree from Sect. 2.

collapse-all-links at l

, k := l/link::∗;

x := get-trees at k;

append x at l;

dispose-links at l

collapse-links l′ at l

, k := l/link::∗ ∩ l′;

x := get-trees at k;

append x at l;

k′ := l/link::∗ − l′;

dispose-links at l;

append-links k′ at l

collapse-all-links at l where l = {n1}

Note that both programs still work when l refers to more than one location.

4 Context Logic for Tree Update

We apply Context Logic reasoning to our tree model. Most of the ideas
presented here are variants of previous ideas associated with Context Logic.
We also introduce some simple inductive predicates for working with sets of
locations.

4.1 Environment

Whilst our update language uses variables to denote node sets widely, it does
not refer directly to individual node identifiers. For our Hoare reasoning,
however, it is essential to both mention and quantify over these identifiers.
We define a set of node variables VarN = {m, n, . . . } and an environment
e : VarN ⇀fin N . To allow comparisons between node sets and identifiers, we
also introduce extended link expressions ÊL:

ÊL ::= EL | {n} | ÊL ∪ ÊL | ÊL ∩ ÊL

with valuations [[ÊL]]es defined as expected.

4.2 Logic

Context Logic consists of two assertion languages: assertions on trees P ∈ P,
and assertions on contexts K ∈ K. Both languages include standard assertions

9

Zarfaty and Gardner

Tree Assertions

e, s, T � K(P) iff ∃C, T ′.(T ≡ C(T ′) ∧
e, s, C � K ∧ e, s, T ′ � P)

e, s, T � K ✁ P iff ∀C.(e, s, C � K ∧C(T)
well-formed⇒ e, s, C(T) � P)

e, s, T � [[P]] iff ∃T ′.(T ≃ T ′ ∧ e, s, T ′ � P)

e, s, T � ET iff T = [[ET]]s

e, s, T � EA = E′
A iff [[EA]]s = [[E′

A]]s

e, s, T � ÊL = Ê′
L iff [[ÊL]]es = [[Ê′

L]]es

e, s, T � ÊL ≏ q(.) iff q(s, T) = [[ÊL]]es

Context Assertions

e, s, C � P1 ✄ P2 iff ∀T.(e, s, T � P1 ∧ C(T)
well-formed⇒ e, s, C(T) � P2)

e, s, C � − iff C ≡ −

e, s, C � EA(n:ÊL)[K] iff ∃C ′.(e, s, C ′ � K ∧

C ≡ [[EA]]s([[n]]e,[[ÊL]]es)[C
′])

e, s, C � P |K iff ∃T,C ′.(C ≡ T |C ′ ∧
e, s, T � P ∧ e, s, C ′ � K)

Fig. 2. Formula Semantics for the Structural and Specific Assertions

from Boolean First-order Logic, structural assertions for analysing the tree and
context structure which are novel to Context Logic, and specialised assertions
associated with our tree model. The assertions are defined by the grammars:

P ::= K(P) | K ✁ P structural assertions
[[P]] | ET

EA = EA | ÊL = ÊL | ÊL ≏ q(.)

}

specific assertions

P ⇒ P | false classical assertions
∃x.P | ∃l.P | ∃a.P | ∃n.P quantifiers

K ::= P ✄ P | − structural assertions
EA(n:ÊL)[K] | P |K specific assertions

K ⇒ K | False classical assertions
∃x.K | ∃l.K | ∃a.K | ∃n.K quantifiers

The semantics of the structural and specific assertions is given in Fig.2,
using an overloaded satisfaction relation � defined on environments, stores,
and either trees (for P) or contexts (for K). The structural assertions form
the essence of Context Logic. The application formula K(P) specifies that
the given tree can be split into a context satisfying K applied to a subtree
satisfying P . For example, if True , False⇒ False, then the formula True(P)
states that some subtree satisfies property P . We also have the two right
adjoints of application. The first, K⊳P , is satisfied by a given tree if, whenever
we successfully insert the tree into a context satisfying K, then the resulting
tree satisfies P . For example, the formula True ⊳ P states that, whatever
context we place the given tree in, the result will satisfy P . Meanwhile,
the other adjoint, P1 ✄ P2, is satisfied by a given context if, whenever we
successfully insert in it a subtree satisfying P1, then the resulting tree satisfies
P2. For example, if true , false ⇒ false, then the context formula true ⊲ P2

states that, regardless of what subtree is put in the given context, the result
will satisfy P2. This adjoint is essential for expressing weakest preconditions

10

Zarfaty and Gardner

of update. The assertion − specifies the empty context.

The assertions of Boolean First-order Logic are standard, and hence are
not given in Fig.2. We use the derived connectives ¬, ∧ and ∨. We extentially
quantify over the value variables (trees, links, labels) and node variables, and
derive ∀. Much of the interest in Context Logic lies in the interplay between
the structural and classical assertions. For example, we will often use the
following derived formulæ:

• ✸P , True(P) specifies that somewhere property P holds;
• P1 ◮ P2 , ¬(P1 ✄ ¬P2) specifies that there exists a tree satisfying P1 such

that, when it is put in the hole of the given context, the result satisfies P2;
• K ◭ P2 , ¬(K ✁ ¬P2) specifies that there exists a context satisfying K

such that, when the given tree is put in the hole, the result satisfies P2;
• P1 ⊢ P2 , (− ∧ (P1 ✄ P2))(true) specifies that whenever a tree satisfies P1

then it also satisfies P2.

The specific tree and context assertions are specialised to our application
of tree update. The context assertions correspond directly to the context
structure of trees: the assertion EA(n:ÊL)[K] specifies that the context has a
top node described by EA(n:ÊL) and a subcontext satisfying K; the assertion
P |K specifies that the context can be split horizontally into a tree satisfying
P and a context satisfying K. From these we define the analogous tree asser-
tions, writing P |Q for (P | −)(Q) and EA(n:ÊL)[Q] for (EA(n:ÊL)[−])(Q). An
additional assertion K |P , corresponding to parallel composition on the right,
is not required as our trees are commutative; adding it, however, allows us to
easily extend the logic to handle non-commutative trees.

In addition, we have the following specific tree assertions: a renaming
modality [[P]], satisfied by any tree that is equivalent modulo renaming of
node identifiers to one satisfying P (we shall use this to reason about the tree
lookup and update commands); tree expressions ET , satisfied if the current
tree is structurally equal to the value of ET ; and equality assertions EA = EA,
ÊL = ÊL and ÊL ≏ q(.). The equality assertions EA = EA and ÊL = ÊL

are ‘pure’ assertions, that are independent of the current tree and therefore
context-insensitive: K((E = E ′) ∧ P) ⇔ (E = E ′) ∧ K(P). This property is
very useful in derivation proofs. We do not have explicit assertions for equality
and equality modulo renaming of tree expressions as they are derivable:

ET = FT , ET ⊢ FT ET ≃ FT , ET ⊢ [[FT]].

Our final equality ÊL ≏ q(.) holds if the query q returns the same value as
ÊL when evaluated on the current tree. Note that, although ÊL ≏ q(.) is not
pure, the locality of our queries means that if ÊL ≏ q(.) holds for a tree, then
it holds for any larger tree: that is, K((ÊL ≏ q(.))∧P)⇒ (ÊL ≏ q(.))∧K(P).

To conclude, we give some other useful derived formulæ:

• n ∈ ÊL , (ÊL ∩ {n}) = {n}

11

Zarfaty and Gardner

• n ∈ ET , ET ⊢ ∃a, k.✸an:k[true]
• ÊL = F̂L ⊎ ĜL , (ÊL = F̂L ∪ ĜL) ∧ (F̂L ∩ ĜL = ∅)
• |ÊL| = |F̂L| , ∃x, y. x ≃ y ∧ ∀n.(n ∈ ÊL ⇔ n ∈ x ∧ n ∈ F̂L ⇔ n ∈ y)
• ✸ÊL , ∀n.(n ∈ ÊL ⇒ ∃a, k.✸an:k[true])

The first four assertions are all ‘pure’ and are fairly self-explanatory. The
last assertion specifies that all the locations in ÊL are in the tree.

4.3 Inductive Predicates

Our update commands typically act on a set of locations, which may be dis-
joint from each other or nested. In order to reason about such updates, we
use a simple form of inductive predicate which is expressive enough for our
purposes and corresponds to a fold-like operator on node sets. An alternative
choice is to add full recursion to our logic, but we believe our approach is
simpler for this specific task.

We define an inductive predicate fold with three arguments—a function
Pf : N ×P → P, a base case assertion P0, and a link expression ÊL denoting
the set of locations over which induction occurs:

fold Pf P0 ÊL , (ÊL = ∅) ∧ P0) ∨

(∃n, l. (ÊL = l ⊎ {n}) ∧ Pf(n, fold Pf P0 l)

The fold uses the locations from ÊL, one by one in any order, to expand Pf

recursively, with P0 serving as the base case for when ÊL is empty. This
definition is well-founded since ÊL denotes a finite set of locations. Note that
the arbitrariness of the expansion order means that there is an alternative,
equivalent definition of fold, which expands the fold in the other direction:

fold Pf P0 ÊL , (ÊL = ∅) ∧ P0) ∨

(∃n, l. (ÊL = l ⊎ {n}) ∧ fold Pf Pf (n, P0) l)

As an example, consider the following fold assertion which we shall later
use to reason about dispose:

fold (λn, Q. ∃a, k, y.(an:k[y] ◮ Q)(0)) P0 l

This assertion is satisfied by a tree if it is possible to add to the tree subtrees
with root nodes n, for each n in l, and obtain a tree satisfying base assertion
P0. Viewing this from the opposite direction, the assertion simply describes
the result of disposing the subtrees at all the nodes in l, on a tree satisfying P0.

For lookup and new, we require a more expressive fold predicate, which
computes values of type τ as the recursion unfolds (where τ is either T , L
or A). We define an inductive predicate fold-val which this time takes four
arguments—a function Pf : τ × N × (τ → P) → P, a base case assertion

12

Zarfaty and Gardner

P0 : τ → P, a starting value E0 : τ , and a link expression ÊL:

fold-val Pf P0 E0 ÊL , ((ÊL = ∅) ∧ P0(E0)) ∨

(∃n, l.(ÊL = l ⊎ {n}) ∧ Pf(E0, n, λx.fold-val Pf P0 x l)

Like fold, this uses the locations from ÊL to expand Pf recursively, but in
addition passes values between calls with a starting value E0. As an example,
consider the following assertion used to reason about tree lookup:

fold-val (λy′, n, Q.

(

∃a, k, y0, y1. ✸an:k[y1] ∧
(y′ ⊢ [[an:k[y1]]]|y0) ∧Q(y0)

)

) (λy′. y′ = 0) y l

This specifies that the variable y denotes a concatenation (with renaming) of
the trees an:k[y] at the nodes n in l, with a base value of 0 for when l is empty.

5 Program Logic

We present a Hoare Logic for reasoning locally about our tree-update lan-
guage. As described in the Introduction, the disjointed nature of our tree
update, involving multiple, possibly nested locations, prevents us from using
a small-axiom specification. Nevertheless, we show that local Hoare reasoning
is still possible, using a different axiom style. We present the axioms, give
the corresponding weakest preconditions, and show that the derivations of the
weakest preconditions have a highly uniform structure. We also show that
our axiom style is comparatively easy to use, illustrating our ideas using the
‘collapse-all-links’ program from Sect. 3.5.

5.1 Hoare Logic

Our Hoare Logic uses a fault-avoiding interpretation of Hoare triples: triple
{P} C {Q} holds iff, when C is run in a state satisfying P , then C doesn’t fault
and the resulting state satisfies Q. We use four inference rules: Consequence,
Auxiliary Variable Elimination, Sequencing and the Frame Rule. The first
three are standard [9]. The key rule for local reasoning is the Frame Rule:

Frame Rule:
{P} C {Q}

{K(P)} C {K(Q)}
Mod(C) ∩ FV(K) = {}

where Mod(C) contains the variables modified by the command C, and FV(K)
is the set of free variables in K. The Frame Rule formalises the idea of local
behaviour, stating that if a tree P is sufficient for the faultless execution of
a command, then any additional tree structure, introduced using a context
assertion K, is unaltered by that command. The soundness of the Frame
Rule depends on the locality of the commands. All the commands in our
update language are local.

13

Zarfaty and Gardner

Assign:

{(m = EL) ∧ 0} l := EL {(l = m) ∧ 0}
{(m ≏ q(.)) ∧ x} l := q {(l = m) ∧ x}

Update:

{✸l ∧ x} dispose at l {fold (λn,Q.(∃a, k, y.(an:k[y] ◮ Q)(0))) x l}
{✸l ∧ x} dispose-links at l {fold (λn,Q.(∃a, k, y.(an:k[y] ◮ Q)(an:∅[y]))) x l}
{✸l ∧ x} append ET at l {fold (λn,Q.(∃a, k, y.(an:k[y] ◮ Q)(an:k[y|[[ET]]]))) x l}
{✸l ∧ x} append-links EL at l {fold (λn,Q.(∃a, k, y.(an:k[y] ◮ Q)(an:k∪EL

[y]))) x l}
{✸l ∧ x} set-labels EA at l {fold (λn,Q.(∃a, k, y.(an:k[y] ◮ Q)((EA)n:k[y]))) x l}

Lookup: C = y := get-trees at l

{✸l ∧ x} C

fold-val (λy′, n,Q.

(

∃a, k, y0, y1. ✸an:k[y1] ∧
(y′ ⊢ [[an:k[y1]]]|y0) ∧Q(y0)

)

)

(λy′. y′ = 0) y l) ∧ x

New: C = k := new EA at l

{✸l ∧ x} C

fold-val (λk′, n,Q.

(

∃m,k0, a, k, y. (k′ = k0 ⊎ {m})∧
(an:k[y] ◮ Q(k0))(an:k[y | EA(m:∅)[0]])

)

)

(λk′. (k′ = ∅) ∧ x) k l

Move:
{

(l = {n}) ∧ (l′ = {n′}) ∧
(0 ✄ ✸a′n′:k′ [y])(an:k[z]) ∧ x

}

move l to l′
{

(a′n′:k′ [y] ◮ (an:k[z] ◮ x)(0))
(a′n′:k′[y | an:k[z]])

}

Fig. 3. (Selected) Command Axioms

5.2 Command Axioms

A representative selection of command axioms is presented in Fig.3. Compare
the two axioms given for assignment. The first axiom is ‘small’ and standard:
the precondition says that the tree is empty and that variable m has value ÊL;
the postcondition says that the tree is still empty, and l has the value of m. The
axiom for query evaluation is similar, but subtly different: the precondition
now specifies that the tree has a value given by a variable x, and that variable
m contains the result of executing the query q; the postcondition specifies that
the tree has not changed, and that l has the value of m. The key change is that,
not knowing the footprint of the query, the axiom cannot be small. Instead,
the axiom is now defined on an arbitrary tree, and the equality m ≏ q(.) acts
as a safety condition ensuring that the query can be executed on that tree.
The other axioms all follow this same uniform structure. The preconditions
all specify a safety condition enabling the command to succeed and assign x
to the given tree. The postconditions are all the strongest possible, specifying
that the resulting tree has been changed as stipulated by the command: in
other words, that it is possible to undo all the updates and return to the
original tree x.

Consider the update commands, which we have presented in full to empha-
sise their uniformity. The precondition ✸l specifies the safety property that

14

Zarfaty and Gardner

all the update locations must be in the tree. The postcondition specifies that
the resulting tree is simply the one obtained by doing the updates: in other
words, that we can replace all the updated subtrees by the original subtrees
an:k[y], for each n ∈ l, to obtain the original tree x. The axioms for lookup
and new are similar, but use fold-val instead of fold. For lookup, the postcon-
dition states that the given tree is unchanged (the x), and that the value of
y is composition of all the (renamed) subtrees an:k[y1] given by the locations
n ∈ l; for new, the postcondition states that the resulting tree has fresh nodes
m at each n ∈ l, with label EA and no subtrees or links, and that these nodes
are collected into a variable k.

Finally, consider the move axiom. The safety property is more complicated
than the other cases (see Sect.3.4). It specifies that the source and destination
variables l and l′ evaluate to the single locations n and n′ in the tree, and that
n′ cannot be under n. The postcondition states that the resulting tree has a
node n under node n′, and that it is possible to move n somewhere else (in
fact to its original position) to obtain the original tree x.

5.3 Weakest Preconditions

We give the weakest preconditions, and derive them from the command ax-
ioms. This provides a completeness result for straightline code, and is useful in
constructing verification tools. The weakest preconditions of the commands in
Fig.3 are given in Fig.4 (and are explained below). Notice the strong duality
between the command axioms and these weakest preconditions, with the latter
often resembling the former ‘in reverse’. However, whereas the axiom postcon-
ditions need only specify an existence property arising from the precondition,
the weakest preconditions must describe all the possible trees leading to the
postcondition P .

Consider the weakest preconditions for the update commands. Using fold,
these specify that whenever it is possible to remove from the working tree the
subtrees an:k[y] for each n ∈ l and replace them by the appropriate updated
subtrees, then the resulting tree must satisfy the postcondition P . Note the
use of the universal adjoint R ⊲ Q, compared with the existential adjoint ◮

used in the specifications. For the dispose cases, this is not important since
R is only satisfied by structurally-equal trees (it is ‘exact’). However, ⊲ is
essential for tree-append, since the precondition must take into account all
possible node renamings of the appended tree. Finally, notice that for update
the fold assertion implies ✸l.

The weakest preconditions for lookup and new are slightly more complex.
Unlike update, they require the explicit safety property ✸l. They must also
factor in the renamings. The lookup precondition specifies that the post-
condition must hold for all possible renamings y′ of y, necessary since the
composition of the subtrees obtained by the lookup command is defined up to
renaming. The new precondition specifies that the postcondition must hold

15

Zarfaty and Gardner

Assign:

{P [EL/l]} l := EL {P}
{∃m.((m ≏ q(.)) ∧ P [m/l])} l := q {P}

Update:

{fold (λn,Q.(∃a, k, y.(0 ✄ Q)(an:k[y]))) P l} dispose at l {P}
{fold (λn,Q.(∃a, k, y.(an:∅[y] ✄ Q)(an:k[y]))) P l} dispose-links at l {P}

{fold (λn,Q.(∃a, k, y.(an:k[y | [[ET]]] ✄ Q)(an:k[y]))) P l} append ET at l {P}
{fold (λn,Q.(∃a, k, y.(an:k∪EL

[y] ✄ Q)(an:k[y]))) P l} append-links EL at l {P}
{fold (λn,Q.(∃a, k, y.((EA)n:k[y] ✄ Q)(an:k[y]))) P l} set-labels EA at l {P}

Lookup: C = y := get-trees at l

✸l ∧ ∀y′.

fold-val (λy′, n,Q.

(

∃a, k, y0, y1. ✸an:k[y1] ∧
(y′⊢ [[an:k[y1]]]|y0) ∧Q(y0)

)

)

(λy′. y′ = 0) y′ l

⇒ P [y′/y]

C {P}

New: C = k := new EA at l

✸l ∧ ∀l′. (|l′|= |l|)⇒

fold-val (λk′, n,Q.

∃m,k0.(k
′ = k0 ⊎ {m}) ∧

∃a, k, y.(an:k[y|EA(m:∅)[0]]

✄ Q(k0))(an:k[y])

)

(λk′. (k′ = ∅) ∧ P [l′/k]) l′ l

C {P}

Move:
{

∃n, n′. (l = {n}) ∧ (l′ = {n′}) ∧ ∃a,k,y,a′,k′,z.
(0 ✄ (a′n′:k′ [y | an:k[z]] ✄ P)(a′n′:k′ [y]))(an:k[z])

}

move l to l′ {P}

Fig. 4. (Selected) Weakest Preconditions

for any fresh identifiers selected for k. The preconditions for assignment and
move are straightforward.

The derivations of the weakest preconditions from the command axioms
display a surprising level of regularity. As in [3], they consist of applying the
right context assertion using the Frame Rule, then simplifying and eliminating
auxiliary variables. For our axioms however, the right context assertion is
simply the one which equates the initial tree x with the tree described in the
weakest precondition: that is (−∧(x✄P ′)), where P ′ is the part of the weakest
precondition describing the tree. In each case, the weakest precondition follows
immediately by Consequence. The derivations for the weakest preconditions
in Fig.4 are given in full in the Appendix. We describe the derivations for the
update cases here, as they are the most interesting.

The axiom postcondition and weakest precondition of a general update
command are of the form fold P◮ x l and fold P✄ P l, respectively, where

P◮ , (λn, Q.(∃a,k,y.(an:k[y] ◮ Q)(R(a, k, y))))

P✄ , (λn, Q.(∃a,k,y.(R(a,k,y) ✄ Q)(an:k[y])))

for an appropriate assertion R(a, k, y). To derive the weakest precondition
from the axiom, we equate x with the weakest precondition, applying the

16

Zarfaty and Gardner

{✸l ∧ x} {fold P◮ x l}
{

(− ∧ (x ✄ fold P✄ P l))
(✸l ∧ x)

}

Frame Rule

{

(−∧ (x ✄ fold P✄ P l))
(fold P◮ x l)

}

{✸l ∧ x ∧ fold P✄ P l} ⇑ Consequence ⇓ {fold P◮ (fold P✄ P l) l}
{x ∧ fold P✄ P l} ⇑ Consequence ⇓ {P}
{fold P✄ P l} Aux Vars {P}

Fig. 5. Derivation of Weakest Precondition for Update

frame (−∧(x✄fold P✄ x l)). We then simplify using the rules of Consequence
and Auxiliary Variable Elimination. The resulting derivation is given in Fig. 5.

The key step is showing the implication (fold P◮ (fold P✄ P l) l) ⇒ P .
This follows from expanding the two folds appropriately. If l 6= ∅ then it is
possible to expand the P✄ fold from the front and the P◮ fold from back (as
described in Sect. 4.3) to get:

∃l1, n1.(l = l1 ⊎ n1) ∧ ∃l2, n2.(l = l2 ⊎ n2) ∧ ∃a, k, y, a′, k′, y′.
(fold P◮ (an1:k[y] ◮ (R(a′, k′, y′) ✄ (fold P✄ P l2))(a

′
n2:k′[y′]))(R(a, k, y)) l1)

In fact, it is possible to expand more intelligently so that n1 = n2. This
is partly because none of the update results depend on the order of execu-
tion (though some orders may fail to execute). For most of the updates, the
execution order does not matter at all. For tree dispose, however, the order
does matter, since certain orders fail to execute: we cannot remove a tree
after removing one of its ancestors. However, any successful executing order
returns the same result, and since the last tree added (n2) is guaranteed not
to contain any of the earlier ones, it can safely be removed first (n1).

We can therefore derive an expansion like before but with n1 = n2. Sim-
plifying slightly further, we also get a = a′, k = k′ and y = y′. This gives us:

∃l′, n.(l = l′ ⊎ n) ∧ ∃a, k, y.
(fold P◮ (an:k[y] ◮ (R(a, k, y) ✄ (fold P✄ P l′))(an:k[y]))(R(a, k, y)) l′)

⇒ ∃l′, n.((l = l′ ⊎ n) ∧ ∃a, k, y.
(fold P◮ (R(a, k, y) ✄ (fold P✄ P l′))(R(a, k, y)) l′)

⇒ ∃l′, n.((l = l′ ⊎ n) ∧ ∃a, k, y.(fold P◮ (fold P✄ P l′) l′)

with the first implication depending on the ‘exact’ nature of the formula
an:k[y], which can only be satisfied by one tree. Having shown that:

fold P◮ (fold P✄ P l) l ∧ l 6= ∅ ⇒ ∃l′, n.((l = l′ ⊎ n) ∧ fold P◮ (fold P✄ P l′) l′)

we conclude that fold P◮ (fold P✄ P l) l ⇒ fold P◮ (fold P✄ P ∅) ∅ by
induction on l, which in turn implies P , by the definition of fold.

17

Zarfaty and Gardner

Backward Reasoning

{P}
dispose-links at l

{dispose-links
✄

l P}
append x at l

{append
✄

x l (dispose-links
✄

l P)}
x := get-trees at k

{

✸k ∧ ∀y.((y = get-trees k)⇒
append

✄
y l (dispose-links

✄
l P))

}

k := l/link::∗

∃l′.(l′ ≏ l/link:: ∗ (.)) ∧✸l′ ∧
∀y.((y = get-trees l′)⇒
append

✄
y l (dispose-links

✄
l P))

Forward Reasoning

{∃l′.(l′ ≏ l/link:: ∗ (.)) ∧ z}
k := l/link::∗

{(k ≏ l/link:: ∗ (.)) ∧ z}
x := get-trees at k

{

(k ≏ l/link:: ∗ (.)) ∧ (x = get-trees k)
∧ z

}

append x at l
{

(k ≏ l/link:: ∗ (.)) ∧ (x = get-trees k)
∧ (append

◮
x l z)

}

dispose-links at l
{

(x = get-trees k) ∧
(dispose-links

◮
l (append

◮
x l z))

}

Fig. 6. Program Reasoning on ‘collapse-all-links’

5.4 Program Reasoning Example

We now derive a weakest precondition and specification for the ‘collapse-all-
links’ program of Sect.3.5. For clarity, we define syntactic sugar for the fold
predicates used in the weakest preconditions of the constituent program com-
mands:

x=get-trees ÊL , fold-val (λy, n,Q.

(

∃a, k, y′, y0.✸an:k[y
′] ∧

(y ⊢ [[an:k[y
′]]]|y0) ∧Q(y0)

)

) (λy.(y = 0)) x ÊL

append
✄

ET ÊL P0 , fold (λn,Q.(∃a, k, y.(an:k[y | [[ET]]] ✄ Q)(an:k[y]))) P0 ÊL

dispose-links
✄

ÊL P0 , fold (λn,Q.(∃a, k, y.(an:∅[y] ✄ Q)(an:k[y]))) P0 ÊL

The assertion (x = get-trees ÊL) specifies that x is a result of concatenating
the subtrees at ÊL; similarly, (append

✄
ET ÊL P0) and (dispose-links

✄
ÊL P0)

state that whenever we append a tree ET at the locations given by ÊL, or
dispose of the links there, then P0 holds.

The weakest precondition of the program follows immediately. Reasoning
backwards, we obtain the left column of Fig.6. The last condition simplifies
to:

∃l′, y.(l′ ≏ l/link:: ∗ (.)) ∧ (y = get-trees l′) ∧ append
✄

y l (dispose-links
✄

l P)

since appending gives the same result for trees that are equivalent modulo
renaming. We are left with a natural statement of the weakest precondition,
the safety condition ∃l′.(l′ ≏ l/link:: ∗ (.)) stating that all the nodes in l, as
well as any links from them, are in the tree.

It is also easy to compose the command axioms to get a specification of
‘collapse-all-links’. To illustrate this, we define more syntactic sugar, writing
(append

◮
ET ÊL P0) and (dispose-links

◮
ÊL P0) for the result of appending

18

Zarfaty and Gardner

to or disposing the links of a tree satisfying P0:

append
◮

ET ÊL P0 , fold (λn,Q.(∃a, k, y.(an:k[y] ◮ Q)(an:k[y | [[ET]]]))) P0 ÊL

dispose-links
◮

ÊL P0 , fold (λn,Q.(∃a, k, y.(an:k[y] ◮ Q)(an:∅[y]))) P0 ÊL

Like the precondition, the specification follows immediately. Reasoning for-
wards, and using the frame rule to derive safety preconditions, we obtain (in
the right column of Fig.6) a specification in the same style as our axioms.

6 Conclusions

We have studied local Hoare reasoning based on Context Logic for a local tree-
update language which combines update commands with queries. We high-
lighted the concept of local commands, which are standard for heap update
but seem to be rarely used for tree update. We believe such local commands
are a good design choice in their own right, as well as being essential for local
reasoning.

Our reasoning about commands for updating multiple locations is a non-
trivial extension of our initial work introducing Context Logic [3]. This is
because the footprints of such commands are complex. In particular, it is not
possible simply to adapt the small-axiom approach. We have shown that it
is possible to do local Hoare reasoning, but our axioms are not small. Our
results surprised us, since initially we were not sure that such reasoning was
feasible at all.

We have not come to the end of the story. Our goal for this paper was
to understand whether local Hoare reasoning was possible for our local tree-
update language. Our next challenge is to see if it is possible to regain the
small-axiom approach by moving to a more complex context structure. It is
not possible to simply extend our reasoning to multi-holed contexts. Recall the
‘dispose l’ example, with variable l denoting the value {m, n}. The locations
m and n might denote disjoint trees, in which case multi-holed contexts would
probably work. However, m and n might also be one under the other, in which
case multi-holed contexts will not work by themselves. Perhaps some simple
additional ‘wiring’ structure might work. If so, our extended contexts could
be a simple example of Milner’s bigraphs [8]. Indeed, Sassone et al. have
highlighted bigraphs as a good model for XML with additional cross-links
precisely because of the additional context structure. They study BiLog [6,5],
a logic for static bigraphs influenced in part by Separation Logic and Context
Logic, but do not extend their reasoning to a tree-update language. In future,
we will try to extend Context Logic in the simplest possible way to obtain, if
possible, a small-axiom approach to local Hoare reasoning about tree update
and compare this approach with a top-down approach starting with bigraphs.

19

Zarfaty and Gardner

References

[1] Abiteboul, S., P. Buneman and D. Suciu, “Data on the Web: from relations to
semistructured data and XML,” Morgan Kaufmann, 1999.

[2] Biri, N., “Logiques spatiales de ressources, modèles d’arbres et applications,”
Ph.D. thesis, Université Henri Poincaré (2005).

[3] Calcagno, C., P. Gardner and U. Zarfaty, Context logic & tree update, in: POPL,
2005.

[4] Cardelli, L., P. Gardner and G. Ghelli, Querying trees with pointers,
unpublished notes, 2003; talk at APPSEM, 2001.

[5] Conforti, G., D. Macedonio and V. Sassone, Bigraphical logics for XML, in:
SEBD, 2005, pp. 392–399.

[6] Conforti, G., D. Macedonio and V. Sassone, Spatial logics for bigraphs, in:
ICALP, LNCS 3520, 2005, pp. 766–778.

[7] Isthiaq, S. and P. O’Hearn, BI as an assertion language for mutable data
structures, in: POPL, 2001, pp. 14–26.

[8] Jensen, O. and P. Milner, Bigraphs and mobile processes (revised), Technical
report, University of Cambridge (2004).

[9] O’Hearn, P., J. Reynolds and H. Yang, Local reasoning about programs that
alter data structures, in: Computer Science Logic, LNCS 2142, 2001, pp. 1–19.

[10] Reynolds, J., Separation logic: a logic for shared mutable data structures, in:
LICS, 2002, Invited Paper.

[11] Tatarinov, I., Z. Ives, A. Halevy and D. Weld, Updating XML, in: SIGMOD,
2001, pp. 413–424.

[12] W3C, XPATH: XML path language (1999), http://www.w3.org/TR/xpath/.

[13] Yang, H. and P. O’Hearn, A semantic basis for local reasoning, in: FOSSACS,
2002, pp. 402–416.

20

Zarfaty and Gardner

[[πa :: πf]]s,T (L) = [[πf]]s,T ([[πa]]s,T (L))
[[π1/π2]]s,T (L) = [[π2]]s,T ([[π1]]s,T (L))
[[π1 ∪ π2]]s,T (L) = [[π1]]s,T (L) ∪ [[π2]]s,T (L)
[[π1 ∩ π2]]s,T (L) = [[π1]]s,T (L) ∩ [[π2]]s,T (L)
[[π1 − π2]]s,T (L) = [[π1]]s,T (L) \ [[π2]]s,T (L)

[[self]]s,T (L) = L
[[child]]s,T (L) = {n’ | ∃n ∈ L. T ≡ C(an:K ′[a’n’:K ′ [T ′] |T ′′])}
[[desc.]]s,T (L) = {n’ | ∃n ∈ L. T ≡ C(an:K [C ′(a’n’:K ′[T ′])])}
[[parent]]s,T (L) = error if ∃n ∈ L.T ≡ an:K [T ′] |T ′′

else {n’ | ∃n ∈ L. T ≡ C(a’n’:K ′[an:K[T ′] |T ′′])}
[[link]]s,T (L) = error if ∃n’, n ∈ L.T ≡ C(an:K [T ′]) ∧ n’ ∈ K ∧ n’ /∈ Nodes(T)

else {n’ | ∃n ∈ L. T ≡ C(an:K [T ′]) ∧ n’ ∈ K}

[[EA]]s,T (L) = {n ∈ L | a = [[EA]]s ∧ T ≡ C(an:K [T ′])}
[[∗]]s,T (L) = L

[[π]]s,T (error) = [[πa]]s,T (error) = [[πf]]s,T (error) = error

Fig. A.1. Query Semantics

The following appendices contain a number of technical results referenced
in the main text.

A Query Language Semantics

In this Appendix we present the semantics for the local query language de-
scribed in Sect. 3.3. The language consists of:

q ::= l/π | q ∪ q | q ∩ q | q − q query
π ::= πa :: πf | π/π | π ∪ π | π ∩ π | π − π path

πa ::= self | child | descendant | parent | link path axis
πf ::= EA | ∗ label filter

The evaluation of a query is given by:

(l/π)(s, T) =

{

[[π]]s,T (s(l)) if s(l) ⊆ Nodes(T)

error otherwise

plus the obvious extension for the set operations, where [[π]]s,T is a function
defined in Fig.A.1. In essence, it either returns the set of identifiers obtained
by following path π in the tree T starting from a given set of nodes, or it gives
back an error if the path moves outside the tree. The path function [[π]]s,T
depends on the axis function [[πa]]s,T , which finds the set of nodes associated
with one step in the path, and the filter function [[πf]]s,T , which filters the
nodes depending on their labels.

21

Zarfaty and Gardner

Assign:

[[EL]]s = L

l := EL, s, T ❀ [s|l ← L], T

q(s, T) = L

l := q, s, T ❀ [s|l← L], T

q(s, T) = error

l := q, s, T ❀ fault

Lookup: C = x := get-trees at l

[[l]]s = L ⊆ Nodes(T)

C, s, T ❀ C, L, [s|x← 0], T

T ≡ C(an:K [T ′]) T ′′ ≃ an:K[T ′] (T ′′ | s(x)) well-formed

C, {n} ⊎ L, s, T ❀ C, L, [s|x← T ′′ | s(x)], T

Dispose: C = dispose at l

[[l]]s = L ⊆ Nodes(T)

C, s, T ❀ C, L, s, T

T ≡ C(an:K [T ′])

C, {n} ⊎ L, s, T ❀ C, L, s, C(0)

Append: C = append ET at l

[[l]]s = L ⊆ Nodes(T)

C, s, T ❀ C, L, s, T

T ≡ C(an:K [T ′]) T ′′ ≃ [[ET]]s C(an:K [T ′] |T ′′) well-formed

C, {n} ⊎ L, s, T ❀ C, L, s, C(an:K [T ′] |T ′′)

Move: C = move l to l′

[[l]]s = {n} [[l′]]s = {n’} T ≡ C(an:K [C′(a’n’:K′ [T ′])])

C, s, T ❀ s, C(an:K [C′(0) | a’n’:K′ [T ′]])

[[l]]s = {n} [[l′]]s = {n’} T ≡ C(an:K [T ′] |C′(a’n’:K′ [T ′′]))

C, s, T ❀ s, C(an:K [T ′ | a’n’:K′ [T ′′]] |C′(0))

otherwise

C, s, T ❀ fault

New: C = l := new EA at l′

[[l]]s = L ⊆ Nodes(T)

C, s, T ❀ C, L, [s|l← ∅], T

T ≡ C(an:K [T ′]) a’ = [[EA]]s n’ /∈ Nodes(T) L′ = s(l) ∪ {n’}

C, {n} ⊎ L, s, T ❀ C, L, [s|l← L′], C(an:K [T ′ | a’n’:∅[0]])

Lookup, Dispose, Append & New:
[[l]]s * Nodes(T)

C, s, T ❀ fault C, ∅, s, T ❀ s, T

Fig. B.1. (Selected) Operational Semantics

B Update Command Operational Semantics

The operational semantics of the update commands is given in Sect.3.4 is given
in Fig.B.1. It uses an evaluation relation ❀, relating configuration triples
C, s, T to terminal states s, T or ‘fault’. For commands that act at multiple
locations, we use partial computation states C, L, s, T , which represent a state
where the command C has yet to act on the locations in L. The semantics for
these partial computation states is given in a non-deterministic fashion that
does not specify the order of execution. Consider the rules for dispose, which
removes the locations given by a query. The left-hand rule creates a partial
computation state, with a location set given by the query. The right-hand
rule picks a node from the location set, removes the tree at that node, and
returns a new partial computation state. This continues until the location set
is empty, when we return the final store and tree as the terminal state. The
order in which the nodes are chosen does not matter, in that when we obtain
an answer, it is always the same. Some orders never reach a termination
state, since it is not possible to remove a location if any of its ancestors has
already been removed. Our semantics is only concerned with the existence of

22

Zarfaty and Gardner

a terminating order, and since our queries return locations in the tree, it is
always possible to find at least one. The rules for append, lookup and new
are similar.

C Derivations of Weakest Preconditions

The derivations for the weakest preconditions in Fig.4 are given in Figs. C.1
and C.2.

23

Zarfaty and Gardner

Assign:

{(m = EL) ∧ 0} l := EL {(l = m) ∧ 0}
{(0 ✄ P [m/l])((m = EL) ∧ 0)} FR {(0 ✄ P [m/l])((l = m) ∧ 0)}

{(m = EL) ∧ P [m/l]} C {(l = m) ∧ P [m/l]}
{(m = EL) ∧ P [EL/l]} C {P}

{P [EL/l]} AV {P}

{(m ≏ q(.)) ∧ x} l := q {(l = m) ∧ x}
{(− ∧ (x ✄ P [m/l]))((m ≏ q(.)) ∧ x)} FR {(− ∧ (x ✄ P [m/l]))((l = m) ∧ x)}

{(m ≏ q(.)) ∧ x ∧ P [m/l])} C {(l = m) ∧ P [m/l]}
{(m ≏ q(.)) ∧ x ∧ P [m/l]} C {P}
{∃m.((m ≏ q(.)) ∧ P [m/l])} AV {P}

Lookup: C = z := get-trees at l

{✸l ∧ x} C {(fold-val Pf P0 z l) ∧ x}
{

(− ∧ (x ✄ ∀y.(fold-val Pf P0 y l
⇒ P [y/z])))(✸l ∧ x)

}

FR

(− ∧ (x ✄ ∀y.(fold-val Pf P0 y l
⇒ P [y/z])))
((fold-val Pf P0 z l) ∧ x)

{

✸l ∧ x ∧ ∀y.
(fold-val Pf P0 y l⇒ P [y/z])

}

C {P}

{✸l ∧ ∀y.(fold-val Pf P0 y l⇒ P [y/z])} AV {P}

where Pf , (λy, n,Q.(∃a, k, y′, y0.✸an:k[y
′] ∧ (y ⊢ [[an:k[y

′]]]|y0) ∧Q(y0)))

and P0 , (λy.(y = 0))

Update:

{✸l ∧ x} C {fold P◮ x l}
{(− ∧ (x ✄ fold P✄ P l))(✸l ∧ x)} FR {(− ∧ (x ✄ fold P✄ P l))(fold P◮ x l)}

{✸l ∧ x ∧ fold P✄ P l} C {fold P◮ (fold P✄ P l) l}

{x ∧ fold P✄ P l} C {P}
{fold P✄ P l} AV {P}

where P◮ , (λn,Q.(∃a,k,y.(an:k[y] ◮ Q)(R(a, k, y)))) and

P✄ , (λn,Q.(∃a,k,y.(R(a,k,y) ✄ Q)(an:k[y]))) for appropriate R(a, k, y)

Fig. C.1. Derivations (1)

24

Zarfaty and Gardner

Move: C = move l to l′
{

(l = {m}) ∧ (l′ = {n}) ∧ x∧
(0 ✄ ✸an:k[true])(a′

m:k′ [true])

}

C

{

(an:k[y] ◮ ((a′
m:k′ [z]) ◮ x)(0))

(an:k[y | a′
m:k′ [z]])

}

(− ∧ (x ✄ (0 ✄ ((an:k[y | a′
m:k′ [z]]) ✄ P)

(an:k[y]))(a′
m:k′ [z])))

((l = {m}) ∧ (l′ = {n}) ∧ x∧
(0 ✄ ✸an:k[true])(a′

m:k′ [true])

FR

(− ∧ (x ✄ (0 ✄ ((an:k[y | a′
m:k′ [z]]) ✄ P)

(an:k[y]))(a′
m:k′ [z])))

((an:k[y] ◮ ((a′
m:k′ [z]) ◮ x)(0))

(an:k[y | a′
m:k′ [z]]))

(l = {m}) ∧ (l′ = {n}) ∧ x∧
(0 ✄ ((an:k[y | a′

m:k′ [z]]) ✄ P)
(an:k[y]))(a′

m:k′ [z])∧
(0 ✄ ✸an:k[true])(a′

m:k′ [true])

C

(an:k[y] ◮ ((a′
m:k′ [z]) ◮

(0 ✄ ((an:k[y | a′
m:k′ [z]]) ✄ P)

(an:k[y]))(a′
m:k′ [z])))(0))

(an:k[y | a′
m:k′ [z]])

(l = {m}) ∧ (l′ = {n}) ∧ x∧
(0 ✄ ((an:k[y | a′

m:k′ [z]]) ✄ P)
(an:k[y]))(a′

m:k′ [z])

C

{

(an:k[y] ◮ ((an:k[y | a′
m:k′ [z]]) ✄ P)

(an:k[y]))(an:k[y | a′
m:k′ [z]])

}

(l = {m}) ∧ (l′ = {n}) ∧ x∧
(0 ✄ ((an:k[y | a′

m:k′ [z]]) ✄ P)
(an:k[y]))(a′

m:k′ [z])

C {P}

∃m, n. (l = {m}) ∧ (l′ = {n}) ∧ ∃a, k, y,
a′, k′, z.(0 ✄ ((an:k[y | a′

m:k′ [z]]) ✄ P)
(an:k[y]))(a′

m:k′ [z])

AV {P}

New: C = k := new EA at l

{✸l ∧ x} C
{

fold-val P◮ (λl′′.((l′′ = ∅) ∧ x)) k l
}

(− ∧ (x ✄ ∀l′.(|l′| = |l|)⇒ fold-val P✄

(λl′′.((l′′ = ∅) ∧ P [l′/k])) l′ l))
(✸l ∧ x)

FR

(− ∧ (x ✄ ∀l′.(|l′| = |l|)⇒ fold-val P✄

(λl′′.((l′′ = ∅) ∧ P [l′/k])) l′ l))
(fold-val P◮ (λl′′.((l′′ = ∅) ∧ x)) k l)

{

✸l ∧ x ∧ ∀l′.(|l′| = |l|)⇒ fold-val
P✄ (λl′′.((l′′ = ∅) ∧ P [l′/k])) l′ l

}

C

fold-val P◮ (λl′′.((l′′ = ∅) ∧
∀l′.(|l′| = |l|)⇒ fold-val P✄

(λl′′.((l′′ = ∅) ∧ P [l′/k])) l′ l)) k l

{

✸l ∧ x ∧ ∀l′.(|l′| = |l|)⇒ fold-val
P✄ (λl′′.((l′′ = ∅) ∧ P [l′/k])) l′ l

}

C

fold-val P◮ (λl′′.((l′′ = ∅) ∧
fold-val P✄ (λl′′.((l′′ = ∅) ∧ P))

k l)) k l

{

✸l ∧ x ∧ ∀l′.(|l′| = |l|)⇒ fold-val
P✄ (λl′′.((l′′ = ∅) ∧ P [l′/k])) l′ l

}

C {P}
{

✸l ∧ ∀l′.(|l′| = |l|)⇒ fold-val
P✄ (λl′′.((l′′ = ∅) ∧ P [l′/k])) l′ l

}

AV {P}

where P◮ , (λl′′, n, Q.(∃m, l0.(l
′′ = l0 ⊎ {m}) ∧ ∃a, k, y.(an:k[y] ◮ Q(l0))(an:k[y | EA(m:∅)[0]])))

and P✄ , (λl′′, n, Q.(∃m, l0.(l
′′ = l0 ⊎ {m}) ∧ ∃a, k, y.(an:k[y | EA(m:∅)[0]] ✄ Q(l0))(an:k[y])))

Fig. C.2. Derivations (2)

25

	Introduction
	Tree Model
	A Local Update Language
	Storage Model and Expressions
	Local Queries
	A Local Query Language
	Update Commands
	Examples

	Context Logic for Tree Update
	Environment
	Logic
	Inductive Predicates

	Program Logic
	Hoare Logic
	Command Axioms
	Weakest Preconditions
	Program Reasoning Example

	Conclusions
	References
	Query Language Semantics
	Update Command Operational Semantics
	Derivations of Weakest Preconditions

